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ABSTRACT

Out-of-distribution (OOD) detection in multimodal contexts is essential for iden-
tifying deviations in combined inputs from different modalities, particularly in
applications like open-domain dialogue systems or real-life dialogue interactions.
This paper aims to improve the user experience that involves multi-round long
dialogues by efficiently detecting OOD dialogues and images. We introduce a novel
scoring framework named Dialogue Image Aligning and Enhancing Framework
(DIAEF) that integrates the visual language models with the novel proposed scores
that detect OOD in two key scenarios (1) mismatches between the dialogue and im-
age input pair and (2) input pairs with previously unseen labels. Our experimental
results, derived from various benchmarks, demonstrate that integrating image and
multi-round dialogue OOD detection is more effective with previously unseen la-
bels than using either modality independently. In the presence of mismatched pairs,
our proposed score effectively identifies these mismatches and demonstrates strong
robustness in long dialogues. This approach enhances domain-aware, adaptive
conversational agents and establishes baselines for future studies.1

1 INTRODUCTION

In the regime of multimodal learning contexts, Out-Of-Distribution (OOD) detection involves iden-
tifying whether some unknown inputs from different modalities (e.g., text and images) deviate
significantly from the patterns in the previously seen data. Specifically, an OOD instance under the
multimodal setting is defined as one that does not conform to a certain distribution of interest, either
by deviating in one modality or by showing the discrepancy across different modalities (Arora et al.,
2021; Chen et al., 2021; Feng et al., 2022; Hsu et al., 2020). This is crucial in applications such as
dialogue-image systems where the synergy between spoken or written language and visual elements
is expected to adhere to certain semantic and contextual norms when identifying the In-Distribution
(ID) pairs where they come from some known distribution.

Particularly in the dialogue system with inputs from different modalities, efficiently handling OOD
queries/images can significantly improve user satisfaction and trust as the response quality hinges
tightly on the understanding of the semantics from different modality inputs. Recognizing and
managing OOD queries — those that deviate from expected dialogue or image patterns and contents
— is essential for maintaining these systems’ reliability and user experience, especially in dynamically
changing dialogue systems with real-life interaction from users with much noise (Gao et al., 2024a;b).
Taking three motivating examples as shown in Figure 1, we are given several dialogue-image pairs
for OOD detection where our ID label is ‘cat’. We will then consider two typical OOD cases in
dialogue systems where either: 1) the dialogue label and image labels are not matched, or 2) even if
the dialogue and image match, their labels might not be previously seen in the given data.

To effectively detect OOD samples in such a novel multi-modalities multi-round long dialogue
scenario, we introduce Dialogue Image Aligning and Enhancing Framework (DIAEF), a frame-
work that incorporates a novel OOD score for taking the first attempt on dialogue-image OOD
detection for long dialogue systems. We propose a new score design across these two modali-
ties, enabling more targeted controls for misalignment detection and performance enhancement.

1Code can be found in https://anonymous.4open.science/r/multimodal_ood-E443/
README.md.
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Figure 1: Motivating examples for ID, mis-
matched OOD and label OOD pair where the
ID label is ‘cat’ and OOD label is ‘sport’.

Such a framework could effectively boost anomaly
detection and give better response strategies in long
dialogue systems with interactive aims. This compre-
hensive score framework not only advances the field
of multimodal conversations but also sets a new stan-
dard for domain-aware, adaptive long dialogue agent
building for the future. To show the effectiveness of
the proposed framework, we constructed a dataset
consisting of over 120K dialogues in the multi-round
application Question-answering systems and open-
domain real interactive dialogues (Seo et al., 2017;
Lee et al., 2021). Leveraging these dialogue datasets,
we apply our proposed framework and demonstrate
the effectiveness of the novel score design through
various experiments. These experiments establish
fundamental benchmarks and pave the way for future
explorations in such a novel dialogue setting. Further-
more, we integrate the crucial aspect of OOD detection, emphasizing its significance for enhancing
the robustness and applicability of multimodal dialogue systems (Dai et al., 2023; Dosyn et al., 2022;
Wu et al., 2024). To summarize, our contributions are listed as follows:

• We take the first attempt for OOD detection with the dialogues and propose a novel framework
that enhances the OOD detection in cross-modal contexts, particularly focusing on scenarios where
dialogue-image pairs either do not match with the semantics or even match, but their semantic labels
are outside the known set, which matters in long-dialogue context for users.

• Our framework incorporates a novel scoring method by combining both dialogues and images to
enhance the OOD detection while recognizing the mismatch pairs with the dialogue-image similarity.

• We demonstrate the practical application of our methods with the real-world multi-round long
dialogue dataset, showcasing improvements in user experience and system reliability upon response.
Further, our work establishes foundational benchmarks and methodologies that can serve as baseline
standards for future research in the field of cross-modal detection on interactive dialogue systems.

