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Abstract001

This Ph.D. proposal introduces a plan to de-002
velop a computational framework to identify003
Self-aspects in text. The Self is a multifaceted004
construct and it is reflected in language. While005
it is described across disciplines like cognitive006
science and phenomenology, it remains under-007
explored in natural language processing (NLP).008
Many of the aspects of the Self align with psy-009
chological and other well-researched phenom-010
ena (e.g., those related to mental health), high-011
lighting the need for systematic NLP-based012
analysis. In line with this, we plan to intro-013
duce an ontology of Self-aspects and a gold-014
standard annotated dataset. Using this founda-015
tion, we will develop and evaluate conventional016
discriminative models, generative large lan-017
guage models, and embedding-based retrieval018
approaches against four main criteria: inter-019
pretability, ground-truth adherence, accuracy,020
and computational efficiency. Top-performing021
models will be applied in case studies in mental022
health and empirical phenomenology.023

1 Introduction024

The Self, superficially experienced as “the (perhaps025

sometimes elusive) feeling of being the particular026

person one is” (Siderits et al., 2013), is a com-027

plex phenomenon, amply discussed in philosophy028

and cognitive science (e.g., Zahavi, 2008). While029

there exist different views about the metaphysical030

nature of the Self (Siderits et al., 2013), in this031

work, we build on its phenomenological and be-032

havioural manifestations. In everyday experience,033

the Self is characterised by multiple phenomeno-034

logical and psychological aspects, including the035

experience of one’s own body (Bermúdez, 2018)036

and a sense of agency (Gallagher, 2000), among037

others (Caporusso, 2022).038

These Self-aspects are conceptually and em-039

pirically related to other well-established con-040

structs—such as personality traits or experiential041

modes. For example, their relevance to contexts042

such as mental health research is supported in re- 043

lated work, which highlights the central role of Self- 044

related processes in well-being and psychopathol- 045

ogy, as well as in empirical phenomenology (i.e., 046

the empirical investigation of experience, Aspers, 047

2009), where they are key to understanding altered 048

states of consciousness (see Section 2). 049

Importantly, the specific ways in which Self- 050

aspects are experienced by a person in a given 051

moment are reflected in the language they use 052

(e.g., see Pennebaker et al. (2003) and Section 053

2). The found correlations between textual fea- 054

tures and Self-aspects can be further employed 055

in downstream NLP tasks, for instance to detect 056

psychological states (Caporusso et al., 2023; Du 057

and Sun, 2022; Kolenik et al., 2024). However, 058

the connections between textual features and many 059

Self-aspects important for the identification of, e.g., 060

mental health conditions and phenomenological 061

states, are underexplored. 062

To address this shortcoming, we propose a com- 063

putational framework capable of automatically de- 064

tecting the presence and mode of Self-aspects in 065

text. Existing tools such as LIWC (Linguistic In- 066

quiry and Word Count; Boyd et al., 2022) and 067

VADER (Valence Aware Dictionary and sEntiment 068

Reasoner; Hutto and Gilbert, 2014) have shown 069

that psychologically meaningful patterns can be 070

computationally extracted from text using lexicons 071

and interpretable features. Building on this tradi- 072

tion, our framework aims to go further: to detect 073

nuanced, theoretically grounded aspects of Self- 074

experience—such as agency, embodiment, or narra- 075

tive coherence—through a combination of ontology 076

design, annotated data, and a range of modelling 077

approaches. The resulting method can be applied 078

to tasks in domains such as mental health research 079

and empirical phenomenology. 080
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2 Related Work081

