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ABSTRACT

In standard attention, a substantial fraction of compute comes from multiplying
softmax weights by high-precision value vectors — even in ternary models such
as BitNet, which remove multipliers elsewhere. We present Stochastic Additive
No-mulT Attention (SANTA), a drop-in inference-time replacement that elimi-
nates these value-stage multiplications. For each query, SANTA samples from the
post-softmax distribution, gathers and sums selected values, and applies a single
bit-shift normalization, with no expensive multipliers on the value path. SANTA’s
compute scales as O(nqueries ·S ·dk): linear in the number of queries during prefill
and linear in the sample budget S during decode, while exhibiting sparse, index-
based memory access. SANTA is an unbiased Monte Carlo estimator of dense
attention and is orthogonal to upstream efficiency techniques (ternary quantization,
low-rank kernels, sparsity, pruning). Combined with existing 1-bit/ternary quan-
tizers, SANTA moves Transformers toward fully multiplier-free, energy-efficient
inference.

1 INTRODUCTION

The transformer architecture has become ubiquitous (Vaswani et al., 2017). State-of-the-art LLMs
such as GPT (OpenAI, 2024), DeepSeek (DeepSeek-AI, 2025), Llama (Touvron et al., 2023), and
Gemini (Team et al., 2023) are already practical for deployment as virtual assistants. These models
come with substantial compute and memory demands, particularly in the attention mechanism,
where the KV-cache scales linearly and the attention computation scales quadratically with sequence
length. A growing body of work seeks to reduce inference costs, especially for edge devices and
memory-limited systems.

A parallel line of work focuses on quantization, with 1-bit architectures such as BitNet (Wang et al.,
2023; Ma et al., 2025; 2024) representing model parameters as −1, 0 and +1 weights outside of token
embeddings. This replaces matrix multiplications with cheap, energy-efficient addition operations.
However, attention matmuls between queries (Q), keys (K), and values (V ) still rely on dense matrix
multiplications in higher (8-16 bit) precision, which remain a bottleneck.

We propose Stochastic Additive No-mulT Attention (SANTA), an inference-time method that replaces
the V multiplication with sampling, indexing, addition, and a bit-shift based normalization. SANTA
eliminates all value stage multiplications and is complementary to existing improvements in the score
stage QKT. SANTA makes sparse memory accesses to only a few rows of the value matrix and
produces an unbiased estimate of dense attention. Along with 1-bit quantization, SANTA suggests a
practical path toward multiplier-free transformer inference.

2 RELATED WORK

2.1 QUANTIZATION

Recent years have observed progressively more extreme quantization of model weights. Works
such as QLoRA (Dettmers et al., 2023) represent model weights with as low as 4-bit precision in

Code: https://anonymous.4open.science/r/SANTA-718E
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fine-tuning LLMs. Post-training quantization has demonstrated significant promise, storing weights in
>100 billion parameter GPT models in as few as 3-4 bits (Frantar et al., 2022). Recently, transformers
such as BitNet feature model parameters as ternary (-1, 0, and +1) weights with minimal accuracy
loss (Wang et al., 2023; Ma et al., 2025; 2024). This turns dense matrix multiplications in projection
and feedforward layers into cheap addition operations. However, the multiplication of query, key, and
value matrices is left in high, ≥ 8-bit precision.

2.2 EFFICIENT ATTENTION

Implementations that keep exact attention but fuse/tile the kernel for better memory locality include
FlashAttention (Dao, 2023; Dao et al., 2022) and Slim Attention (Graef & Wasielewski, 2025).
They still fully evaluate QKT, but eliminate redundant reads/writes. Sparse-pattern variants such
as Longformer and BigBird (Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020) compute
only a subset of query–key dot products, while low-rank approximations like Linformer (Wang et al.,
2020) project Q and/or K to lower dimensions before the multiply. Recently, NoMAD-Attention
removes most multiplications in the score stage by product-quantizing keys and converting each dot
product into SIMD look-ups and integer adds on CPUs (Zhang et al., 2024). These techniques target
the QKT computation. By contrast, SANTA leaves the score stage untouched and instead targets the
softmax–by-V multiply. SANTA is complementary and orthogonal to QKT techniques.

2.3 TOP-K AND KV-CACHE SPARSITY

Many attention implementations leverage the observation that only a few keys with high attention
scores carry the majority of information, while unimportant keys can be dropped. For instance, top-k
attention (Gupta et al., 2021) selects the k highest-score keys while discarding the rest, saving global
memory accesses to rows of the V matrix.

Recent work, including Quest (Tang et al., 2024) and H2O (Zhang et al., 2023), avoids scoring
all keys by restricting the KV subset scored before softmax. Since these KV-cache methods still
perform a softmax-V multiplication, they are orthogonal to SANTA, which replaces the softmax-V
multiplication.

Top-k attention occupies a similar architectural slot as SANTA, thus top-k is SANTA’s natural
competitor. While top-k attention has shown impressive performance, it is biased and lacks theoretical
guarantees. Top-k’s bias manifests when the attention distribution becomes a long-tailed distribution,
which can occur in practice. Recent work (Chen et al., 2024) empirically shows that tasks such as
common word extraction see top-k performance degrade significantly, while unbiased Monte-Carlo
attention approximations retain high accuracy.