2 RELATED WORK

OOD Detection in Dialogue Systems. Dialogue systems have become fundamental in applications
ranging from virtual assistants and customer service bots to educational platforms with continuous
multi-rounds (Feng et al., 2022; Kottur et al., 2019; Seo et al., 2017; Yu et al., 2019; Gao & Wang,
2024). The evolution of dialogue systems has seen a progression from rule-based and template-based
approaches to statistical and machine learning methods (Zheng et al., 2020; Lang et al., 2023; Deka
et al., 2023; Mei et al., 2024; Arora et al., 2021). Modern systems, particularly those based on
deep learning models like BERT and GPT, have set new performance benchmarks (Yuan et al.,
2024; Hendrycks et al., 2020; Yang et al., 2022; Ye et al., 2023). However, the complexity of
these systems introduces challenges in understanding context and handling ambiguous semantic
queries, necessitating more sophisticated approaches to maintain dialogue coherence and accuracy
in interactive dialogue contexts, especially for real-life cases. OOD detection is a critical aspect of
dialogue systems, ensuring their robustness and reliability in generating responses to user queries
(Niu & Zhang, 2021; Chen et al., 2022). When dialogue systems encounter inputs that deviate from
the training data distribution in long multi-round data, they risk generating incorrect or nonsensical
answers, leading to user frustration and decreased trust. Effective OOD detection helps identify such
anomalous queries, allowing the system to gracefully handle or reject them, thereby maintaining the
quality and consistency of responses (Li & Lin, 2021), including softmax probability thresholding
(Liu et al., 2023; Dhuliawala et al., 2023), auxiliary models (Wang et al., 2024; Zheng et al., 2024;
Ramé et al., 2023), generative models (Cai & Li, 2023; Ktena et al., 2024; Graham et al., 2023), and
self-supervised learning (Azizi et al., 2023; Wallin et al., 2024; Liu et al., 2021). The integration of
effective OOD detection mechanisms is crucial for the continued advancement and trustworthiness of
QA dialogue systems (Salvador et al., 2017; Feng et al., 2022).
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Dialogue-based Multimodality OOD Detection. Due to the complexity of dialogue in multi-turns
and information complexity embedded in the connection of preceding turns within the long dialogue,
successfully detecting whether the information from the dialogue and images are within the same
domain stands as a technical challenge in OOD detection (Fort et al., 2021; Basart et al., 2022).
Previous works attempted to evaluate the generated pseudo-OOD samples’ impact on the OOD section
in dialogue settings (Marciniak, 2020), which improved OOD detection performance after introducing
the generated dialogues when utilizing unlabeled data, making the model practical and effective for
real-world applications (Zheng et al., 2020). Later studies used the information bottleneck principle to
extract robust representations by filtering out irrelevant information for multi-turn dialogue contexts
(Lang et al., 2023). Furthermore, the crucial aspect of OOD detection in multimodal long dialogue is
still under investigation, emphasizing the significance of multimodal conversational user experience
in question-answering systems.

Multi-label OOD Detection. While numerous studies have improved approaches for multi-class
OOD detection tasks, investigating multi-label OOD detection tasks has been notably limited. A
recent advancement is the introduction of Spectral Normalized Joint Energy (SNoJoE) (Mei et al.,
2024), a method that consolidates label-specific information across multiple labels using an energy-
based function. Later on, the sparse label co-occurrence scoring (SLCS) leverages these properties
by filtering low-confidence logits to enhance label sparsity and weighting preserved logits by label
co-occurrence information (Wang et al., 2022). Considering the vision-language information as input
in models like CLIP (Radford et al., 2021), traditional vision-language prompt learning methods face
limitations due to ID-irrelevant information in text embeddings. To address this, the Local regularized
Context Optimization (LoCoOp) approach enhances OOD detection by leveraging CLIP’s local
features in one-shot settings (Miyai et al., 2024). However, previous approaches majorly implied the
limitation only in computer vision tasks without focus on dialogue or Natural Language Processing
tasks(Wei et al., 2015; Zhang & Taneva-Popova, 2023; Wang et al., 2021; 2022).

3 PROBLEM FORMULATION

To formally define the cross-modal OOD problem, we focus on the detection with dialogue and image
pairs within a multi-class classification framework. Specifically, we have a batch of N pairs of images
and dialogues, along with their labels, denoted by {(in, tn) ,yn}Nn=1 where in ∈ I and tn ∈ T denote
the input image and dialogues and I and T are the image and dialogue spaces, respectively. Here, the
instance pair may be associated with multiple labels yn with yn = {yn,1, yn,2, · · · , yn,K} ∈ [0, 1]K

where yn,k = 1 if the dialogue-image pair is associated with k-th label and K denotes the total
number of in-domain categories. Our proposed score function enhances the ability to distinguish
between ID and OOD data cross-joint detection for image and dialogue, making it applicable in
multimodality scenarios. Based on this setup, the goal of the OOD detection is to define a decision
function G such that:

G(i, t,y) =

{
0 if (i, t,y) ∼ Dout,

1 if (i, t,y) ∼ Din.
(1)

Remark 1 Different from unimodal OOD detection (Lee et al., 2018; Basart et al., 2022; Hendrycks
& Gimpel, 2016; Du et al., 2022; Wu et al., 2023), in the cross-modal detection scenarios, we need to
additionally consider whether the image and dialogue come from the same distribution, i.e., whether
the image and dialogue are semantically matched in the interaction context. In particular, we will
consider several scenarios for detecting OOD samples: 1). the image and dialogue do not match (e.g.,
in terms of content or description), and 2). the in-domain sample does not contain any out-of-domain
labels, meaning previously unseen labels appear, or 3). both cases occur simultaneously.