2.1 Textual Features and Self-Aspects082

Correlations083

This subsection surveys studies mapping text fea-084

tures to aspects of the Self.085

Self Aspects Most research focuses on I-talk, i.e.,086

the use of first-person pronouns as indicators of087

Self-focus (Pennebaker et al., 2003), which corre-088

lates with emotional pain, trauma, and depression089

(Tausczik and Pennebaker, 2010). Furthermore,090

pronoun usage hints at specific understandings of091

the Self vs others distinction (Na and Choi, 2009;092

Sharpless, 1985). The usage of active vs passive093

voice can shed light on the sense of agency of the094

author of a text (Simchon et al., 2023), while the095

Narrative Self (NS; i.e., “the narrative someone has096

of themselves, comprising their autobiographical097

memories and stories of who they are” Caporusso098

et al., 2024) is reflected in the structure and coher-099

ence of one’s autobiographical accounts (Habermas100

and Köber, 2015; Holm et al., 2016; Jaeger et al.,101

2014; Waters and Fivush, 2015). In this context,102

Author profiling (AP) refers to the task of infer-103

ring personal characteristics of an author based on104

their writing, which has applications in, e.g., soci-105

olinguistics and mental health analytics (Eke et al.,106

2019; Ouni et al., 2023b).107

The correlation of text features with other as-108

pects of the Self, such as the Minimal Self (MS;109

“the fact that experiences are presented to us in a110

fundamentally personal and subjective way” Ca-111

porusso et al., 2024), are less explored (Uno and112

Imaizumi, 2025).113

Caporusso et al. (2024) investigated the LIWC114

categories associated with different aspects of the115

Self: MS, NS, Self as Agent (AS; “the experience116

of being an agent, i.e., in control, active”), Bodily117

Self (BS; “the experience of owning, controlling,118

and/or identifying with someone’s own body (or119

parts of it)”), and Social Self (SS; “the self as it is120

shaped and/or perceived when in an interaction or121

relationship of sorts with other people or entities122

to whom we attribute qualities of an inner life”).123

Specifically, utilising a mixed approach to annotate124

the data, the authors classified text instances as pre-125

senting or not each of the mentioned self-aspects,126

and they analysed the obtained splits with LIWC.127

Methods The methodological approaches128

utilised to detect correlations between textual129

features and Self-aspects can be broadly grouped 130

into three main types: 131

• Approaches based on stylistic features such as 132

punctuation, syntactic patterns, part-of-speech 133

(POS) tags, sentence length, character/word n- 134

grams, and structural features (e.g., number of 135

paragraphs or capitalised words)—see Ouni 136

et al. (2021); Vijayan and Govilkar (2019). 137

• Content-based approaches, relying on sub- 138

ject matter and vocabulary; features include 139

term frequency-inverse document frequency 140

(TF-IDF), topic models, and domain-specific 141

keywords—see Ch and Cheema (2018); Ouni 142

et al. (2023b) 143

• Hybrid approaches, where both stylistic and 144

content-based features are analysed—see Fa- 145

tima et al. (2017); Ouni et al. (2021, 2023b) 146

The use of LIWC or other lexicon-based tech- 147

niques is the most common approach to investi- 148

gate correlations between Self-aspects and textual 149

features (Boyd and Schwartz, 2021; Pennebaker 150

et al., 2003). More recently, however, NLP research 151

has increasingly adopted machine learning (ML) 152

methods—such as topic modelling and supervised 153

classification—to analyse language patterns in a 154

data-driven way (Eichstaedt et al., 2018; Ouni et al., 155

2021). Many studies used classical supervised 156

learning methods, like support vector machines 157

(SVMs; Chinea-Rios et al., 2022; HaCohen-Kerner, 158

2022; Vijayan and Govilkar, 2019), random forests 159

(RFs; Fatima et al., 2017; Ouni et al., 2021), deci- 160

sion trees (Vijayan and Govilkar, 2019), and Naïve 161

Bayes (NB; Mechti et al., 2020). Feature extrac- 162

tion in AP is critical: common strategies include 163

Bag-of-Words (BoW) and TF-IDF (Ouni et al., 164

2023b), character and word n-grams (HaCohen- 165

Kerner, 2022), POS and syntactic feature vectors 166

(Mechti et al., 2020; Vijayan and Govilkar, 2019), 167

word embeddings (Chinea-Rios et al., 2022; Fa- 168

tima et al., 2017), semantic graphs and emotion 169

tags (Ouni et al., 2023b). Furthermore, many stud- 170

ies employ qualitative approaches (Habermas and 171

Köber, 2015; Waters and Fivush, 2015). However, 172

deep learning (DL) models are increasingly em- 173

ployed as well, due to their capacity to automati- 174

cally learn hierarchical feature representations from 175

raw text and their superior performance on large- 176

scale NLP tasks (Ouni et al., 2023a). Transformer- 177

based models such as BERT (Devlin et al., 2019) 178
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and RoBERTa (Liu et al., 2019) were adapted to179

