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Abstract

Designing model architectures requires decisions such as selecting operators (e.g.,
attention, convolution) and configurations (e.g., depth, width). However, evaluating
the impact of these decisions on model quality requires costly pretraining, limiting
architectural investigation. Inspired by how new software is built on existing code,
we ask: can new architecture designs be studied using pretrained models? To
this end, we present grafting, a simple approach for editing pretrained diffusion
transformers (DiTs) to materialize new architectures under small compute budgets.
Informed by our analysis of activation behavior and attention locality, we construct
a testbed based on the DiT-XL/2 design to study the impact of grafting on model
quality. Using this testbed, we develop a family of hybrid designs via grafting:
replacing softmax attention with gated convolution, local attention, and linear
attention, and replacing MLPs with variable expansion ratio and convolutional
variants. Notably, many hybrid designs achieve good quality (FID: 2.38–2.64 vs.
2.27 for DiT-XL/2) using < 2% pretraining compute. We then graft a text-to-image
model (PixArt-Σ), achieving a 1.43× speedup with less than a 2% drop in GenEval
score. Finally, we present a case study that restructures DiT-XL/2 by converting
every pair of sequential transformer blocks into parallel blocks via grafting. This
reduces model depth by 2× and yields better quality (FID: 2.77) than other models
of comparable depth. Together, we show that new diffusion model designs can be
explored by grafting pretrained DiTs, with edits ranging from operator replacement
to architecture restructuring. Code and grafted models: grafting.stanford.edu.

1 Introduction

Model architecture design plays a central role in machine learning, alongside data, algorithms,
compute, and benchmarks. It defines a learnable function and entails key decisions, including
the choice of operators (e.g., attention, convolution) and configurations (e.g., model depth, width).
Despite this, insight into architectures—what works and what doesn’t—is difficult to obtain due to
the prohibitive costs of training models from scratch, especially in today’s foundation model era. As a
result, studying new architectures remains a challenge, particularly for generative models. Much like
how new software is built on existing code rather than written from scratch, can pretrained models
serve as scaffolds for studying new architectures? In this work, we investigate architectural editing of
pretrained models to study new architecture designs. We focus on diffusion transformers (DiTs), a
class of generative transformers widely used for image and video generation [1, 2, 3].
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Figure 1: Grafting overview. (a,b) Model architecture design via grafting. Studying new model
architecture designs requires costly pretraining. Grafting materializes new architectures by editing
pretrained models under small compute budgets (Sec. 3). (c) Class-conditional image generation.
Samples generated by hybrid architectures obtained via grafting (Sec. 4). (d) High-resolution text-to-
image generation. 2048×2048 samples generated using a grafted model (Sec. 5). (e) Depth → width
case study. Samples generated using a model restructured via grafting (depth: 28 → 14) (Sec. 6).
A pretrained model implements a computational graph to perform tasks such as image or video
generation. Given a new architectural idea and a pretrained model, we investigate whether the idea
can be materialized by modifying its computational graph under small compute budgets. For example,
one might hypothesize that a convolutional design could replace Multi-Head Attention (MHA) or
Multi-Layer Perceptron (MLP) in a DiT. A simple way to materialize this idea is to replace MHA or
MLP operators with a convolutional operator, while preserving model quality. This raises two key
questions: (Q1) operator initialization: How to initialize a new operator before integrating it into
the computational graph? (Q2) error accumulation: How to mitigate error propagation as multiple
operators are integrated into the computational graph?

To address these questions, we present grafting1, a simple two-stage approach to architecture editing
(Fig. 1). Grafting proceeds as follows: (i) activation distillation: This stage transfers the functionality
of the original operator to the new one by distilling its activations using a regression objective.
(ii) lightweight finetuning: This stage mitigates error propagation caused by integrating multiple new
operators by finetuning using limited data. Architectural editing spans multiple strategies—adding,
removing, and replacing [5, 6, 7] operators. We focus on operator replacement as the core strategy:
swapping one operator for another. Other strategies can be viewed as special cases of replacement.

The space of architectural editing is vast, raising a practical question: what types of replacements
should we study? We first establish a self-grafting baseline, where we replace all MHA and MLP
operators in DiT-XL/2 with randomly initialized counterparts. Despite the scale of this intervention,
our grafting procedure achieves near-baseline model quality using under 1% of pretraining compute.
Building on this, we focus on replacing existing operators with efficient alternatives, aiming to reduce
model FLOPs while preserving quality. We also explore replacements that increase model FLOPs
to examine broader design choices. To study this systematically, we construct a testbed based on
DiT-XL/2 and define a set of architectural edits to evaluate how different grafting schemes affect
model quality. We organize our design space along four axes: (1) which operator to replace (e.g.,
MHA, MLP); (2) what to replace it with (e.g., convolutions); (3) how to select layers for replacement
(e.g., all layers); and (4) replacement ratio (full vs. partial). We focus on replacing MHA and MLP
operators, as they account for a large fraction of model FLOPs. Replacements for MHA and MLP
operators are motivated by empirical findings and prior architectural designs: our locality analysis
supports local operators for MHA, while for MLP, we adopt ideas from prior work [8, 9, 10].

1 Grafting draws inspiration from horticultural grafting, where efficient components (scions) are integrated
into established systems (rootstock) to enhance functionality, such as yield and disease resistance [4].
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We validate our grafting approach in increasingly challenging generative modeling setups:

Result I: Grafting yields hybrid architecture designs with good quality for class-conditional
image generation (Sec. 4.2). We validate grafting using our testbed. For MHA (softmax attention),
we explore several alternatives: local gated convolution (Hyena-SE, and our proposed Hyena-X/
Hyena-Y), local attention (sliding window), and linear attention (Mamba-2). For MLPs, alternatives
include MLPs with variable expansion ratio (ratios=3, 6), and a convolutional variant (Hyena-
X). Interestingly, several interleaved hybrid architecture designs achieve FID scores between 2.38
and 2.64 (DiT-XL/2 256x256 baseline: 2.27), showing that grafting can construct good quality
hybrids (Tab. 4) 2 . Grafting is simple and lightweight: each experiment completes in under 24 hours
on 8×H100 GPUs, using less than 2% of pretraining compute.

Result II: We construct efficient hybrid architectures for high-resolution text-to-image (T2I) gen-
eration via grafting (Sec. 5). We validate grafting in a challenging, real-world setting: 2048×2048
resolution T2I generation using PixArt-Σ (DiT) [11]. This setting reflects key challenges: it operates
on long sequences (16,384 tokens), involves a multimodal setup with text conditioning, and lacks
training data. We target MHA operators for grafting, as they account for over 62% of generation
latency. Using 12k synthetic data, our grafted model achieves a 1.43× speedup with <2% drop in
GenEval score (47.78 vs. 49.75), showing that grafting scales to high-resolution, T2I generation.

Case Study: Converting model depth to width via grafting (Sec. 6). Motivated by our MLP
grafting results, we rewire DiT-XL/2 by parallelizing every pair of transformer blocks, as modern
GPUs favor parallel over sequential computation. This reduces model depth by 2× (28→14).
The grafted model achieves FID=2.77, outperforming other models of comparable depth. To our
knowledge, this is the first attempt to convert sequential transformer blocks into parallel in pretrained
DiTs, enabling architectures to be restructured.