2.4 MONTE CARLO ATTENTION

Monte Carlo estimators have been proposed for efficient attention. Some proposals apply randomized
linear algebra for partial matrix multiplications, saving FLOPs (Kim & Ko, 2022). Locality sensitive
hashing (Chen et al., 2024; Kitaev et al., 2020) builds hash tables for query-key comparisons,
representing a stochastic process which provides theoretical guarantees and unbiased attention
estimators. Compared to existing work, SANTA is the first to propose Monte Carlo attention in a
fashion that removes multiplication by V after the softmax step.

3 STOCHASTIC ADDITIVE NO-MULT ATTENTION (SANTA)

3.1 ALGORITHM AND ESTIMATOR

We consider the attention mechanism as a function of key, query, and value matrices:

Attn(Q,K, V ) = softmax
(
QKT

√
dk

)
V = AV, (1)

where A ∈ Rnq×nk is the row-stochastic attention score matrix and V ∈ Rnk×dv is the value matrix.
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Figure 1: Scaled dot product attention (SDPA) vs. Stochastic Additive No-mulT Attention (SANTA).
(a) SDPA kernels feature an expensive matrix multiplication by the value matrix V , requiring global
memory accesses to every row of V . (b) SANTA eliminates multiplications following the softmax
operation, using cheap additions and sparse memory accesses to sampled rows of V . Normalization
by S is a single bitshift if S is a power of 2.

To approximate AV without multiplications, we treat each row Aq as a categorical distribution over
keys and sample S values i.i.d. from it. For query q, we fetch the corresponding S rows of V and
average them. This yields an estimate of the attention output using only row indexing and addition.

As an illustrative example, consider nq = nk = 3. We sample S = 3 one-hot rows per query:

ÃV =
1

3

([
1 0 0
0 1 0
1 0 0

]
+

[
1 0 0
1 0 0
0 0 1

]
+

[
1 0 0
1 0 0
0 1 0

])
V, (2)

which simplifies by distributivity of matrix multiplication over addition:

ÃV =
1

3

([
1 0 0
0 1 0
1 0 0

]
V +

[
1 0 0
1 0 0
0 0 1

]
V +

[
1 0 0
1 0 0
0 1 0

]
V

)
=

1

S
(V1 + V2 + V3 + · · · ), (3)

where each Vi is a matrix formed by stacking nq rows selected from V . Each row of Vi corresponds
to a single sampled key for that query. Multiplying a one-hot attention matrix with V requires no
arithmetic: it is a gather operation. Thus, the product ÃV can be computed with S indexing steps
and a single vector-wise addition per query. The one-hot attention matrices in Eq. 2 and 3 are for
illustrative purposes only; those matrices represent indexing operations and are not materialized in
memory.

We now transition from this intuitive explanation to a formal description of the estimator:

Formal description. Let A = softmax
(
QKT/

√
dk
)
∈ Rnq×nk and V ∈ Rnk×dv . For each

query q ∈ {1, . . . , nq}, let Aq denote its attention weight vector (a probability distribution over keys).

Definition 3.1 (SANTA estimator). For each q, independently sample iq,1, . . . , iq,S
i.i.d.∼

Categorical(Aq), and define

V̂q =
1

S

S∑
s=1

Viq,s ∈ Rdv .

Stacking all query outputs yields the estimate ÂV = [V̂1; . . . ; V̂nq ] ∈ Rnq×dv .

3
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Remark 3.2. Choosing S = 2m allows the division to be implemented as a bit shift.

Proposition 3.3 (Unbiasedness). E[ÂV ] = AV.

Proof. Fix any q. Since Pr(iq,s = j) = Aqj ,

E[V̂q] =
1

S

S∑
s=1

nk∑
j=1

AqjVj =

nk∑
j=1

AqjVj = (AV )q.

Linearity of expectation completes the result.

Finally, SANTA can be summarized as:

ÃV =
1

S

S∑
i=1

Vi ≈ AV, (4)

where each Vi is a gathered matrix of rows from V . Multiplications in the value stage have therefore
been eliminated in favor of indexing and addition. SANTA can be viewed as an average over
stochastic hard attention where each query attends to a single key but remains unbiased and tunable.
Fig. 1 illustrates the difference from standard SDPA.

3.2 VARIANCE AND TAIL BOUNDS FOR SANTA

Throughout this subsection, fix a query index q ∈ {1, . . . , nq}. Let Aq ∈ ∆nk−1 denote the attention
weights over keys, write pqj ≜ Aqj , and let µq ≜

∑nk

j=1 pqjVj = (AV )q be the exact attention

output for that query. Default SANTA draws iq,1, . . . , iq,S
i.i.d.∼ Categorical(Aq) and returns

V̂q =
1

S

S∑
s=1

Viq,s ∈ Rdv .

Define centered summands Xs ≜ Viq,s − µq and the (query-specific) covariance Σq ≜ Cov(Vi) =∑nk

j=1 pqj (Vj − µq)(Vj − µq)
⊤.

Proposition 3.4 (Variance scaling of SANTA). SANTA is unbiased, and its covariance scales as
1/S:

E[V̂q] = µq, Cov(V̂q) =
1

S
Σq.

Equivalently, E
[
∥V̂q − µq∥22

]
= 1

S tr(Σq).

Proof. Unbiasedness was shown above. For the variance, write V̂q−µq = 1
S

∑S
s=1 Xs with E[Xs] =

0 and Cov(Xs) = Σq. The Xs are i.i.d., hence Cov
(

1
S

∑S
s=1 Xs

)
= 1

S2

∑S
s=1 Cov(Xs) =

1
S Σq.

Taking the trace gives the mean-squared error identity.