AP tasks by fine-tuning on labelled AP datasets180

(Chinea-Rios et al., 2022). In recent work, LLMs181

have been explored for AP (see Huang et al., 2025).182

Huang et al. (2024) show that GPT-4 outperforms183

BERT-based models in zero-shot authorship attri-184

bution and verification, especially when guided by185

linguistic cues.186

The type of text analysed varies widely, rang-187

ing from autobiographical essays (Adler, 2012;188

McAdams, 2001), stream-of-consciousness essays189

or narrative prompts (Pennebaker and Beall, 1986;190

Rude et al., 2004), transcripts of spoken conversa-191

tions or interviews (Adler et al., 2008; Bamberg,192

2008; Lysaker and Lysaker, 2002), diary entries193

and letters (Baumeister et al., 1994; Pennebaker194

and Francis, 1996), social media posts (Guntuku195

et al., 2019; Schwartz et al., 2013), to even pub-196

lished autobiographies or literature (Bruner, 2003;197

Freeman, 2009).198

2.2 Downstream Applications199

The correlations discussed in the previous subsec-200

tion are often employed in downstream applica-201

tions. For instance, Kolenik et al. (2024) utilised202

predefined sets of words and linguistic patterns that203

have been associated with specific psychological204

states, traits, or cognitive processes to train ML205

models that detect stress, anxiety, and depression.206

Similarly, Du and Sun (2022) leveraged linguis-207

tic features known to correlate with psychologi-208

cal states, like absolutist words and personal pro-209

nouns, to detect depression, anxiety, and suicidal210

ideation. In the context of the LT-EDI@RANLP211

2023 shared task, first-person singular pronouns212

and time-related terms, recognised as indicative of213

depressive states (Ratcliffe, 2014), were employed214

to identify signs of depression in social media posts215

(Caporusso et al., 2023). Eichstaedt et al. (2018)216

utilised topic models to identify clusters of words217

that often appear together in Self-narratives, and218

supervised ML to predict an upcoming depression219

diagnosis from social media posts.220

Outside of the context of NLP studies, works221

investigating, e.g., mental health issues or phe-222

nomenological states vastly address Self-aspects to223

identify the phenomenon of interest. For instance,224

an impacted sense of agency is registered in individ-225

uals with anxiety and depression, who experience a226

deficiency in estimating their control over positive227

outcomes (Mehta et al., 2023), while disturbances228

in interoception and Self-awareness were found229

to be correlated with anxiety and schizophrenia, 230

among the others (Yang et al., 2024). Often, differ- 231

ent Self-aspects correlate with disorders in a syn- 232

ergistic way, or there is an atypical disintegration 233

of Self-aspects. For instance, Alzheimer’s Disease 234

(AD) and other conditions involving cognitive de- 235

cline are associated with impaired Self-continuity, 236

sense of personal history and future goals, capa- 237

bilities of Self-reflection, and personal meaning 238

(El Haj et al., 2015), resulting in a distorted narra- 239

tive Self-identity. Along, and sometimes in support 240

of, research in mental well-being, Self-aspects are 241

relevant in the context of empirical phenomenol- 242

ogy, among others. For example, a multitude of 243

Self-aspects is examined in the investigation of ex- 244

periences of dissolution (i.e., "experiential episodes 245

during which the perceived boundaries between 246

self and world (i.e., nonself) become fainter or 247

less clear"; Caporusso, 2022; Nave et al., 2021), 248

and bodily experience is investigated in the con- 249

text of depersonalisation and derealisation disor- 250

ders (Tanaka, 2018). In line with this, scales and 251

symptom checklists have been developed to assess 252

the presence and intensity of psychological or phe- 253

nomenological states (Heering et al., 2016; Michal 254

et al., 2014; Nour et al., 2016; Parnas et al., 2005; 255

Sierra and Berrios, 2000). 256

2.3 Identified Gaps and Research Motivation 257

Disciplines like cognitive science, phenomenology, 258

and psychology identify many different aspects of 259

the Self, but NLP studies a) have dealt with only 260

a few superficial ones and b) have only employed 261

basic techniques. Indeed, while NLP started to em- 262

ploy the correlation between Self-aspects and tex- 263

tual features in various downstream tasks, the Self- 264

aspects employed in, e.g., mental health research 265

and empirical phenomenology are more varied and 266

nuanced. For this reason, we believe that it would 267

be helpful to identify further and more detailed 268

connections between Self-aspects and textual fea- 269

tures, and to develop a model to detect and analyse 270

Self-aspects in text. This could be used by profes- 271

sionals of other disciplines, for instance to analyse 272

patients’ reports and transcripts of phenomenolog- 273

ical interviews (e.g., see micro-phenomenology, 274

Petitmengin et al., 2019). 275

To this end, our proposed framework aligns in 276

spirit with existing tools like LIWC and VADER. 277

However, unlike these general-purpose approaches, 278

our framework is specifically designed to capture a 279

range of Self-aspects grounded in interdisciplinary 280
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theory. Moreover, while LIWC captures psycholog-281