To determine G in practice, we may need to consider the relationship between dialogue and images
additionally. To this end, let M : I ∪ T → Rd be a vision-language model that could encode the
image in with the image embedding xi,n ∈ Rd, and the dialogues with the text embedding xt,n ∈ Rd

in the same latent space as in the image. To classify the relevance of an image to a dialogue according
to the label yn, we first use a scoring function s : Rd × Rd → R, which evaluates the similarity
or relevance between the image and text embeddings from M . We then further compare these two
embeddings with the label yn with the dialogue score function sT : Rd × [0, 1]K → R and image
score function sI : Rd × [0, 1]K → R. For simplicity, we use sI (or sT ) interchangeably with
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sI(x,y) throughout the paper. Finally, we could conduct a fusion on the three scores g(s, sT , sI) for
some fusion function g and check if the numeric value exceeds λ to determine whether it is in-domain
or out-of-domain. Given the above definition, given a dialogue-image data pair (i, t), we will examine
whether it is ID or OOD per dialogue-image pair in the given label set Y with the following criterion.

Definition 1 (Cross-Modal OOD Detection) We use the following detection criterion for out-of-
domain samples.

• In-domain: given both embeddings xi from the images and xt from the dialogue,
and a certain label y. We say the image is in-domain with the dialogue if
g(s(xi, xt), st(xt,y), si(xi,y)) ≥ λ.

• Out-of-domain:: given both embeddings xi from the images and xt from the dialogue, we
say the image is out-of-domain with the dialogue if g(s(xi, xt), st(xt,y), si(xi,y)) < λ.

for some fusion function g and some threshold λ.

4 DIALOGUE IMAGE ALIGNING AND ENHANCING FRAMEWORK

To intuitively demonstrate our framework, we draw the overall workflow in Figure 2. The workflow
consists of three parts: in the first stage, we will employ a vision language model, such as CLIP
(Radford et al., 2021) and BLIP (Li et al., 2022), to derive meaningful descriptors or feature embed-
dings from images and dialogues, respectively. Note that the model we used here would map the
image and dialogue into the same latent space so that the similarity between the two can be easily
calculated. These processes yield embeddings xI for images and xT for dialogues. Then, utilizing
these embeddings, we apply a scoring function s(xI , xT ) to assess the relevance between an image
and a dialogue. The outcome of this function helps us determine whether the dialogue-image pair falls
within the categories, indicating a high relevance in semantics, or the out-of-distribution categories
with mismatches, suggesting low or no relevance.

In addition to this score, we will further train two label extractors to compare the whole pair with the
label set to determine if the pair is in-distribution or out-of-distribution using sI(xI ,y) that evaluates
the similarity between the image and the label and sT (xT ,y) that evaluates the similarity between
the text and the label. We will use conventional methods to combine these two scores and determine
whether the pair is ID or OOD based on the threshold λ.

This paper aims to enhance the detection of OOD samples by combining dialogues and images and
identifying the misalignments between them. To this end, we naturally propose the DIAEF score
function in general:

g(xT , xI ,y; s, sT , sI) = s(xT , xI)
γ(αsI(xI ,y) + (1− α)sT (xT ,y)), (2)

Table 1: OOD Scores for sI /sT .

Method Score
Probability Py(x)

MSP (Hendrycks & Gimpel, 2016) maxy∈Y
fy(x)∑
y fy(x)

Logits (Hendrycks et al., 2019) fy(x)

Energy (Wang et al., 2021) log(1 + efy(x))
ODIN (Liang et al., 2017) fy(x + ϵ∆)/T

Mahalanobis (Lee et al., 2018) (x − µy)
TΣ−1

y (x − µy)

where the first part s(xT , xI)
γ , which we call

the alignment term, controls the similarity be-
tween the image and the dialogue. If the image
and dialogue are highly similar, this term will
be large and vice versa. This allows us to iden-
tify the misalignment between images and dia-
logues in a long dialogue system. The second
part (αsI + (1− α)sT ), namely the enhancing
term, enhances the detection of OOD samples
by linearly combining the dialogue and image
scores, where the weighting hyperparameter α
controls the relative importance of the image: if α is selected to be large, we rely more on images
for OOD detection; conversely for a small α, we rely more on the dialogue. The purpose of using
a multiplicative combination of the alignment and enhancing terms is: (1) identifying mismatched
OOD pairs where either the image or dialogue might have high relevance to the label, making the
enhancing term potentially large (depending on sI or sT ). To identify these pairs as OOD samples,
we naturally multiply the enhancing term by s(xT , xI); (2) identifying matched pairs with OOD
labels where s(xT , xI) may be large, but the enhancement term is likely to be small since the image
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Figure 2: The workflow for three motivating examples for cross-modal OOD detection, including
ID pair, mismatched OOD pair, and label OOD pair. The workflow consists of three main parts:
the dialogue and image will be firstly processed and passed into a visual language model to get the
image and dialogue embeddings; then two label extractors will be trained on both the image and
dialogue embeddings for predictions and score calculations; finally the score function s, sT and
sI are aggregated to determine the threshold λ at recall rate of 95%. The FPR95% is reported to
demonstrate that combining images and dialogue outperforms using images or dialogue alone.

and dialogue have low relevance to the label. To show this mathematically, we give a theoretical
justification for the proposed score in Appendix B.

