Published as a conference paper at COLM 2025

Transformers are Efficient Compilers, Provably

Xiyu Zhai Runlong Zhou

University of Washington University of Washington

xiyuzhai@cs.washington.edu vectorzh@cs.washington.edu

Liao Zhang Simon S. Du

University of Innsbruck University of Washington

zhangliao714@gmail.com ssdu@cs.washington.edu
Abstract

Transformer-based large language models (LLMs) have demonstrated sur-
prisingly robust performance across a wide range of language-related tasks,
including programming language analysis and generation. In this paper,
we take the first steps towards a formal investigation of using transform-
ers as compilers from an expressive power perspective. We introduce a
representative programming language, Mini-Husky, which encapsulates
key features of modern C-like languages. We show that if the input code
sequence has bounded depth in both Abstract Syntax Tree (AST) and type
inference, then the number of parameters required by transformers depends
only on the logarithm of the input sequence length to handle compilation tasks,
such as AST construction, symbol resolution, and type analysis. A signifi-
cant technical challenge stems from the fact that transformers operate at
a low level, where each layer processes the input sequence as raw vectors
without explicitly associating them with predefined structure or meaning.
Our primary contribution is the development of a domain-specific language,
Cybertron, which generates formal proofs of the transformer’s expressive
power for compiler tasks. We further establish that recurrent neural net-
works (RNNSs) require a linear number of parameters relative to the input
sequence, leading to an exponential separation between transformers and
RNNs. Finally, we empirically validate our theoretical results by comparing
transformers and RNNs on compiler tasks within Mini-Husky.

1 Introduction

Transformers (Vaswani, 2017) have demonstrated remarkable proficiency across various do-
mains, achieving near-expert performance in solving International Mathematical Olympiad
problems (Google Deepmind, 2024) and excelling in complex reasoning tasks in science,
coding, and mathematics (OpenAl, 2024a). They also handle routine coding tasks with high
precision and have been integrated into code editors to significantly boost programmers’
productivity (cur, 2024; Taelin, 2023a). Despite these advancements, the full extent of their
underlying capabilities remains only partially understood.

In this paper, we aim to deepen our understanding of transformers’ abilities to perform
compilation tasks. Empirically, transformer-based LLMs have shown rapid progress in code
generation and compilation. For example, MetaLL (Cummins et al., 2024) enables LLMs
to optimize code by interpreting compiler intermediate representations (IRs), assembly
language, and optimization techniques. Gu (2023) highlights the ability of LLMs to generate
high-quality test cases for Golang compilers. Surprisingly, Taelin (2023b) demonstrates that
models like Sonnet-3.5 can compile legacy code into modern languages like TypeScript,
outperforming the now obsolete AgdaJS compiler (Agda Development Team, 2024). In
parallel, Armengol-Estapé & O’Boyle (2021) investigates the application of a sequence-to-
sequence Transformer model for translating C source code into corresponding x86 assembly
instructions, demonstrating its performance through training and empirical evaluation. Guo

Published as a conference paper at COLM 2025

& Moses (2022) highlights the superior performance of LLMs in optimizing low-level code
generated from C programs, surpassing traditional compiler-based optimization techniques.

To formally study this problem in a controlled setup, we designed a C-like programming
language called mini-husky, which encapsulates key features of modern C-like languages
such as (Flanagan, 2011) and Rust (Klabnik & Nichols, 2023). We focus on three represen-
tative compilation tasks: abstract syntax tree (AST) construction, symbol resolution, and
type analysis. The AST is a recursive structure that represents the input as a tree. From the
perspective of programming language design, the AST is considered the true representation
of the input, with the textual code serving merely as a convenient interface for human
users (Alfred et al., 2007). All syntactic and semantic processing can then be interpreted
as specific operations on these trees. Symbol resolution involves verifying the validity of
references to entities and flagging errors for undefined symbols. Type analysis encompasses
both type inference, which assigns types to variables without explicit annotations, and type
checking, which identifies mismatches between actual and expected types.

We demonstrate that under the clean code principle (Martin, 2008), transformers can efficiently
perform AST construction, symbol resolution, and type analysis, where efficiency means
that these tasks can be conducted by transformers with a number of parameters that scale
logarithmically with the input code length. To our knowledge, this is the first theoretical
demonstration that transformers can function as compilers in a parameter-efficient manner.

We further compare transformers and recurrent neural networks (RNNs). By connecting
the type analysis task with the associative recall, we show even under the clean code princi-
ple (Martin, 2008), RNNs require a memory size that scales linearly with the input sequence
length to successfully perform type analysis. Consequently, for type analysis in compilation,
transformers can be exponentially more efficient than RNNs. We also empirically validate our
theoretical findings by demonstrating the superiority of transformers.

Technical Challenges and Our Technique.

Proving that transformers can perform compilation tasks presents several challenges:

¢ Transformers operate at too low a level. Transformers process sequences of floating-point
vectors, akin to raw bits in computers, and proving their ability to perform specific tasks
is similar to writing specialized parallel machine code. Previous work (Yao et al., 2021)
often resorts to graphical illustrations for readability, even for basic tasks.

¢ Compilers are exceedingly high-level. Compilers are among the most complex program-
ming endeavors of our time. Compilation involves numerous sophisticated procedures,
some of which are undecidable or computationally expensive, such as code optimiza-
tion (Alfred et al., 2007)) and type analysis (Pierce, 2002). For example, type analysis in
complex type systems poses significant challenges, often requiring the development of
advanced logical frameworks (Dunfield & Krishnaswami, 2019).

To overcome these challenges, we design a domain-specific language (DSL) called Cybertron
to serve as the proof vehicle, i.e., a major part of our proof consists of reasoning about type-
correct code in Cybertron that represents a transformer. Without using Cybertron, writing
an equivalent natural language proof would be too complex and intractable. Using code
to prove propositions is not new to computer science; it is, in fact, the norm in interactive
theorem proving (ITP) (Harrison et al., 2014). To the best of our knowledge, we are the first
to apply this approach to understanding neural networks.

Contributions. We summarize our contributions below:

¢ A testbed for compilation tasks: We introduce Mini-Husky, a simple yet representative
C-like programming language, designed to formally assess transformers’ capabilities
in programming language processing. We anticipate that Mini-Husky will become a
standard testbed for this purpose.

* Expressive power theory of transformers for several compilation tasks: We provide a
formal proof that, when the input code sequence has bounded AST depth and inference
depth, the number of parameters in transformers only needs to scale logarithmically
with the input sequence length to handle compilation tasks such as AST construction,

Published as a conference paper at COLM 2025

symbol resolution, and type analysis. To the best of our knowledge, this is the first study
exploring the power of transformers for these compilation tasks.

¢ Transformers vs. RNNs: Theoretically, we demonstrate a negative result, showing that
the number of parameters in RNNs must scale linearly with the input sequence length to
perform type analysis correctly. This result establishes an exponential separation between
transformers and RNNs. We further empirically confirm the advantage of transformers
for the type analysis task.

* A Domain-Specific Language for Proofs: Given the challenges in formal proofs, we
design a domain-specific language, Cybertron, to serve as a proof vehicle. We believe
that Cybertron, and the general approach of using DSLs for analysis, can have broader
applications in understanding transformers and other architectures.

2 Related Work

Expressive Power of Transformers. A line of work studies the expressive power of attention-
based models. One direction focuses on the universal approximation power (Yun et al.,
2019; Bhattamishra et al., 2020b;c; Dehghani et al., 2018; Pérez et al., 2021). More recent
works present fine-grained characterizations of the expressive power for certain functions
in different settings, sometimes with statistical analyses (Edelman et al., 2022; Elhage et al.,
2021; Likhosherstov et al., 2021; Akytirek et al., 2022; Zhao et al., 2023; Yao et al., 2021; Anil
etal., 2022; Barak et al., 2022; Garg et al., 2022; Von Oswald et al., 2022; Bai et al., 2023; Olsson
et al., 2022; Akytirek et al., 2022; Li et al., 2023; Hao et al., 2022; Pérez et al., 2019; Strobl,
2023; Chiang et al., 2023; Wei et al., 2022; Wang et al., 2022; Feng et al., 2023; Li et al., 2024).
There are also characterizations of transformers to be as powerful as universal computers if
put in a looped context (Giannou et al., 2023). The most related one is Yao et al. (2021) where
the authors prove constructively that bounded depth Dyck language can be recognized by
encoder-only hard attention transformers, which has similarities to our settings of bounded
depth programming language recognized encoder-only hard attention transformers. The
major difference is that we introduce concepts and tasks from programming language
theory Pierce (2002) to study the semantic powers of transformers.

Transformers vs. RNN. It is important to understand the comparative advantages and
disadvantages of transformers against RNNs. Empirically, synthetic experiments have
shown an advantage of transformers against RNNs for long range tasks (Bhattamishra
et al., 2023; Arora et al., 2023). Theoretically, there has been a rich line of work focusing on
comparing transformers and RNNs in terms of recognizing formal languages (Bhattamishra
et al., 2020a; Hahn, 2019; Merrill et al., 2021), which show that the lack of recursive structure
of transformers prevent them from recognizing some formal languages that RNNs can
recognize. However, the gap can be mitigated when we consider the bounded length of
input or bounded grammar depth (Liu et al., 2022; Yao et al., 2021), which is quite reasonable
in practice and is used in this paper. On the other side, prior work (Jelassi et al., 2024; Wen
et al., 2024) proves a representation gap between RNNs and Transformers in repeating a
long sequence. In summary;, it is somehow intuitive that recursive structures with limited
memory perform badly at tasks which requires information retrieval. Our paper shows that
semantic analysis for programming languages is such a task.

DSLs for Transformers. We note that we are not exactly the first one to employ a domain-
specific language to understand the expressive powers of transformers. Previously, DSLs
with simple typings like RASP (Weiss et al., 2021) were proposed to prove constructively
that transformers can do various basic sequence-to-sequence operations. Lindner et al.
(2023) writes a compiler that compiles RASP into actual transformers, Friedman et al. (2023)
shows that RASP can be learned, and Zhou et al. (2023) uses RASP to prove that simple
transformers can perform certain algorithms. The major difference between RASP and our
DSL Cybertron is that Cybertron has a powerful algebraic type system that helps prove
complicated operations beyond simple algorithms.

Published as a conference paper at COLM 2025

3 Preliminaries

The major innovation in the transformer architecture is that it uses self-attention solely
without a conjunction with a recurrent network (Vaswani, 2017), which processes input
tokens in a distributed manner. This capability enables the model to handle long-range
dependencies, a crucial feature for language tasks. We use hard attention and simplified
position encoding to simplify our theoretical reasoning.

Attention. In practice, attention heads use soft attention. Given model dimension dyo4el,
number of heads H, and a finite set of token positions Pos, an attention layer with simplified

position encoding is defined as a function fagtn : RPS *4model — RPOS Xdmodel given by

Vp € Pos, fatm(X)p := Wp Concat <At’m(1)(X)p,) ..,Attn(H)(X)p) , (1)
where the hth attention head is defined wusing soft attention as:
Attn(h)(X)p = YycPos a](jz/VlE/h). The attention weights ag:;, given by: ocg’l;, =

exp(Qp)+/\(11>T‘Y/ -

T

ZF’"EPOS exp (QP K)+/\(}I)TIF ”

, where Wy € R¥model *model are trainable parameters,
)

Qp ,K(h ,Eh) € Rfmodel/H are linear transformations of Xy, Al e R2 depends on the

head, and ¥, = (7) € R? accounts for relative position.
1 1q>0

For theoretical convenience, we use average hard attention, commonly used in theoretical

analysis of transformer (Yao et al., 2021; Hao et al., 2022; Pérez et al., 2019). Average hard

attention can be viewed as the limit of soft attention when the attention logits become

infinitely large. The hard attention head is defined as:

1

P

) v where Sp = arg max <Q,, K(h +A0 Ty,) 2)
p'ESy b p'€Pos

In other words, hard attention selects the positions p’ that maximize the attention score for
each position p, and averages the corresponding value vectors Vrg,h),

Although our analysis employs hard attention, it can be viewed as a theoretically grounded
approximation of soft attention in settings where a single attention logit significantly out-
weighs the others. In such cases, the softmax function assigns exponentially diminishing
weights to non-maximal logits as the gap increases. In the limit, soft attention approaches a
one-hot distribution, effectively becoming hard attention. This approximation is commonly
adopted in theoretical studies (Yao et al., 2021) and aligns with empirical observations,
particularly when attention distributions are sharply concentrated due to scaling effects or
learned sparsity.

Feed-Forward Layer. Given model dimension dy,,4e1, and a finite set of token positions
Pos, a feed-forward layer is a fully connected layer applied independently to each position,

defined as a function fgg, : IRP°® *¥model — RPOS Xdmodel given by
Vp €Pos, fin(X), = Waoreru (W1Xp +b1) + by, 3)

where Wy € R%in*dmodel and W, € R%model *diin are trainable weight matrices, b; € R%n and

by € R¥model are trainable bias vectors, dj, is the hidden dimension of the feed-forward layer,
chosen to be 2d,,04e1, s commonly used in practice, ogery is the ReLU activation function.

Encoder-Only Transformer. Encoder-only transformers consist solely of the encoder stack,
making them ideal for tasks like classification, regression, and sequence labeling that do not
require sequence generation. Each encoder layer includes a multi-head self-attention mech-
anism and a feed-forward network, allowing the model to capture complex dependencies
and contextual information.

Published as a conference paper at COLM 2025

Compiler
A
~ ~
[Raw TextHToken StreamHASTHSemantic Analysis]—» e
- A= _
' VT
Tokenizer Transformer

Figure 1: Programming language processing pipeline.
One can define it using the following recurrence,

e The input is given by: X(0) = X.
e Foreachlayer/=1,2,...,L:

— Compute attention output: X() = x(=1) 4 fa(ft)n (X(lfl)) ,
- Compute feed-forward output: X() = X() 4 ff<flr$ (X(’)) .

In the above, fa(gt)n are the attention layers, and ff(flrz are the feed-forward layers, with the
same model dimension dy,,oqe;, nNumber of heads H, and set of token positions Pos. For
simplicity, layer normalization is ignored. See Appendix C for full details of transformers
and other architectures.

4 Programming Language Processing and The Target C-Like Language:
Mini-Husky

Recently, transformers have expanded to support code analysis and generation (Nijkamp
et al., 2023; Chen et al., 2021; Anysphere, 2023). Programming languages offer a cleaner
foundation for studying language understanding, as their syntactic and semantic tasks are
precisely defined. To formally study the language processing capabilities of transformers, we
design Mini-Husky, a representative mix of modern C-like languages with strong typing
and typical syntactic features. It supports user-defined types (e.g., structs, enums) and
enforces strict type equality, disallowing implicit conversions. Lexical scoping, including
shadowing, ensures proper variable accessibility based on block structures, type inference,
and type checking. These features make compiling Mini-Husky a representative task to
evaluate transformers’ capabilities in syntactic and semantic tasks like symbol resolution
and type checking. See Appendix E for the full details of Mini-Husky.

The standard pipeline of processing programming languages is shown in Figure 1 (Alfred
et al., 2007). The input text is initially decomposed into a sequence of lexical elements
such as literals, identifiers, punctuation symbols, and language keywords; this sequence is
referred to as the token stream. Subsequently, the token stream is parsed into a hierarchical,
tree-structured representation that reflects the grammatical structure of the input. Finally,
syntactic and semantic analyses are conducted on the resulting tree to verify correctness
and extract meaningful information. Afterward, an intermediate language program is
generated based on the syntactic and semantic analysis, which is further optimized and
finally transformed into targeted machine code. To simplify the presentation, we assume
the tokenizer has been provided a priori. Below we describe the programming language
processing tasks investigated in the paper.

Abstract Syntax Tree Construction. Abstract Syntax Tree (AST) is a hierarchical, tree-like
representation of the syntactic structure of source code in a programming language. Unlike
the raw text of the code, the AST abstracts away surface syntax details, capturing the
essential elements and their relationships in a structured form. Each node in the AST
corresponds to a construct occurring in the source code, such as expressions, statements,
or declarations. This representation is central to various stages of language processing,
enabling efficient syntax checking, semantic analysis, and code generation. The formal
definition of ASTs is standard in the programming language literature but is lengthy, so we

Published as a conference paper at COLM 2025

defer it to Appendix A. The AST construction task’s final output is the collection of all AST
nodes. We will show transformers can construct AST efficiently.