ical correlates at a coarse granularity (e.g., affect,282

pronouns), we aim to represent structured compo-283

nents of Self-experience.284

3 Research Proposal285

This Ph.D. proposal seeks to explore the ways of286

developing a computational model to automatically287

detect Self-aspects in language. We plan to test288

the proposed approaches on different case studies289

from the fields of mental health and empirical phe-290

nomenology. Our Research Objectives (ROs) are291

as following:292

• RO1) Detail an ontology of the Self aspects293

that would be relevant and sensible for a com-294

putational model to detect in text.295

• RO2) Construct heterogeneous datasets with296

annotations relative to the identified Self-297

aspects.298

• RO3) Define the desiderata of the computa-299

tional model to detect Self-aspects in text and300

identify the approaches which would best ful-301

fill them.302

• RO4) Determine the evaluation approach and303

the applications for our computational model304

to detect Self-aspects in text.305

We plan to produce the following outcomes: self306

ontology detailing and labelling instructions; het-307

erogeneous annotated dataset; set of models to iden-308

tify Self-aspects in text.309

4 Self Ontology (RO1)310

We aim to develop a comprehensive ontology of311

Self-aspects which are a) relevant to possible ap-312

plications and b) detectable in text data. Each Self-313

aspect (e.g., bodily Self) is characterised by differ-314

ent elements (e.g., body ownership, body aware-315

ness), each of which is specified in different modes316

(e.g., body ownership: weak). Some of the Self-317

aspects investigated are identified through previous318

studies which developed similar lists or ontologies319

(e.g., Caporusso, 2022; Nave et al., 2021). The on-320

tology, still a work-in-progress, is built collabora-321

tively by adopting both bottom-up and a top-down322

approaches. That is to say, we utilise literature323

detailing the elements and modes of various Self-324

aspects (e.g., Moore, 2016; Serino et al., 2013)325

along with studies from disciplines like psychol- 326

ogy and neuroscience detailing the Self-aspects 327

relevant to the construct of interest (e.g., Petkova 328

et al., 2011). Furthermore, we will be meeting with 329

experts from fields which could benefit from our 330

final model (e.g., mental health professionals and 331

empirical phenomenologists) to better identify the 332

specific Self-aspects, elements, and modes which 333

could be relevant for their work. While analysing 334

literature and consulting with experts, we will be 335

exploring textual data itself. For each Self-aspect, 336

element, and mode, we will provide a definition, 337

both a positive and a negative example from textual 338

data, and notes to guide the identification and/or 339

distinction. Constructing the Self ontology presents 340

various challenges, most of all regarding how the 341

different components relate with each other. For 342

example, most of the aspects and elements, if not 343

all, appear to not be mutually exclusive, and there 344

are aspects (e.g., sense of agency) that could apply 345

to other aspects (e.g., sense of agency over bodily 346

Self). 347

5 Datasets (RO2) 348

The datasets (aiming for at least 10; see Section 349

8), which will be annotated with the labels devel- 350

oped (see Section 4), need to vary in type as it is 351

desired for the model to be able to analyse Self- 352

aspects across different kinds of data. We plan 353

to utilise transcripts from phenomenological inter- 354

views, clinical tasks, and structured or unstructured 355

interviews. These will include employ already ex- 356

isting datasets and construct new ones. Importantly, 357

all data collection—whether previously conducted 358

or ongoing—is carried out within the scope of pre- 359

approved research projects. Part of the phenomeno- 360

logical interviews data has already been collected 361

(six subjects), and clinical interviews are being con- 362

ducted in the context of an existing larger project. 363

We aim to utilise datasets from different languages, 364

in order to create a multilingual model. The an- 365

notated datasets will serve as training and testing 366

data, as well as ground truth. The length of the 367

text chunk considered as a labelling instance is 368

determined case by case, based on what is suffi- 369

cient to meaningfully express the presence of a 370

specific Self-aspect or mode. In general, this can 371

range from a single sentence to a short paragraph, 372

depending on the complexity of the expression. 373
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5.1 Annotation374