Remark 3.5. A dimension-free high-probability concentration bound for SANTA is deferred to
Appendix A (Theorem A.1)

3.3 S2ANTA: STRATIFIED AND SYSTEMATIC SAMPLING

S²ANTA reduces variance via stratified sampling: dividing the CDF into S equal intervals and sam-
pling once per interval. Two variants: independent (S2ANTA-ind) with proven variance reduction,
and systematic (S2ANTA-sys) with empirically similar performance.
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Construction. Fix a query q. Let Aq = (pq1, . . . , pqnk
) be the attention weights and Fq the

associated CDF on [0, 1). Partition [0, 1) into S equal intervals

Im := [m/S, (m+ 1)/S), m = 0, . . . , S − 1.

Define two schemes:

• Independent stratified (S2ANTA-ind). Draw Tm ∼ Unif(Im) independently for m =

0, . . . , S − 1, set Jm := F−1
q (Tm), and output V̂ ind

q := 1
S

∑S−1
m=0 VJm

.

• Systematic (S2ANTA-sys). Draw a single U ∼ Unif([0, 1/S)) and take thresholds Tm :=

U +m/S. With Jm := F−1
q (Tm), output V̂ sys

q := 1
S

∑S−1
m=0 VJm

.

Both replace S i.i.d. multinomial draws by one sample per equal-probability stratum and use only
gathers and additions on V .

Proposition 3.6 (Unbiasedness of S2ANTA). Let µq :=
∑

j pqjVj = (AV )q. Then E[V̂ ind
q ] =

E[V̂ sys
q ] = µq.

Proof. For S2ANTA-ind,

E[V̂ ind
q ] =

1

S

S−1∑
m=0

E[VF−1
q (Tm)] =

∫ 1

0

(∑
j

1{Fq(j−1) ≤ t < Fq(j)}Vj

)
dt =

∑
j

pqjVj = µq.

For S2ANTA-sys, condition on U ; each Tm is uniform on Im (though dependent), so the same
integral argument applies after averaging over U ; see Cochran (1977, Ch. 8) and Owen (2013).

Remark 3.7 (Systematic vs. independent: guarantees and practice). S2ANTA-ind is unbiased
and admits a universal variance-dominance theorem, guaranteeing lower variance than that of i.i.d.
sampling with default SANTA (see Appendix B). S2ANTA-sys is also unbiased, but does not
provide tractable variance guarantees. Empirically, we measure variance and benchmark performance
comparable to S2ANTA-ind.

3.4 THEORETICAL FLOPS AND MEMORY TRAFFIC

Table 1: Per-head FLOPs and DRAM traffic for scaled dot-product attention (SDPA), top-k, and
SANTA. All expressions are normalized per attention head. nq: queries, nk: keys, dk: head
dimension, k: top-k budget, S: sample budget.

Stage & Variant Adds Mults / Divs Reads Writes

Score stage (QKT) nqnk(dk − 1) nqnkdk (nq + nk) dk nqnk

Value stage
Dense SDPA nqnkdk nqnkdk nqnkdk nqdk
Top-k nqkdk nqkdk nqkdk nqdk
SANTA nq(S − 1) dk 0 nqSdk nqdk

We now analyze the computational cost of SANTA against SDPA and its closest competitor, top-
k attention, focusing on FLOPs and memory traffic in the value stage. Table 1 summarizes the
theoretical costs per attention head.

While top-k attention is memory-efficient and generally performs well, it introduces bias and can
degrade significantly when the attention distribution is heavy-tailed. For example, recent work (Chen
et al., 2024) shows that tasks such as common word extraction suffer when relevant information is not
concentrated in the top-k entries. In contrast, stochastic estimators like SANTA provide an unbiased
estimate of full attention and retain robustness in such cases.

Table 1 summarizes theoretical FLOPs and memory traffic per forward pass for SDPA, top-k, and
SANTA. We denote nq queries, nk keys, and dk the head dimension. nq is equal to the prompt length

5
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in prefill and nq = 1 during autoregressive generation. All expressions are normalized per attention
head, and total cost scales linearly with the number of heads H .

For both top-k and SANTA, we define a notion of compute budget, where k is the number of keys
selected by top-k for each query of each attention head, while S is a sample budget representing
the number of samples that SANTA draws for each query of each attention head. By default, we
employ uniform S across model layers, though ablations suggest that S can be optimized per layer
(Appendix C, D).

We omit softmax computation, top-k sorting overhead, and sampling from this analysis, as they are
lightweight relative to the V matrix multiply and highly implementation-dependent. For example,
many implementations use partial sorting (Yerram et al., 2024; Xie et al., 2024) or prune the score
matrix early (Zhang et al., 2023; Tang et al., 2024).

In both FLOPs and memory reads, SDPA scales as nqnk, reflecting the cost of full quadratic attention
computation. Both top-k and SANTA reduce this to nqk and nqS, respectively, assuming fixed
budgets with k, S ≪ nk. This shifts the overall complexity of the value stage from quadratic to linear
in sequence length, given a fixed budget k or S.

Top-k still incurs multiplication costs while SANTA eliminates multiplies. Top-k performs nqkdk
multiplications (per head), while SANTA requires only nqdk divisions for normalization (if S is
chosen as a power of 2, even these few divisions become simple bit-shifts).