Symbol Resolution. In programming languages, symbols are functions, types, generics,
variables, macros, etc. They are defined somewhere and can be used by referring to the
corresponding identifier or path in a certain scope. The scope can be within a certain tree of
modules, or within a certain curly braced scope within one module. For simplicity, we only
consider curly braced scope. In Mini-Husky, the following showcases symbol resolution.

1 pub fn £ {

2 fn f10 {3

3

4 let a = 1;

5 let x = a;

6 let a = 2;

7 {

8 let a = 3;
9 { let a =4; }
10 let y = a;
11 3}

12 let z = a;

13 .

15 fngO { fO 3

The outer function f is accessible everywhere in the body of function g. However, the
inner function f; can only be used inside the body of f as it is defined within the body. For
variables with the same identifier a, a from line 4 is accessible from line 5, the second is
accessible from line 12, the third is accessible from line 10, and the fourth is not accessible
from anywhere. Thusx =1,y =3,z = 2.

The output of the symbol resolution task is the collection of symbol resolution results
on all applicable tokens. More concretely, the output is a sequence of values of type

Option<SymbolResolution> where Option<SymbolResolution> is the type SymbolResolution

with a null value added for non-applicability and SymbolResolution is the type storing
the result of the symbol resolution, being either a success with a resolved symbol of type
Symbol or a failure with an error of type SymbolResolutionError . We shall prove that
transformers can do symbol resolution and that attention is crucial.

Type Analysis. In general, types are essential for conveying the intended usage of the
written functions and specifying constraints. As a first exploration of this topic, we try to
make the type analysis in Mini-Husky as simple as possible yet able to bring out the essential
difficulty. The type system consists of four sequential components: (1) Type definition, (2)
Type specification, (3) Type inference, and (4) Type checking. Due to the page limit, here we
only introduce (4) Type checking because it is the final step and this is a crucial step which
separates transformers and RNNs. See Appendix E.1 for details of (1) Type definition, (2) Type
specification, and (3) Type inference.

Type checking ensures that the typed expressions agree with its expectations. For simplicity,
we do not allow implicit type conversion, so the agreement means exact equality of types.
The arguments of function calls are expected to have types according to the definition of
the function. The operand type of field access must be a struct type with a field of the
same name. The type of the last expression of the function body or the expr in the return

statement must be equal to the return type of the function. For variables defined in the let
statement, If the types are annotated, the types of the left-hand side and right-hand side
should be in agreement.

1 // Type Error: the return type is 1327, yet the last expression is of type ~f32°

2 fn f(a: i32) -> i32 { 1.1 }

3

4 struct A { x: 132 }

5

6 fngO {

7 // Type Error: “x* is of type f32 but it's assigned by a value of type “i32°

8 // Type Error: the first argument of “f~ is expected to be of type “i32" but gets a float literal instead
9 let x: f32 = f(1.1);

10 // Type Error: no field named "y~

Published as a conference paper at COLM 2025

11 let y = A{x:13}y;
12 3

The above incorporates typical examples of type disagreements that count as type errors. A
compiler should be able to report these errors.

The type analysis task’s final output is the collection of all type errors. More concretely,
the output is a sequence of Option<TypeError> , where Option<TypeError> denoted the type

TypeError will a null value added and TypeError is the type storing the information of a
type error. The position of type errors agrees with the source tokens leading to these errors.

5 Expressive Power of Transformers as Efficient Compilers

In this section we discuss main theoretical results about the expressive power of transformers
to perform compilation tasks: AST construction, symbol resolution, and type analysis. In
Section 5.4, we discuss Cybertron, a DSL specifically designed for our proof.

5.1 Abstract Syntax Tree Construction

We start with a definition that characterizes low-complexity code.

Definition 1 (code with Bounded AST-Depth). Let MiniHusky, be the set of token sequences
that can be parsed into valid ASTs in Mini-Husky with a depth less than D.

D in the above definition is small for all programming languages in practice, and a linear
dependency on D is acceptable, but the linear dependency on the length of the token
sequence L is not.

The bounded depth assumption is both practically reasonable and theoretically grounded.
In practical software development, the clean code principle (Martin, 2008) requires one to
write code with as little nested layer as possible for greater readability. Readability is of
the utmost importance because “Programs are meant to be read by humans and only inci-
dentally for computers to execute" (Abelson et al., 1996). Moreover, while real-world code
can exhibit significant depth—and in extreme cases, can even be NP-hard to analyze—in
practice, most codebases maintain relatively shallow nesting for the sake of readability
and maintainability. For example, although the Linux kernel comprises tens of millions
of lines of code, the majority of its functions are short and have limited structural depth.
Theoretically, the bounded-depth assumption is essential for understanding the limitations
of transformer-based models. The transformer architecture inherently supports only finite-
depth computation. This limitation has been discussed in prior work, such as (Yao et al.,
2021), which highlights the importance of architectural depth when modeling more complex
behaviors.

This assumption of bounded hierarchical depth is not limited to just programming lan-
guages, but is often seen as applicable to natural languages (Frank et al., 2012; Brennan &
Hale, 2019; Ding et al., 2017), motivating Yao et al. (2021) to have a similar boundedness
assumption. Below is the main result for AST construction using transformers.

Theorem 1. There exists a transformer encoder of model dimension and number of layers being
O(log L + D) and number of heads being O(1) that represents a function that maps any token
sequence of length L in MiniHusky , to its abstract syntax tree represented as a sequence.

We note log L is small because 64-bit computers can only process context length at most 24
and D is small by assumption. Therefore, there exists a transformer with an almost constant
number of parameters that is able to process comparatively much longer context length. See
full proof details in Appendix F.

5.2 Symbol Resolution

Next, we show that transformers can effectively perform symbolic resolution as log L and D
are almost constant as compared with context length L. The proof details are in Appendix G.

Published as a conference paper at COLM 2025

Theorem 2. There exists a transformer encoder of model dimension and number of layers being
O(log L + D) and number of heads being O(1) that represents a function that maps any token
sequence of length L in MiniHusky, to its symbol resolution represented as a sequence of values of

type Option<SymbolResolution> .

5.3 Type Analysis

We need an additional definition to characterize the complexity of code for type analysis.

Definition 2 (code with Bounded AST-Depth and Type-Inference-Depth). We use
MiniHuskyAnnotated, ; fo denote the subset of MiniHusky , with the depth of type inference
no more than H. The depth of type inference is the number of rounds of computation needed to infer
all the types using the type-inference algorithm (described in Appendix E.1).

In practice, H is significantly smaller than the context length L for reasonably written code
because it is upper bounded by the number of statements in a function body which is
required to be small according to the clean code principle (Martin, 2008). Below, we present
the main result of using transformers for type analysis. See full details in Appendix H.

Theorem 3. For L, D, H € IN, there exists a transformer encoder of model dimension, and number
of layers being O(log L + D + H) and number of heads being O(1) that represents a function that
maps any token sequence of length L in MiniHuskyAnnotated, ; to its type errors represented as

a sequence of values of type Option<TypeError> .

5.4 Proof Vehicle: Cybertron, a Domain-Specific Language

Here we highlight our main proof technique. Proving that transformers can express com-
plex algorithms and software like compilers is a significant challenge due to the inherent
differences between how transformers operate and the nature of high-level tasks they are ex-
pected to perform. Transformers process input at a low level, where each layer manipulates
raw token sequences as vectors without predefined structure or meaning. However, high-
level tasks—such as constructing ASTs and performing type and symbol analysis—require
handling complex, structured information that depends on long-range relationships and
interactions across the input. Bridging the gap between this raw, unstructured processing
and the structured, multi-step logic required for these tasks introduces significant difficulty.
Compilers, for instance, typically rely on rule-based, step-by-step operations that are ab-
stract and sequential, which transformers must simulate through their attention mechanisms
and feedforward layers. The challenge is further compounded by the need to formally prove
that transformers can handle such tasks efficiently and accurately, despite operating in a
fundamentally different manner. To address these challenges, we propose a domain-specific
language (DSL) called Cybertron, which allows us to systematically prove that transformers
are capable of expressing complex algorithms while maintaining sufficient readability.

A key feature of Cybertron is its expressive type system, which provides strong correctness
guarantees. The type system ensures that every value is strongly typed, making it easier
to reason about function composition and ensuring the validity of our proofs. This type
system is crucial for managing how transformers represent and manipulate both local and
global types—where local types correspond to individual tokens and global types refer to
sequences of tokens, encapsulating broader program information.

What transformers output is a representation in sequences of vector of sequences of values
in these types. As types are mathematically interpreted in this paper as a discrete subset of
a vector space, Cybertron allows us to construct transformers with automatic value validity
guarantees if the Cybertron code is type-correct.

In Cybertron, complex functions are broken down into “atomic” operations through propo-
sitions on function compositions and computation graphs (Propositions 11,13,14,2). It is
straightforward to prove that these “atomic” operations are representable by transformers,
either by feedforward layers or attention layers. For example:

Published as a conference paper at COLM 2025

¢ Feedforward layers: boolean operations like AND (Proposition 6), OR (Proposition 7),
or NOT (Proposition 5), or operations over option types like Option:or (Proposition 9)

being applied to each token in a sequence.
* Attention layers: operations that require information transmission between tokens such

as nearest_left and nearest_right that collect for each token the nearest left/right non-nil
information (Proposition 15).

This approach allows us to break down complex operations into primitive tasks that trans-
formers can simulate. Feedforward layers handle local operations on individual tokens,
while attention layers manage long-range dependencies and interactions between tokens,
simulating the multi-step reasoning required for higher-level tasks.

Cybertron’s expressive type system and function composition framework help bridge the
gap between the low-level processing transformers perform and the high-level reasoning
necessary for complex tasks like compilation. For full details, including the mathematical
foundations of Cybertron’s type system and function composition, see Appendix D.

6 Comparisons between Transformers and RNN

Now we compare transformers and RNNs from both theoretical and empirical perspectives.

6.1 A Lower Bound for RNNs for Type Checking

Previously, it has shown that RNN is provably less parameter efficient than transformers for
associative recall (Wen et al., 2024). Observing that the type checking step covers associative
recall, we obtain the following lower bound for RNNs.

Theorem 4. For L, D, H € IN, for any RNN that represents a function that maps any token sequence
of length L in MiniHuskyAnnotated, ;; with D, H = O(1) to its type errors represented as a

sequence of values of type Option<TypeError> , then its state space size is at least Q(L).

Theorem 3 and 4 give a clear separation between transformers and RNNs in terms of the
compilation capability. If the input codes satisfy D, H < L, which is typically the case under
the clean code principle (Martin, 2008), then transformers at most need O ((logL + D + H))
number of parameters, which is significantly smaller what RNNs require, Q(L).

6.2 Empirical Comparison between Transformers and RNNs

We validate our theoretical results by conducting experiments on synthetic data.

Dataset construction. The synthetic dataset is parameterized by n (the number of data
pieces), f (the number of functions in a data piece), 2 (the maximum number of arguments
of any function), ¢ (the maximum number of function calls involved in any function), d (the
minimum distance between the declaration and the first call of a function, as well as the
minimum distance between its consecutive calls), v (the probability of using a variable in a
function call), and e (the error rate of using an incorrect type in a function call).

The names of the functions are drawn randomly and uniquely from a list of English words.
For each of the arguments of any function, its symbol is randomly drawn from another
list of English words and its type is randomly drawn from {Int, Float, Bool}. All the
called functions must be declared and not called by at least d functions ahead of the current
one. For each argument of any function call, with probability v, the argument variable of the
enclosing function is used regardless of its type, with probability (1 — v)(1 — e), a literal of
the correct type is used, and with probability (1 — v)e an incorrect type literal is used. For
integers, the literals are from {0, 1, ...,99}; for floats, the literals are from {0.1,1.1,...,99.1};
for booleans, the literals are from {true, false}. The training dataset and evaluation dataset
use disjoint lists for function names and argument symbols. See Appendix] for an example.

Published as a conference paper at COLM 2025

n100000-f10-a5-c5-d3-v0.20-e0.50 n200000-f20-a5-c5-d3-v0.20-e0.50 n300000-f40-a5-c5-d5-v0.20-e0.50 n400000-f80-a5-c5-d10-v0.20-e0.50
0 1.0

B oo oo-c— .

o

Lah iddndh ol dul dnd . -0 e-6-o . 3 -o-g50 o 0-¢—o .
g

°

_expected_type_acc

506 506 506 506

0.5 e mn 05 e mn 0.5 e mn 05 e mn
transformer transformer transformer transformer
00— —— 00— —— 00— —— 00— ——
100 200,p,,300 4001500600700 100 200,300 4001500600700 100 200,300 4001500600700 100 200,p, 5300 4001500608700

Figure 2: Figures depicting the accuracy of the expected type (see Section 5.3) across different
models, measured by their number of trainable parameters. Training accuracies are better
indicators of the expressive power of the models (instead of generalizability) than evaluation
accuracies. We also report evaluation accuracies in Appendix]J.

We use synthetic data instead of real code because our paper is theoretically focused, and
the experiments only serve to validate our theory. Hence, using synthetic data gives a clean,
controllable setting to compare transformers and RNNs.

Model and training. We use customized BERT models (Devlin et al., 2019) and bidirectional
RNN models (Schuster & Paliwal, 1997) in our experiments. To control the model size (i.e.,
the number of trainable parameters), we adjust only the hidden sizes while keeping other
hyperparameters constant. Detailed model specifications can be found in Table 1. For both
transformers and RNNs, we use the hyperparameters listed in Table 2 in Appendix J.

Results. We experimented with multiple combinations of models (Table 1) and datasets
(Table 2). For each combination, we conducted independent runs using a fixed set of k = 5
random seeds. When plotting the figures, we took the top t = 5 training/evaluation
losses/accuracies from each run and averaged over all the k x t values. We plotted separate
figures for each dataset and separate sub-figures for each metric. In each sub-figure, the
x-axis represents the number of trainable parameters, and the y-axis represents the averaged
values. Results are shown in Figure 2. They demonstrate that customized BERT models are
able to perform better at type checking than bidirectional RNN models when both scale up,
corroborating our theories. Other results are in Appendix].

7 Conclusions and Future Work

We demonstrated that transformers can efficiently handle a number of syntactic and seman-
tic analysis tasks in C-like languages, using Cybertron to prove their capacity for tasks like
AST generation, symbol resolution, and type analysis. We showed theoretical and empirical
advantages of transformers over RNNSs, particularly in their ability to manage long-range
dependencies with logarithmic parameter scaling.

Future research directions include extending our theoretical framework to encompass
universal transformers, which may eliminate the current reliance on the assumption of
bounded program depth in our analysis Shaw et al. (2024). Another promising avenue
is the generalization of our approach from foundational forms of static code analysis to
more comprehensive categories of static analysis, potentially incorporating asynchronous
constructs and related features. Lastly, a valuable line of inquiry involves formalizing
practical aspects of code generation with the goal of rigorously characterizing the expressive
power of transformer-based models in such contexts.

Acknowledgement

XZ acknowledges the support of NSF through awards DMS-2031883 and PHY-2019786.
LZ acknowledges the ERC PoC project FormalWeb3 no. 101156734 and the University of
Innsbruck doctoral scholarship promotion of young talent. SSD acknowledges the support of
NSF DMS 2134106, NSF CCF 2212261, NSF IIS 2143493, NSF 1IS 2229881, Sloan Fellowship,
the AI2050 program at Schmidt Sciences, Amazon, and Apple.

10

Published as a conference paper at COLM 2025

References

Cursor: Ai-powered code editor, 2024. URL https://www.cursor.com/. Accessed: Septem-
ber 29, 2024.

Harold Abelson, Gerald Jay Sussman, and with Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd editon edition, 1996. ISBN
0-262-01153-0.

Agda Development Team. Agda compilers manual v2.6.4.2, 2024. URL https://agda.
readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend.

Ekin Akytirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.
pearson Education, 2007.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ra-
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring
length generalization in large language models. arXiv preprint arXiv:2207.04901, 2022.

Anysphere. Cursor, 2023. URL https://www.cursor.com/features.

Jordi Armengol-Estapé and Michael FP O’Boyle. Learning c to x86 translation: An experi-
ment in neural compilation. arXiv preprint arXiv:2108.07639, 2021.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou,
Atri Rudra, and Christopher R’e. Zoology: Measuring and improving recall in efficient
language models. ArXiv, abs/2312.04927,2023. URL https://api.semanticscholar.org/
CorpusID:266149332.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisti-
cians: Provable in-context learning with in-context algorithm selection. arXiv preprint
arXiv:2306.04637, 2023.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit.
Advances in Neural Information Processing Systems, 35:21750-21764, 2022.