Multiple annotators (e.g., three, possibly the same375

researchers compiling the Self ontology and the376

annotation guidelines) will independently annotate377

the datasets or part of them. Inter-annotator agree-378

ment will be calculated to assess consistency and379

reliability of the annotations. The first author, who380

will take part in and lead the annotation, has experi-381

ence in conducting qualitative analysis and annota-382

tion of textual data, including mostly phenomeno-383

logical interviews, but also, e.g., social media posts,384

with a focus on the Self. In the first phase of the385

annotation process, the annotators will meet and386

discuss their decisions, so to come to a similar un-387

derstanding of the guidelines. This can bring to388

further adjustments of the guidelines themselves.389

In the case that it proves too expensive to manu-390

ally label the entire dataset, we will adopt large391

language models (LLMs) for automatic annotation392

of the remaining instances—following an approach393

similar to Caporusso et al. (2024). Specifically,394

LLMs fine-tuned for instruction following (Brown395

et al., 2020) will be evaluated against a manually396

annotated subset to ensure quality. Importantly,397

LLM-based annotations will be used to augment398

training data for conventional discriminative mod-399

els, embedding-based retrieval approaches, and, in400

principle, for fine-tuning LLMs—provided such401

synthetic data is excluded from evaluation (see Sec-402

tion 7). LLMs themselves will be evaluated sepa-403

rately, using only the manually labelled portion of404

the data to avoid circularity. This ensures a clean405

separation between training supervision and model406

evaluation.407

6 Desiderata (RO3a)408

Here, we discuss our desiderata for the models.409

Interpretability, which in the context of ML410

refers to the extent to which a human can under-411

stand the internal mechanism of a model leading412

from input to output (Lipton, 2018; Molnar, 2020)413

is to be differentiated from explainability, which of-414

ten involves post-hoc approximations of a model’s415

behaviour (Molnar, 2020). This distinction is par-416

ticularly crucial for our task for three main reasons.417

First, the target applications of our framework in-418

clude implementations in sensitive domains like419

healthcare. Indeed, in such cases, the use of inter-420

pretable ML models is preferable to post-hoc ex-421

planations for black-box models, as the latter may422

be incomplete or misleading and do not ensure423

transparency, trust, and ethical decision-making 424

(Ahmad et al., 2018; Amann et al., 2020; Bohlen 425

et al., 2024; Chaddad et al., 2023; Doshi-Velez 426

and Kim, 2017; Ennab and Mcheick, 2024; Lipton, 427

2018; Lu et al., 2023; Rudin, 2019; Tjoa and Guan, 428

2020). Some examples of this are studies by Gao 429

et al. (2023); Wang et al. (2023). Second, generic 430

explainability approaches are often insufficient in 431

NLP due to the inherent ambiguity, subjectivity, 432

and domain sensitivity of language data, necessi- 433

tating explanations that align with the linguistic 434

and reasoning norms of specific application areas 435

(Mohammadi et al., 2025). Some examples are 436

studies by Saha et al. (2022, 2023); Wang et al. 437

(2023). Third, interpretability is desirable because 438

it enables traceability—the ability to identify the 439

specific passage or linguistic marker that led to 440

a given classification. This is particularly impor- 441

tant in applications such as studies based on the 442

analysis of empirical phenomenological interviews, 443

where it is necessary to provide illustrative exam- 444

ples for each identified experiential category (e.g., 445

a specific mode of a Self-aspect). 446

Ground-Truth Basis requires that model out- 447

puts be directly derived from verified, annotated 448

data, rather than inferred through non-transparent 449

or heuristic reasoning (Goodfellow et al., 2016). 450

Once again, this principle is especially critical in 451

sensitive domains where decisions must be account- 452

able and ethically sound (Mittelstadt, 2019; Varsh- 453

ney and Alemzadeh, 2017), and in NLP, where 454

the inherent ambiguity and subjectivity of lan- 455

guage complicate evaluation (Hovy and Prabhu- 456

moye, 2021). In many NLP tasks (e.g., Evkoski 457

and Pollak, 2023) a degree of approximation is 458

often tolerated in favour of pragmatic utility, and 459

models are evaluated based on what is useful or 460

convincing to downstream consumers. By contrast, 461

in our work, it is strongly desirable that model 462

predictions remain traceable to the actual input pro- 463

vided by us. This grounding is not only central to 464

scientific rigour, but also to ensuring justifiability 465

and trust in use cases such as clinical assessments 466

and the analysis of phenomenological interviews, 467

where outputs may influence human understanding 468

of complex experiences. 469

Importantly, ground-truth basis is complemen- 470

tary to interpretability. While interpretability fo- 471

cuses on making the model’s decision process un- 472

derstandable, ground-truth basis ensures that its 473

outputs are substantively anchored in verified data 474

rather than emergent patterns from opaque pretrain- 475
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ing. Together, these two properties are essential476