2 Prerequisites

Diffusion models (DMs). DMs generate data samples by iteratively denoising random noise. This
sampling process inversely mirrors the forward data corruption mechanism: zt = αtz+ σtϵ where
z = E(x) ∼ q(z) with E representing a pretrained encoder and x the data variable. The noise
term ϵ follows the prior distribution N (0, I). The transition kernel from time 0 to t is given by
qt(zt|z) = N (zt;αtz, σ

2
t I). The choice of αt and σt defines the diffusion variant, such as variance-

preserving [12], or flow matching [13]. The training objective [12] is as follows:
LDM (ϕ) = Eq(t)q(z,c)N (ϵ;0,I)[∥ϵ− ϵϕ(zt, t, c)∥22], (1)

where q(t): time sampling distribution, and q(z, c): joint distribution of latent z and condition c.

Diffusion transformers (DiTs). DiTs model the diffusion process by patchifying the input—noised
images or latent—into a sequence of 1D tokens with positional embeddings. These tokens are pro-
cessed through transformer blocks comprising self-attention, feedforward layers, residual connections,
and normalization layers. DiTs also incorporate conditioning signals, such as noise timestep (t), class
labels (c), or natural language prompts, enabling controllable generation [1, 14].

Datasets and evaluation metrics. For class-conditional image generation, we use ImageNet-1K [15].
We follow [1] and report Inception Score (IS), FID, sFID, Precision, and Recall using 50k generated
samples (250 steps DDPM, cfg=1.5). For text-to-image generation, we report GenEval score [16].

3 Grafting Diffusion Transformers

3.1 Two-Stage Grafting Approach

Grafting aims to materialize new architectures by editing a pretrained model’s computational graph.
Given that we focus on replacing existing operators with alternatives, this raises two questions:

(Q1) How should a new operator be initialized before being integrated into the computational graph?
Stage 1: Activation distillation. We cast initialization as a regression task. Operators in a DiT block
process [B,N,D] inputs (batch, sequence, hidden) and output tensors of the same shape. Given a

2 Strictly speaking, variable expansion ratio MLPs constitute a heterogeneous design rather than a hybrid
(i.e. they do not introduce a new operator class); we use ‘hybrid’ throughout the paper for simplicity.
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pretrained operator f l
ϕ at layer l, we learn a new operator glθ that approximates f l

ϕ [17]. Since DiT
activations are continuous and smooth, this can be posed as a regression problem:

L(θ) = Eq(t)q(z,c)qt(zt|z)
[
Lreg(g

l
θ(zt, t, c), f

l
ϕ(zt, t, c))

]
(2)

where q(z, c) is the joint distribution of latent representation z and condition c, q(t) is the time
sampling distribution, and qt(zt|z) is the transition kernel from time 0 to t. Lreg is a regression
objective such as L2. In practice, a good initialization requires as few as 8k samples.

(Q2) How can we mitigate error propagation as multiple operators are integrated into the compu-
tational graph? Stage 2: Lightweight finetuning. As more operators are replaced, initialization
errors propagate, leading to deviations from the pretrained model’s behavior. We apply end-to-end
finetuning with limited data to mitigate cumulative errors from stage 1. The fine-tuning objective is
given in Equation 1. In practice, we find that competitive performance can be recovered using only
10% of the training data, even when replacing all MHA or MLP layers in DiT-XL/2.

3.2 Self-grafting Baseline

Prior to studying new architectural designs, we introduce self-grafting, a simple control setup where
existing operators (e.g., MHA, MLP) are replaced with identical operators whose weights are
randomly initialized. This preserves the computational graph’s structure—operator types, receptive
fields, and parameter count—while altering the computation performed. Self-grafting serves three
purposes: (1) to assess the grafting procedure without architectural changes, (2) to provide a baseline
for comparing replacements, and (3) to study factors affecting performance, such as data scale,
regression objectives, and hyperparameters.

3.3 Activation Behavior Analysis and Self-grafting Results

We begin by analyzing the activation behavior of MHA and MLP operators across all layers in
DiT-XL/2. In both cases, we observe large variance in activation values, particularly in deeper layers
(Tab. 1 (i, ii)). When using regression-based distillation for Stage 1, these outliers affect optimization,
particularly under the commonly used L2 objective which penalizes all errors quadratically. This
motivates a closer look at regression objectives. We study three regression objectives with different
level of sensitivity to outliers—L2, L1, and Huber [18]—using a self-grafting setup. We select five
representative layers (l = 1, 8, 17, 27, 28) for both MHA and MLP, spanning a range of activation

(i) Range of MHA and MLP Activation Values for all layers (DiT-XL/2) (ii) Activation Distribution for Selected Layers
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(iii) MHA initialization
IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑

Baseline 278.20 2.27 4.60 0.83 0.57

Random Init. 40.86 76.27 10.33 0.33 0.52
L2 269.31 2.58 5.75 0.82 0.58
Huber (δ=1.0) 271.30 2.55 5.44 0.82 0.57
L1 273.03 2.51 5.48 0.83 0.58

(iv) MLP initialization
IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑

Baseline 278.20 2.27 4.60 0.83 0.57

Random Init. 2.18 297.34 161.76 0.01 0.00
L2 265.34 2.33 4.38 0.81 0.59
Huber (δ=1.0) 262.93 2.38 4.49 0.81 0.59
L1 235.54 2.83 4.69 0.77 0.61

Table 1: Activation statistics and self-grafting (Stage 1) results (DiT-XL/2). (i) Activation ranges
(max–min) across all 28 MHA and MLP operators, computed using 1,000 samples. Deeper layers
exhibit higher variance in activation values. (ii) Activation distributions (log-scale histograms) for
five selected layers (1, 8, 17, 27, 28), used in our initialization study. MLP layers show higher
variance in activations than MHA, especially in deeper layers. (iii, iv) Stage 1 results for these layers
using L2, Huber, and L1 regression. L1 yields the best FID for MHA (2.51), while L2 performs best
for MLP (2.33), which contains 2× more parameters than MHA (10.6M vs. 5.3M). This study shows
that high-quality initialization can be achieved by choosing operator-specific regression objectives.
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values. Each operator is trained with 8K ImageNet-1K [15] samples, for 200 epochs with batch size
64 and learning rate 1e−4. We use δ = 1.0 for Huber objective. We then integrate the initialized
operators into the pretrained DiT-XL/2 and evaluate quality without any finetuning.

High-quality initialization can be achieved by choosing operator-specific regression objectives.

Stage 1 Stage 2 IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑
Baseline 278.20 2.27 4.60 0.83 0.57

MHA (Full Self-grafting)
Random Init. 1.66 289.23 154.00 0.00 0.00

0.63% – 117.68 16.78 13.69 0.60 0.61
0.63% 0.63% 148.56 11.26 11.10 0.66 0.60
0.63% 5.0% 270.39 2.70 5.46 0.81 0.57
0.63% 10.0% 287.81 2.49 4.71 0.83 0.56

MLP (Full Self-grafting)
Random Init. 1.27 314.72 204.99 0.00 0.00

0.63% 10.0% 277.72 2.54 4.52 0.83 0.57

Table 2: Full self-grafting (Stage 2) results (DiT-XL/2).
We report results after replacing all 28 MHA and MLP
operators using different amounts of training data. As we
increase the training data from 0.63% (8k) to 10.0% (128k),
FID improves consistently. Using only 10% of the training
data, near-baseline performance is achieved: FID 2.49 for
MHA and 2.54 for MLP.

As shown in Tab. 1 (iii,iv), the choice
of the regression objective affects per-
formance. For MHA, L1 achieves the
best FID (2.51), followed by Huber
(2.55) and L2 (2.58). For MLPs, L2

performs best (2.33), while L1 under-
performs (2.83); notably, MLPs have
2× more parameters than MHA which
explains its robustness to outliers [19].
This shows that high-quality initializa-
tion requires tailored, activation-aware
strategies. Further, we evaluate vali-
dation loss on held-out samples. For
MHA, L1 achieves the lowest loss; for
MLPs, L2 achieves the lowest loss for
all blocks (See Sec. C.3).