4 RESULTS AND BENCHMARKING

4.1 COMPARISON METHODOLOGY

Comparing SANTA and top-k requires care, as they have different computational profiles. We
present results for sample budget S equal to the top-k budget k not as an iso-compute benchmark, but
to demonstrate that SANTA achieves comparable or superior accuracy while using a fundamentally
cheaper set of operations. At S = k: top-k costs nqkdk multiplications + nqkdk additions, whereas
SANTA costs 0 multiplications + nqSdk additions (Table 1).

A 32-bit FP multiply costs 3.7 pJ versus 0.9 pJ for addition (Horowitz, 2014). For equal budgets k = S,
the value-stage energy consumption for the two methods are approximately: k × (3.7 + 0.9) = 4.6k
pJ per element for top-k, vs. S × 0.9 = 0.9S pJ per element for SANTA. Relative to top-k, SANTA
yields a ≈ 5× energy reduction for value stage FLOPs. We acknowledge that these are approximate
energy estimates; we aim to provide hardware-agnostic comparisons, as modern GPU hardware
is optimized for matmuls and contiguous memory access, while SANTA involves adds and sparse
memory access.

Regarding memory accesses: SANTA’s accesses to elements of the V matrix scale as nqSdk, which
in the worst case matches top-k’s nqkdk memory accesses at k = S. However, since SANTA samples
with replacement, the number of unique keys is ≤ S. In practice, as we later quantify in Table 5, the
number of unique keys sampled is << S, which may offer significant caching advantages.

4.2 GSM8K

Table 2: GSM8K accuracy and average context length (prompt + answer). k: number of keys in
top-k, S: SANTA sample budget. Accuracy shows 95% bootstrap confidence intervals.

DeepSeek-R1-Distill-Qwen-7B Llama-3.1-8B-Instruct

Top-k SANTA Top-k SANTA S2ANTA-ind S2ANTA-sys

k|S Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok.

2 0.23± 0.15 4049 0.00± 0.00 4217 1.21± 0.32 430 1.26± 0.34 1075 1.01± 0.32 1071 1.11± 0.34 1071
4 23.88± 1.31 3298 0.08± 0.09 4208 6.27± 0.72 583 1.57± 0.37 825 1.54± 0.38 611 1.67± 0.40 569
8 72.25± 1.35 2332 52.46± 1.57 2799 41.32± 1.50 549 1.44± 0.38 207 1.74± 0.40 325 2.10± 0.45 340
16 82.51± 1.21 1860 79.00± 1.28 1778 62.88± 1.57 430 5.51± 0.72 350 39.12± 1.50 352 44.63± 1.58 349
32 86.23± 1.02 1694 83.19± 1.23 1667 72.50± 1.34 384 38.26± 1.43 348 67.00± 1.48 343 68.59± 1.42 339
64 86.76± 1.03 1624 84.99± 1.09 1587 76.12± 1.32 358 63.63± 1.49 346 74.43± 1.31 343 76.42± 1.34 341
128 87.54± 1.02 1626 85.42± 1.00 1594 77.13± 1.30 349 70.23± 1.42 341 75.64± 1.33 341 77.33± 1.34 342
256 88.20± 0.97 1600 86.93± 1.01 1627 78.19± 1.33 340 75.61± 1.42 342 78.17± 1.28 343 77.56± 1.34 343

SDPA 88.75± 1.00 1532 — — 78.06± 1.33 344 — — — — — —
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We consider DeepSeek-R1-Distill-Qwen-7B (hereafter “DeepSeek 7B") (DeepSeek-AI, 2025) and
Llama-3.1-8B-Instruct (hereafter “Llama 8B") (Meta AI, 2024). Table 2 shows accuracy on the
GSM8K dataset as a mathematical reasoning benchmark (Cobbe et al., 2021; OpenAI, 2023). We
evaluate the test split (1319 prompts) 3 times. Evaluation code uses straightforward answer parsing
and borrows grading code from PRM800K (Lightman et al., 2023); for full prompting logistics,
please see Supplementary Material. For both models, temperature = 0.6, top-p = 0.95, and
repetition penalty = 1.1.

Chain-of-thought is built-in to DeepSeek 7B, leading to verbose output. Generation length is capped
at 4096 tokens (excluding the prompt). Llama 8B is more succinct in responses, so generation length
is capped at 1024 new tokens.

Table 2 provides the average number of tokens (prompt + answer) because the compute and memory
access costs of SANTA are contextualized relative to the sequence length nk. Following the analyses
of Table 1, SANTA is far cheaper than SDPA provided S << nk, incurring S/nk of SDPA’s adds
and memory accesses to V , and none of SDPA’s multiplies.

Default SANTA exhibits respectable performance, but the S2ANTA variants demonstrate superior
performance across every sample budget S. For Llama-8B, S2ANTA-ind and S2ANTA-sys demon-
strate similar performance to top-k for k = S despite S2ANTA requiring no multiplies. S2ANTA
implementations approach the accuracy of full SDPA (within 1%) while S remains shorter than the
sequence length nk, indicating memory access savings and FLOP energy savings. In deployment
settings where LLM users do not require maximum model performance, the sample budget S can be
tuned to save computation cost. For instance, S2ANTA-sys achieves 76.42% accuracy at S = 64,
which is about 19% of the average sequence length of 341 tokens. For a modest accuracy tradeoff
compared to SDPA’s 78.06%, S2ANTA-sys in principle costs 19% of the additions, 19% of the
V -matrix accesses, and no multiplies.