The choice of the functions s(xI , xT ) depends on the selection of the trained visual language model.
For example, in CLIP, contrastive loss is used to measure the similarity between images and text
(dialogue) based on cosine similarity (Radford et al., 2021). Similarly, BLIP employs image-text
matching loss and leverages cosine similarity to align the representations of images and text (Li et al.,
2022). With those two models, selecting cosine similarity as an appropriate score for s(xI , xT ) is
natural. Regarding sI and sT , which measure the scores between embeddings and labels, various
potential choices and aggregation methods are available. For example, one direct way is to use
the probability of the model output Py(x) as the score for the category y with the input x, and
we could further aggregate the probability over all categories using sum or max methods to derive
our final DIEAF score. More complicated scores would involve some probability transformation,
such as the logits fy(x) used in (Hendrycks et al., 2019) or the normalized version called MSP as
used in (Hendrycks & Gimpel, 2016). Some other effective scores would involve the pre-trained
models, such as the ODIN method proposed in (Liang et al., 2017) modifies the input by adding a
gradient-based perturbation, or the method proposed in (Lee et al., 2018) computes the Mahalanobis
distance between the embeddings from the pre-trained model and the class conditional distributions
in the feature space. Table 1 shows the list of possible scores that could fit in our framework.

5 EXPERIMENTS

In this section, we evaluate DIAEF and other baselines using several datasets.

5.1 EXPERIMENTAL SETUP

Datasets. In this section, we utilize the Visdial dataset (Das et al., 2017) and Real MMD dataset
(Lee et al., 2021) for OOD detection in long dialogue systems. The Visdial dataset comprises over
120K images sourced from the COCO image dataset (Lin et al., 2014), coupled with collected
multi-round dialogues in a one-to-one mapping format between modalities. We constructed a testing
multi-round question-answering dataset with full semantic context to evaluate our OOD detection
methods, including all dialogue-image pairs and an additional 10K mismatched pairs. Each entry
in this dataset contains an image, a full conversation, and a set of labels with 80 specific categories.
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The dataset is further organized into 12 higher-level supercategories: animal, person, kitchen, food,
sports, electronic, accessory, furniture, indoor, appliance, vehicle, and outdoor. Another related
dataset, called the Real MMD dataset, contains images sourced from COCO (Lin et al., 2014) and
texts from different sources such as DailyDialog (Li et al., 2017) and Persona-Chat (Miller et al.,
2017), meaning they may not be perfectly matched but instead have a certain degree of similarity.
The dataset statistics are presented in Table 7 and Table 8 in Appendix A.

Table 2: Top 5 Labels

Label S(c)
Animal 5.12
Person 5.01
Sports 4.89
Vehicle 4.80
Outdoor 4.79

OOD Label Selection. In our study, we propose a label selection score
function for selecting OOD labels that effectively combines semantic dis-
tance (Huang et al., 2008; Kadhim et al., 2014; Li & Han, 2013; Rahutomo
et al., 2012; Lahitani et al., 2016) and ontological hierarchy via the WordNet
path calculation (Aminu et al., 2021; Dosyn et al., 2022; Fellbaum, 2010;
Marciniak, 2020; Martin, 1995). The score function integrates multiple cri-
teria to enhance the robustness and accuracy of OOD detection. Semantic
distance is quantified using cosine similarity between vector representations
of candidate labels and the remaining labels in the label set. We compute
the maximum cosine similarity to any ID label for each candidate OOD label
and select those with values below a predefined threshold, ensuring semantic
distinctiveness. Additionally, we leverage ontological hierarchies, such as WordNet, to measure
the path length between candidate labels and ID labels. Candidates with a minimum path length
exceeding a specified threshold are selected, ensuring they are not closely related in the hierarchy.
This dual-criteria approach ensures that selected OOD labels are both semantically distant and onto-
logically distinct from ID labels, enhancing the efficacy of the OOD detection system. By integrating
these methods, our score function effectively mimics real scenarios where the OOD labels generally
differ from the ID labels2. Therefore, we define the selection score as:

S(c) = w1

∑
y∈Y\c

(1− SCOS(M(c),M(y))) + w2

∑
y∈Y\c

(1− SPATH(c, y)), (3)

where

Scos(a,b) =
a · b

∥a∥∥b∥
, SPATH(y1, y2) =

1

1 + ℓd(y1, y2)
. (4)

Here, M(c) and M(y) are the vector representations of the candidate OOD labels c and the ID label
y with the encoder M , respectively, w1 and w2 are the weights assigned to each criterion, and Y
represents the total valid label set. The term Scos measures the semantic distance, and SPATH(y1, y2)
measures the ontological distance between labels with the path distance ℓd(y1, y2) between the words
y1 and y2 in the WordNet. We conduct the score selection on the Visdial dataset with w1 = w2 = 0.5,
and the top five scores with the most distinguished labels are shown in Table 2. To ensure that the
selected OOD labels are both semantically distant and ontologically distinct from ID labels, we select
candidates c where the score S(c) is the highest.