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transform-
ers to recognize formal languages. In Conference on Empirical Methods in Natural Language
Processing, 2020a. URL https://api.semanticscholar.org/CorpusID:222225236.

S. Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and llms by learning to learn discrete functions. ArXiv,
abs/2310.03016, 2023. URL https://api.semanticscholar.org/CorpusID:263620583.

S. Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the repre-
sentational capabilities of transformers and recurrent architectures. ArXiv, abs/2406.09347,
2024. URL https://api.semanticscholar.org/CorpusID:270440803.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of
transformers to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020b.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of
transformers and its implications in sequence modeling. arXiv preprint arXiv:2006.09286,
2020c.

Jonathan Brennan and John Tracy Hale. Hierarchical structure guides rapid linguis-
tic predictions during naturalistic listening. PLoS ONE, 14, 2019. URL https://api.
semanticscholar.org/CorpusID:260538292.

11

https://www.cursor.com/
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://www.cursor.com/features
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:222225236
https://api.semanticscholar.org/CorpusID:263620583
https://api.semanticscholar.org/CorpusID:270440803
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:260538292

Published as a conference paper at COLM 2025

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

David Chiang, Peter A. Cholak, and Anand Pillay. Tighter bounds on the expressivity
of transformer encoders. In International Conference on Machine Learning, 2023. URL
https://api.semanticscholar.org/CorpusID:256231094.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziére, Jonas Gehring, Gabriele
Synnaeve, and Hugh Leather. Meta large language model compiler: Foundation models of
compiler optimization. ArXiv, abs/2407.02524,2024. URL https://api.semanticscholar.
org/CorpusID:270924331.

Valentin David. Language Constructs for C++-like languages. PhD thesis, University of Bergen,
2009.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Nai Ding, Lucia Melloni, Xing Tian, and David Poeppel. Rule-based and word-level
statistics-based processing of language: insights from neuroscience. Language, Cognition
and Neuroscience, 32:570 — 575, 2017. URL https://api.semanticscholar.org/CorpusID:
46747073.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional type-
checking for higher-rank polymorphism with existentials and indexed types. Proceedings
of the ACM on Programming Languages, 3(POPL):1-28, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine
Learning, pp. 5793-5831. PMLR, 2022.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen,
T Conerly, et al. A mathematical framework for transformer circuits. Transformer Circuits
Thread, 2021.

Husna Farooqui. The curry-howard correspondence. 2021. URL https://api.
semanticscholar.org/CorpusID:244268761.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. To-
wards revealing the mystery behind chain of thought: a theoretical perspective. ArXiv,
abs/2305.15408, 2023. URL https://api.semanticscholar.org/CorpusID:258865989.

David Flanagan. JavaScript: The definitive guide: Activate your web pages. " O’Reilly Media,
Inc.", 2011.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 111-122, 2004.

S. Frank, Rens Bod, and Morten H. Christiansen. How hierarchical is language use? Pro-
ceedings of the Royal Society B: Biological Sciences, 279:4522 — 4531, 2012. URL https:
//api.semanticscholar.org/CorpusID:11969171.

12

https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:270924331
https://api.semanticscholar.org/CorpusID:270924331
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:46747073
https://api.semanticscholar.org/CorpusID:46747073
https://api.semanticscholar.org/CorpusID:244268761
https://api.semanticscholar.org/CorpusID:244268761
https://api.semanticscholar.org/CorpusID:258865989
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:11969171

Published as a conference paper at COLM 2025

Dan Friedman, Alexander Wettig, and Dangi Chen. Learning transformer programs. ArXiv,
abs/2306.01128, 2023. URL https://api.semanticscholar.org/CorpusID: 259064324,

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:305683-30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and
Dimitris Papailiopoulos. Looped transformers as programmable computers. ArXiv,
abs/2301.13196, 2023. URL https://api.semanticscholar.org/CorpusID:256389656.

Google Deepmind. Ai achieves silver-medal standard solving international mathemat-
ical olympiad problems, July 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/.

Qiuhan Gu. LIm-based code generation method for golang compiler testing. Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 2023. URL https://api.semanticscholar.org/CorpusID:
265509921.

Zifan Carl Guo and William S Moses. Enabling transformers to understand low-level
programs. In 2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-9.
IEEE, 2022.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans-
actions of the Association for Computational Linguistics, 8:156-171, 2019. URL https:
//api.semanticscholar.org/CorpusID:189928186.

Sophie Hao, Dana Angluin, and Roberta Frank. Formal language recognition by hard
attention transformers: Perspectives from circuit complexity. Transactions of the Association
for Computational Linguistics, 10:800-810, 2022. URL https://api.semanticscholar.org/
CorpusID:248177889.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In
Handbook of the History of Logic, volume 9, pp. 135-214. Elsevier, 2014.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me:
Transformers are better than state space models at copying. ArXiv, abs/2402.01032, 2024.
URL https://api.semanticscholar.org/CorpusID:267406617.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ale$ Bizjak, Lars Birkedal, and
Derek Dreyer. Iris from the ground up: A modular foundation for higher-order con-
current separation logic. Journal of Functional Programming, 28, 2018. URL https:
//api.semanticscholar.org/CorpusID:2023423.

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning
and weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers trans-
formers to solve inherently serial problems. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=3EWTEyIMTM.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power
of self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

David Lindner, J’anos Kram’ar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. ArXiv, abs/2301.05062, 2023.
URL https://api.semanticscholar.org/CorpusID:255749093.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
Transformers learn shortcuts to automata. ArXiv, abs/2210.10749, 2022. URL https:
//api.semanticscholar.org/CorpusID:252992725.

13

https://api.semanticscholar.org/CorpusID:259064324
https://api.semanticscholar.org/CorpusID:256389656
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:267406617
https://api.semanticscholar.org/CorpusID:2023423
https://api.semanticscholar.org/CorpusID:2023423
https://openreview.net/forum?id=3EWTEy9MTM
https://api.semanticscholar.org/CorpusID:255749093
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:252992725

Published as a conference paper at COLM 2025

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR,
USA, 1 edition, 2008. ISBN 0132350882.

Patrick Massot. Teaching mathematics using lean and controlled natural language. In Interna-
tional Conference on Interactive Theorem Proving, 2024. URL https://api.semanticscholar.
org/CorpusID:272330159.

The mathlib Community. The lean mathematical library. Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, 2019. URL https:
//api.semanticscholar.org/CorpusID:204801213.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-
depth threshold circuits. Transactions of the Association for Computational Linguistics, 10:
843-856,2021. URL https://api.semanticscholar.org/CorpusID:248085924.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages. ICLR, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAl. Openai ol system card, September 2024a. URL https://openai.com/index/
openai-ol-system-card/.

OpenAl Sora: Creating video from text, February 2024b. URL https://openai.com/index/
sora/.

Jorge Pérez, Javier Marinkovic, and Pablo Barcel6. On the turing completeness of mod-
ern neural network architectures. ArXiv, abs/1901.03429, 2019. URL https://api.
semanticscholar.org/CorpusID:57825721.

Jorge Pérez, Pablo Barcel6, and Javier Marinkovic. Attention is turing complete. The Journal
of Machine Learning Research, 22(1):3463-3497, 2021.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. arXiv preprint arXiv:1308.0729, 2013.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673-2681, 1997.

Peter Shaw, James Cohan, Jacob Eisenstein, Kenton Lee, Jonathan Berant, and Kristina
Toutanova. Alta: Compiler-based analysis of transformers. arXiv preprint arXiv:2410.18077,
2024.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold
circuits. ArXiv, abs/2308.03212,2023. URL https://api.semanticscholar.org/CorpusID:
260680416.

Victor Taelin. Ai and the future of coding. https://medium.com/jonathans-musings/
ai-and-the-future-of-coding-43caad31c3d3, 2023a. Accessed: 2024-10-01.

Victor Taelin. Agda to typescript compilation with sonnet-3.5, 2023b. URL https://x.com/
VictorTaelin/status/1837925011187027994. Accessed: September 29, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander

Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context
by gradient descent. arXiv preprint arXiv:2212.07677, 2022.

14

https://api.semanticscholar.org/CorpusID:272330159
https://api.semanticscholar.org/CorpusID:272330159
https://api.semanticscholar.org/CorpusID:204801213
https://api.semanticscholar.org/CorpusID:204801213
https://api.semanticscholar.org/CorpusID:248085924
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/sora/
https://openai.com/index/sora/
https://api.semanticscholar.org/CorpusID:57825721
https://api.semanticscholar.org/CorpusID:57825721
https://api.semanticscholar.org/CorpusID:260680416
https://api.semanticscholar.org/CorpusID:260680416
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://x.com/VictorTaelin/status/1837925011187027994
https://x.com/VictorTaelin/status/1837925011187027994

Published as a conference paper at COLM 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. ArXiv,
abs/2203.11171, 2022. URL https://api.semanticscholar.org/CorpusID:247595263.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. ArXiv, abs/2201.11903,2022. URL https://api.semanticscholar.org/CorpusID:
246411621.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. ArXiv,
abs/2106.06981, 2021. URL https://api.semanticscholar.org/CorpusID:235421630.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The
key bottleneck on in-context retrieval. ArXiv, abs/2402.18510, 2024. URL https:
//api.semanticscholar.org/CorpusID:268041425.

Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong Sun. Beyond
language models: Byte models are digital world simulators. ArXiv, abs/2402.19155, 2024.
URL https://api.semanticscholar.org/CorpusID:268063492.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-
attention networks can process bounded hierarchical languages. In Annual Meeting of the
Association for Computational Linguistics, 2021. URL https://api.semanticscholar.org/
CorpusID:235166395.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank] Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv
preprint arXiv:1912.10077, 2019.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse
while predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in
length generalization. ArXiv, abs/2310.16028, 2023. URL https://api.semanticscholar.
org/CorpusID:264439160.

15

https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:235421630
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:264439160
https://api.semanticscholar.org/CorpusID:264439160

Published as a conference paper at COLM 2025

A Tree

Trees are one of the most fundamental objects to study in computer science. However,
its exact definition differs for different domains. The trees used in “abstract syntax tree”
(Section B) is more restrictive than that in mathematics, which we call “typed tree”, so that
one can define recursive computation more rigorously.

A.1 What are Trees

Trees in data structures have slightly additional meaning as compared to trees in mathemat-
ics. In this paper, all trees are trees in data structures. For clarity, we lay down the precise
definition of trees in data structure.

Definition 3 (Tree). A tree T is a set of nodes storing elements such that the nodes have a parent-
child relationship that satisfies the following:

o If T is not empty, it has a special node called the root that has no parent.

e Each node v of T other than the root has a unique parent node w; each node with parent w
is a child of w.

We denote the nodes of T as N(T).

Definition 4 (Recursive Definition of a Tree). A tree T is either empty or consists of a node r (the
root) and a possibly empty set of trees whose roots are the children of r.

However, the above definition is too permissive. We shall define a typed version as follows:

Definition 5 (Typed Tree). A tree type consists of a set of values V and a set of relationships
C C V x N, and a typed tree under this type is any tree T such that for each node, a value v € V is
assigned such that (v,n) € C where n is the number of the children of the node.

All trees in this paper are typed.

Example 1 (Abstract syntax tree (AST) as Typed Tree). Consider an AST for a simple arithmetic
expression. Let the set of values V be:

V ={num, add , sub, mul , div }
and the set of relationships C C V x IN specify the allowed number of children for each value:
C={(num,0),(add,2),(sub,2),(mul,2),(div,2)}

An example AST for the arithmetic expression (34 5) x 2 is the following typed tree:

e The root node is labeled mul (multiplication), and it has two children.

— The left child is labeled add (addition), and it has two children:

+ The left child of add is labeled num with the value 3.
+ The right child of add is labeled num with the value 5.

— The right child of mul is labeled num with the value 2.
This tree conforms to the typing rules because:
o num has 0 children,
® add has 2 children,
o mul has 2 children,

all of which satisfy the relationships in C.

16

Published as a conference paper at COLM 2025

A.2 Representations of Trees

It’s also important to talk about tree representations. We are studying transformers, and
then it’s necessary to represent large trees as a sequence, otherwise the model dimension is
not large enough to contain the information locally. Let’s first talk about the classical arena
pattern used in system programming for representing trees and we shall slightly adapt it to
our use case for studying transformers.

Arena Pattern. To represent trees efficiently in memory, especially when trees are fre-
quently modified (such as insertions or deletions of nodes), an arena pattern is often used.
The arena pattern provides a way to manage memory allocation for tree structures, allowing
for efficient memory usage and avoiding fragmentation. Here’s how the arena pattern
works in the context of tree representation:

Definition 6 (Arena Pattern in Tree Representation). In the arena pattern, a tree is represented
by an array (or vector) of nodes, called an arena. Each node in the arena contains:

o An element or value stored in the node.

 References (often indices or pointers) to the node’s children and possibly to its parent.
The key characteristics of the arena pattern are:

* Memory Contiguity: All nodes are stored contiguously in memory within the arena, which
allows for efficient traversal and modification operations.

e Fixed Capacity: The arena has a fixed or dynamically resizable capacity, and nodes are added
sequentially. This avoids the overhead of allocating individual nodes on the heap.

o Index-based References: Instead of using pointers, the nodes reference each other using
indices within the array, which simplifies memory management and can lead to cache-
friendly operations.

e Efficient Allocation and Deallocation: Nodes can be efficiently allocated and deallocated
within the arena without requiring complex memory management techniques like garbage
collection or reference counting.

The arena pattern is particularly useful in scenarios where the structure of the tree is highly
dynamic or when performance is critical. It allows for a simple and efficient way to manage
and traverse trees without the typical overhead associated with more traditional pointer-
based tree representations.

Adaptations for Transformers For transformers, inputs, intermediate values and outputs
are all sequences. So the trees are represented as sequences of nodes with node reference
representable by token position encoding. Based on the representation, transformers will be
able to perform various kinds of recursive tree operations, as we shall see.

B Context Free Grammar

In this section, we lay down the well-known definitions of context free grammar, derivations,
and parse trees. To define an abstract syntax tree (AST), one commonly resorts to generation
rules, such as context-free grammars (CFG) (Alfred et al., 2007) and parsing expression
grammars (PEG) (Ford, 2004). In most cases, just generation rules themselves are not
sufficient to define properly a language. Many practical languages like C and C++ cannot
be solely described by these rules (David, 2009) so that they can reuse the limited set of
special characters on the keyboard. Furthermore, semantic constraints like type correctness
are intrinsically contextual and cannot be expressed through CFG or similar rules. However,
CFG or other rules provide a valuable construct, the AST. With an AST, one can refine
the language definition by putting restrictions on the syntax tree through tree operations.
Effectively, a language can be seen as a subset of trees, not as a subset of strings. Semantic

17

Published as a conference paper at COLM 2025

analysis like symbol resolution and type checking can be described effectively based on trees.
In short, CFG standalone is hardly practical but it provides a useful and clear foundation to
build definitions upon.

A context-free grammar (CFG) is defined as a 4-tuple G = (V, %, R, S), where:

* Vs a finite set of variables (non-terminal symbols).

* X is a finite set of terminal symbols, disjoint from V. Sequences of %, i.e., elements
of * are called (literal) strings.

e RC V x (VUZX)*is a finite set of production rules, where each rule is of the form
A—a,withAeVanda € (VUE)™

* S € V is the start symbol.
Given a context-free grammar G = (V, %, R, S), we define derivation as follows:

¢ A derivation is a sequence of steps where, starting from the start symbol S, each
step replaces a non-terminal with the right-hand side of a production rule.

* Formally, we write u = v if u = « Ap and v = a7y for some production A — 7 in
R, wherea,fp € (VUX)*and A € V.

¢ A leftmost derivation is a derivation in which, at each step, the leftmost non-
terminal is replaced.

¢ A rightmost derivation is a derivation in which, at each step, the rightmost non-
terminal is replaced.

¢ We denote a derivation sequence as S =* w, where w € L* is a string derived from
S in zero or more steps.

A parse tree (or syntax tree) for a context-free grammar G = (V,X%,R,S) is a tree that
satisfies the following conditions:

¢ The root of the tree is labeled with the start symbol S.
¢ Each leaf of the tree is labeled with a terminal symbol from X. or the empty string €.
¢ Each internal node of the tree is labeled with a non-terminal symbol from V.