4.3 MMLU

Table 3: MMLU accuracy and average context length (prompt + answer). k: number of keys in top-k,
S: SANTA sample budget. Accuracy shows 95% bootstrap confidence intervals.

DeepSeek-R1-Distill-Qwen-7B Llama-3.1-8B-Instruct

Top-k SANTA Top-k SANTA S2ANTA-ind S2ANTA-sys

k|S Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok. Acc. (%) Tok.

2 24.97± 1.24 3598 4.33± 0.58 4178 23.56± 1.20 588 24.89± 1.27 1144 24.28± 1.21 1141 24.52± 1.22 1141
4 38.93± 1.32 2236 23.10± 1.20 3666 28.37± 1.27 359 25.13± 1.20 961 24.65± 1.26 807 24.49± 1.18 774
8 55.08± 1.47 1659 44.55± 1.47 2080 39.54± 1.43 532 25.06± 1.23 284 25.63± 1.23 286 24.47± 1.23 292
16 59.07± 1.36 1301 58.81± 1.42 1506 45.26± 1.37 484 26.24± 1.26 313 32.46± 1.32 350 34.14± 1.39 353
32 60.77± 1.40 1173 61.05± 1.45 1228 49.49± 1.44 448 33.81± 1.34 354 43.78± 1.50 398 45.48± 1.45 403
64 62.03± 1.38 1103 60.59± 1.43 1104 48.33± 1.37 433 41.11± 1.40 397 49.25± 1.48 415 48.70± 1.39 418
128 61.68± 1.49 1061 62.38± 1.32 1075 49.47± 1.44 418 47.46± 1.45 412 49.92± 1.47 421 50.60± 1.37 421
256 62.05± 1.46 1041 62.27± 1.39 1074 49.75± 1.43 421 49.75± 1.51 417 50.90± 1.49 422 51.12± 1.46 421

SDPA 63.16± 1.45 1020 — — 49.86± 1.47 424 — — — — — —

We evaluate on the MMLU benchmark (Hendrycks et al., 2020; Center for AI Safety, 2024), which
tests factual recall and general reasoning. Each configuration in Table 3 is averaged over three runs
on the validation set (1531 questions), using identical decoding parameters as GSM8K (Table 2).

MMLU benchmarking observes similar trends as GSM8K, with default SANTA showing reasonable
performance, matching top-k for both DeepSeek and Llama models despite the non-straightforward
comparison at k = S. SANTA virtually recovers baseline accuracy for both models at S = 256,
which is importantly significantly shorter than the sequence length nk.

For Llama-8B, S2ANTA variants outperform both top-k and default SANTA across S and k budgets
of 64 − 256, recovering baseline SDPA accuracy (within 1%) with multiplier-free arithmetic and
sparse memory access to rows of V .

4.4 LONG CONTEXT BENCHMARKS

We evaluate SANTA on long-context tasks borrowed from RULER (Hsieh et al., 2024) with a prompt
length of 8192 tokens. Tasks include frequent-word extraction (FWE), needle-in-a-haystack (NIAH),
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Table 4: Accuracy of Llama 8B on 4 long context tasks with an 8k-token prompt. Tasks: frequent
word extraction (FWE), needle-in-a-haystack (NIAH), single-hop QA (QA1), multi-hop QA (QA2).
k: number of keys for top-k. S: SANTA sample budget. Accuracy shows 95% bootstrap CIs.

Kernel k|S FWE NIAH QA1 QA2

top-k 64 93.07± 1.20 92.55± 1.10 65.60± 4.10 60.80± 4.10
top-k 128 95.40± 0.96 93.60± 1.15 69.20± 3.90 62.20± 4.50
top-k 256 97.27± 0.80 94.55± 1.05 70.60± 3.90 64.20± 4.10
SANTA 64 92.53± 1.27 93.95± 1.30 64.60± 4.20 63.40± 4.20
SANTA 128 94.53± 1.13 91.45± 1.38 67.80± 4.10 63.40± 4.30
SANTA 256 96.20± 0.93 93.15± 1.18 68.00± 4.10 66.40± 4.10

S2ANTA-ind 64 95.93± 0.94 94.35± 1.15 71.40± 4.00 65.40± 4.20
S2ANTA-ind 128 97.73± 0.80 94.30± 1.10 70.80± 4.20 67.40± 4.20
S2ANTA-ind 256 98.33± 0.60 94.55± 1.05 71.20± 4.00 67.00± 4.20

S2ANTA-sys 64 96.27± 0.97 94.05± 1.07 71.80± 3.90 67.20± 4.20
S2ANTA-sys 128 97.80± 0.70 94.15± 1.02 68.20± 4.10 66.80± 4.00
S2ANTA-sys 256 97.87± 0.70 95.00± 0.95 71.20± 3.90 69.40± 4.10
SDPA (baseline) — 98.53± 0.60 94.55± 1.00 71.80± 3.90 68.60± 4.20

single-hop question answering (QA1 derived from SQuAD (Rajpurkar et al., 2018)), and multi-hop
question answering (QA2, derived from HotpotQA (Yang et al., 2018)). FWE prompts the model
to extract the three most frequent words from the context. NIAH entails extracting three numeric
needles from the prompt. Each entry of Table 4 shows accuracy averaged over 500 prompts.