Full self-grafting with 10% data
achieves near-baseline performance.
We extend our study to replace all MHA
and MLP operators in DiT-XL/2 under
the self-grafting setup and evaluate the effect of data on recovery (Tab. 2). For MHA, replacing
all 28 layers without adaptation results in a noticeable performance drop, but Stage 2 (lightweight
fine-tuning) is highly effective: using just 10% of the training data (128k samples), we achieve an
FID of 2.53 vs. 2.27 for the baseline. Similarly, full MLP self-grafting with 10% data yields an FID
of 2.54. We use batch size 256, learning rate 1e−4, and 30k iterations. In both cases, the quality
is within 0.3 FID of the baseline, showing that full self-grafting is feasible under modest data and
compute budgets.

3.4 Locality Analysis of Self-attention

Figure 2: Locality of self-attention in DiT-
XL/2. We plot Lk values for all 28 MHA
operators, averaged over timesteps and sam-
ples. At k=32, 15 out of 28 layers exhibit
values exceeding 0.5, indicating that several
MHA operators model local interactions.

MHA scales quadratically with sequence length, mak-
ing it a computational bottleneck. A natural idea is
to replace it with local operators, such as convolu-
tion or local attention. However, this will fail if the
model relies on long-range dependencies: for exam-
ple, replacing all MHA operators in DiT-XL/2 with
a sliding window attention degrades FID from 2.27
to 53.9. To guide grafting, we quantify MHA local-
ity using a simple band-k metric. Given an attention
matrix A ∈ RN×N and a band size of k, we define a
bi-directional band indicator matrix Bk ∈ RN×N as:

(Bk)i,j =

{
1, if |i− j| ≤ k

0, otherwise

Then, locality within a band of size k is computed as:

Lk =
1

N

∑
i,j

Ai,j(Bk)i,j (3)

We compute Lk for all 28 MHA operators in DiT-XL/2 using 50-step DDIM sampling (250 ImageNet
samples, sequence length 256, cfg scale 1.5), averaging across timesteps and samples. As shown in
Fig. 2, MHA is largely local: on average, for k=32, 15 out of 28 layers attend to more than 50%
attention mass within the band. The first few layers (l=1,2) display non-local attention patterns. Our
analysis provides guidance for replacing MHA operators with efficient local operators.
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4 Experiments I: Hybrid Architectures via Grafting

4.1 Testbed and Experiment setup

Building on our self-grafting results, we now ask: can we maintain model quality when existing
operators are replaced with efficient alternatives? To investigate this, we study the grafting procedure
along four design axes:

1. operator type to replace – MHA or MLP
2. replacement operator type – such as convolutions
3. layer selection strategy – replace operators in all layers or use heuristic-based selection
4. replacement ratio – full or partial

We construct a testbed to systematically evaluate how design decisions affect generative quality
under grafting. We focus on efficient replacements that reduce FLOPs, but also include higher-FLOP
variants to explore a broader range of architectural edits. We target MHA and MLP operators, which
account for a significant portion of FLOPs in DiTs compared to other operators (e.g., normalization,
activation, residuals). The rationale for replacing MHA or MLP operators is grounded in both
empirical and architectural considerations: for MHA, our attention locality analysis (Fig. 2) motivates
the use of local operators; for MLP, we leverage prior architecture ideas [8, 20, 21, 22, 9, 10]. Given
a replacement operator, the decision to graft it to a model with L transformer layers spans a space of
2L configurations. To make this tractable, we study two layer selection strategies: full (replace all
operators) and interleaved (replace operators in a repeating pattern) strategies. The latter is inspired
by striped transformer designs [23, 24, 25]. Our testbed is detailed in Tab. 3.
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Figure 3: Our proposed Hyena-X and Hyena-Y,
efficient local gated convolution operators used
as drop-in replacements for MHA.

We introduce Hyena-X and Hyena-Y—two new
efficient gated convolution operators designed as
drop-in replacements for MHA. While our study
includes several off-the-shelf efficient alternatives,
we also contribute new operator designs motivated
by our MHA locality analysis. This allows us to test
novel architectural ideas via grafting, broadening
our study. Both Hyena-X and Hyena-Y are local
gated convolutions composed of dense, short causal
depth-wise 1D convolutions. Fig. 3 (left) illustrates
their structure. We also adapt Hyena-X as an MLP
alternative by applying it along the channel dimen-
sion. Hyena-X and Hyena-Y scale linearly with
sequence length, compared to the quadratic scaling
of MHA. Operator details are provided in Sec. G.
We provide FLOP calculation for both operators in
Sec. H.1.

Experiment setup. For our hybrid experiments, we mostly use the hyperparameters determined from
our self-grafting studies (Sec. 3.2).

Stage 1: Operator initialization. For each new operator, we perform activation distillation using
8K ImageNet-1K samples. Each operator is trained for 200 epochs with a batch size of 64 and an
initial learning rate of 1e−4. We pre-extract and store all regression features. All operators can be
initialized in parallel. Each operator’s training completes in under 30 minutes on a single H100 GPU.
Experiment details for stage 1 are included in Sec. C.1.

Stage 2: Lightweight finetuning. For all experiments in Table 3, we use 10% of the ImageNet-1K
training data and train for 50K steps. We use a batch size of 256, linearly warming up the learning
rate to 1e−4 over 1000 steps. Experiments typically complete in under 10 hours on 8×H100 GPUs.
For specific ablations on increasing data, such as those involving 20% data or 100K steps, runtimes
extend up to 24 hours (<2% pretraining compute). We provide experiment details in Sec. C.1.
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Operator Type: Which operator types are we replacing?

MHA, MLP

Efficient Alternative: What do we replace it with?

MHA
Convolutions: Hyena-SE [24], Hyena-X/ Hyena-Y (Ours) K=4, causal

Local Attention: Sliding Window Attention (SWA) [26, 27] w=4, bidirectional

Linear Attention: Mamba-2 [28] ds=64, E=2

MLP
Variable expansion ratio r=3,6

Hyena-X (Ours) r=2, K=4, causal, mix channels

Layer Selection: In which layers is the operator replaced?

Full Replace the operator in all layers

Interleaved Replace the operator in a repeating pattern (e.g., every 2 or 3 out of 4)

Replacement Ratio: What percentage of operators are replaced?

50%, 75%, 100%

Table 3: Grafting testbed with configurations. This table defines the core design axes used in our
study: operator type, efficient alternatives, layer selection strategy, and replacement ratio. For each
alternative, we report configurations, including kernel size K, window size w, state size ds, expand
factor E, and MLP expansion ratio r. The baseline DiT-XL/2 operator uses H=16 attention heads
and MLP expansion ratio r=4. Operator variants marked with (Ours) are proposed in this work.

4.2 Results and Insights (a) Ablation 1: Data scaling (MHA)

Full self-grafting

Hyena-SE

Hyena-X

Hyena-Y

SWA

Mamba-2 2.55

2.62

2.61

2.61

2.61

2.46

2.65

2.67

2.72

2.74

2.73

2.49

10% Data 20% Data

FID

(b) Ablation 2: Layer selection heuristics
(MHA / Hyena-X)

4.00

3.18
3.02

2.74

FID

Interleaved

(50%)

Top-local

(50%)

Low-local

(50%)

Deep

(50%)

Full

(100%)

FID>140

Figure 4: Ablation studies. (a) Data scale:
Increasing fine-tuning data from 10% to 20%
improves FID. (b) Layer selection strategies:
Interleaved replacement outperforms other
heuristics.