for making computational predictions trustworthy477

and usable by stakeholders such as clinicians and478

phenomenologists.479

As expected, achieving high classification accu-480

racy remains a central objective, and considering481

all the other desiderata, a model with a lower com-482

putational cost is to be preferred. Additionally,483

given the sensitivity of the data, we prioritise tools484

that guarantee full control over processing and pre-485

vent third-party access.486

7 Proposed Approaches (RO3b)487

In this subsection, we refer to literature in order488

to compare the various proposed approaches with489

regard to each of our desiderata. The proposed ap-490

proaches are: conventional discriminative models,491

including traditional AI and neural networks (NNs);492

generative LLMs, fine-tuned or with few-shot learn-493

ing; and embedding-based retrieval approaches.494

As the NLP landscape—particularly in re-495

lation to LLMs, interpretability, and domain-496

specific adaptation—continues to evolve rapidly,497

the methodological choices outlined below are in-498

tended as a flexible, revisable framework rather499

than a rigid pipeline. We anticipate that develop-500

ments over the course of the Ph.D. will inform and501

potentially shift our implementation strategies, es-502

pecially in response to emerging technologies and503

best practices in ethical, explainable NLP. In line504

with this flexible and modular approach, we also505

propose the investigation of a mixture-of-experts506

(MoE) architecture.507

To train our models, we plan to employ both508

learned textual features—such as embeddings or509

TF-IDF representations—and predefined features510

derived from both previous studies (e.g., Pen-511

nebaker et al., 2003) and further investigations512

based on Caporusso et al. (2024)’s framework. This513

hybrid feature strategy supports both data-driven514

learning and interpretability through grounded lin-515

guistic markers.516

Preliminary experiments are described in the Ap-517

pendix A.518

7.1 Conventional Discriminative Models519

Conventional discriminative models include both520

traditional ML methods (Bishop and Nasrabadi,521

2006) and NNs (LeCun et al., 2015). Examples in-522

clude SVMs (Cristianini and Shawe-Taylor, 2000),523

Logistic Regression (LR), decision trees, and feed-524

forward or recurrent NNs (RNNs) (Goodfellow 525

et al., 2016) trained for classification purposes. 526

They are often employed in the context of super- 527

vised learning, where the model learns from la- 528

belled data (Murphy, 2012). 529

Conventional discriminative models represent 530

a good approach to our goal, assuming the avail- 531

ability of high-quality annotated datasets. Once 532

trained, such models can directly classify a given 533

text instance into predefined categories—such as 534

BS, NS, or AS—and further specify the mode 535

for each element (e.g., bodily ownership: present; 536

agency over the body: partial). Interpretability 537

in this approach depends largely on the choice of 538

model: while rule-based models like decision trees 539

or LR are inherently transparent, NNs are less in- 540

terpretable and often require post-hoc explanation 541

methods. Regarding ground-truth alignment, con- 542

ventional discriminative models are optimal, since 543

their outputs are entirely dependent on the patterns 544

found in the labelled examples. When sufficient 545

and representative training data is available, these 546

models can be very accurate. Furthermore, they 547

can be highly efficient computationally. 548

7.2 Generative LLMs 549

Generative LLMs (e.g., GPT; Radford et al., 2018) 550

are designed to produce new outputs—in the case 551

of language models, in the form of text—by learn- 552

ing the underlying distribution of the training data 553

(Bengio et al., 2003; Radford et al., 2018). 554

Although flexible, they come with a few chal- 555

lenges. For example, even in the case that their 556

output looks plausible, it might be incorrect. This 557

is referred to as hallucination, and it is due to the 558

fact that these models generate responses solely 559

based on learned statistical patterns (Zhang et al., 560

2022). Additionally, they reflect biases present in 561

their training data and lack transparent mechanisms 562

for interpreting or verifying their outputs (Boluk- 563

basi et al., 2016). 564

Ideally, generative LLMs will be applied to our 565

task either through prompt-based few-shot learning 566

or via fine-tuning on labelled datasets (Wei et al., 567

2022; Wolf et al., 2020), which generally improves 568

accuracy and control over outputs (Howard and 569

Ruder, 2018). 570

While LLMs offer great flexibility and gener- 571

alisation capabilities, they are not interpretable. 572

Although post-hoc explanation methods like LIME 573

(Local Interpretable Model-agnostic Explanations; 574

Alvarez-Melis and Jaakkola, 2018; Ribeiro et al., 575
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2016) or SHAP (SHapley Additive exPlanations;576