¢ If an internal node is labeled with a non-terminal A and has children labeled with
X1,X2, ..., Xy, then there is a production rule A — X; X5 ... X, in R.

* The yield of the parse tree, which is the concatenation of the labels of the leaves (in
left-to-right order), forms a string in 2* that is derived from the start symbol S.

C Neural Architectures

In this section, we lay down the precise mathematical definitions of neural architectures we
are going to use in our proof.

Definition 7 (Single-Layer Fully Connected Network with 4 x Intermediate Space).

Given model dimension d,,.g.1, a single-layer feed-forward network with an intermediate space
expanded to 4 times the input dimension is a function from R%model to R¥model, denoted by ffen and
defined as follows:

gi'yen X e IRdmudel/ we1ghts W1 c R4dmodfl><dmudel/ W2 c RdntadelX4dn10deI/ and biases Bl c R4dn10del/
By € R%model, the output fren(X) is computed as:

fren(X) = WaoreLu(W1X + By) + By,

where ogepy : R¥modet — R*model js the Rectified Linear Unit activation function applied element-
wise, defined by:

18

Published as a conference paper at COLM 2025

-
OreLu(z) = (max(zl,O),max(zz,O),...,max(z4dmde],0)) ,
forz = (21,2, ... ’Z4dmudel)T € R¥model

The choice of a 4 x intermediate space is common in practice, often used in Transformer
architectures. Interestingly, this empirical choice turns out to have a useful theoretical
property: it allows the network to express any affine transformation, as we’ll see in the
following proposition.

Proposition 1. A single-layer fully connected network with a 4x intermediate space, as defined
previously, can express any affine map from R%modet to R Fmodet,

Proof. Let f : Rmodel — Rmodel be any affine map given by f(X) = AX + b, where
A € Rmode¥dmodel and b € Rmodel, We will construct weights W; € R¥model X @model
Wy € Rfmode*4dmodel and biases By € R¥*model, B, € Rmodel such that fi, (X) = f(X)
for all X € R%model,

Define:
Idmodel
Wl — 7Id(r)nodel , Bl =0¢c]R4dmode1,

0

where I; is the dpodel X dmodel identity matrix, and 0 represents zero matrices of appro-
priate dimensions. Set:
Wo,=(A —A 0 0), By=b

For any X € IR¥%model, compute:
fren(X) = Wa 0reLu(W1 X + B1) + By

:(A —-A 0 0 UReLU

0
0
OreLU (X)
—(A —A 0 0 ”RGLU(_X) +b
0

= A0reLy (X) — A0ReLu (—X) +b.

Note that ogery (X) — 0reru (—X) = X, we have:
fn(X) = AX +b = f(X).
Therefore, the network can represent any affine map from R%model to R¥model, O

Definition 8 (Single-Layer Feed Forward Network with 4x Intermediate Space). Given
model dimension d,,,.; and position set Pos, the Transformer Feed Forward Network is a function

fipn : RPOS ¥noder —y RPOS *duodet defined as follows:

For an input X € RFOS *dmoael the output feu(X) is computed by applying the single-layer feed-
forward network fr, (as defined previously) independently to each position:

ﬁ‘.f”(X)P = Js‘cn(Xp) VP € Pos

where X, € Rmodel is the p-th row of X, corresponding to the p-th position in the input sequence.

19

Published as a conference paper at COLM 2025

Next, we define the attention mechanism, which is a key component of the Transformer
architecture. This definition presents a hard attention layer with a simplified position
encoding. We use hard attention here for theoretical simplicity, as it represents a discrete
limit of the more commonly used soft attention mechanism. Hard attention forces the model
to make a clear choice about which inputs to focus on, which can simplify analysis and
provide clearer insights into the model’s behavior. It can be viewed as the limiting case of
soft attention as the temperature approaches zero, where the softmax operation becomes
increasingly peaked and eventually converges to a one-hot vector.

Definition 9 (Hard Attention Layer with Simplified Position Encoding). Given model di-
mension dy,qe1, number of heads H, and number of layers L, a transformer with simplified position

encoding and hard attention is defined to be a function fy, : RFOS *4metel —s RPOS Xdmodet defined by

¥p € Pos, fun(X), = WoConcat (Attn(l)(X)p, N .,Attn(H)(X)p)))
where the hth attention head uses hard attention, defined as:
1
(h) — (h)
At (X)), := 5, Yy V', (5)

P'ESp
where

o Wp € Rmoderdmodet gre trainable parameters;

" h . h (b)) (b 5 .
* 5, = argmax, p, (Q,(, VKD + Al >T11fp,p) with QU K, V" A®) ¥, defined
by
- Q;;h) = Wg’)Xp,K;(jh) = ngh)Xp are vectors of dimension d,q.1/ H, with trainable
parameters Wg’) , WI(J‘) € R @moder/ H) X doger
- V,Sh) = W‘(,h)Xp are vectors of dimension dy.401/ H, linear transformations of X, with

trainable parameters W‘(,h) € R (@moer/ H) X doel,

- AW € R? are constants depending only on head count h;

- Y, € IR? are 2-dimensional vectors depending on relative position q but not on head
count h. It is explicitly defined as

Yo = <1qq>0> ' ©)

This formulation allows for both past and future masking.

Having defined the basic components, we can now proceed to describe the full Transformer
architecture. This definition builds upon the previously introduced concepts, incorporating
them into a complete model structure.

Definition 10 (Transformer). A Transformer is a function fi : IRPOS Xdmoder s TRPOS XAodel
that maps an input sequence to an output sequence through a series of layers, each consisting of a
multi-head attention mechanism and a position-wise feed-forward network (MLP).

Given:

o [nput sequence X € RF0S *dumodel wohere Pos is the set of positions and d,y4, is the model
dimension.

* Number of layers L.
o Number of attention heads H.

The Transformer computes the output Y = XI) through recursive application of attention and
feed-forward layers:

20

Published as a conference paper at COLM 2025

e [nitialization is given by:

* Foreachlayer! =1,2,...,L:

— Compute attention output:
o - I _
X = x(-1) +fa(tt)n (X(l 1))
— Compute feed-forward output:
0 — x4 ¢D (%)
X0 = %0+) (20)
Here:

] f;f?n are hard attention layers with simplified position encoding as previously defined.
1t operates on X'=1) and produces an output in RP0S *@moder,

J f]%) are feed-forward networks with 4x intermediate space as previously defined. It
operates position-wise on X and produces an output in RPOS *dmodr,

Remark 1. For simplicity, we have omitted the Layer Normalization component typically
present in Transformer architectures. This simplification allows us to focus on the core
attention and feed-forward mechanisms while maintaining the essential structure of the
Transformer.

We use Tf?{mzd"l to denote the set of transformers of model size d;,,4e1, NnumMber of heads H
and number of layers L as functions from R¥medel* to R¥model*,

For purpose of proof, we shall also need residual multi-layer perceptron. Functions over
local types are first represented by multi-layer perception, then by Proposition 2 applications

of these functions over sequences can be representable by transformers. Residual multi-layer
perceptron can be assembled through composition or computer graph, as we shall see.

Here’s the definition of a residual MLP Network.

Definition 11 (Residual Multi-Layer Perceptron). A Residual Multi-Layer Perceptron
(ResMLP) is a function fresmyp Rmodet —y R¥model defined recursively by

X0 = x, xO=x014 g, (X(Z*U) , 1=1,20, L frgmpp(X) = XB)

where X € Rmodel s the input vector, L is the total number of layers, and fren R%model —y Rmodel s

the Single-Layer Fully Connected Network with 4 x Intermediate Space as previously defined
in Definition 7.

]Rdmodel
We use Relep‘Zm"CIEI C Rmodel to represent the set of residual MLPs with dimension
dmodel and L layers, as defined in Definition 11.

The following proposition is quite basic. It demonstrates that any function representable by
a ResMLP can be applied position-wise by a Transformer.
Proposition 2 (Position-wise ResMLP Application is Representable by Transformers). Let
f 2 R¥modet — R¥model be a function representable by a Residual Multi-Layer Perceptron (ResMLP)
as defined in Definition 11. Then the function F : RV *@model — RFOS *dwodet, defined by applying f
position-wise,

F(X)p = f(Xp), Vp € Pos,

is representable by a Transformer as defined in Definition 10.

21

Published as a conference paper at COLM 2025

Proof. Since f is representable by a ResMLP with L layers, it is defined recursively by
xO =x, xO=x0-D4 g, (XU—U) forl=1,...,L,

and

f(x)=x1),

where fig, : Rfmedel — Rmodel is the Single-Layer Fully Connected Network with 4x
intermediate space (Definition 7).

We construct a Transformer with L layers such that, for any input sequence X € RF0® *@model,
the output Y = fi(X) satisfies Y, = f(X,) for all p € Pos.

To achieve this, we configure the Transformer so that the attention mechanism outputs
zero at each layer. This can be done by setting the attention weights to zero, ensuring

fatn (XU=1)) = 0. Consequently, the update equations simplify to
x = x(=1),

We then set the feed-forward network fi, in the Transformer to have the same weights and
biases as f¢., in the ResMLP. The Transformer layer update becomes

X0 = X0+ fin (20) = X0+ (fin (X577))pee:

This recursion matches that of the ResMLP applied position-wise to X. Therefore, after L
layers, the Transformer output satisfies ftf(X)p = f(Xp) forall p € Pos.

O

D Cybertron

D.1 Introduction

It’s often difficult to directly prove that transformers or in general other low level forms of
computation can express complicated algorithms and even complex software. There are
way too many details as compared with typical mathematical proofs in machine learning
theory. Hence, we propose the domain specific language Cybertron, where we can system-
atically prove transformers can express complicated algorithms and complex software with
sufficient readability.

(Note: Cybertron is fundamentally different from Mini-Husky! Mini-Husky is the target lan-
guage that we want transformers to analyze yet Cybertron is the domain specific language
we use to prove that transformers can do that.)

RASP (Weiss et al., 2021) is quite close to Cybertron in terms of its design purpose. However,
Cybertron is more powerful with advanced algebraic type system, global and local function
constructions, etc. These additional mechanisms replace a significant part of the chore in
proofs with automatic type checking. Thus, using Cybertron one can argue operations more
complicated than simple algorithms can be simulated by transformers.

In the broader perspective of computer science, it's common to use code to prove things. In
fact, in the formal verification community, mathematical proofs are viewed as a special case
of a much larger universe of possible proof systems (mathlib Community, 2019; Massot,
2024) and constructive proof using code (Harrison et al., 2014; Farooqui, 2021; Jung et al.,
2018) is far more applicable with great soundness to the most general settings. In our case,
our code doesn’t serve as the whole proof but as an important part that contains most of
the chores. However, it’s totally possible to build a full-fledged formalized proof, despite it
might be too costly for a single paper to do.

Essentially, Cybertron works as follows:

1. one builds complicated functions from the composition of smaller functions. We
have lemmas that prove that the composed functions are representable by certain
architectures given that smaller functions are representable.

22

Published as a conference paper at COLM 2025

2. there is an algebraic type system and every value is strongly typed and immutable,
making it highly readable and easy to reason about;

3. there is a distinction between global and local types/functions. Local types are
those information hovered over a single token, and global types are sequences of
local types, i.e., the collection of information over the whole token stream. One can
define a global function by mapping a local function.

4. there are many functions that is defined externally, requiring external explanation
that they can be represented by transformers.

It's implemented as a subset of the Rust programming language that can be understood
as computation graphs over sequences. It can be executed for testing purposes and we’ve
tested our implementation for a range of inputs and validated its correctness.

D.2 Philosophy: Sequential Representation of Everything

Before going through the full details, let’s first talk about the fundamental philosophy
behind transformer and Cybertron.

One of the fundamental reasons transformers can be easily adapted across multiple modal-
ities, including NLP and CV, is their sequence-to-sequence operation. Everything can be
represented as an arbitrary-length sequence. Texts are sequences of words, images are se-
quences of image patches, videos are sequences of spacetime patches (OpenAl, 2024b), and
even graphs with sparse spatial structures can be represented as sequences of indexed nodes
with additional information like parent node indices. Since inputs of various modalities
can be cast into vector sequences, transformers can be applied to different domains without
modifications to their architecture (Dosovitskiy et al., 2020).

Interestingly, this sequence-based thinking is not new. We’ve actually been representing
everything as sequences since the very early days of computer science. This has been the
foundation of how data is stored and processed in computers. However, sequence repre-
sentations were traditionally viewed as low-level and sometimes inefficient for practical
use, prompting the development of higher-level abstractions for programming. The rise
of transformers, with their scalable learning capabilities, encourages us to reconsider the
significance of sequence-based representations.

From a systems perspective, viewing everything as a sequence is the foundational approach
in computer science. Data in a computer is stored as a continuous stream of bits. Whether
it’s text, images, videos, or graphs, this data is represented in computer memory as an
ordered sequence of bits. This aligns with how transformers handle different types of input
by transforming them into sequences of vectors. Thus, the sequence-based operation of
transformers mirrors the sequence-based representation of data in computer memory.

In essence, if a data structure can be represented in computer memory using N bits, it can
be processed as a sequence of bits of length N. This natural sequence representation in
memory is consistent with how transformers process data, which makes them particularly
flexible across different modalities. For example, recent state-of-the-art approaches Wu
et al. (2024) show that transformers can even be trained directly on raw bits of data, further
emphasizing this connection.

Moreover, this sequence-based viewpoint offers fresh insights when applied to the domain
of programming, particularly in areas such as code generation and analysis. With tools
like ChatGPT and Copilot being widely used by developers, the impact of transformers
on programming workflows is growing. Understanding the complexity of algorithms and
programs expressed in sequence form becomes an interesting area of study, as it reveals
new possibilities for how we approach computation.

In comparison to traditional systems like CPUs and human cognition, transformers are
highly parallel but shallow in their operation. A transformer processes data in a fixed

number of layers, while a CPU executes 10° cycles per second, and humans may take
days to process information like reading a book. Transformers, therefore, represent a

23

Published as a conference paper at COLM 2025

fundamentally different computational model that is worth studying further in the context
of sequence-based operations.

Example 2. Image to Sequence: In computer memory, an image is typically stored as a continuous
block of pixel values, often in row-major order, where each pixel’s value is encoded as bits in a
sequence. When a transformer processes an image, it divides the image into patches (e.g., 16 X 16
pixels), and each patch is flattened into a vector of pixel values. This creates a sequence of patches,
where each patch corresponds to a vector. The way transformers represent these patches as a sequence
closely aligns with how the image data is sequentially stored in computer memory.

Example 3. Video to Sequence: A video is stored in computer memory as a sequence of frames,
where each frame is essentially an image. In a similar manner to images, these frames are stored as
continuous pixel values. Transformers process videos by dividing the frames into spacetime patches,
where each patch captures a small region of space over a short segment of time. These spacetime
patches are flattened and arranged into a sequence for the transformer to process. The sequential
ordering of these patches matches how video frames and pixel data are stored in computer memory.

Example 4. Graph to Sequence: In computer memory, a graph is typically stored using an
adjacency list or adjacency matrix, where nodes and their connections (edges) are stored sequentially
in a data structure. Transformers process graphs by representing each node and its features as a vectot,
and then creating a sequence of these vectors. The sequence may also encode additional information,
such as the parent-child relationships between nodes. This sequence-based representation of graphs
is consistent with how graph data is stored in memory, where nodes and edges are arranged in a
structured order.

Example 5. Text to Sequence: Text is naturally stored in computer memory as a sequence of
characters or words, where each character is encoded as a sequence of bits (such as ASCII or Unicode
values). When transformers process text, they convert each word into a word embedding, which is a
vector of real numbers. The sequence of word embeddings corresponds to the sequence of characters
or words stored in memory. This natural sequential representation of text in both memory and
transformers ensures efficient handling of linguistic data.

Example 6. AST (Abstract Syntax Tree) to Sequence: In computer memory, an abstract syntax
tree (AST) is typically stored as a tree-like structure, where each node represents a component of
the program (e.g., operators, variables, or statements). However, this tree can be linearized into a
sequence by traversing it in a specific order (e.g., pre-order traversal). When transformers process an
AST, they convert it into a sequence of tokens, where each token corresponds to a node in the tree.
This sequential representation of the tree in transformers mirrors how the tree is stored as nodes and
edges in memory, and how it can be flattened into a linear sequence.

In conclusion, the sequence-based representation in transformers is not just a novel approach
for deep learning but is deeply rooted in how data has been stored and processed in
computer memory since the early days of computing. This consistency between how data is
stored in memory and how transformers process data as sequences is a key factor in their
adaptability across different domains.