MHA results. Replacing MHA operators in DiT-XL/2
via grafting yields strong quality-efficiency tradeoffs.
We discuss our key insights below:

• Surprising effectiveness of operators with smaller
receptive fields under interleaved grafting. Our find-
ings highlight that at 50% interleaved replacement,
several alternatives—including SWA, Hyena-X/Y,
and Mamba-2—consistently achieve FID scores
within 0.5 of the baseline (2.27). The minimal FID
drop observed especially with the SWA and Hyena
variants, despite their limited receptive field (K=4,
w=4), aligns with our locality analysis (Section 3.4).

• Replacement strategy: Interleaved vs. Full. Per-
formance generally declines when increasing inter-
leaved replacement from 50% to 75%. However,
SWA remains effective at 75% interleaved replace-
ment (FID=3.09). At 100% replacement, perfor-
mance sharply degrades (all FIDs > 75). This trend
aligns with our locality analysis, indicating that only
a subset of layers are local and amenable to grafting.

• Ablations on data scale and layer selection. We
study two factors under 50% MHA replacement.
(i) Increasing fine-tuning data from 10% to 20%
improves FID across all variants (e.g., Hyena-
X: 2.74 → 2.61; SWA: 2.67 → 2.62, Mamba-
2: 2.65→ 2.55) (Fig. 4 (a)). (ii) Under 50% replacement, we compare Hyena-X (interleaved)
to three targeted heuristics: top-local (layers with highest band-k values), low-local (layers with
lowest band-k values), and deep (last 14 layers). Interleaved yields the best FID (2.74), followed
by top-local (3.02), low-local (3.18), and deep (4.00). These results confirm that interleaving is
effective, and our band-k metric identifies layers that are more amenable to grafting (Fig. 4 (b)).
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MLP results. Replacing MLP operators via grafting is effective. We discuss our key insights below:
• Variable expansion ratio MLPs are effective under full replacement. MLP alternatives with

expansion ratio r=3 and r=6 demonstrate good quality under all replacement ratios. Even under
full (100%) replacement, both variants maintain good performance, with r=3 achieving FID=2.66.
This highlights that MLP width is a robust dimension for grafting.

• Convolutional alternatives. Hyena-X which combines dense and local channel mixing, performs
competitively at 50% replacement (FID=2.63) but degrades at higher ratios, suggesting that such
operators are only effective at moderate ratios.

Takeaway 1: Grafting is effective for constructing efficient hybrid architectures with good
generative quality under small compute budgets. Interleaved designs are particularly effective.

Ratio IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑ ∆FLOPsop. ↓ ∆FLOPsft. ↓ ∆Param ↓
Baseline – 278.20 2.27 4.60 0.83 0.57 — — —

MHA Grafting
Random Init. 100% 1.66 289.23 154.00 0.00 0.00 — — —
Self-grafting 100% 287.81 2.49 4.71 0.83 0.56 — — —

Hyena-SE
(K=4)

50% 274.73 2.73 5.05 0.82 0.56 -49.52% +0.13% +0.22%
75% 231.15 3.62 6.04 0.81 0.54 -74.27% +0.20% +0.33%
100% ✗ ✗ ✗ ✗ ✗ -99.03% +0.26% +0.43%

Hyena-X
(K=4)

50% 273.30 2.74 5.03 0.83 0.56 -49.90% +0.13% +0.16%
75% 229.11 3.69 6.10 0.81 0.53 -74.85% +0.20% +0.24%
100% ✗ ✗ ✗ ✗ ✗ -99.81% +0.26% +0.33%

Hyena-Y
(K=4)

50% 273.37 2.72 5.02 0.83 0.55 -49.52% 0.00% +0.05%
75% 228.99 3.66 5.95 0.81 0.53 -74.27% 0.00% +0.08%
100% ✗ ✗ ✗ ✗ ✗ -99.03% 0.00% +0.11%

SWA
(w=4)

50% 280.62 2.67 4.90 0.83 0.56 -48.24% 0.00% 0.00%
75% 249.99 3.09 5.54 0.82 0.55 -72.36% 0.00% 0.00%
100% ✗ ✗ ✗ ✗ ✗ -96.48% 0.00% 0.00%

Mamba-2
(ds=64, E=2)

50% 285.08 2.65 4.84 0.83 0.55 -37.59% +77.89% +28.02%
75% 257.66 3.02 5.48 0.82 0.53 -56.38% +116.83% +42.04%
100% ✗ ✗ ✗ ✗ ✗ -75.17% +155.77% +56.05%

MLP Grafting
Random Init. 100% 1.27 314.72 204.99 0.00 0.00 — — —
Self-grafting 100% 277.72 2.54 4.52 0.83 0.57 — — —

Exp. ratio ↓
(r=3)

50% 272.14 2.53 4.51 0.83 0.57 -12.50% 0.00% -12.50%
75% 279.72 2.61 4.61 0.83 0.56 -18.75% 0.00% -18.75%
100% 252.11 2.66 4.57 0.81 0.57 -25.00% 0.00% -25.00%

Exp. ratio ↑
(r=6)

50% 278.00 2.38 4.50 0.83 0.58 +25.00% 0.00% +25.00%
75% 277.94 2.37 4.48 0.82 0.58 +37.50% 0.00% +37.50%
100% 276.86 2.42 4.50 0.82 0.58 +50.00% 0.00% +50.00%

Hyena-X
(r=2,K=4)

50% 265.60 2.64 4.66 0.83 0.56 +0.01% 0.00% +0.02%
75% 226.13 3.26 4.79 0.81 0.55 +0.02% 0.00% +0.03%
100% ✗ ✗ ✗ ✗ ✗ +0.02% 0.00% +0.03%

Table 4: Generation quality and efficiency metrics for MHA and MLP grafting. We report quality
(IS, FID, sFID, Precision, Recall) and efficiency (∆FLOPs and ∆Param) results. Baseline refers to
DiT-XL/2. For each alternative, setups that maintain FID within 0.5 of the baseline and offer the
largest FLOPs reduction (or smallest FLOPs increase) are highlighted . ✗ denotes setups with poor
generation (FID > 50). ∆FLOPs and ∆Param denote the percentage change in operator FLOPs and
parameters, respectively. For MHA, total cost is split into ∆FLOPsop. (softmax attention, gating)
and ∆FLOPsft. (QKV/output projections, featurizers). We do not use this decomposition for MLP
variants. Mamba-2 incurs higher ∆FLOPsft. due to additional projections. FLOP expressions are
provided in Sec. H.1. Key result: Many interleaved designs achieve good quality generation (FID
within 0.5 of baseline). All experiments use 10% training data and <1% pretraining compute.
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5 Experiments II: Grafting Text-to-Image Diffusion Transformers

We apply grafting to a more challenging setting: high-resolution text-to-image generation with
PixArt-Σ [11]. This presents three challenges: (1) long sequences (16,384 tokens for 2048×2048
resolution), (2) a multimodal setup with text conditioning, and (3) lack of publicly available training
data. These factors make PixArt-Σ a representative setting for evaluating grafting under real-world
constraints. PixArt-Σ contains 28 transformer layers similar to DiT-XL/2.