Jin et al., 2020; Lundberg and Lee, 2017) can pro-577

vide some superficial insight, they do not guarantee578

true transparency or fidelity to the model’s internal579

reasoning. Furthermore, LLMs are not grounded580

in ground-truth data. Even when fine-tuned, it581

remains unclear whether these models’ predictions582

are derived from the data used for fine-tuning or the583

huge corpora used for pre-training. Furthermore,584

their outputs can change even from subtle shifts585

in prompt wording. This affects the consistency586

and reliability of the model. Accuracy is often587

high in LLMs, but it depends on prompt design588

and the complexity of the task. Inconsistent results589

could result from similar inputs, particularly when590

the classification schema is fine-grained, such as591

distinguishing between modes of Self-experience.592

Finally, generative LLMs are computationally ex-593

pensive.594

7.3 Embedding-Based Retrieval595

Embedding-based retrieval is a type of retrieval-596

based approach which involves mapping the in-597

put into a shared vector space using models such598

as BERT (Devlin et al., 2019) or Sentence-BERT599

(Reimers and Gurevych, 2019). The vector rep-600

resentations of the inputs are compared to the al-601

ready existing vector space, i.e., the knowledge602

base (Karpukhin et al., 2020). The initial vector603

space can be fine-tuned to task specific data, en-604

hancing the model performance, and the semantic605

similarity between the reference and the input texts606

can be measured via cosine similarity or other dis-607

tance metrics (Cer et al., 2018; Xiong et al., 2020).608

For our purpose, embedding-based retrieval is609

especially useful in the case that a well-curated610

repository of annotated examples is available. The611

model can retrieve similar past instances that have612

already been labelled, allowing it to infer the clas-613

sification of the new instance by analogy. While614

the embedding process itself is not inherently in-615

terpretable, the example-based reasoning enabled616

by retrieval models provides a form of implicit617

transparency: it is possible to inspect the retrieved618

examples and their labels to understand the basis619

of the model’s recommendation. This makes the620

approach more explainable than generative LLMs,621

although not as transparent as rule-based classifiers.622

In terms of ground-truth alignment, embedding-623

based retrieval performs strongly. The model’s624

decisions are anchored in annotated, verified data,625

and it does not generate new content but rather iden-626

tifies the closest match among existing cases. In 627

RAG-style architectures (retrieval-augmented gen- 628

eration; Lewis et al., 2020), this grounding helps 629

reduce—but does not eliminate—the risk of hal- 630

lucination during generation. Accuracy depends 631

heavily on the quality and diversity of the dataset: 632

if the database covers a broad range of expressions 633

for different Self-aspects and modes, the model can 634

achieve high classification performance. Compu- 635

tationally, this approach is efficient. Embeddings 636

can be pre-computed, and retrieval operations (e.g., 637

cosine similarity search) are lightweight. 638

7.4 Mixture of Experts 639

We also plan to explore a MoE architecture based 640

on the work by Swamy et al. (2025), who pro- 641

posed an interpretable MoE model designed for 642

human-centric applications. In such architectures, 643

different sub-networks—i.e., experts—are selec- 644

tively activated depending on the input, enabling 645

instance-specific reasoning and the possibility of 646

interpretability where needed. This design of- 647

fers a compelling balance between flexibility and 648

transparency: it allows the integration of both inter- 649

pretable models and black-box models within a uni- 650

fied framework. For our purposes, this means we 651

can assign interpretable models to Self-aspect cat- 652

egories where explanation is critical (e.g., clinical 653

applications), while using more complex models 654

for noisier or less constrained categories. 655

The modular nature of MoE architectures also 656

aligns well with our Self-aspect ontology. Since 657

each expert can be specialised to a distinct subset 658

of Self-aspects or linguistic patterns, this structure 659

supports both conceptual clarity and efficient scal- 660

ability (computational cost). Moreover, because 661

only a few experts are activated per instance, the 662

resulting predictions can offer local insight into the 663

decision process, particularly when interpretable 664

experts are selected. Importantly, expert modules 665

trained on annotated data can maintain clear ties 666

to their training supervision, preserving ground- 667

truth basis at the module level. We believe this 668

architecture is a promising direction to address 669

the trade-off between accuracy and interpretability 670

across the wide range of Self-related phenomena 671

we aim to model. 672
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8 Evaluation (RO4)673

8.1 Intrinsic Evaluation674

To evaluate and compare the effectiveness of dif-675

ferent classification methods for identifying Self-676

aspects and their elements and modes in text, the677

approach proposed by Demšar (2006) to compare678

the performance of multiple classifiers across mul-679

tiple datasets will be adopted. To use this method,680

a minimum of five different datasets is necessary,681

although it is recommended to employ at least 10.682

In the context of this Ph.D., a diverse range of683

models will be used to perform the classification684

(see Section 7). Despite their varied architectures685

and learning paradigms, they all can be evaluated686

in a comparable way. That is to say, by produc-687

ing predictions over shared, annotated datasets and688

assessing them using standard performance met-689

rics such as accuracy, F1-score, or macro-averaged690

precision and recall. By using Demšar (2006)’s691

framework, the evaluation will not only focus on692

raw performance, but also support robust conclu-693

sions about the relative strengths of each approach694

in the context of supervised Self-aspect classifica-695

tion. This is essential for making informed method-696

ological choices, particularly when weighing the697

benefits of interpretable and ground-truth-aligned698

models against those of more flexible, data-driven699

generative LLMs. For the purposes of evaluation,700

we adopt an instance-based setup, treating each701

labelled unit (e.g., sentence or utterance) as a clas-702

sification instance. Future work may explore span-703

based evaluation to capture finer-grained textual704

markers of Self-aspect expression.705

8.2 Extrinsic Evaluation706

We also plan to evaluate our framework by how707

useful it proves to be in downstream tasks. As it708

is likely that different trade-offs of desiderable fea-709

tures are best for different applications, we do not710

aim to propose one singular model, but a collection711

of models. They will ideally be implemented in a712

user-friendly software that will allow the selection713

of the desired model, along with information and714

suggestions regarding each of them. Additionally,715

similarly to LIWC (Boyd et al., 2022), the user will716

be able to select which Self-aspects to analyse, and717

to which degree of granularity. It will be possi-718

ble to determine at which level should the analysis719

be conducted, e.g., at the sentence, paragraph, or720

document level.721

We plan to conduct at least two case studies in722

which we will apply one or more of our developed 723

models to different tasks. 724

In the context of an ongoing project on NLP 725

approaches to cognitive decline, we plan to anal- 726

yse comparable texts produced by clinical vs non- 727

clinical population by using one or more of our 728

proposed models. In particular, this will serve to 729

test hypothesis on the differences in Self-aspects, 730

but also, potentially, to identify features that could 731

be used to detect cognitive decline. 732

In the context of the larger attempt to develop 733

a computational framework to support the analy- 734

sis of phenomenological interviews, one or more 735

of our developed models will be adopted to sup- 736

port the analysis of the phenomenology of the Self, 737

fundamental to most, if not all, experiences. This 738

could help highlight how the Self is experienced 739

differently across an episode (e.g., a dissolution 740

experience; Caporusso, 2022), or how it is experi- 741

enced by different populations, e.g., affected or not 742

by derealisation. 743

9 Conclusion 744

We presented a proposal to design a computational 745

model capable of detecting Self-aspects in text, 746

grounded in a structured ontology and supported 747

by diverse, annotated datasets curated by us. Our 748

approach bridges conceptual insights from fields 749

such as psychology and phenomenology with em- 750

pirical techniques in NLP, enabling interpretable 751

and application-oriented analysis of Self in lan- 752

guage. Rather than relying on a single architec- 753

ture, we propose and evaluate a range of com- 754

putational models—rule-based, embedding-based, 755

and generative LLMs—each assessed in light of 756

desiderata such as interpretability, ground-truth ba- 757

sis, accuracy, and computational cost. By align- 758

ing technical development with ethical considera- 759

tions and application-specific constraints, we aim 760

to contribute not only a functional model, but also a 761

thoughtful framework for the computational study 762

of the Self. 763

10 Limitations 764

Our work presents various limitations. The Self- 765

aspects specified in our ontology may be insuffi- 766

cient or suboptimal for the range of tasks we intend 767

to address. Additionally, although our datasets are 768

heterogeneous, this may still be insufficient for 769

generalisability—particularly across cultural con- 770

texts where expressions of Self may vary signif- 771
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icantly. The heterogeneity of the datasets, along772