D.3 Local and Global Types

Now we define the type foundation of Cybertron.

Types are fundamental objects for programming language theory. Here we use types to
faciliate our proofs. Type signatures contain rich information that help guarantee correctness
of the program. Here, we choose a mathematical definition of types that is most convenient
for the discussion in this paper. We introduce the notion of “local type”. Roughly speaking,
they are types without heap allocation and intended to be represented with R¥medel over a
single token. For more complicated heap-allocated data structures like trees, graphs, etc., we
shall represent them by sequences of these “local type”s, which translate directly to vector
sequences for transformers.

Definition 12 (Local Type). Given a base space B with at least two elements and a countably
infinite identification space ¥, a local type ‘T over B is a finite set S together with an embedding ¢

from S to B? and some fixed d € N and an identification € Y.

24

Published as a conference paper at COLM 2025

For convenience, define Set (T) = S, dr = d and ¢ = ¢ and Y7 = . And let Op, and 1p be two
different elements of B. And B® := {0g} so that |B'| = |B|" holds for all i € N.

Remark 2. We need B to be at least size 2, so that B can be as large as we want for d
large enough.For typical computer representation, we can take B to be 2 = {0,1}. For
transformers or neural networks in general, we can take B to be R if we ignore precision.
If we don’t ignore precision, B should be some finite set of floating point numbers. Thus,
we shall keep the generality of B throughout our discussion as all of these settings are
important.

Remark 3. The role of identification {7 € ¥ is to make two types mathematically different
even if they have the same underlying set, encoding dimension, and encoding. Basically
we are establishing a specialized type of theory tailored towards the expressive power of
transformers upon a foundation of intuitive set theory.

Example 7 (Finite Set). In mathematics, we have the finite set denoted by [n] = {0,1,...,n —1}.
Here we use a slightly different notation for a type with underlying set [n] and some encoding.

Example 8 (Position Encoding). Position encoding can be viewed as the encoding of a type denoted
by Pos (n) with the underlying set being [n] where n is the context length. Although it has the same
underlying set as type [n], it is a different type for a different purpose and might have different
encoding.

If Bis R, then the position encoding can be understood as the encoding of type [L] where L is the
context length. More explicitly, we have

i —i/d
¢(x) = (" " V)iclasz @)
viewed as a d dimensional R-vector through the natural conversion of C to R?, since d is even.

It's too cumbersome to manually give the underlying set and the encoding. Here we
introduce a classical concept from programming language theory Program (2013) that
makes it super easy to construct new types and make things fairly readable.

Definition 13 (Finite Algebraic Data Type, Mathematical Forms). We define two ways of
creating new types by combining existing types:

1. Sum type. Given types T; = (S;, ¢;,d;) over base space B for i = 1,...,n, we define the
sum type of T;, denoted by Y} | T;, as follows,

e let S= ({1} xSy)U...U({n} x Su);
o letd = dp,) +max, d;

o let ¢ : S — B? be such that
vi € [s € S, ¢((i,5)) = ¢y (1) @ 9i(s) € BTN CBL (8
Note that |S| = Y.I' 1 |S;|, thus the name sum type.

2. Product type. Given Local Types T; = (S;, ¢;,d;) over base space B fori = 1,...,n, we
define the product type of T;, denoted by TT!_; Tj, as follows,

e let S =51 X...XSy;
o letd=Y] ,d;
e let ¢ : S — B? be such that

Vs = (s1,...,8n) € S/‘P(S) = (Pl(sl) @.. '4771(571) € BY. 9)
Note that |S| =TT, |Si|, thus the name product type.

Although we can define things and refer to things in terms of mathematical equations, it’s
sometimes cumbersome to do so. So we shall frequently refer to types using a programming

language form, like CybertronForm or more complicated things like Option<T> a builtin
generic type.

25

Published as a conference paper at COLM 2025

Definition 14 (Unit Type). The unit type is a type with S = {0} and ¢ : S — B°,0 — 0p. In
Cybertron, it’s denoted as () .

Definition 15 (Array Type). Given a type T, the array type of T with length ¢ € IN is the type
withS = S(T)',d = tdyand ¢ : S — BT, (sy,...,5,) — ¢p7(51) @ ... D p7(sy). It’s denoted
by Tt In Cybertron, it’s denoted as [T;N] .

Definition 16 (Vector Type of Finite Capacity). Given a type T, the vector type of finite capacity
of T with maximal length £ € N is the type with S = |J{_, Set (T)', d = dpep + td and
¢S — BUVTIT (51, 51) = gy (i) @ Pr(s1) ... B pr(s;) B0 @ ... Op with just
enough number of copies of Op such that the dimensionality matches. It's denoted by T='.In
cybertron, it’s denoted as BoundedVec<T N> .

However, it’s cumbersome and obtuse to define and operate in mathematical forms only. So
we shall give a definition closer to actual programming that is more convenient and easy to
read.
Definition 17 (Finite Algebraic Data Type, the Code Forms). We define two ways to create new
types:

1. Enum type. An enum type is the sum type of a finite set of variant types. Each variant type
is associated with a different identifier and can be

 unit like, a unit type;
e struct like, a product of several types, each called a field of the variant, and associated
with an identifier;

o tuple like, a product of several types, each called a field of the variant, but not associated
with an identifier.

Syntactically, an enum type is specified as follows,

1 enum <type-name> {
2 <identifier> { // 1st variant, struct like

3 <identifier>: <type>, // 1st named field of 1st variant
4 <identifier>: <type>, // 2nd named field of 1st variant
5

6 3,

7 <identifier> { // 2nd variant, struct like

8 <identifier>: <type>, // 1st field of 2nd variant

9

10 5

11 <identifier> (// 3rd variant, tuple like

12 <type>, // 1st tuple field of 3rd variant
13 <type>, // 2nd tuple field of 3rd variant
14 500

15 Do

16 <identifier>, // 4th variant, unit like

17

18 }

For example,

1 enum Expr {

2 Variable(IdentToken), // 1st variant, tuple like
3 Binary { // 2nd variant, struct like
4 lopd: Exprld,

5 opr: BinaryOprToken,

6 ropd: Exprld,

7 3,

8 Prefix { // 3rd variant, struct like
9 opr: PrefixOprToken,

10 opd: Exprld,

11 Bo

12 Suffix { // 4th variant, struct like
13 opd: Exprld,

14 opr: SuffixOprToken,

15 Yo

16 Panic, // 5th variant, unit like

26

Published as a conference paper at COLM 2025

2. Struct type. A struct type is just the product type of

1 struct <type-name> {

2 <identifier>: <type>,
3 <identifier>: <type>,
4
5

1 struct A {
2 a: i32
3}

To show how convenient this is, we can define the very useful option type as follows,
Definition 18 (Option type). For a local type T , we can define an option type as
1 enum Option<T> {
2 Some(T),
3 None
4}
Definition 19 (Global Types). Global types are defined to be sequences of local types.

Example 9 (Representation of Graphs). Graphs can be represented as sequences of its nodes. We
can use position index to use as node references.

D.4 Computation Graph

For convenience, we shall use computation graph as a vehicle to describe complicated
computation processes. Computation graph is close to actual computation process and one
can derive an understanding of the computation difficulty from the graph’s mathematic
properties (width, depth, etc.)

Definition 20 (Directed Simple Graph). A directed simple graph G is a pair (V, E) where V is a
finite set, and E C V x V is called edges.

In the following, we shall simplify the "directed simple graph" to just graph.

Definition 21 (Computation Graph). A computation graph is an acyclic directed graph G =
(V, E) with additional structures:

1. for each vertex v € V, there is an associated type, denoted by T,;

2. for each vertex v € V with a positive number of incoming edges, let vy, ..., v, be the other
vertices for the incoming edges, then there is an associated function f, from Ty, X -+ - X Ty,
to Ty.

A computation graph naturally generates a function from source vertices to sink vertices.

Let vilr‘, e, Ugl be the set of vertices with no incoming edges, and let vi’“t, ..., 09% be the set

of vertices with no outgoing edges. Then we can construct a function from Tin X - -+ X T in
1 n

to Tyout X - - - X Tpou in the following obvious manner:
1

1. let (xq,...,x4) € Tviln X oo X Tvgln be an input;

2. for each v}“, assign it with value x;;

3. for each vertex v € V with all its incoming vertices vy, .. ., v; assigned with a value,
assign it with the value f,(xy,, ..., Xy,) where x,, denotes the value assigned to v;;

4. repeat the process until all vertices are assigned a value, then take (xv(l)ut, ce s Xyout)
as the output.

Our goal is to make a hypothesis class using the above graph. To control the statistical and
computational complexity, we put restrictions on the choice of T, and f, as follows:

27

Published as a conference paper at COLM 2025

Definition 22 (Restricted Computation Graph). Let U be a set of types, and for any A, B €
U, there is a set of functions Mor(A, B) from A to B. We require that T,, T € U and f, €

Mor(T", T,) where T!" :=] T,. We also require that the underlying graph G satisfies certain
v'veE
conditions (width, depth, etc.)

Definition 23 (Restricted Computation Graph Of Sequences). Let U be a universe such that
for a set of types Uy all types in U are of the form A* for some type A € Uy, and Mor(A*, B*) are
functions that preserve sequence lengths.

Given a restriction, the class of functions generated by restricted computation graphs is
the central object to study in this paper. We shall use an even more restricted computation
graph of sequences. We shall argue about the class of functions formed that

1. it’s rich enough to contain many interesting operations including SQL, compiler
(type inference, static analysis)

2. it’s computationally reasonable, and can be represented by transformers with
pragmatic bounds

3. it has a reasonable statistical complexity

As a corollary, our theories suggest that transformers can possibly learn to do many interest-
ing things with reasonable computational and statistical complexity.

To our knowledge, this is the first theoretical paper that gives pragmatic optimistic bounds
for the power of transformers in a wide range of meaningful language tasks.

Now we introduce graph-theoretical measures that will play key roles in our new complexity
theory.
The most basic one is the following:

Definition 24 (Depth of Graph). The depth of a computation graph is defined to the length of the
longest path, denoted by d.

For convenience, we define the following vertex-wise depth.

Definition 25 (Depth of Graph Vertex). The depth of a vertex v of a computation graph is defined
as the length of the longest path with end v, denoted by d.

The smaller d is, the more parallel the computation is.

However, we shall discuss a more nuanced measure, containment, as follows:

D.5 Functions over Local Types

Definition 26 (Functions over Local Types). Given Local Types T, R, the functions from T to
R are defined to be just the functions from Set (T') to Set (R).

Remark 4. The domains and codomains are all finite sets, so there aren’t many constraints
we want to enforce here. Basically, these are “discrete” functions.

Definition 27 (Functions over Algebraic Data Types). Let T, Sy, ..., Sm, R be Local Types, and
suppose that T is an algebraic data type, then we can construct functions from T x 81 X ... X Sy
to R as follows,

1. suppose that T is the sum type of T1, ..., Tn. Then given functions f; : T; x S; X - -+ X Sy,
fori=1,...,n, we can construct a function f, by letting

f(G,t),s1,...,5m) = fi(t,s1,-..,5m), (10)
foreacht € Set (T;),s1 € Set (S1),...,5m € Set (Sm).

(Note that we use the pair (i, t) because the underlying set of T is | |, {i} x Set (T;).)

2. suppose that T is the product type of T1, ..., Tn. Then given a function f, : T3 X - -+ X
Tu X S1 X -+ XSy fori=1,...,n, wecan construct a function f, by letting

f((tl,...,tn),S],---,Sm) :f*(tlr--'rtnzsl/---/sm)r (11)

28

Published as a conference paper at COLM 2025

foreacht € Set (T;),s1 € Set (S1),...,5m € Set (Sm).

It is not enough to just mathematically construct. We should also discuss how neural
networks can represent these functions. We define the representation of functions over Local
Types formally as follows:

Definition 28 (Representation of Functions over Local Types Using Multi-Layer Perceptions).
Let T, R be Local Types. Given a function f from T to R, we say it is representable by MLP of

dimension d > max {d7,dr } and number of layers L, if there exists f € Relep"Ll such that

nogrof=fonopr, (12)

where 11 : R — RY and 15 : R*T — RY are the canonical embeddings by putting zeros to fit the
dimensionalities.

Here are some trivially true facts:

Proposition 3. [Identities are Representable] For any Local Type T, the identity map 1dt is
representable in Relep‘fT.

Proof. Just take W\" = 1, WV = wi® = 0,8V = BZ) — 0. 0
Proposition 4. [Equality is Representable] The equality function for any local type T is representable

in Relep%d, where d is the encoding dimension of T .

Proof. Let x,y € T be the inputs. We encode them as ¢7(x), p7(y) € R?. The equality
function can be represented as:

d
feq(x,y) = min (LA ; |7 (x); — ¢T(y)i|> ,

1

where A is a large enough positive constant such that the RHS is either 1 or 0.

This can be implemented in two-layer ResMLP with dimension 2d. O

Proposition 5. [Boolean NOT is Representable] The Boolean NOT function is representable in
Relep%.

Proof. 1t’s affine. O
Proposition 6. [Boolean AND is Representable] The Boolean AND function is representable in
Relep%.

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then
AND is just taking the minimum. By min(a,b) = b — orery (b — a), we're done. O

Proposition 7. [Boolean OR is Representable] The Boolean OR function is representable in
Relep%.

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then
OR is just taking the maximum. By max(a,b) = a + ogery (b — a), we're done. O

Proposition 8. [THEN_SOME is Representable] The function Bool::then_some : Bool X T —
Option T returns Somet if the boolean is true and None otherwise. This function is representable

in Relep’lHl.

29

Published as a conference paper at COLM 2025

Proof. Encode the boolean as a binary flag in a (d + 1)-dimensional vector, where the first
component indicates the boolean value and the remaining d components hold the value of

type T . The residual MLP fiesm)p constructs the output Option T by assembling the flag
and the value split into positive and negative parts influenced by the flag:

X1
X) = .
Jresmip(X) <0'ReLU (x2:441 — AX1) — OReLU (—X2:441 — Ax1)>

Here, A is a vector of dimension d with all entries positive and large enough to ensure
proper thresholding. Specifically, each entry of A should be larger than the maximum

absolute value that can be represented in the corresponding dimension of type T . This
ensures that when x; = 1, the subtraction x.;,1 — A will always be negative, and when
x1 = 0, it will not affect the value.

When the flag is true (x; = 1), 0rerLu (¥2.411 — A) = 0 and orery (—x2,411 — A) retains
the negated value, resulting in Some t . When the flag is false (x; = 0), both ReLU terms
preserve the value, yielding None . Thus, fresmp effectively implements Bool:then_some
within a single layer of the MLP. O

Proposition 9. [Option Or is Representable] Let T be a local type, let Option::or be the function

that maps two values ab of type Option T toavalue ¢ of type Option T such that ¢ isequal to a

when a is not none, and equal to b otherwise. Then Option::or is representable in Relep%(dH).

Proof. Each Option T is represented as a (d + 1)-dimensional vector, where the first compo-

nent is a binary flag indicating the presence (1 for Some , 0 for None), and the remaining
d components encode the value. Given inputs a4,b € Option T, the residual MLP fiesmp
processes the concatenated vector

Aflag
X = Aval
bﬂag

val

The MLP is designed to separate b, into positive and negative parts (b4, b— respectively)
influenced by ag,g. Specifically, it computes:

fresmlp(X) = fya] + OReLU (b+ - Aaﬂag) — UReLU (b— - Aaﬂag) (13)

= Aya] + UReLU (bval - Aﬂﬂag) — OReLU (_bval - Aaﬂag)/

where A is a vector with large positive entries that ensures the ReLU activation zeroes out the
non-selected parts based on the flag. When ag,y, = 1, the terms involving b are suppressed,
resulting in ¢ = a. Conversely, when ag,g = 0, the positive part of b remains, effectively
selecting b. Thus, fresmip accurately implements the Option:or function, demonstrating that

it is representable within Relep%(dH). O

Proposition 10 (Field Access Is Representable in ResMlp). For algebraic data type, either struct

field access, enum discriminator, and variant field access can be represented in Relep‘f where d is
the encoding dimension.

Proof. Obvious because these operations are linear. O

Proposition 11. [Composition of Functions Representable in ResMlp] For local types T,S, R,

withmaps f : T — Sand map g : S — R representable in RelepLzl1 and Relep‘zz2 respectively.

max{dy,dy }

Then g o f is representable in ResMlp; "7

30

Published as a conference paper at COLM 2025

b yers ba layers Pr(3(f(x)))

Figure 3: Transformation from ¢7(x) to ¢s(f(x)) to ¢r(g(f(x))) with MLP layers.