Experiment setup. We replace MHA operators in PixArt-Σ with Hyena-X via grafting, as MHA
accounts for over 62% of generation latency. Hyena-X was chosen based on its good quality-efficiency
tradeoff in the ImageNet-1K setup, achieving FID 2.61 with 20% data (see Fig. 4 (b)). Interleaved
grafting is applied for layers 8, 10, 12, 14, 16, 18, and 20–27; empirically, we found that layers 20–27
can be replaced without significant quality drop. For grafting, we created a small, uncurated synthetic
dataset of 12k image-text pairs. The text prompts for this dataset were sampled from the 30k publicly
released evaluation set. Stage 1 (activation distillation): 8k uncurated synthetic image-text pairs are
used to initialize Hyena-X blocks. We use the L1 regression objective, as we observe similar MHA
activation behavior in PixArt-Σ (Fig. E.1). Stage 2 (finetuning): We use LoRA (rank=64) [29] for
finetuning. LoRA enables efficient finetuning by managing the high memory demands associated
with long sequences (16,384 tokens). The full 12k synthetic dataset is used in this stage. We use 20
step DPM Solver [30] for generation. Experiment details are provided in Sec. E.2.

Results. The grafted model achieves a 1.43× speedup in wall-clock time, with a small drop in GenEval
score (47.78 vs. 49.75). Attribute-specific metrics remain comparable, and qualitative samples show
good alignment and quality. Some localized artifacts are observed in textured regions likely due to
LoRA’s adaptation capacity and low-quality synthetic data (see failure cases in Fig. E.3, E.4).

Takeaway 2: We graft high-resolution text-to-image DiTs, constructing hybrid architectures with
meaningful speedups and minimal quality drop.

Model Ratio Obj(1) Obj(2) Count Colors Pos Color Attr. Overall ↑ Latency (ms) ↓
Baseline - 81.45 61.62 46.25 77.13 10.75 21.50 49.75 235.46

Hyena-X 29% 80.31 59.34 49.69 68.62 11.50 18.75 48.04 194.95 (1.21×)

Hyena-X 50% 80.00 57.07 48.13 70.74 11.25 19.50 47.78 164.58 (1.43×)

Table 5: GenEval results and latency for PixArt-Σ and the grafted variants. The 50% grafted
model achieves a 1.43× speedup while retaining strong text-image alignment (GenEval overall score:
47.78 vs. 49.75). Attribute-specific scores remain comparable across models. Latency is measured
for a single forward pass on an Nvidia H100 (batch size=2).

6 Case Study: Converting Model Depth to Width via Grafting

Transformer 
Layer N

Transformer 
Layer N+1

Transformer 
Layer N

Transformer 
Layer N+1

(a) Sequential Transformer Blocks

(b) Rewiring Transformer Blocks in Parallel 

via Grafting 

Input Output

OutputInput

Li
ne

ar

Figure 5: Convert model depth → width via
grafting: (a) Two sequential transformer lay-
ers. (b) Rewiring in parallel via grafting
(includes skip connections).

Can we rewire two sequential transformer blocks
to run in parallel? Our MLP grafting results showed
that MLPs are amenable to grafting, even at 100%
replacement with an expansion ratio of r = 6, demon-
strating that wider computation within an operator is
feasible. This success, combined with the fact that
modern GPUs favor parallel over sequential compu-
tation, motivates a broader question: can we convert
deeper, sequential DiT computations into wider, par-
allel ones via grafting while maintaining quality? To
explore this, we rewire DiT-XL/2 by parallelizing ev-
ery pair of sequential transformer blocks—each pair
receives the same input, and their outputs are merged
via a linear projection. This reduces model depth by
2× (28 → 14) with a 6% increase in parameters.
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Experiment Setup. The rewiring schematic is shown in Fig. 5. We use DiT-XL/2. Stage 1: Activation
distillation. Each parallel pair was initialized via activation distillation using L1 regression. The
weights for each block in the parallel pair were initialized from their corresponding pre-trained
weights, rather than random initialization. Similar to our previous experiments, 8k ImageNet-
1K samples were used for this stage. Stage 2: Lightweight finetuning. Given the architectural
restructuring, finetuning was performed using 25% of the training data. The learning rate was linearly
warmed up to 1e-4 and halved at 75k and 150k iterations. Additional details can be found in Sec. D.

Results. The goal of this study is to evaluate generative quality (FID) vs. model depth. We report
results in Tab. 6. To contextualize our findings, we compare against two categories: (i) DiTs trained
from scratch at lower depth, and (ii) pruning methods [31, 32]. Our 14-layer grafted model achieves
an FID of 2.77—surpassing DiT variants trained from scratch with similar or increased depth,
including DiT-L/2 (depth 24, FID 3.73) and U-ViT-L (depth 21, FID 3.44). It also outperforms
pruning baselines such as TinyDiT-D14 with masked knowledge distillation (depth 14, FID 2.86) and
BK-SDM (depth 14, FID 7.43), though these baselines have fewer parameters (340M) compared to
the grafted variants (712M).

Takeaway 3: Grafting enables architectural restructuring at the transformer block level, allowing
model depth to be traded for width.

Method Depth A.R Iters IS ↑ FID ↓ sFID ↓ Prec. ↑ Recall ↑ Speedup ↑ Params ↓
DiT-L/2 [1] 24 42.7 1,000K 196.26 3.73 4.62 0.82 0.54 — 458M
U-ViT-L [33] 21 48.8 300K 221.29 3.44 6.58 0.83 0.52 — 287M
DiT-B/2 [1] 12 64.0 1000K 119.63 10.12 5.39 0.73 0.55 — 130M
BK-SDM [31] 14 82.3 100K 141.18 7.43 6.09 0.75 0.55 2× 340M
TinyDiT-D14 [32] 14 82.3 500K 198.85 3.92 5.69 0.78 0.58 2× 340M
TinyDiT-D14 w/ MKD [32] 14 82.3 500K 234.50 2.86 4.75 0.82 0.55 2× 340M
DiT-XL/2 [1] 28 41.4 7,000K 278.20 2.27 4.60 0.83 0.57 1× 675M
Grafting (Ours) 14 164.6 100K 231.91 3.12 4.71 0.82 0.55 2×¶ 712M
Grafting (Ours) 14 164.6 230K 251.77 2.77 4.87 0.82 0.56 2×¶ 712M

Table 6: Generative quality vs. model depth. We report generative quality metrics (IS, FID,
sFID, Precision, and Recall). A.R. (Aspect Ratio) is defined as model width divided by depth (e.g.,
1152/14 = 82.3). For pruning and grafting setups, we report speedup with respect to DiT-XL/2
(depth=28). Off-the-shelf DiT-L/2, U-ViT-L, and DiT-B/2 scores, along with pruning baselines
(BK-SDM, TinyDiT-D14, and TinyDiT-D14 w/ MKD), are sourced from [32]. MKD refers to
Masked Knowledge Distillation, a recovery method used in [32]. ¶ Speedup is measured for a single
forward pass on an Nvidia H100 (batch size=2). (details in Sec. D). Key result. Our grafted models
achieve better generative quality at depth=14, surpassing baselines in FID, IS, Precision, and Recall.

7 Conclusion and Discussion

In this work, we introduced grafting, a simple approach to architecture editing. We constructed
hybrid models by replacing self-attention and MLPs with efficient alternatives, achieving competitive
quality (FID 2.38–2.64 vs. 2.27 baseline). We then applied grafting to a high-resolution text-to-image
model (PixArt-Σ), yielding a 43% speedup with less than a 2% drop in GenEval score. We then used
grafting to restructure DiT-XL/2, converting every pair of sequential transformer blocks into parallel,
reducing model depth by half and yielding better quality (FID 2.77) among 14-layer DiTs. These
results demonstrate grafting’s utility in both short- and long-context settings (e.g., ImageNet-1K and
PixArt-Σ, respectively), and for architecture restructuring. Overall, grafting proves to be a lightweight
approach for materializing diffusion transformer designs under small compute budgets.