Experiment Details. Based on Table 2, we select the label ‘animal’ as the OOD label to show the
framework’s effectiveness. We will have 95K ID pairs and 37K OOD pairs for QA dataset and 12.7K
ID pairs and 12.2K OOD pairs for the Real MMD dataset. We will use the 8:2 train-test split, yielding
77K/54K and 10.2K/14.7K train/test pairs, respectively. For encoders for images and dialogues,
we use CLIP ViT-B/32 (Radford et al., 2021) throughout the experiments, and we trained the label
extractors with the ID training sample with a 5-layer fully connected network. More details are given
in Appendix A. Additionally, we use sum and max aggregation methods for the above methods. The
sum aggregation method combines the scores across all considered classes or components, providing
an overall score that reflects the cumulative effect. The max aggregation method selects the maximum

2For tuning label selections, we list the table below using the cosine similarity (Descending order): [sports,
outdoor, animal, fashion, electronics, person, bedroom, vehicle, appliance, kitchen, food, furniture]. With
wordnet only: [person, animal, vehicle, furniture, appliance, kitchen, food, bedroom, fashion, electricity, outdoor,
sports]. Using only cosine similarity, labels skewed towards broad, abstract categories like "sports" and "outdoor",
reflecting a focus on general semantic similarities (complex context where more background information is
needed). Comparably, using only WordNet similarity emphasized specific, taxonomically grounded categories
like "person" and "animal", highlighting hierarchical relationships (suitable when labels are short descriptors).
Adaptive weighting or context-specific tuning could be explored for future refinements where weights are
dynamically adjusted regarding dataset characteristics or task requirements.
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Table 3: The comparison of OOD detection performance with QA dataset under CLIP extraction and
different scores. Bold numbers are superior results for each DIAEF score and aggregation method.
Metrics reported in % include FPR95 (↓ indicates the lower the better), AUROC, and AUPR (↑
indicates the higher the better).

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation Baseline w/ OOD Scores DIAEF

Image Dialogue w/ OOD Scores

MSP Max 84.4/ 64.8/ 49.0 76.9/ 66.5/ 48.8 73.4/ 73.2/ 53.5

Prob Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 55.3 / 78.8 / 57.9
Sum 70.7 / 68.3 / 49.0 91.9 / 62.3 / 45.7 72.8 / 73.6 / 56.6

Logits Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 57.2 / 82.6 / 72.7
Sum 91.2 / 59.2 / 43.6 98.6 / 44.1 / 36.0 97.2 / 49.9 / 37.4

ODIN Max 59.1 / 75.4 / 57.6 72.1 / 73.2 / 55.5 59.6 / 78.9 / 58.8
Sum 71.2 / 68.0 / 48.8 91.9 / 61.6 / 45.2 73.0 / 73.2 / 56.0

Mahalanobis Max 49.2 / 81.3 / 62.9 66.0 / 75.8 / 56.8 49.7 / 83.2 / 67.1
Sum 88.5 / 75.5 / 57.5 78.6 / 68.6 / 50.0 75.0 / 76.2 / 60.2

JointEnergy Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 57.6 / 82.5 / 72.6
Sum 58.3 / 75.8 / 58.0 67.0 / 74.1 / 57.1 55.9 / 82.3 / 72.2

Average Max 62.1 / 74.7 / 57.2 69.8 / 72.7 / 54.9 58.8 / 79.9 / 63.8
Sum 76.0 / 69.4 / 51.4 85.6 / 62.1 / 46.8 74.8 / 71.0 / 56.5

score among all classes or components, highlighting the strongest single match. These aggregation
methods allow us to assess the performance and robustness of each scoring function comprehensively.
We use the cosine similarity for s(xI , xT ) for CLIP embeddings and set γ = 1 and α = 0.5 as the
hyperparameter default values. To ensure the consistency and reliability of our results, all experiments
were executed on a system featuring a single NVIDIA RTX 2080 Super GPU.

Adopted OOD Scores. Throughout the experiments, we used several general OOD scores to evaluate
the effectiveness of the framework, which includes Probability (Prob), Maximum Softmax Probability
(MSP) (Hendrycks & Gimpel, 2016), Logits (Hendrycks et al., 2019), Joint Energy (Wang et al.,
2021), ODIN (Liang et al., 2017) and Mahalanobis distance (Lee et al., 2018). These baseline
methods provide a diverse set of techniques for OOD detection, each leveraging different aspects
of the model’s output and feature embeddings. Then, we included two baselines with the DIEAF
scores in our evaluation. The first baseline, with image only, utilizes the score function sI(xI ,y) to
determine the score threshold for OOD. The second baseline, with dialogue only, employs a similar
approach, using the score function sT (xT ,y) instead. All methods are evaluated with the metrics
FPR95, AUROC and AUPR as previously mentioned in Section 4.