Proof. Obvious by using the first L, layers to map from 7 to S and using the rest L, layers
to map from S to R. The process can be visualized as in Figure 3.

O

Proposition 12. [Computation Graph of Functions Representable in ResMlp] Let G be a compu-

tation graph, with each vertex v being of some local type T,, and the construction functions are

representable in Relep‘Zz. For convenience, if v is a source vertex, d, is defined to be the encoding

dimension of T and L, = 0. Then the function induced by the computation graph is representable
in ResMIpZv<¢ o .
Depth(G)(maxyeg Lo+1)+1

Proof. We construct a global residual multi-layer perceptron (ResMLP) that simulates the
computation graph G by aggregating and updating the states of all vertices simultaneously.
Let D =) g dv be the total dimension, where d; is the dimension associated with vertex v.
The global ResMLP will have a depth of Depth(G)(max, L, + 1).

Consider the concatenated state vector X(!) € RP, which is a concatenation of the states of
all vertices:
(t)

where X;,’ € R% is the state of vertex v at layer t.

veg’

Initialization occurs at depth zero, corresponding to the source vertices of the computation

graph. The state vector X(©) is set by assigning the input vectors to the source vertices and
initializing all other vertices to zero. Formally, if V) denotes the set of source vertices, then:

(0) xp, ifv eV,
Xy = .
0 otherwise,
where x, € R% is the input to source vertex v. Because Xz(,o) is of dimensionality d, equal to
the encoding dimension, this agrees with our convention for representing functions over
local types.

We proceed inductively over the depth levels of the computation graph. For each depth
level k = 1,2,...,Depth(G), we perform the following steps in the global ResMLP.

1. Input Aggregation Layer. We apply a linear transformation to gather the outputs
from the predecessor vertices of each vertex at depth k and feed them as inputs to

these vertices. Specifically, we define a linear mapping Wa(gc, € RP*P such that:

X)) — Wa(ggx(fkq),
where t;_; is the layer after processing depth k — 1, and X() is the aggregated

input for the vertices at depth k. The matrix w§§25 rearranges and combines the
outputs from predecessor vertices to provide the correct inputs to each vertex at
depth k. Specifically, for each vertex v at depth k, and for each predecessor u of v in

)

the computation graph, the matrix Wélg{g contains entries that copy the output of u

)

into the input positions of v. All other entries in Wégg are set to zero or identity as
appropriate.

31

Published as a conference paper at COLM 2025

2. Local Computation Layers. For each vertex v at depth k, we simulate its local
ResMLP of depth L. Since the depths L, may vary, we pad the local ResMLPs to
have a uniform depth L = max, L, by adding identity mappings where necessary.
The updates for vertex v are computed as:

thwl) _)?_gtk) + freny ()?Y(f")) ,
Xz(;tk+k,) = Xy(;thrkLl) +ffcnv (Xl(itkijLl)) , for K = 2,..., Ly,
XZ(]tk+k,) = ngtk+k,71), for k, == Lv + 1/ R L.

Here, fin, denotes the single-layer fully connected network (as per Definition 7)
for vertex v.

3. State Update. After completing the local computations for depth k, we update the
global state vector X(f*L) by concatenating the updated states of all vertices:

x (L) — (XZ(,tHL)) _
veg

The total number of layers added for depth k is L 4 1, accounting for the input aggregation
layer and the L layers simulating the local ResMLPs.

By repeating this process for each depth level k = 1,2,..., Depth(G), we simulate the entire
computation graph within a global ResMLP of depth Depth(G)(max, L, + 1).

Lastly, we use the final layer to perform a linear mapping so that the output is in the correct
linear representation, clearing out the intermediate values.
Therefore, the function computed by the global ResMLP is equivalent to the function induced

by the computation graph G, and it is representable in ReSMlpgepth(g)(maxv Lo+1)" O

Remark 5. We only prove things around MLPs here. Later, we shall show that this will imply
that the induced map operation over sequences can be represented by transformers.

D.6 Functions over Global Types

The task we want transformers to express is too complicated to be cleanly described in one
shot. So we introduce the following lemma to significantly simplify things. The lemma shall
be useful for our future papers on this topic.

Proposition 13. [Composition of Functions Representable in Transformers] For local types T, S,
R, withmaps f : T* = S*and g : S* — R”* representable in Tf;lj}llL1 and Tf?fzz,Lz respectively.

Then the composition g o f is representable in Tfﬁii%{%},u Ly

Proof. This is basically the same as the proof of Proposition 11. O

Proposition 14. [Computation Graphs of Functions Representable in Transformers] Suppose
we have a computation graph G = (V,E) with types T, = T, together with encoding map
Py : Ty — R% and decoding map ¢, : R% — Ty, satisfying ¢, o ¥, = idr,, and there exists some
positive integer dg such that for each v € V, f, can be represented in

d
Tty 1,

Let f be the function generated by the computation graph. Then f can be represented in Tf‘}l{/L if
d>Y,dy+ Hdy, L> % + dg where dg is the depth of the graph.

Remark 6. This doesn’t really cover the above. The bound in Proposition 14 isn't always tight
for model dimension when the computation graph is deep and Proposition 13 complements
it.

32

Published as a conference paper at COLM 2025

Proof. WLOG, assume thatd =)",y d, + Hdp. Then

RY = (@ JRdv> o @ RY|. (14)

veV he[H]

= A
Here C stands for "cache" used for storing computed values, and A stands for "active" used
for storing intermediate computation results.

Make an order of all the nodes in the graph, say V = {vl, UG } such that Depth(v;) <
Depth(v;) if i <.

We now imagine the transformer computation process as gradually evaluating the value
of each vertex, starting from v; to v|g|. Every max, Ly layers form a layer group, and after
each layer group, at most H vertices are assigned values. The equation 14 implies that
we have enough memory to cache the computed values and intermediate values in small
transformers.

Now let this process continue until we compute all the values. It must be finite because
after each layer group, at least one of the vertices is computed. But this bound is too loose.
We claim the following:

Claim: the number of layer groups where less than H vertices are assigned values is smaller
than Depth(G).

Sketch of Proof of Claim: for any layer group where less than H vertices are assigned,
all the vertices that aren’t assigned after this layer group must have larger depth than any
vertices that are assigned values before this layer group, otherwise such a vertice can be
evaluated in this layer group. Define the depth of any layer group to be the smallest depth
of vertices evaluated in this layer group. Then for any unsatiated layer group, it must have
a larger depth than the previous layer group. But depth can only increase Depth(G) times,
thus there are at most Depth(G) unsatiated layer groups.

Proof of Claim: let Vi, ..., V] be the vertices evaluated at each layer group. Note that/ is a
different symbol than L and means that the number of layer groups rather than the number
of layers.

For convenience, let D; be the minimum of the depths of vertices in V;.

Suppose that the ith layer group is unsatiated, then i < I. We want to show that D; < D;,;.
Suppose otherwise, i.e., D; = D;;1. Because the ith layer group is unsatiated, for any
v € Vi11, v must have dependencies that haven’t been evaluated before the ith layer group.
Choose vy € V;,v1 € Viiq such that Depth(vg) = Depth(v1) = D; = D, 1. Note that any
dependency of v; must have smaller depths than vy, then must have already be evaluated
before the ith layer group. Contradiction!

Now given the claim, we have that for all but at most Depth(G) choicesofi =1,...,1, we
have |V;| = H, then we have

1
Gl = }_ Vil = (I - Depth(G))H (15)
i=1
Then ! < % + Depth(G).

Then L < [-maxyeg Ly = (% + Depth(G)) maXyeg.
O

Proposition 15. [Nearest Left/Right] For any local type T , consider the function that maps a
sequence of type Option<T> to nearest left/right neighbors that are not none. It's representable in

d+1
Tfi;

33

Published as a conference paper at COLM 2025

Proof. There is only one layer and one head needed, so we can omit the layer and head
index.

WLOG, we consider the nearest left case.

We just need to make the attention exponential look like this:

Qp Ky + A%y = aagyr = Ly—p>0, (16)
where ag,, v € {0,1} indicates whether the value at position p’ is some or none.
We set V) to represent the value of type Option<T> .

For the starter token py, we make it such that

QpKpy +A¥pyp =1, 17)

and
Vo =0, (18)
so that when there are no some to the left, it will give us none. O

Proposition 16. [Nearest Two Left/Right] For any local type T , consider the function that maps a
sequence of type Option<T> to nearest two left/right neighbors that are not none. It's representable

in nggfg,o(l) where d is the encoding dimension of T .

Proof. We can utilize Proposition 15 and 14.

The nearest two left or right is equivalent to first computing the nearest left/right, and
then packing them together into one and compute its nearest left/right. The process is
represented by a small constant computation graph, then we’re done. O

D.7 Syntax and Semantics of Cybertron

Having laid the necessary mathematical foundation behind Cybertron, we now turn to
explaining its surface—its syntax and semantics. Cybertron serves as a syntax sugar for
expressing local and global computation graphs, which are the vehicles used to demonstrate
the expressive power of transformers. In Cybertron, computations are divided into two
layers: the local world and the global world. These layers play distinct but complementary
roles in constructing computation graphs.

D.7.1 Local World

The local world in Cybertron corresponds to the feed-forward layers of a transformer,
focusing on computations over local types. Local types represent individual tokens or data
points, and computations in this world handle operations on tokens independently of their
surrounding context.

Data Types. Local types in Cybertron include basic types such as Bool, Idx, Pos,
Fin<n>, BoundedVec<T, N>, etc. These types are essential for building local computa-

tion graphs that operate over individual tokens. Compound types, like structs and enums,
can also be defined for more complex token representations. These types serve as the
building blocks for the local computation graphs that transform data at the token level.

1 struct Node {

2 id: Idx,

3 position: Pos,
4 3

5

6 enum Operation {
7 Add {

8 lhs: Pos,
9 rhs: Pos,

34

Published as a conference paper at COLM 2025

10 3,

11 Multiply {

12 factor: Pos,
13 3,

14 3}

Functions. Functions in the local world define operations upon information over individ-
ual tokens. These operations form nodes in the local computation graphs. For instance,
operations like binary or unary expressions, conditionals, and matches on token types are
transformed into computation graphs by handling each individual token’s data.

1 fn process_ast(ast: AstData) -> Option<Role> {

2 match ast {

3 AstData::LetInit { pattern, initial_value, .. } => {
4 Some(Role::LetStmt { pattern, initial_value })

5 3

6 AstData::Defn { keyword, ident, .. } => {

7 Some (match keyword {

8 DefnKeyword: :Struct => Role::StructDefn(ident),
9 DefnKeyword: :Enum => Role: :EnumDefn(ident),
10 DefnKeyword: :Fn => Role::FnDefn(ident),

1 »

12 3}

13 _ => None,

14 }

15 }

Control Flow. In the local world, control flow structures such as if and match are
transformed into computation graphs by treating each branch or arm as an expression that

returns an Option based on conditions. These Option values are then combined using the
Option::or function. According to Proposition 9, Option::or maps two Option<T> values

and returns the first non- None value, or the second one otherwise. This allows conditional
branches to be represented in computation graphs as sequential option evaluations, where
the first matching condition provides the result.

D.7.2 Global World

The global world extends beyond individual tokens to sequences of tokens, represented
as global types. These global types are denoted as Seq<T>, where T is alocal type. The

global world represents the full transformer, focusing on operations involving sequences
of tokens, including variable definitions, expressions involving variable references, and
function calls.

Variable Definitions. Variables in the global world are defined using global types, which
represent sequences of local tokens. These definitions correspond to nodes in the global
computation graph.

Expressions. Expressions in the global world consist of references to variables or function
calls. Since the global world operates over sequences of tokens, these expressions are
translated into sequence-level operations in the computation graph.

Function Calls. Function calls are key elements of the global world. They are represented
by applying global functions to sequences of tokens. Cybertron provides map functions to
elevate local functions to global functions by mapping them across sequences. Additionally,

attention methods like nearest left and nearest_right handle dependencies between tokens
in the sequence by identifying relationships based on their positions.

1 let result = seq_of_values.nearest_left();
In the global world, computation graphs are built by composing map functions and atten-

tion methods. These graphs, unlike those in the local world, do not include control flow
mechanisms.

35

Published as a conference paper at COLM 2025

D.8 Dyck Language

This section demonstrates how the local world in Cybertron operates over token-level
computations and how the global world handles sequence-level operations. We use a Dyck
language example to explain the interactions between these two worlds. The example
processes a sequence of delimiters (like parentheses) and checks for matching pairs.

Local World. In Cybertron, the local world operates on individual tokens. Here, the local

types are simple, such as Delimiter and PreAst , which represent information associated
with individual tokens. These types allow for token-level operations like comparisons and
transformations.

We define a struct to represent a delimiter and an enum to classify delimiters as either left
or right. These definitions reflect local types, as they hold information over a single token.

// Define a struct “Delimiter” that wraps a “u8" value.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Delimiter(u8);

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PreAst {
LeftDelimiter(Delimiter),

1
2
3
4
5 // Define an enum “PreAst™ which represents a left or right delimiter
6
7
8
9 RightDelimiter(Delimiter),

10 3

Here, the local types Delimiter and PreAst define operations upon individual tokens,
representing fundamental units of the computation graph at the local level. The local world
is responsible for handling these small, token-level computations independently of the
global sequence.

Global World. In the global world, Cybertron operates on sequences of tokens, treating the
collection of local types as a single unit of computation. The global world introduces global

types such as Seq<Option<PreAst>> , which represents a sequence of optional delimiters.

The global world handles sequence-level operations by applying functions like nearest_left
and nearest_right to capture the relationships between tokens in the sequence.

The following function operates on a sequence of PreAst , reducing matched pre-asts. The
recursive application of step gives us the classifier for Dyck language.

1 fn step(pre_asts: Seq<Option<PreAst>>) -> Seq<Option<PreAst>> {
2 let pre_asts_nearest_left = pre_asts.nearest_left();

3 let pre_asts_nearest_right = pre_asts.nearest_right();

4 step_aux.apply(pre_asts_nearest_left, pre_asts, pre_asts_nearest_right)
5

}

Local Worlds. The step_aux function matches tokens based on their nearest neighbors
within the sequence, eliminating pre-asts if a match is found.

1 fn step_aux(

2 pre_ast_nearest_left: Option<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right: Option<(Idx, PreAst)>

5) -> Option<PreAst> {

6 match pre_ast? {

7 PreAst::LeftDelimiter(delimiter) => match pre_ast_nearest_right {

8 Some((_, PreAst::RightDelimiter(delimiter1))) if delimiterl == delimiter => None,
9

_ => pre_ast,
10 Bo
11 PreAst::RightDelimiter(delimiter) => match pre_ast_nearest_left {
12 Some((_, PreAst::LeftDelimiter(delimiter1))) if delimiterl == delimiter => None,
13 _ => pre_ast,
14 ¥y
15 3}
16 3

36

Published as a conference paper at COLM 2025

In this example, the global function step uses nearest left and nearest_right to capture

sequence-level dependencies, while the local function step_aux uses conditional logic to

check for matching pairs of delimiters. The local world handles token-level logic, while the
global world coordinates operations across the entire sequence. This separation reflects how
Cybertron handles computations at different levels of granularity.

Thus, this example illustrates how Cybertron leverages both the local and global worlds
to build comprehensive computation graphs in a convenient, comprehensive yet rigorous
manner. The local world performs individual tokenwise operations, and the global world
captures relationships between tokens in a sequence, demonstrating how Cybertron enables

transformers to express complex computations.

E Mini-Husky Details

Here’s the BNF grammar of the Mini-Husky language:

(ast) == (literal)
ident)

K
R

(

| (suffix)

| (delimited)

| (separated_item)
| (call)

| (let_init)

| (if_stmt)

| (else_stmt)

| (defn)

literal) ::=

ident) ::=

prefix) ::= <preﬁx opr) (ast)
binary) == (ast) (binary_opr) (ast)

suffix) == (ast) (suffix_opr)

(

(

(

(

(

(

(separated_item) == [(ast)] (separator)

(call) == (ast) (left_delimiter) (ast)* (right_delimiter)
(let_init) ::= let (ast)

(if_stmt) == if (ast) (delimited)

(else_stmt) ::= (if_stmt) else ((delimited) | (else_stmt))
(defn) == (defn_keyword) (ident) (ast)

(prefix_opr) w= + | -1 1] ...