Related work and discussion. Due to page limit, we discuss related work in Supp. A. Further,
to demonstrate the generalization of grafting, we graft an LLM (Qwen3-4B [34])—a generative
model (autoregressive), model architecture, and data modality distinct from diffusion-based image
generation with DiTs (Supp. F). We discuss broader impact, limitations and applications in Supp. I.
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Armin W. Thomas, Garyk Brixi, Kyle Sargent, Karthik Dharmarajan, Stephen Tian, Cristobal
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are clearly described in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We describe our limitations in Supp. I.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: N/A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All training details, hyperparameters, code, and instructions for reproducing
our results are included in the Supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All code, and instructions for reproducing our results are included in the
supplementary material including hyperparameters for each setup.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details and test details are provided in the Supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviation for selected experiments are provided in Supp. B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide compute details in Supp J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we abide by the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact in Supp. I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We release only modified versions of existing pretrained models
(e.g., DiT-XL/2) that are widely available and already publicly deployed. Our
method—grafting—operates at the architectural level and does not introduce new model
capabilities beyond those of the original models. To mitigate potential misuse, we follow
responsible release practices: we (i) release models for research use only under appropriate
licenses, (ii) provide usage guidance in our code repository, and (iii) avoid releasing models
trained or finetuned on private or sensitive datasets. Since our focus is on architectural
designs rather than model scaling, we assess the risk to be low and provide safeguards
accordingly.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly released models (e.g., DiT-XL/2, PixArt-Σ) and datasets (e.g.,
ImageNet-1K) under their respective licenses. All assets are properly cited in the paper, and
their licenses are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release new grafted model variants and accompanying code to support
reproducibility. All assets are documented with model configurations, training details, and
usage instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or any procedures requiring IRB
approval.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as a component of the core methodology. Any use of
LLMs was limited to minor writing support and did not influence the scientific contributions
of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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• Section I : Broader Impact, Limitations and Applications

• Section J : Compute details

A Related Work

Diffusion model architectures. Recently, many architectural innovations have been proposed for
diffusion models for image and video generation [35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Many recent
works focus on improving the attention mechanism in diffusion models to enhance efficiency and
scalability. One major direction is the use of modern linear attention variants, such as DiffuSSM [36],
DiS [37], Zigma [38], DiM [39], and DIG [40]. Recently, text-to-image diffusion models such as
SANA [35] have also adapted linear attention variants to support high-resolution generation. Another
recent direction explores the mixture-of-experts (MoE) idea. DiT-MoE [45] introduces sparse diffu-
sion transformers with shared expert routing and expert-level balance loss, enabling efficient scaling
to 16.5B parameters while achieving competitive performance. We note that methods like STAR [46]
have also successfully discovered architectures via evolutionary methods for autoregressive language
modeling. Recently, Bian et al. [47] showed that pretraining wider and shallower autoregressive lan-
guage models can yield efficiency gains while preserving accuracy. While effective, these approaches
require training from scratch, making such studies expensive and inaccessible to practitioners. In
contrast, grafting focuses on architecture editing of pretrained models to materialize new architectures
under small compute budgets.

Architectural editing of pretrained generative models. Another line of work focuses on lineariz-
ing large language models by replacing softmax attention with efficient operators, such as linear
attention [5, 6, 7]. Similar ideas have also been adopted for diffusion models in [48, 49, 50], though
these works focus only on ultra-high-resolution settings. These prior efforts typically focus on
replacing a single operator type (primarily attention) or are limited to specific application domains.
Grafting presents a more general and comprehensive approach for architectural editing. It extends
beyond single-operator replacement to enable modifying multiple operator types, exploring diverse
architectural alternatives (e.g., both MHA and MLP replacements), and restructuring architectures
(e.g., converting model depth to width). Recently, FFN Fusion [51] explored parallelizing transformer
blocks in LLMs, aiming to reduce sequential computation. While our work focuses on diffusion-based
generative modeling with transformers, prior work on image classification has explored model reuse
and modification, such as few-shot knowledge distillation via progressive network grafting [52] and
modular recombination of pretrained model components [53].



B Standard Deviation of Experiments

To compute variance associated with our reported results, we repeat two representative experi-
ments—MHA (Hyena-Y) and MLP (width=6)—using three different random seeds (seed = 0,
200, 300). We follow the exact grafting setup used in the main paper for these experiments. We
report the mean and standard deviation of IS, FID, sFID, Precision and Recall in Tab. B.1. We observe
that the standard deviations are within an acceptable range.

Setup IS FID sFID Precision Recall
MHA/ Hyena-Y 273.19 ± 0.46 2.73 ± 0.01 5.06 ± 0.04 0.83 ± 0.00 0.55 ± 0.00

MLP/ higher width (r = 6) 277.91 ± 0.95 2.41 ± 0.01 4.48 ± 0.02 0.82 ± 0.00 0.58 ± 0.00

Table B.1: Mean and standard deviation of IS, FID, sFID, Precision and Recall calculated for three
runs with different random seeds (0,200,300).

C Hybrid Architecture Experiments: Additional details

C.1 Experiment details and additional samples

We provide all hyperparameters used for the experiments in Tab. C.1. To ensure a fair comparison,
we used identical hyperparameters across every hybrid experiment. We include additional qualitative
samples generated using our hybrid architectures obtained via grafting in Fig. C.1.

Stage 1: Activation Distillation

Initial Learning Rate 1× 10−3

Weight Decay 0

Epochs 200

Batch Size 64

Clip Norm 10.0

Optimizer AdamW (betas = (0.9, 0.999))

Loss Function L1 (MHA), L2 (MLP)

Stage 2: Lightweight Finetuning

Initial Learning Rate 1× 10−4

Weight Decay 5× 10−5

Iterations 50,000 (100 epochs)

Batch Size 256

Optimizer AdamW (betas = (0.9, 0.999))

Scheduler Linear Warmup over 1K steps, then constant lr

Training Data 10% of ImageNet-1K (128k samples)

Table C.1: Experiment details for MHA/MLP grafting experiments using DiT-XL/2 (ImageNet-1K).

C.2 Modulated Regression Targets for MHA

For Stage 1, we explored a modulation-aware regression variant for MHA experiments that incor-
porates the learned scalar (gate_msa) applied to the attention output. In the standard setup, we
regress from input x to the raw output of the attention block y = MHA(·). In the modulation-aware
formulation, the target becomes y = gate_msa⊙ MHA(·). Tab. C.2 compares these two variants with
L1 and L2 loss. Modulation-aware regression increases target scale, which adversely affects L2 loss
performance due to its sensitivity to large values. L1 performs similarly in both settings. We adopted
the standard (modulation-agnostic) formulation for all experiments for simplicity.
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Modulation-aware IS FID sFID Precision Recall
Baseline 278.20 2.27 4.60 0.83 0.57

L2 ✓ 246.17 3.00 7.11 0.79 0.58

✗ 269.31 2.58 5.75 0.82 0.58

L1 ✓ 272.86 2.51 5.29 0.82 0.57

✗ 273.03 2.51 5.48 0.83 0.58

Table C.2: Comparison of modulation-aware and standard regression targets for Stage 1. The
modulation-aware setup includes the learned scalar (gate_msa) as a multiplicative factor in the
regression target. L2 loss is sensitive to the amplified target scale and performs worse, while L1 loss
remains robust and performs similarly in both cases. We adopt the standard formulation by default.