Evaluation. We include the following metrics in our evaluation for OOD detection: FPR95, AUROC
and AUPR. FPR95 measures the rate at which false positives occur when the true positive rate is
fixed at 95%. This metric indicates how often the model incorrectly classifies a negative instance as
positive when it correctly identifies 95% of all positive instances; a lower FPR95 value signifies a
better-performing model. AUROC evaluates the overall ability of a model to discriminate between
positive and negative classes across all possible classification thresholds. It involves plotting the
ROC curve with the true positive rate against the false positive rate at various threshold settings. A
higher AUROC value denotes a better-performing model. AUPR, similar to AUROC, focuses on the
precision-recall curve, which plots precision against recall. This metric is particularly useful in class
imbalance scenarios. A better AUPR indicates a better model’s performance.

5.2 MAIN RESULTS

With the aforementioned experimental settings, we evaluate various DIAEF scores on the given QA
and Real MMD datasets and report the performance results in Table 3 and 4. The tables show that our
proposed framework generally outperforms the results obtained using only images or dialogue across
most metrics. In particular, the joint energy and Mahalanobis scores with the sum or max aggregation
consistently perform well across most metrics. In addition, the naive probability and ODIN scores
also show competitive performance. Interestingly, the max aggregation method tends to be more

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: The comparison of OOD detection performance with Real MMD dataset under CLIP
extraction and different scores.

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation Baseline w/ OOD Scores DIAEF

Image Dialogue w/ OOD Scores

MSP Max 91.1/56.2/19.4 94.5/52.5/18.9 85.8/69.2/32.9

Prob Max 79.2/64.1/22.9 93.4/53.7/19.3 75.8/74.0/36.0
Sum 90.6/58.2/21.1 94.4/51.9/18.7 83.0/69.7/33.1

Logits Max 79.2/64.1/22.9 93.4/53.7/19.3 84.8/70.9/34.1
Sum 94.5/49.0/17.8 97.3/47.6/17.2 98.8/38.6/14.3

ODIN Max 79.6/64.3/23.4 94.0/53.4/19.3 75.3/74.4/36.9
Sum 91.1/57.1/20.8 94.9/51.3/18.5 82.2/69.2/32.0

Mahalanobis Max 54.9/69.9/26.1 93.5/51.2/17.6 63.5/76.8/36.2
Sum 93.3/66.0/25.2 94.2/49.1/16.9 86.6/73.3/36.5

JointEnergy Max 79.2/64.1/22.9 93.4/53.7/19.3 83.5/71.6/34.3
Sum 79.5/64.9/24.4 93.6/54.2/19.5 80.5/72.8/37.4

Average Max 77.2/63.8/22.9 93.7/53.0/19.0 78.1/72.8/35.1
Sum 89.8/59.0/21.9 94.9/50.8/18.2 86.2/64.7/30.7

effective than the sum method. This could be because we are dealing with a multi-label problem.
Adding up scores for all labels might introduce more noise, which confuses the OOD and ID scores
and thus reduces detection performance. For dialogues, the performance is not as good as for images.
This is because dialogues contain some noises, such as stopwords, that are unrelated to the labels,
whereas images with segmentation are more directly related to the labels. However, even though the
dialogue alone may not perform well, combining it with images could significantly enhance the OOD
detection performance. The results demonstrate that DIEAF performs effectively when combining
dialogue and image scores, especially when introducing mismatched pairs.

5.3 ANALYSIS OF EXPERIMENTAL RESULTS

To gain deeper insights into the proposed framework, we conduct several ablation studies to examine
the impact of mismatched pairs, the effectiveness of s(xI , xT ), and the choices of α and γ.

Effect of Mismatched Pairs. To investigate the effect of the mismatched pairs, we conduct the
experiments with the same setting by excluding the mismatched pair in the testing set and report the
results in Table 5. Here, we only report FPR95 for simplicity and also compare the results by setting
γ = 0 without introducing the dialogue-image similarity.

From the table, it can be observed that when there are no mismatched pairs, setting γ to 1 can
actually harm our results to some extent. This is because, for OOD pairs without mismatched pairs,
their similarity score s(xI , xT ) can still be high. In such cases, multiplying by the similarity can
adversely affect OOD results. Setting γ to 0 in these situations improves FPR95 results for most
cases, indicating that simply combining image and dialogue modalities, even without mismatched
pairs, performs better than the unimodality. Additionally, comparing Table 3 and 5, we see that
introducing mismatched pairs generally leads to worse performance than having no mismatched pairs.
This demonstrates that mismatched pairs indeed pose a challenge for OOD detection. To achieve
better results, we will further study the impact of γ and α to optimize OOD detection performance.

Effect of VLM models. We further tested the performance of the DIAEF score function with the
BLIP model (Li et al., 2022) under the same setting as CLIP (also see details in Appendix A), and we
report the results in Table 6. Even with BLIP, the pattern is still maintained as the proposed score
achieves better performance compared to the single modality, and the framework handles mismatched
and previously unseen OOD scenarios.