with the flexible granularity of labelling units, may773

also introduce inconsistencies. Furthermore, many774

of the computational approaches we propose re-775

quire substantial resources, including large vol-776

umes of annotated data. Moreover, there is a risk of777

overfitting to the specific theoretical assumptions778

embedded in our ontology, particularly if it privi-779

leges certain conceptions of the Self over others,780

potentially narrowing the interpretive scope of our781

models. Reconciling the need for interpretability782

and ground-truth adherence with high classifica-783

tion performance remains a central challenge in784

our methodological design.785

11 Ethical Considerations786

As this study relies on the use of existing datasets or787

datasets collected within the scope of other projects,788

the ethical considerations pertaining to each dataset789

are governed by the terms under which the data790

have been or will be collected. For datasets ob-791

tained through restricted access, we will comply792

with all necessary data use agreements and institu-793

tional requirements. We are committed to ensuring794

the anonymisation of all textual data prior to model795

training. Since our datasets and LLMs may reflect796

cultural or demographic biases, we acknowledge797

the risk of reproducing or amplifying such biases in798

our outputs. We emphasise that the computational799

models developed in this research are intended to800

function as support tools rather than as standalone801

decision-makers.802
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A Preliminary Experiments 1280

To explore the feasibility of Self-aspect classifica- 1281

tion in natural language, we conducted a prelim- 1282

inary study focused on the Social Self (SS; “the 1283

self as it is shaped and/or perceived when in an 1284

interaction or relationship of sorts with other peo- 1285

ple or entities to whom we attribute qualities of an 1286

inner life” Caporusso et al., 2024), a subcompo- 1287

nent of our proposed ontology. We selected this 1288

category due to its relatively balanced presence in 1289

the dataset and its high inter-annotator agreement 1290

during annotation. 1291

A.1 Dataset and Annotation 1292

We used a publicly available dataset of 1,473 diary 1293

sub-entries (Li and Parikh, 2019), which we aug- 1294

mented with binary annotations for SS. Annotation 1295

combined manual labelling and automated classi- 1296

fication using three versions of Gemma2 (Team 1297

et al., 2024)—personalised with psychological and 1298
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phenomenological expertise. Inter-annotator agree-1299

ment was assessed via Cohen’s Kappa: 0.80 be-1300

tween human annotators, and 0.84–0.89 between1301

human and model annotators.1302

A.2 Experimental Setup1303

We trained and evaluated six models using 10-fold1304

cross-validation, combining three different classi-1305

fiers—SVM, Logistic Regression (LR), and Naïve1306

Bayes (NB)—with two types of feature representa-1307

tions. The first type comprised learned features,1308

specifically TF-IDF weighted unigrams and bi-1309

grams. The second relied on predefined features de-1310

rived from the LIWC-22 lexicon, specifically those1311

previously identified as correlated with the Social1312

Self aspect (Caporusso et al., 2024). Text prepro-1313

cessing included converting all text to lowercase,1314

removing punctuation, and applying z-score nor-1315

malisation to the LIWC-derived features to ensure1316

comparability across feature scales. To interpret the1317

trained models, we employed feature importance1318

techniques tailored to each algorithm: linear SVM1319

coefficients for SVM, SHAP values for Logistic1320

Regression, and permutation importance for Naïve1321

Bayes.1322

A.3 Results1323

The best-performing model was the SVM trained1324

on LIWC features, achieving a precision of 0.811325

(STD = 0.03), recall of 0.82 (STD = 0.02), and F1-1326

score of 0.81 (STD = 0.03) across 10 folds. It con-1327

sistently outperformed all other models. Models1328

using learned features (TF-IDF) performed slightly1329

worse overall, with the SVM on learned features1330

achieving an F1-score of 0.73 (STD = 0.04) and1331

particularly lower recall. Statistical analysis con-1332

firmed the significance of these differences via a1333

Friedman test (statistic = 44.26, p < 0.001) and1334

pairwise Wilcoxon signed-rank tests (adjusted p =1335

0.03 for several comparisons). Feature importance1336

analyses identified intuitive and interpretable mark-1337

ers of Social Self, including "we", social referents,1338

affect terms, and pronoun use, aligning with prior1339

findings and theoretical expectations.1340

A.4 Implications and Limitations1341

This pilot study demonstrates that interpretable1342

models trained on psychologically grounded fea-1343

tures can reliably identify expressions of Social1344

Self in everyday texts. It also confirms the util-1345

ity of a hybrid human-LLM annotation pipeline,1346

especially in early dataset development. How- 1347

ever, several limitations emerged. Performance 1348

is currently limited to binary classification of a sin- 1349

gle Self-aspect. The current study also relies on 1350

English-language data, which restricts immediate 1351

generalisability. 1352
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