(binary_opr) == + 1 -1 *1 /| ..

(suffix_opr) == ++ | — | ...

(left_delimiter) == “(" I [| {

(right_delimiter) == ‘)Y |] 1}

(separator) ==, | ;

(defn_keyword) ::= def | fn | ...

delimited) := (left_delimiter) (separated_item)* (right_delimiter)

Below is a sample piece of codes:

1 struct Dog { weight: f32, .. }
2

3 fn see_vet(dog: Dog) -> 32 {
4 assert dog.weight < 100;

37

Published as a conference paper at COLM 2025

let mut fee = dog.weight * 10.0;
fee +=100.0;
return fee

® N oy

It should be noted that the above is not the full story. There are additional constraints put
on the ASTs. However, these can be easily implemented as tree functions that are easy for
transformers to express. As we are focusing on higher level language processing capabilities,
we ignore the details here.

Additionally, we need to require that for semantic correctness, we must have proper symbol
resolution and type correctness.

E.1 Additional Details about Compiler Tasks.

The outputs of the tasks are defined using Cybertron as follows:

® The construction of AST task’s final output is the collection all AST nodes. More concretely,
the output is a sequence of Option<Ast> with length equal to the input token sequence’s
length, where Option<Ast> denoted the type Ast will a null value added and Ast is the

type storing the information of a node, including its parent, and its data of type AstData .
In Cybertron, we define Ast and AstData explicitly as follows:

1 /// Represents a node in an Abstract Syntax Tree (AST).

2 ///

3 /// Each “Ast” node has a reference to its parent node (if any) and holds
4 /// the associated syntax data (such as expressions, statements, or other
5 /// constructs defined in the “AstData™ enum).

6 pub struct Ast {

7 /// The index of the parent node in the AST, if it exists.

8 /17

9 /// - ~Some(Idx)": The node has a parent, and “Idx™ represents its position.
10 /// - “None™: The node is the root or does not have a parent.

11 pub parent: Option<Idx>,

12 /// The data associated with this AST node.

13 pub data: AstData,

14 }

15

16 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
17 pub enum AstData {

18 /// Represents a literal value (e.g., integer, string)

19 Literal(Literal),

20 /// Represents an identifier (e.g., variable name)

21 Ident(Ident),

22 /// Represents a binary expression (e.g., “x +y~, “a * b”)
23 Binary {

24 /// Index of the left operand

25 lopd: Idx,

26 /// Operator in the binary expression (e.g., “+7, “*7)
27 opr: BinaryOpr,

28 /// Index of the right operand

29 ropd: Idx,

30 }

31 ... // other variants

32 3}

® The output of the symbol resolution task is the collection of symbol resolution re-
sults on all applicable tokens. More concretely, the output is a sequence of val-

ues of type Option<SymbolResolution> where Option<SymbolResolution> is the type
SymbolResolution with a null value added for non-applicability and SymbolResolution is
the type storing the result of the symbol resolution, being either a success with a resolved
symbol of type Symbol or a failure with an error of type SymbolResolutionError . In

Cybertron, we define SymbolResolution explicitly as follows:

1 // an enum type definition, basically a tagged union type

2 pub enum SymbolResolution {

3 Ok(Symbol), // enum type variant for success with a resolved symbol

4 Err(SymbolResolutionError), // enum type variant for failure with an error
5

38

Published as a conference paper at COLM 2025

¢ The type analysis task’s final output is the collection of all type errors. More concretely,
the output is a sequence of Option<TypeError> , where Option<TypeError> denoted the
type TypeError will a null value added and TypeError is the type storing the information
of a type error. The position of type errors agrees with the source tokens leading to these
errors. In Cybertron, we define TypeError explicitly as follows:

1 // This enum represents various kinds of type errors

2 pub enum TypeError {

3 // This variant indicates a type mismatch

4 // “expected” is the type that was anticipated

5 // “actual® is the type that was encountered

6

7

TypeMismatch { expected: Type, actual: Type },
3

One can expand the definition to include other kinds of type errors.
(1) Type definition. Types are either identified uniquely by a single identifier like <identifier> ,

or builtin generic types Option<<identifier>> or Vec<<identifier>> . Users can define custom
types without generics like the following (f32 means float32 and i32 means int32 below):

1 struct Dog { weight: f32 }
2

3 enum Animal {

4 Dog,

5 Cat,

6

This part is actually a part of the AST task and type definition is a variant of the AstData
type:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
2 pub enum AstData {

3 000

4 /// Represents a function or variable definition

5 /17

6 /// # defn

7 /17

8 Defn {

9 /// The keyword in the definition (e.g., ~fn™, “enum’)

10 keyword: DefnKeyword,

11 /// Index of the identifier in the definition

12 ident_idx: Idx,

13 /// The identifier being defined (e.g., function name, variable name)
14 ident: Ident,

15 /// Index of the content or body of the definition

16 content: Idx,

17 h

18 %

(2) Type specification. Each appeared variable has a unique type, either by specification or
speculation. All parameters of a function must be specified explicitly by users. Variables
defined by let statements might or might not be specified, as follows:
fn f(a: i32) { // type of “a must be specified
let x: i32 = a; // type of “x° specified

1
2
8] let y = a; // type of "y~ unspecified
4)

The return type of functions must be specified. The field type of structs and enum vari-
ants must be specified. the type of expressions of function calls and field access will be
determined correspondingly.

The output of the task is the collection of all type signatures, represented as a sequence of
values of type Option<TypeSignature> where TypeSignature is the type holding the essential

information of type specifications. In Cybertron, TypeSignature is defined as,

1 pub struct TypeSignature {
2 pub key: TypeSignatureKey,
8] pub ty: Type,

39

Published as a conference paper at COLM 2025

}

pub enum TypeSignatureKey {
FnParameter { fn_ident: Ident, rank: Rank },
FnOutput { fn_ident: Ident },
StructField { ty_ident: Ident, field_ident: Ident },
}

© O ® N o Ul

1

(3) Type inference. As discussed above, not all variables have their types specified.

1 fn fQ) {

2 let x: i32 = 1;
3 let y = x;

4 let z = y;

5 }

In the above code, 1 is an ambiguous literal that can be of type 32, i64, u32, u64, etc,
and the types of y and z is not specified. However, one easily sees that there exists one
and only one choice of the types of 1, y,and z such that the whole code is type correct.
Utilizing this property, the user can opt out of a significant portion of type specification,
achieving static guarantees.

A Type Inference Algorithm: For simplicity, we shall prove transformers can implement
a simple type inference algorithm: we maintain a table of type assignments for variables.
We update the entries of the table by means of reduction, i.e., assuming the whole code is
correctly typed and infer more and more unspecified types until we encounter errors or all
types are inferred. The process is largely parallel, and we call the number of rounds needed
the depth of type inference.

In the above code, the first round, we determine that the type of both 1 and the type of
y are equal to the type of x whichis i32 . But we have no way to determine the type of
z because the type of y is unknown at the first round. In the second round, z can be

determined to be of type i32 because the type of y is already inferred.

The output of the task is the collection all types inferred, represented as a sequence of values
of type Option<Typelnference> where Typelnference is the type holding the inferred type.

In Cybertron, TypeSignature is defined as,

1 pub struct TypeInference {
2 pub ty: Type,
3}

F Transformer AST Proof

E1 High Level Overview

Proof Sketch of Theorem 1. The idea is to construct ASTs in a bottom-up manner with full
parallelism. We shall recursively produce the final ASTs in at most D steps. We shall

maintain two values, called pre_asts and asts. asts represents ASTs that have already

been allocated, although they might not have been fully initialized. pre_asts represents

tokens that have yet to form ASTs and new ASTs that have not been fully initialized. For
each round, we try to create new ASTs from pre_asts and update asts and pre_asts . For the
n-th round, we provably allocated all ASTs with a depth no more than n. Then for the D-th
round, all ASTs are properly constructed and allocated. Each round can be represented by a
transformer of O(1) number of heads, model dimension O(log L + D), and O(1) number
of layers. Therefore, the end-to-end process is then representable by a transformer of O(1)
number of heads, model dimension O(log L + D), and O(log L + D) number of layers. []

Here we give the full details of the proof of transformers being able to parse ASTs.

40

Published as a conference paper at COLM 2025

On a high level, we are going to see the parsing of ASTs as an assembly process. First,
we immediately get the atomic ones, like identifiers, literals, etc. Then we assembly all
composite ASTs with enough precedence util all tokens are consumed. We can prove that
at the nth round, all ASTs with depth no more than n are already constructed. In the
process, we must keep track of the unconsumed tokens and newly constructed ASTs (to be
consumed as children for new ASTs in the next round, as we are going bottom up). We use
pre_asts to denote all the unconsumed tokens and newly constructed ASTs and use asts

to denote all the constructed(allocated) ASTs. For correctness guarantees, we give detailed
type specifications for tokens, ASTs, and PreASTs as follows.

We define the Token type as follows:

1 /// The “Token™ enum represents the various types of tokens that can be

2 /// identified during the lexical analysis phase of a compiler. Each variant

3 /// corresponds to a specific category of token that can be encountered

4 /// in the source code.

5 pub enum Token {

6 /// A literal value, which can be a number, string, or other primitive type.
7 Literal(Literal),

8 /// A reserved keyword in the language, such as “if”, “else, “while”, etc.
9 Keyword(Keyword),

10 /// An identifier, typically representing variable names, function names,

11 /// or other user-defined symbols.

12 Ident(Ident),

13 /// An operator, such as “+7, -7, “x° “=="_ etc., representing mathematical
14 /// or logical operations.

15 Opr(Opr),

16 /// A left delimiter, such as ~(°, “{°, "[°, used to denote the beginning of
17 /// a block, list, or expression.

18 LeftDelimiter(LeftDelimiter),

19 /// A right delimiter, such as “)~, “}°, ~1°, used to denote the end of a
20 /// block, list, or expression.

21 RightDelimiter(RightDelimiter),

22 /// A separator, such as ~,” or ~;7, used to separate elements in a list or
23 /// statements in a block.

24 Separator(Separator),

25 3}

The type has an encoding dimenion dyoken = @(log L), which is large enough to faithfully
represent its information.

More specifically, the types Literal , Keyword , Ident, Opr, LeftDelimiter , RightDelimiter ,
Separator are local types assumed to have encoding dimension less than dyyen. Keyword ,
Opr, LeftDelimiter , RightDelimiter , Separator are small, so they can be encoded in a

straight-forward manner entirely using dyoken. However, Literal and Ident are larger
than representable by a limited number of bits because potentially a Literal can be a

string literal of arbitrary length and an Ident can also be of arbitrary length. This can be
solved through methods like interning, which gives all literals and identifiers that actually
appear in the input distinct encodings. As the context length is L, the number of different
literals/identifiers are bounded by context length and interning needs O (dyyken) = O(log L)
to work. As far as our theories are concerned, it’s totally reasonable to assume that all these
types are assumed to have encoding dimension less than dogen = O(logL).

We define AST type as follows:
/// Represents a node in an Abstract Syntax Tree (AST)

/// Each ~Ast™ node has a reference to its parent node (if any) and holds
/// the associated syntax data (such as expressions, statements, or other
constructs defined in the “AstData™ enum)

pub struct Ast {

/// The index of the parent node in the AST, if it exists.

W N U WN
~
~
~

/17
9 /// - ~Some(Idx)": The node has a parent, and “Idx™ represents its position.
10 /// - “None™: The node is the root or does not have a parent
11 pub parent: Option<Idx>,
12 /// The data associated with this AST node.
13 /17
14 /// This field holds the actual syntax information, which is typically

41

Published as a conference paper at COLM 2025

15 /// defined by the “AstData™ enum. This could represent literals, expressions,
16 /// statements, and other constructs in the source language.

17 pub data: AstData,

18 %}

Note that we intentionally structure the tree by always storing the parent but not necessarily
storing all children information. In our assumptions, we only control the depth of ASTs
but don’t control the number of children. More specifically, a function can have as many
statements as possible. To avoid overflowing, we don’t store all children information. As we
shall see, parent information alone is enough for transformers to perform tree operations.

The AstData is the most complicated we define in this paper, as follows:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
2 pub enum AstData {

8] /// Represents a literal value (e.g., integer, string)

4 Literal(Literal),

5 /// Represents an identifier (e.g., variable name)

6 Ident(Ident),

7 /// Represents a prefix expression (e.g., “!x7, “-x7)

8 /17

9 /// # exprs

10 11/

11 Prefix {

12 /// Operator in the prefix expression (e.g., ~!°, °-7)
13 opr: PrefixOpr,

14 /// Operand index of the expression

15 opd: Idx,

16 Yo

17 /// Represents a binary expression (e.g., “x +y>, “a * b")
18 Binary {

19 /// Index of the left operand

20 lopd: Idx,

21 /// Operator in the binary expression (e.g., “+7, “*7)
22 opr: BinaryOpr,

23 /// Index of the right operand

24 ropd: Idx,

25 },

26 /// Represents a suffix expression (e.g., “x++, “y--7)

27 Suffix {

28 /// Index of the operand

29 opd: Idx,

30 /// Operator in the suffix expression (e.g., “++7, “--7)
31 opr: SuffixOpr,

32 h

33 /// Represents a delimited expression (e.g., “(x +y)~, “{a, b, c})
34 Delimited {

35 /// Index of the left delimiter in the expression

36 left_delimiter_idx: Idx,

37 /// The left delimiter (e.g., ~(C, “{°)

38 left_delimiter: LeftDelimiter,

39 /// The right delimiter (e.g., ~)7, “}7)

40 right_delimiter: RightDelimiter,

41 o

42 /// Represents an item separated by a separator (e.g., elements in an array or list)
43 SeparatedItem {

44 /// Index of the content, if any

45 content: Option<Idx>,

46 /// The separator (e.g., ~, 7, ~;7)

47 separator: Separator,

48 3,

49 /// Represents a function call or array access (e.g., “f(...)", ~al[...]1")
50 /17

51 /// things like “f(...)” or ~al...]”

52 Call {

53 /// Index of the caller (e.g., function or array)

54 caller: Idx,

55 /// The left delimiter of the call (e.g., ~(C, “[°)

56 left_delimiter: LeftDelimiter,

57 /// The right delimiter of the call (e.g.,)", “1°)
58 right_delimiter: RightDelimiter,

59 /// Index of the delimited arguments in the call

60 delimited_arguments: Idx,

61 h

62 /// Represents a ~let”™ statement with an initialization (e.g., “let x = 5;7)
63 /17

64 /// # stmts

65 /17

42

Published as a conference paper at COLM 2025

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

_ =
= O 0 N0 U G WN

NN NN RN B 8 m
B ON =S ©0©®O Ok ®N

O 0N O Ul W

3

/17
/17
/17
11/

LetInit {
/// Index of the expression in the initialization
expr: Idx,
/// Index of the pattern being initialized
pattern: Idx,
/// Optional index of the initial value
initial_value: Option<Idx>,

3

/// Represents an “if~ statement

If {
/// Index of the condition in the “if” statement
condition: Idx,
/// Index of the body of the “if~ statement
body: Idx,

},

/// Represents an “else™ statement

Else {
/// Index of the associated “if" statement
if_stmt: Idx,
/// Index of the body of the “else™ statement
body: Idx,

3

/// Represents a function or variable definition

11/

/// # defn

/17

Defn {
/// The keyword in the definition (e.g., “fn>, “enum™)
keyword: DefnKeyword,
/// Index of the identifier in the definition
ident_idx: Idx,
/// The identifier being defined (e.g., function name, variable name)
ident: Ident,
/// Index of the content or body of the definition
content: Idx,

}

The “PreAst™ enum represents the intermediate forms of tokens and ASTs that are
encountered during the parsing phase, before the final AST is constructed.

Each variant corresponds to a specific type of token or partial

AST node that contributes to the construction of the final AST.

#[derive(Clone, Copy, PartialEq, Eq)]

pub

/17
/17
/17
pub

enum PreAst {

/// A reserved keyword in the language, such as “if~, “else”, “while™, etc.
Keyword(Keyword),

/// An operator, such as “+°, -7, “x° == etc., representing mathematical
/// or logical operations.

Opr(0pr),

/// A left delimiter, such as ~(°, “{°, "[°, used to denote the beginning of
/// a block, list, or expression.

LeftDelimiter(LeftDelimiter),

/// A right delimiter, such as “)°, "}, ~]1°, used to denote the end of a
/// block, list, or expression.