Effect of s(xI , xT ). We draw Figure 5 for image scores as an illustration that consists of three
subplots showing the change of score distribution with s(xI , xT ) introduced. Here Figures 5a and 5c
present the distribution of sI(xT , x) and sI(xT , x)s(xI , XT ) for both ID and OOD data with FPR95
highlighted, respectively. Figure 5b displays the joint distribution of P (s, sI) for both ID and OOD
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Table 5: The comparison of FPR95 performance (the lower the better) in % with DIEAF framework
under different scores without any mismatched pairs. Bold numbers are superior results for each
DIAEF score and aggregation method.

OOD Scores Aggregation Baseline DIAEF (γ = 0) DIAEF (γ = 1)Image Dialogue

MSP Max 81.2 71.4 69.4 81.4

Prob Max 49.7 59.9 46.6 64.4
Sum 63.6 91.2 72.7 77.1

Logits Max 49.7 59.9 45.7 47.6
Sum 90.1 99.7 98.1 96.2

ODIN Max 48.5 65.4 48.5 69.2
Sum 64.2 91.2 72.4 79.3

Mahalanobis Max 35.5 57.5 34.3 37.8
Sum 86.4 73.7 68.1 65.0

JointEnergy Max 49.7 59.9 46.7 48.7
Sum 47.4 58.6 45.7 47.6

Average Max 52.4 62.3 48.5 58.1
Sum 70.3 82.9 71.4 73.0

Table 6: The comparison of OOD detection performance with QA dataset under BLIP extraction and
different scores.

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation Baseline DIAEF (γ = 1)Image Dialogue

MSP Max 85.8/58.7/37.4 83.5/64.8/39.8 75.9/75.1/52.7

Prob Max 64.3/71.2/45.1 80.5/67.1/42.2 67.0/78.7/56.5
Sum 78.8/64.4/39.3 96.8/55.9/35.9 74.2/72.7/51.2

Logits Max 64.3/71.2/45.1 80.5/67.1/42.2 62.9/80.9/63.8
Sum 95.8/52.9/33.8 98.1/41.9/29.3 99.1/40.1/26.5

ODIN Max 63.9/71.1/44.9 81.4/67.2/42.1 67.7/79.3/57.7
Sum 79.1/64.2/39.2 97.0/56.1/36.0 74.5/72.5/50.9

Mahalanobis Max 46.9/77.7/50.6 81.0/66.9/40.5 52.6/87.7/75.4
Sum 79.7/71.5/46.2 92.5/59.0/35.9 67.6/78.7/61.0

JointEnergy Max 64.3/71.2/45.1 80.5/67.1/42.2 62.8/81.0/63.8
Sum 63.0/71.8/45.8 80.4/67.3/43.2 61.7/80.7/64.5

Average Max 64.9/70.2/44.7 81.2/66.7/41.5 64.8/80.5/61.2
Sum 79.3/65.0/40.9 93.0/56.0/36.1 75.4/68.9/50.8

data, with the x-axis representing the similarity score s(xI , xT ) and the y-axis representing the
image score sI(xI ,y), with density indicated by colour intensity and marginal distributions shown as
histograms. The figures show that without multiplying by s(xI , xT ), the distributions of ID and OOD
are not well-separated, and the FPR95 is around 0.58. However, after applying the similarity score,
the distributions of ID and OOD become more apart, and the FPR95 decreases to approximately
0.54. This occurs because, when examining the joint distribution, we find that for the ID data,
most similarity values are around 0.25. In contrast, there are two peaks for the OOD data: one
around 0.25 (for matched pairs) and another around 0.15 (for mismatched pairs). This indicates
that if we multiply by this similarity, the mismatched OOD pairs would have lower scores, making
distinguishing between ID and OOD easier.

Effect of γ. Intuitively, when γ is smaller, similar and dissimilar dialogue-image pairs will have
approximately the same alignment score. Conversely, when γ is larger, the score differences between
similar and dissimilar pairs become more pronounced, emphasizing the role of dialogue-image
similarity in OOD detection. Therefore, we selected several values of γ ranging from 0 (i.e., not using
dialogue-image similarity) to 3 and plotted the curves under different score aggregation methods.
Figure 3 shows that the optimal value of γ varies significantly depending on the choice of score and
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Figure 3: Effect of γ with α = 0.5
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Figure 4: Effect of α with γ = 1
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Figure 5: An illustration of the effectiveness of s(xI , xT )

aggregation method. For instance, with max aggregation, most methods show a trend where the
FPR95 initially decreases with increasing γ and then rises again, with the optimal value around 1.
However, the Energy and Logits methods show a trend of decreasing FPR95 as γ increases, indicating
these methods are more sensitive to misalignment. On the other hand, for the sum aggregation
method, changing the γ value has a limited effect on OOD detection. This could be because the sum
method combines too much redundant label information, and the enhancement term plays a major
role. If the enhancement term is not particularly effective, the impact of misalignment is minimal.

Effect of α. When α is small, we place more emphasis on the image score along with the alignment
term for OOD detection; conversely, when α is large, we emphasize more on the dialogue score.
We plotted the results for different score aggregations in Figure 4. From the max aggregation
results, we observe that using only the image or dialogue scores is not the most effective approach.
Instead, combining both and selecting a value around 0.5 yields the best results, demonstrating the
effectiveness of our framework. In the sum aggregation plot, we see that for most methods (except
for Mahalanobis), the performance in terms of FPR95 improves as α increases. This indicates that
images do not significantly contribute to recognition for the sum aggregation compared to dialogue.