C.3 Validation Loss Curves for Self-grafting Experiments

To support the trends reported in the main paper (Sec.3.2, Table 2), we include validation loss curves
in Fig.C.2 for five representative layers. Loss is computed using L2 on a held-out set of 8k samples.
For MHA layers (top row), L1 consistently achieves lower validation loss in deeper layers, reflecting
robustness to high activation variance. For MLP layers (bottom row), L2 generalizes best across all
layers. This contrast may be explained by parameter count: MLPs have roughly 2× more parameters
than MHA layers, making them less sensitive to outliers and better suited to L2 regression.

Figure C.1: Additional samples generated by grafted DiT-XL/2 variants. Each row corresponds
to a different hybrid. We report FID scores (lower is better, ImageNet-1K 256×256) for each
hybrid. MHA variants (top 4 rows): Hyena-X (2.61), Hyena-Y (2.61), SWA (2.62), Mamba-2 (2.55).
MLP variants (bottom 3 rows): Lower width (2.53), Higher width (2.38), Hyena-X MLP (2.64).
These results highlight the flexibility of grafting in constructing high-quality hybrid architectures by
replacing MHA or MLP operators.
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Figure C.2: Validation loss curves for MHA (top) and MLP (bottom) operator distillation showing the
training dynamics for three regression objectives. As one can observe, L1 shows better generalization
for MHA and L2 shows better generalization for MLP.

D Depth to Width Grafting Experiments: Additional details

We provide all hyperparameters used for these experiments in Tab. D.1. We show additional samples
in Fig. D.1.

Figure D.1: Depth-to-width grafting samples. Samples from a DiT-XL/2 model in which every pair
of transformer block is converted into a parallel block, effectively reducing depth by 2× (FID=2.77).

Implementation details. The generative quality metrics (FID, IS, sFID, Precision, Recall) reported
in Tab. 6 correspond to the exact implementation of rewiring presented in Fig. 5. For speedup
measurements, a simple fused version of our rewired version was used. It is important to note that
the reported speedup values are expected to decrease with large batch sizes, primarily due to the
model parameter count (712M). Future work will focus on exploring hardware-aware / optimized
implementations to achieve consistent speedup across a wider range of batch sizes.

E Text-to-Image Generation Experiments: Additional details

E.1 MHA activation plots

We show activation distribution for five representative layers (l = 15, 17, 19, 21, 23) in Fig. E.1.

E.2 Experiment details

We provide all hyperparameters used in our PixArt-Σ grafting experiments in Tab. E.1.
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Stage 1: Activation Distillation

Initial Learning Rate 1× 10−4

Regression Objective L1

Epochs 200

Batch Size 64

Optimizer AdamW (betas = (0.9, 0.999))

Stage 2: Lightweight Finetuning

Learning Rate 1× 10−4

Weight Decay 0

Iterations 230k

Batch Size 256

Optimizer AdamW (betas = (0.9, 0.95))

Scheduler Warmup over 1K steps, half every 75k steps

Training Data 25% of ImageNet-1K (320k)

Table D.1: Experiment details for depth-to-width grafting experiments using DiT-XL/2 (ImageNet-
1K).
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Figure E.1: Similar to DiT-XL/2, we observe high activation variance in PixArt-Σ MHA operators.
We show input (left) and output (right) activation values corresponding to five representative layers
(15, 17, 19, 21, 23) in PixArt-Σ.

E.3 Generated samples and failure cases

We show additional high-resolution samples generated by the grafted PixArt-Σ model in Fig. E.2,
illustrating the model’s ability to preserve generative quality across diverse prompts despite substantial
architectural edits. Figure E.3 illustrates two types of failure modes observed in grafted PixArt-Σ
outputs. Each column pair shows the output of PixArt-Σ (left) and the grafted model (right) for the
same text prompt. In the top row, the original model generates images that are reasonably aligned
with the prompts, while the grafted model fails to preserve this alignment—indicating limitations
during the LoRA-based finetuning stage. In the bottom row, the synthetic supervision itself is of low
quality, resulting in poor outputs from both the original and grafted models. To better understand this
issue, Figure E.4 presents additional examples of low-quality synthetic data produced by PixArt-Σ
and used for grafting. These samples often exhibit artifacts and unrealistic physics. While synthetic
data enables low-cost adaptation, these results highlight the importance of improved data curation
and filtering to avoid propagating errors during the grafting process.
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The image captures a scene of stark 
beauty in the ...

One watercolor illustration of a 
man on a white back …  

The image captures a closeup view 
of a vibrant red …

A very large cartoon panda wear a 
baseball cap, in the style of …

In the professional oil painting 
studio there is an …

Handmade vintage sock monkey 
doll, attention to ...

Today marks the beginning of 
autumn, summer has not …  

Fresh coriander leaves plant on 
white background, …

The image captures a moment of 
tranquility in the deep blue …

Paint a captivating watercolor 
clipart of a Lovebird, …

Figure E.2: Additional 2048×2048 samples generated using our grafted PixArt-Σ model.

The image presents a delightful assortment of four donuts, each with its 
own unique topping, set …

Playing classical guitar, Aesthetic flower, Full body shot, anime style, 
vector …

A dog chasing its tail looks cute and funny, abstract photography, 
stippling, UHD, high ...

This image captures a moment on a city street, frozen in black and white. 
Dominating the left …

Figure E.3: Text-to-image generation failure cases. Each pair shows outputs from PixArt-Σ (left)
and the grafted model (right) for the same prompt. In the top row, the prompt specifies four donuts
with unique toppings and a full-body anime-style character playing classical guitar. The grafted
outputs deviate from these prompts—showing incorrect object counts (e.g., five donuts) and degraded
structure (e.g., distorted hands), reflecting text-image misalignment and visual artifacts introduced
during grafting. In the bottom row, the supervision itself is poor: prompts such as a ‘dog chasing its
tail in UHD stippling style’ and ‘a black-and-white street photo’ are not faithfully captured by either
model. These examples highlight challenges arising both from LORA finetuning and low-quality
synthetic data.
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Figure E.4: Examples of low-quality samples generated by PixArt-Σ used for grafting. These
images contain unrealistic features, inconsistent physics, and visual artifacts. Their presence in the
grafting dataset can degrade generation quality of grafted models, highlighting the importance of
data curation when using synthetic data.

Stage 1: Activation Distillation

Initial Learning Rate 1× 10−4

Weight Decay 1× 10−5

Epochs 100

Clip Norm Value 0.1 (Layers 20-27), 0.01 (Other layers)

Batch Size 16

Optimizer AdamW

Scheduler Half lr at epochs = 50

Stage 2: Lightweight Finetuning

Initial Learning Rate 1× 10−5

Weight Decay 0

Iterations 18k

Batch Size 64 (with gradient accumulation)

Optimizer AdamW

Scheduler linear warmup (500 steps), then constant lr

LoRA rank 64

Table E.1: Experiment details for PixArt-Σ grafting experiments.
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F Grafting Autoregressive Large Language Models

To further validate the generality of grafting, we apply our two-stage procedure to a large language
model (Qwen3-4B [34]) for autoregressive language modeling—a task, architecture, and modality
distinct from diffusion-based image generation with DiTs.

Setup. We apply our two-stage grafting procedure to an autoregressive transformer, Qwen3-4B, for
next-token prediction. This experiment replaces the Multi-Head Attention (MHA) operators with
Sliding Window Attention (SWA) using a window size of 256. Stage 1 (activation distillation) and
Stage 2 (lightweight fine-tuning) are performed identically to the diffusion experiments, with context
lengths of 1024 and 8192 tokens respectively. We use 50k instruction-following examples from
the Alpaca-cleaned dataset 3 following [5]. We evaluate on standard reasoning and commonsense
benchmarks—PiQA [54], ARC-e [55], ARC-c [55], HellaSwag [56], Winogrande [57], and MMLU
(5-shot) [58]—following the evaluation setup in [5].