In table 4, S2ANTA consistently outperforms top-k on long contexts, particularly in multi-hop QA
(QA2) where unbiased sampling better captures distributed information (≈ 5% advantage for all
S = k settings). It is plausible that the benefits of S2ANTA’s unbiasedness is more apparent at
long contexts, as information is spread across more keys and S2ANTA is better able to capture
heavy-tailed attention distributions.

S2ANTA’s benefits are most stark in this long-context regime. With a budget of S = 256 in an 8192-
token sequence, S2ANTA uses just 3.125% of the value-stage additions and memory accesses
compared to full attention (following Table 1). It achieves this while using no multiplications and
recovering nearly all of the baseline SDPA accuracy (within ±1%) across every task.

4.5 FLOP SCALING

k = 8
k = 16
k = 32
k = 64
k = 128
k = 256
k = 512
S = 8
S = 16
S = 32
S = 64
S = 128
S = 256
S = 512
SDPA

(a) (b)

Figure 2: FLOP profile for the value stage computation. (a) Multiplications: SDPA scales quadrati-
cally with sequence length, top-k scales linearly, and SANTA incurs effectively no multiplies. (b)
Additions: SANTA and top-k scale linearly and match closely.

We analyze ideal FLOP scaling in the value stage of Llama 8B (32 layers, H=32, dk=128) during a
single forward pass. Fig. 2 shows the number of multiplications and additions incurred by SDPA,
top-k, and SANTA as sequence length increases. Multiplications (Fig. 2a) grow quadratically in
SDPA. Top-k reduces this to linear, while SANTA eliminates them entirely, aside from a per-head
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normalization by S, which becomes a bitshift when S is a power of 2. For fixed S and k, additions
(Fig. 2b) scale linearly for both SANTA and top-k, with nearly identical slopes. When k ≈ S, the
number of additions is comparable, but only SANTA eliminates all multiplications.

4.6 UNIQUE KEY-COUNT

Table 5: Unique-key count vs. S (8192 tokens).
S SANTA S2ANTA-ind S2ANTA-sys

32 11.0 12.7 13.0
64 16.7 21.2 21.7

128 25.9 35.8 36.4
256 38.3 60.3 61.6

Since all versions of SANTA sample keys with re-
placement, the number of unique keys may be less
than the sample budget S. In Table 5, we empir-
ically measure the average number of unique keys
sampled by the last query position for 8192-token
single-hop QA prompts (normalized per head and
averaged across model layers). For a given S,
S2ANTA variants achieve higher key diversity

than default SANTA. Furthermore, we remark that the number of unique keys tends to be << S,
implying that fewer than S unique rows of V require memory accesses - thus the nqSdk memory
reads estimate in Table 1 is a worst-case figure, and in practice, we access fewer unique keys.

4.7 EMPIRICAL VARIANCE

Figure 3: Empirical variance of SANTA on single-
hop QA prompts (8k tokens).

To further validate our results, we empirically
measure the variance of SANTA, S2ANTA-ind,
and S2ANTA-sys. We sweep the sample budget
S on 8k-token single-hop QA prompts, averaged
across model layers and 30 prompts (normalized
per head, see Appendix E). S2ANTA variants ex-
hibit significantly lower variance than SANTA.
Though systematic sampling admits no tractable
theoretical variance guarantees, it empirically
demonstrates similar variance to independent
stratified sampling (and requires 1 random num-
ber per query instead of S random numbers). On
a log-log scale, slopes for SANTA, S2ANTA-
ind, and S2ANTA-sys are −1.1, −1.27, and
−1.29, respectively. This perfectly reflects the
1/S scaling prescribed by theory (Prop 3.4).

5 CONCLUSION

SANTA is an unbiased estimator that replaces all multiplications in the value stage with additions,
indexing, and a bit shift. It achieves accuracy competitive with top-k and SDPA on GSM8K, MMLU,
and long-context prompts, while eliminating a major source of compute. Theoretical analysis and
FLOP profiling show that SANTA matches top-k and significantly beats SDPA in memory access
and addition cost, but incurs no multiplications.

SANTA is complementary and orthogonal to methods targeting QKT or feedforward layers, including
quantization, low-rank kernels, and pruning. Together, they point toward completely multiplier-free
attention at inference.

We position SANTA as a forward-looking algorithmic contribution. While we make hardware-
agnostic claims, we recognize that SANTA’s sparse, data-dependent memory accesses are a departure
from the dense matrix operations for which contemporary GPUs are optimized. However, inference
on edge devices or alternative accelerators is increasingly viable. Architectures like BitNet already
replace weight multipliers with cheaper operations like addition via ternary quantization. While these
pipelines have removed many multiplies, they still compute Q, K, and V matmuls. SANTA removes
value-stage multiplies, charting a clear path toward fully multiplier-free transformers. SANTA’s
ability to recover high-quality outputs with a small, tunable sample budget with multiplier-free
arithmetic makes it a compelling and practical solution for the next generation of energy-constrained
AI hardware.
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A VECTOR BERNSTEIN TAIL FOR SANTA

Theorem A.1 (Vector Bernstein tail for SANTA). Assume a uniform almost-sure bound ∥Vj−µq∥2 ≤
L for all j (hence ∥Xs∥2 ≤ L). Let vq ≜ E

[
∥Vi − µq∥22

]
= tr(Σq). Then for all t > 0,

Pr
(∥∥V̂q − µq

∥∥
2
≥ t
)
≤ 2 exp

(
− S t2

2 (vq + Lt/3)

)
.