6 CONCLUSION AND LIMITATION

This paper introduces a cross-modal OOD score framework, DIAEF, designed to expand OOD
detection in cross-modal QA systems by integrating images and dialogues. DIAEF combines
alignment scores between dialogue-image pairs with an enhancing term that leverages both the image
and dialogue. Experimental results demonstrate DIAEF’s superiority over baseline methods with
general metrics such as FPR95 and show the framework’s effectiveness. However, there are some
spaces for future work. First, due to the scarcity of datasets, we initially validated our framework on
VisDial and demonstrated its effectiveness. More dialogue-image datasets are worth exploring for
validation. Second, the existing scores have proven the effectiveness of this framework, but further
improvements could be achieved by applying some transformations or smoothing techniques to make
the distributions of ID and OOD more distinct. Finally, this framework is applicable to more visual
language models, such as multimodal models like BLIP, and can further enhance OOD performance
using various image-text matching criteria.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Enesi Femi Aminu, Ishaq Oyebisi Oyefolahan, Muhammad Bashir Abdullahi, and Muham-
madu Tajudeen Salaudeen. An enhanced wordnet query expansion approach for ontology based
information retrieval system. In Information and Communication Technology and Applications:
Third International Conference, ICTA 2020, Minna, Nigeria, November 24–27, 2020, Revised
Selected Papers 3, pp. 675–688. Springer, 2021.

Udit Arora, William Huang, and He He. Types of out-of-distribution texts and how to detect them.
arXiv preprint arXiv:2109.06827, 2021.

Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting
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A EXPERIMENT DETAILS

The dataset stats are summarized as follows:

Table 7: Statistics of Visdial QA dataset

Stats Matched Mismatched ID OOD
# Pair 122K 10K 95K 37K

# Train 77K 0 77K 0
# Test 45K 10K 18K 37K

# Turn per dialog 10
# Categories 80

# Supercategories 12

Table 8: Statistics of Real MMD dataset

Stats Matched Mismatched ID OOD
# Pair 17K 8K 12.7K 12.2K

# Train 10.2K 0 10.2K 0
# Test 14.7K 8K 2.5K 12.2K

# Turn per dialog 5 ∼ 15
# Categories 80

# Supercategories 12

We give detailed experimental settings in the following table.

Table 9: Experimental Details

Parameters Configurations
γ 1
α 0.5
Image Encoder CLIP Vi-T B/32 or BLIP ITM Base
Dialogue Encoder CLIP Vi-T B/32 or BLIP ITM Base
s(xI , xT ) Cosine Similarity
Label Extractor 5-Layer DNN with size [512/256, 256, 128, 64,

11]
Activation Function Relu & Sigmoid
Batch Size 32
Learning Rate 0.001
Optimizer Adam
ID label person, kitchen, food, sports, electronic, accessory,

furniture, indoor, appliance, vehicle, outdoor
OOD label animal
η in ODIN 0.001
T in ODIN 1
Image Features in Mahalanobis CLIP/BLIP(Image)
Text Features in Mahalanobis CLIP/BLIP(Dialogue)

B THEORETICAL JUSTIFICATION

Assumption 1 We denote ID distribution as P (xI , xT , y) and OOD distribution as P̃ (xI , xT , y)

where P̃ may differ from P in terms of the following assumptions.

• Case 1: The image and text match, but labels are out of the set, namely:

EP (xI ,xT ) [log s(xI , xT )] = EP̃ (xI ,xT ) [log s(xI , xT )] ,
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For every pair xI , xT and any α,

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] > EP̃ (y|xI)
[log(αsI(xI , y) + (1− α)sT (xT , y))] ,

which means that the ID pairs xI and xT should have stronger expressity about the ID label
y than OOD pairs.

• Case 2: The image and text do not match, which we assume:

EP (xI ,xT ) [log s(xI , xT )] > EP̃ (xI ,xT ) [log s(xI , xT )] ,

which means the ID pairs should have higher similarity than OOD pairs in this case. For
every pair xI , xT and any α,

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] = EP̃ (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] ,

which means that some ID pairs xI and xT may have the same expressity about the label y
compared with the OOD pairs.

• Case 3: The image or text does not match with the labels, which we assume:

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] > EP̃ (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] .

Theorem 1 With Assumption 1, we can show that the proposed DIEAF score satisfies the following:

EP̃ (xI ,xT ,y)[log g(xI , xT , y)] < EP (xI ,xT ,y)[log g(xI , xT , y)].

Proof 1 It is easy to write that:

E[log g(xI , xT , y)] = γExI ,xT
[log s(xI , xT )]+ExI ,xT

Ey|xI ,xT
[log([αsI(xI , y)+(1−α)sT (xT , y)])].

The proof simply follows the assumptions we made for each case. Note that this score only works for
positive scores, but sometimes, we may encounter negative scores, and the log may be ill-posed. As a
surrogate score function, we eliminate the log and maintain g(xI , xT , y) for the same intuition as the
above theorem.
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