Results. As shown in Table F.1, our grafted Qwen3-4B model achieves a 1.4× decode throughput
(8k context length) while maintaining average performance within 1% of the baseline. This result
demonstrates that grafting extends beyond diffusion-based image generation, generalizing to new
generative modeling task, model architecture, and data modality.

Model Stage Ratio PiQA ARC-e ARC-c HellaSwag Winogrande MMLU Avg. Speedup ↑
Baseline — — 74.9 80.5 54.0 68.5 66.0 70.1 69.0 —
Grafting (Ours) Random Init. 50% 64.3 56.5 29.7 37.9 50.9 25.9 44.2 1.4×
Grafting (Ours) Stage 1 50% 74.8 80.4 53.4 68.2 65.5 66.9 68.2 1.4×
Grafting (Ours) Stage 2 50% 75.5 80.3 52.3 69.6 67.0 66.9 68.6 1.4×

Table F.1: Qwen3-4B [34] grafting results. We evaluate grafting on Qwen3-4B by replacing
Multi-Head Attention (MHA) with Sliding Window Attention (SWA, window=256). Stage 1 denotes
activation distillation; Stage 2 denotes lightweight fine-tuning. Performance is reported on standard
commonsense and reasoning benchmarks. Our grafted model achieves a 1.4× decode throughput at
8k context length (single Nvidia H100) with less than a 1% drop in average performance relative to
the baseline.

G Hyena-X and Hyena-Y operators: Additional details

Informed by our band-k analysis of MHA operators, we introduce a collection of efficient operators
designed to exploit the locality in attention matrices. Given an input x ∈ Rℓ×d, a generic Hyena
operator performs the following transformation:

qcs =
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T c
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∑
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xc′
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c′c
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where W,U, P,M ∈ Rd×d are parametrized as dense or low-rank matrices, and T,H,K,G ∈ Rℓ×ℓ

are Toeplitz matrices corresponding to convolutions with the filters hT , hH , hK , hG, respectively. In
the original formulation [59], the filters hT , hH , hK are short and explicitly parametrized, whereas
hG is implicitly parametrized.

We build on this formulation and propose Hyena-X and Hyena-Y, two Hyena operators designed for
grafting. Hyena-X removes the implicit convolution entirely by setting G = I . In contrast, Hyena-Y
introduces two changes: (i) it removes all three featurizer convolutions (T , H , K), and (ii) replaces

3https://huggingface.co/datasets/yahma/alpaca-cleaned
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the implicit long convolution in G with a short, explicit convolution. This modified structure preserves
local inductive bias while significantly reducing computational cost. An illustration is provided in
main paper. These operators allows us to realize speedups across a range of inputs resolutions: both
Hyena-X and Hyena-Y are faster than Mamba-2 operators on all input sequence lengths, including
lower resolution regimes.

H FLOP calculation

Notations are provided in Tab. H.1.

H.1 MHA

• Input projections (Q, K, V): 6LD2

• Softmax attention: 4L2D + 2HL2

• Output projection: 2LD2

H.2 SWA

• Input projections (Q, K, V): 6LD2

• Sliding window attention (Bidirectional): 4L(2w + 1)D + 2HL(2w + 1)

• Output projection: 2LD2

H.3 Hyena-SE

• Input projections: 6LD2

• Featurizer: 3LDK × 2

• Inner filter convolution: LDK × 2

• gates: LD × 2

• Output projection: 2LD2

H.4 Hyena-X

• Input projections: 6LD2

• Featurizer: 3LDK × 2

• gates: LD × 2

• Output projection: 2LD2

H.5 Hyena-Y

• Input projections: 6LD2

• Inner filter convolution: LDK × 2

• gates: LD × 2

• Output projection: 2LD2

H.6 Hyena-X (MLP)

• Dense input projections: 6LD2r

• Featurizer: 3LDK × 2

• Gates: LD × 2

• Dense output projections: 2LD2r
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H.7 Mamba-2

• Projections: 8LD2E

• Short convolution: 6LDE

• Featurization: 2LDE(1 + 2dstate) + 2LDE

• Associative scan: 2LDEdstate

• Output layer: 2LD2E

Symbol Description
L Sequence length

D Hidden dimension

H Number of attention heads

K Kernel size for convolutions

w Window size for sliding window attention

r MLP expansion ratio

E Expansion factor in Mamba-2

dstate State size in Mamba-2

Table H.1: Notation for FLOP calculation.

I Broader Impact, Limitations and Applications

Broader Impact. This work explores whether new architectural ideas can be materialized by editing
pretrained diffusion transformers rather than training from scratch. By showing that architectural
exploration is possible through grafting, our findings make model design more accessible and compute-
efficient, enabling broader participation in generative modeling research. Grafting facilitates practical
improvements—such as efficient operator replacement and structural reorganization—offering a
simple tool for exploring generative model architectures. However, as more efficient methods lower
the barrier to developing powerful models, they also increase risks of misuse, including the generation
of misleading or harmful content. We encourage responsible use, transparency, and content safeguards
when applying these techniques.

Limitations. This work primarily focuses on architectural editing of pretrained Diffusion Transform-
ers (DiTs), specifically targeting self-attention and MLP operators. Other architectural components,
such as normalization layers and activation functions, will be explored in future work. We note that
these are latent diffusion models, and grafting components in their corresponding VAEs remains an
area for future study. The PixArt-Σ setup used synthetic data for grafting, which may propagate
artifacts and biases into the grafted models. While this work focuses on architectural editing, it
remains an open question whether architectures that perform well under grafting also perform well
when trained from scratch. Finally, grafting requires access to a pretrained model.

Applications and future work. Grafting holds promise for diverse applications where model
customization and efficiency are important. This includes adapting models from low-resolution to
high-resolution settings, extending capabilities from short-form video understanding/generation to
long-form [60, 61], or improving user experience in interactive applications like image editing where
even modest gains (e.g., 10% speedup) are highly valued. We hope that our testbed, insights, and
results will encourage the community to actively explore new architecture designs. Code and grafted
models: grafting.stanford.edu.
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J Compute details

We report the total compute used to run all experiments in this work, including self-grafting base-
lines, hybrid architectures, ablations, PixArt-Σ adaptation, and depth-to-width restructuring. All
experiments were conducted using 8×H100 GPUs. Table J.1 provides a detailed breakdown. We also
include time spent on feature extraction and tuning.

Grafting enables efficient architectural exploration without pretraining. All experiments combined
required approximately 6,050 H100 GPU hours, which remains significantly lower than the cost of
training large diffusion transformers from scratch. Each hybrid experiment for DiT-XL/2 completes
within 12–24 hours on 8×H100 GPUs (both Stage 1 and Stage 2).

Experiment H100 hours # Experiments Total H100 hours
Self-grafting Experiments (Tables 1 & 2) 12 hrs × 8 4 384
Hybrid Experiments (Table 4) 12 hrs × 8 26 2,496
Ablations 24 hrs × 8 6 1,152
PixArt-Σ experiments 63 hrs × 8 2 1,008 (Table 5)
Depth-to-width restructuring 120 hrs × 8 1 960 (Table 6)
Other (feature extraction, tuning) 50 hrs — 50

Total 6,050

Table J.1: Estimated compute usage across all experiments. Total GPU hours account for training,
sampling, and evaluation. Each experiment was conducted using 8×H100 unless otherwise specified.

32