Equivalently, with probability at least 1− δ,

∥∥V̂q − µq

∥∥
2
≤
√

2 vq log(2/δ)

S
+

2L log(2/δ)

3S
.

Proof sketch. This is a Hilbert-space (vector) Bernstein inequality: apply Bernstein to the mean of
independent, mean-zero, L-bounded vectors with variance proxy vq; see, e.g., Boucheron et al. (2013,
Thm. 6.1) or Pinelis (1994). A coordinatewise Bernstein plus an ε-net on Sdv−1 also yields the stated
form (up to absolute constants) (Vershynin, 2018, Sec. 5.2).
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B VARIANCE REDUCTION FOR S2ANTA-IND

Theorem B.1 (Variance reduction for S2ANTA-ind). Let Σq :=
∑

j pqj(Vj − µq)(Vj − µq)
⊤ and

define within-stratum covariances

Σ(m)
q := Cov

(
VF−1

q (T )

∣∣∣T ∼ Unif(Im)
)
.

Then

Cov
(
V̂ ind
q

)
=

1

S2

S−1∑
m=0

Σ(m)
q ≤Loewner

1

S
Σq = Cov(V̂q),

with strict improvement unless all stratum means coincide. See Lohr (2010, Ch. 3) and Cochran
(1977, Ch. 8).

Proof. Independence across strata gives Cov(V̂ ind
q ) = 1

S2

∑
m Cov

(
VF−1

q (T ) | T ∈ Im

)
. By the

law of total covariance with T ∼ Unif(0, 1) and partition {Im},

Σq = E
[
Cov(VF−1

q (T ) | T ∈ Im)
]
+Cov

(
E[VF−1

q (T ) | T ∈ Im]
)
≥Loewner E

[
Cov(VF−1

q (T ) | T ∈ Im)
]
,

and averaging then dividing by S yields the claim. Strictness holds unless the stratum means are all
equal.

Corollary B.2 (MSE ordering). For any q, E
[
∥V̂ ind

q − µq∥22
]
≤ E

[
∥V̂q − µq∥22

]
= 1

S tr(Σq).

C ABLATION STUDY: ONE-HOT ATTENTION SAMPLES
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Figure 4: Ablations with one-hot stochastic attention. Baseline scores employ a fixed sampling
budget of 16 and 256 for DeepSeek 7B and Llama 8B models, respectively. The horizontal axis
shows the index of the model layer which is reduced to stochastic hard attention.

This section probes a fundamental question: how much does each attention layer matter? We find
that one-hot stochastic attention, a limiting case of SANTA with S = 1, acts as a surprisingly sharp
diagnostic. It reveals which transformer layers are robust to severe approximation and which are not,
offering a practical lens into where attention precision matters most.

We perform these ablations by setting S = 1 in a single layer while keeping all other layers at fixed
sample budgets: S = 16 for DeepSeek 7B (28 layers) and S = 256 for Llama 8B (32 layers). In this
setting, each query attends to only one randomly sampled key, making that layer a hard attention
bottleneck.
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Models are evaluated on GSM8K and MMLU with the same protocol as Tables 2 and 3. Fig. 4 shows
the effect of this localized bottleneck on accuracy. Some layers exhibit almost no degradation when
ablated in this way, while others collapse entirely, most notably middle layers in DeepSeek 7B and
the first layer in Llama 8B.

In DeepSeek 7B (Fig. 4a,b), layers 12–18 are highly sensitive to approximation, while early and
final layers are much more tolerant. In contrast, Llama 8B (Fig. 4c,d) exhibits extreme sensitivity in
just the first layer. These patterns suggest that attention importance is neither uniform nor trivially
architectural.

We observe similar qualitative trends regardless of the baseline sample budget; the S = 16 and
S = 256 settings are arbitrary. The early-layer sensitivity in Llama 8B is consistent with prior
findings on high-entropy attention in shallow layers (Clark et al., 2019), and with prior work that
avoids approximating early layers (Tang et al., 2024; Sun et al., 2024). The middle-layer fragility in
DeepSeek 7B remains an open and intriguing observation.

D LAYER-WISE SAMPLE BUDGET THROUGH RL

Algorithm 1 Layer-wise sample-budget optimization via REINFORCE
Require: initial logits θ ∈ R28 (θi = 0), total budget N=224, learning-rate α=0.02

1: while training do
2: Workers (in parallel):
3: for e = 1, . . . , E do ▷ E=10 episodes / worker run
4: Compute pi ← exp(θi)

/∑
j exp(θj)

5: Sample schedule S ∼ Multinomial(N,p)
6: Evaluate 16 GSM8K questions using schedule s; obtain reward r ∈ [0, 1]
7: Append (s, r) to shared folder
8: end for

9: Aggregator:
10: Collect all new (s(k), r(k)) tuples ▷ k = 1 . . .K
11: Compute baseline b← 1

K

∑
k r

(k)

12: Gradient: g← 1

K

∑
k

(r(k) − b)
(
s(k) −Np

)
13: Update logits θ ← θ + αg
14: Write back updated θ
15: end while
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(a) Learned sample schedule

(b) Reinforcement learning curve

Figure 5: (a) Learned schedule
with a total budget of 224 samples
across all 28 transformer blocks
(DeepSeek 7B). (b) RL iterations
over time.

We now consider a global sample budget shared across all 28
transformer layers of DeepSeek 7B, allowing each layer to
have a distinct sample count. We optimize this allocation using
a REINFORCE-style algorithm (Williams, 1992), detailed in
Algorithm 1.

We train the policy on the GSM8K training set. The policy
logits θ ∈ R28 define a softmax distribution over layers. At
each iteration, we sample schedules using a multinomial draw
over this distribution, with a total budget of 224 samples (i.e.,
8 × 28). Each episode evaluates 16 questions; the reward is
the fraction answered correctly. We intentionally starve the
baseline with S=8 samples per layer to create room for the
learned schedule to improve.

Fig. 5a shows the final learned schedule after 501 iterations.
The allocation aligns strikingly with the ablation trends from
Fig. 4: more samples are assigned to the first and middle layers,
where one-hot attention was most detrimental. That REIN-
FORCE independently rediscovers this structure from only
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reward signals confirms that these patterns are not artifacts of the ablation method but instead are
intrinsic to the models.

Fig. 5b shows the policy’s baseline accuracy over time. While noisy, the curve plateaus as the
schedule stabilizes. This experiment is not tuned for peak accuracy, but demonstrates that adaptive
per-layer budgets meaningfully outperform fixed ones.

Table 6: RL sample-schedule performance. Accuracy shows 95% bootstrap confidence intervals.
Schedule GSM8K accuracy (%) MMLU accuracy (%)

Baseline (8 samples) 52.46± 1.47 44.55± 1.47
Learned schedule 66.06± 1.47 48.86± 1.53

Table 6 shows final scores using the learned schedule. With the same total compute, the RL schedule
yields a 13.6% boost on GSM8K and a 4.3% gain on MMLU over the fixed-budget baseline. These
results confirm that per-layer sample allocation can be learned directly from task reward and matters
substantially.

E IMPLEMENTATION & MEASUREMENT PROTOCOL FOR SANTA VARIANTS

Setting. For a single layer/head at the last prefill position q⋆, let the post-softmax attention over K
keys be pj ≥ 0 with

∑K
j=1 pj = 1, and let Vj ∈ RD denote the corresponding value vectors. The

dense-attention mean is

µ =

K∑
j=1

pj Vj ∈ RD.

SANTA estimator. Given a per-head sampling budget S, all SANTA variants estimate µ with

V̂ =
1

S

S∑
s=1

VJs
,

where the key indices {Js} are drawn by one of three schemes: (i) multinomial; (ii) independent
equal-mass stratified; or (iii) systematic (random-start, fixed-stride). These are the same variants used
in the main paper; the code paths that implement them also record the per-head statistics described
below at q⋆.

E.1 WHAT WE MEASURE (PER HEAD AT q⋆)

(1) Unique keys. The number of distinct keys touched by the sampler,

U :=
∣∣{J1, . . . , JS}∣∣,

upper-bounded by S (can be < S if high-probability keys repeat). This is a proxy for how many
memory locations each head actually reads.

(2) Variance trace of the estimator. We report the trace of the covariance (expected squared ℓ2
error) of V̂ ,

VarTrace(V̂ ) := E
[
∥V̂ − µ∥22

]
= tr

(
Cov(V̂ )

)
,

specialized to each sampling scheme:

• Multinomial (closed form). Let Σ :=
∑K

j=1 pj (Vj − µ)(Vj − µ)⊤ so that tr(Σ) =∑
j pj∥Vj∥22 − ∥µ∥22. Then

VarTracemulti(V̂ ) =
1

S
tr(Σ).

This is computed directly from {pj , Vj} for the last-query row.
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• Independent equal-mass stratified (closed form). Partition [0, 1) into S equal strata; for
each stratum m, form the within-stratum discrete distribution induced by p and let Σm be
the corresponding value covariance. Because draws across strata are independent,

VarTracestrat(V̂ ) =
1

S2

S−1∑
m=0

tr(Σm).

We evaluate this design-based expression exactly for the discrete case at q⋆.
• Systematic (replicate-based estimate). There is no general closed form that holds uniformly

for systematic sampling, so we estimate variance by repeated random starts. With R ≥ 2

independent offsets, we compute V̂ (r) for each replicate, then use

̂VarTracesys(V̂ ) =
1

R− 1

R∑
r=1

∥∥V̂ (r) − V
∥∥2
2
, V =

1

R

R∑
r=1

V̂ (r).

This estimator is applied per head at q⋆.

E.2 HOW WE AGGREGATE AND REPORT

For each prompt, we compute U and the variance-trace scalar per head at q⋆, then average over heads
within a layer, average over layers, and finally average over prompts to obtain the quantities reported
in the variance plots:

U(S, variant) and T (S, variant) = VarTrace(V̂ ).

This yields the curves summarized in the main text as a function of the budget S and the SANTA
variant.

Protocol summary. All measurements use evaluation-mode forward passes, prefill-only, and record
statistics at the last token per head; no additional dense attention pass is performed to form empirical
errors. For multinomial and stratified we use the exact formulas above; for systematic we use the
replicate-based estimator.

F LLM USAGE STATEMENT

LLMs were used to polish the presentation and writing of this contribution.

G REPRODUCIBILITY STATEMENT

Computation for GSM8K and MMLU prompts uses 24GB NVIDIA GPUs from the Ampere gen-
eration (L40, A10, 3090), while long-context prompts employ NVIDIA RTX A6000 GPUs. Mod-
els and datasets are open-source and properly credited. Codes for our methods are provided at
https://anonymous.4open.science/r/SANTA-718E.
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