RightDelimiter (RightDelimiter),

/// A partially constructed AST node, representing a more complex structure
/// that will be further processed to build the final AST.

Ast(AstData),

/// A separator, such as ~,” or *;7, used to separate elements in a list or
/// statements in a block.

Separator(Separator),

this is beyond the scope of Cybertron

rather a general Rust function to integrate for testing

fn calc_asts_from_input(input: &str, n: usize) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
let tokens = tokenize(input);

let pre_asts = calc_pre_ast_initial_seq(tokens);

let allocated_asts: Seq<Option<Ast>> = tokens.map(|token| token.into());
reduce_n_times(pre_asts, allocated_asts, n)

The reduce function in Cybertron is designed to progressively refine sequences of pre-
abstract syntax trees (pre-ASTs) and allocated abstract syntax trees (ASTs). The function
takes two input sequences: pre_asts, which is a sequence of optional pre-ASTs, and

43

Published as a conference paper at COLM 2025

allocated_asts , which is a sequence of optional ASTs. It returns a tuple containing the
reduced sequences of pre-ASTs and allocated ASTs.

The reduction process is carried out in multiple stages, each focusing on different syntactic
constructs:

1. reduce_by_opr : This step handles reduction by dealing with operators and their
precedence. It simplifies expressions involving operations to form more compact
ASTs.

2. reduce_by_delimited : This step reduces constructs that are delimited, such as those
involving parentheses, braces, or other grouping symbols. It ensures that delimited
blocks are properly nested and combined in the AST.

3. reduce_by_call : In this stage, function or method calls are reduced. This involves
identifying and structuring calls within the AST, ensuring correct representation of
function invocations.

4. reduce_by_stmt : This reduction step addresses statements, ensuring that individual
statements are correctly parsed and represented within the AST, such as assignment
statements, loops, and conditionals.

5. reduce_by_defn : Finally, reduction by definition handles the parsing of definitions,

such as variable or function declarations. This step ensures that all definitions are
correctly represented within the AST.

By sequentially applying these reduction steps, the reduce function progressively trans-
forms the initial sequences into their most refined forms, ready for further syntactic or
semantic analysis.

1 pub fn reduce(

2 pre_asts: Seq<Option<PreAst>>,

8] allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 // Reduce ASTs by handling operators and precedence

6 let (pre_asts, allocated_asts) = reduce_by_opr(pre_asts, allocated_asts);
7

8

// Reduce ASTs by handling delimited constructs like parentheses or braces

9 let (pre_asts, allocated_asts) = reduce_by_delimited(pre_asts, allocated_asts);
10

11 // Reduce ASTs by handling function or method calls

12 let (pre_asts, allocated_asts) = reduce_by_call(pre_asts, allocated_asts);
13

14 // Reduce ASTs by handling statements, ensuring proper syntax structure

15 let (pre_asts, allocated_asts) = reduce_by_stmt(pre_asts, allocated_asts);
16

17 // Reduce ASTs by handling definitions, like variables or functions

18 let (pre_asts, allocated_asts) = reduce_by_defn(pre_asts, allocated_asts);
19

20 // Return the final reduced sequences of pre-ASTs and allocated ASTs

21 (pre_asts, allocated_asts)

2 3}

1 pub fn reduce_n_times(

2 mut pre_asts: Seq<Option<PreAst>>,

3 mut allocated_asts: Seq<Option<Ast>>,

4 n: usize,

5) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

6 for _ in @..n {

7 let (pre_asts1, allocated_asts1) = reduce(pre_asts, allocated_asts);

8 pre_asts = pre_asts1;

9 allocated_asts = allocated_asts1;

10 3}

11 (pre_asts, allocated_asts)

12 }

In the above definition, we actually used Rust’s mutable variable semantics. However,
it’s straightforward to see that it translates to a computation graph that is a sequential
composition of subgraphs with sequential length 7. Because the AST’s depth is bounded

44

Published as a conference paper at COLM 2025

by D, we can just take # to be D. Each subgraph is generated from the reduce function,
then they are all constant graphs constructed by global and local functions, then by Proposi-
tion 13,11 and 2 they translate to transformers with O(log L+ D) depth, model dimension,

and number of heads, where log L comes from the encoding of types like Token .
Below we give full details of the various reduction functions.

As these are implemented as Rust functions, they have been tested against a number of
inputs. We don’t guarantee an industry level of correctness, but the key point is well
illustrated.

E2 Operators

In this section, we lay down the definition of reduce_by_opr .

1 pub(super) fn reduce_by_opr(

2 pre_asts: Seq<Option<PreAst>>,

8 allocated_asts: Seq<Option<Ast>>,

4) -> (Seqg<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_opr_asts = new_opr_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);
8 let (pre_asts_reduced, new_parents) = reduce_pre_asts_by_opr(pre_asts, new_opr_asts);

9 let pre_asts = update_pre_asts_by_new_asts(pre_asts_reduced, new_opr_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_opr_asts, new_parents);

12 (pre_asts, allocated_asts)

13 %

1 /// a finite function

2 pub(crate) fn new_opr_ast(

8 nearest_left2: Option2<(Idx, PreAst)>,

4 current: Option<PreAst>,

5 nearest_right2: Option2<(Idx, PreAst)>,

6) —> Option<AstData> {

7 let Some(PreAst::Opr(opr)) = current else {

8 return None;

9 b8

10 match opr {

11 Opr: :Prefix(opr) => {

12 let Some((opd, PreAst::Ast(_))) = nearest_right2.first() else {

13 return None;

14 ¥

15 if let Some((_, ast)) = nearest_right2.second() {

16 match ast {

17 PreAst: :Keyword(_) => (),

18 PreAst: :0Opr(right_opr) => match right_opr {

19 Opr::Prefix(_) => (),

20 Opr::Binary(right_opr) => {

21 // every binary opr in our small language is left associative, so “<* instead of
.

22 if right_opr.precedence() > opr.precedence() {

23 return None;

24 }

25 }

26 Opr::Suffix(right_opr) => {

27 if right_opr.precedence() > opr.precedence() {

28 return None;

29 }

30 3

31 Do

32 PreAst::Ast(_) => (),

B8 // function call or index takes higher precedence

34 PreAst::LeftDelimiter(_) => return None,

35 PreAst::RightDelimiter(_) => (),

36 PreAst: :Separator(_) => (),

37 3}

38 b8

39 Some (AstData: :Prefix { opr, opd })

40 3}

41 Opr::Binary(opr) => {

42 let Some((lopd, PreAst::Ast(_))) = nearest_left2.first() else {

43 return None;

44 b8

45 let Some((ropd, PreAst::Ast(_))) = nearest_right2.first() else {

46 return None;

45

Published as a conference paper at COLM 2025

47
48
49
50
bl
52
58
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
73
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124

of *°

}
if let Some((_, ast)) = nearest_left2.second() {
match ast {
PreAst: :Keyword(kw) => (),
PreAst::0Opr(left_opr) => match left_opr {
Opr::Prefix(left_opr) => {
if left_opr.precedence() >= opr.precedence() {
return None;

}
}
Opr::Binary(left_opr) => {

/// every binary opr in our small language is left associative, so “>="

if left_opr.precedence() >= opr.precedence() {
return None;

}

Opr::Suffix(_) => (), // actually this will be a syntax error
1,
PreAst::Ast(_) => {
if opr != BinaryOpr::LightArrow {
return None;
}
3
PreAst::LeftDelimiter(_) => (),
PreAst::RightDelimiter(_) => return None,
PreAst: :Separator(_) => (),
3
3
if let Some((_, ast)) = nearest_right2.second() {
match ast {
PreAst: :Keyword(kw) => match kw {
Keyword: :ELSE => return None,
-=>0,
3,
PreAst: :0Opr(right_opr) => match right_opr {
Opr::Prefix(_) => (), // actually this will be a syntax error
Opr::Binary(right_opr) => {
/// every binary opr in our small language is left associative, so “<°

of ~<="

if right_opr.precedence() > opr.precedence() {
return None;
}
}
Opr::Suffix(right_opr) => {
if right_opr.precedence() >= opr.precedence() {
return None;
}
}
3,
// function call or index takes higher precedence
PreAst::LeftDelimiter(_) => return None,
PreAst::RightDelimiter(_) => (),
PreAst::Ast(_) => (),
PreAst: :Separator(_) => (),
3
}
Some(AstData: :Binary { lopd, opr, ropd })

}
Opr::Suffix(opr) => {

let Some((opd, PreAst::Ast(_))) = nearest_left2.first() else {
return None;
3
if let Some((_, ast)) = nearest_left2.second() {
match ast {
PreAst: :Keyword(_) => (),
PreAst: :0Opr(right_opr) => match right_opr {
Opr::Prefix(right_opr) => {
if right_opr.precedence() > opr.precedence() {
return None;
}
}
Opr::Binary(right_opr) => {
/// every binary opr in our small language is left associative, so “<°

of ~<="

if right_opr.precedence() > opr.precedence() {
return None;

}

}
Opr::Suffix(_) => (),
1

46

instead

instead

instead

Published as a conference paper at COLM 2025

125 PreAst::LeftDelimiter(_) => (),
126 PreAst::RightDelimiter(_) => return None,
127 PreAst::Ast(_) => return None,
128 PreAst: :Separator(_) => (),
129 }
130 };
131 Some (AstData: :Suffix { opr, opd })
132 3}
133 }
134 3}
1 /// returns sequence of remaining PreAsts and new parent idxs
2 pub(crate) fn reduce_pre_asts_by_opr(
3 pre_asts: Seq<Option<PreAst>>,
4 new_asts: Seq<Option<AstData>>,
5) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {
6 let new_asts_nearest_left = new_asts.nearest_left();
7 let pre_asts = reduce_pre_ast_by_new_ast.apply(pre_asts, new_asts);
8 let (pre_asts, new_parents) = reduce_pre_ast_by_opr_left
9 .apply_enumerated(new_asts_nearest_left, pre_asts)
10 .decouple();
11 let new_asts_nearest_right = new_asts.nearest_right();

12 reduce_pre_ast_by_opr_right

13 .apply_enumerated(new_asts_nearest_right, pre_asts, new_parents)
14 .decouple()

5]

1 fn reduce_pre_ast_by_new_ast(pre_ast: Option<PreAst>, new_ast: Option<AstData>) -> Option<PreAst> {
2 if new_ast.is_some() {

8 None

4 } else {

5 pre_ast

6 3

A

1 fn reduce_pre_ast_by_opr_left(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 pre_ast: Option<PreAst>,

5) -> (Option<PreAst>, Option<Idx>) {

6 let Some(pre_ast) = pre_ast else {

7 return (None, None);

8 b8

9 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_left else {
10 return (Some(pre_ast), None);

11 };

12 match new_ast_data {

13 AstData::Binary { ropd: opd, .. } | AstData::Prefix { opd, .. } if opd == idx => {
14 (None, Some(new_ast_idx))

15 }

16 _ => (Some(pre_ast), None),

17 }

18 3}

1 fn reduce_pre_ast_by_opr_right(

2 idx: Idx,

3 new_ast_nearest_right: Option<(Idx, AstData)>,

4 pre_ast: Option<PreAst>,

5 new_parent: Option<Idx>,

6) —> (Option<PreAst>, Option<Idx>) {

7 let Some(pre_ast) = pre_ast else {

8 return (None, new_parent);

9 b8

10 if let Some(new_parent) = new_parent {

11 return (None, Some(new_parent));

12 }

13 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_right else {
14 return (Some(pre_ast), None);

15 8

16 match new_ast_data {

17 AstData::Binary { lopd: opd, .. } | AstData::Suffix { opd, .. } if opd == idx => {
18 (None, Some(new_ast_idx))

19 }

20 _ => (Some(pre_ast), None),

21 }

2 3}

47

Published as a conference paper at COLM 2025

E3 Statements

In this section, we lay down the definition of reduce_by_stmt .

1 pub(super) fn reduce_by_stmt(

2 pre_asts: Seq<Option<PreAst>>,

8] allocated_asts: Seq<Option<Ast>>,

4) -> (Seqg<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_stmt_asts =

8 new_stmt_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_stmt(pre_asts, new_stmt_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_stmt_asts, new_parents);
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_stmt_asts);
13 (pre_asts, allocated_asts)

14 3}

1 fn new_stmt_ast(

2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let PreAst::Keyword(Keyword::Stmt(kw)) = pre_ast? else {

7 return None;

8 b8

9 match kw {

10 StmtKeyword: :Let => {

11 let Some((idx1, PreAst::Ast(ast))) = pre_ast_nearest_right2.first() else {
12 return None;

13 b8

14 if let Some((_, pre_ast)) = pre_ast_nearest_right2.second() {
15 match pre_ast {

16 PreAst: :Keyword(_) => (),

17 PreAst::0pr(_) | PreAst::LeftDelimiter(_) => return None,
18 PreAst::RightDelimiter(_) => (),

19 PreAst::Ast(_) => return None,

20 PreAst: :Separator(separator) => match separator {
21 Separator::Comma => return None,

22 Separator::Semicolon => (),

23 B

24 }

25 }

26 let (pattern, initial_value) = match ast {

27 AstData: :Binary {

28 lopd,

29 opr: BinaryOpr::Assign,

30 ropd,

31 } = (lopd, Some(ropd)),

32 AstData: :Ident(_)

33 | AstData::Prefix { .. }

34 | AstData::Binary { .. }

35 | AstData::Delimited { .. }

36 | AstData::Call { .. } => (idx1, None),

37 _ => return None,

38 b8

39 Some(AstData: :LetInit {

40 expr: idx1,

41 pattern,

42 initial_value,

43 »

44 }

45 StmtKeyword: : If => {

46 let Some((condition, PreAst::Ast(ast1))) = pre_ast_nearest_right2.first() else {
47 return None;

48 b8

49 let Some((

50 body,

51 PreAst::Ast(AstData: :Delimited {

52 left_delimiter: LCURL,

53 right_delimiter: RCURL,

54

55 D,

56)) = pre_ast_nearest_right2.second()

57 else {

58 return None;

59 };

60 Some (AstData::If { condition, body })

48

Published as a conference paper at COLM 2025

61 }
62 StmtKeyword: :Else => {
63 let Some((if_stmt, PreAst::Ast(AstData::If { .. }))) = pre_ast_nearest_left2.first()
64 else {
65 return None;
66 b8
67 let Some((
68 body,
69 PreAst: :Ast(
70 AstData::Delimited {
71 left_delimiter: LCURL,

72 right_delimiter: RCURL,

73

74 }

75 | AstData::If { .. }

76 | AstData::Else { .. },

77 Do

78)) = pre_ast_nearest_right2.first()

79 else {

80 return None;

81 };

82 if let Some((_, PreAst::Keyword(Keyword::ELSE))) = pre_ast_nearest_right2.second() {
83 return None;

84 }

85 Some (AstData::Else { if_stmt, body })

86 3}

87 3

88 1}

1 fn reduce_pre_asts_by_stmt(

2 pre_asts: Seq<Option<PreAst>>,

8] new_asts: Seq<Option<AstData>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();

6 let new_asts_nearest_right = new_asts.nearest_right();

7 reduce_pre_ast_by_stmt

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)
9 .decouple()

10 3}

1 fn reduce_pre_ast_by_stmt(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 new_ast_nearest_right: Option<(Idx, AstData)>,

5 pre_ast: Option<PreAst>,

6) -> (Option<PreAst>, Option<Idx>) {

7 if let Some((idx1, ast)) = new_ast_nearest_left {

8 match ast {

9 AstData::LetInit { expr, .. } if expr == idx => (None, Some(idx1)),
10 AstData::If {

11 condition, body,

12 } if condition == idx || body == idx => (None, Some(idx1)),
13 AstData::Else { body, .. } if body == idx => (None, Some(idx1)),
14 _ => (pre_ast, None),

15

16 } else if let Some((idx1, AstData::Else { if_stmt, .. })) = new_ast_nearest_right
17 && if_stmt == idx

18 {

19 (None, Some(idx1))

20 } else {

21 (pre_ast, None)

22 3}

23 %}

F4 Generalized Call Forms

In this section, we lay down the definition of reduce_by_call .

1 pub(super) fn reduce_by_call(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seg<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right = pre_asts.nearest_right();

7 let new_call_asts =

8 new_call_ast.apply_enumerated(pre_asts_nearest_left2, pre_asts_nearest_right);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_call(pre_asts, new_call_asts);

49

Published as a conference paper at COLM 2025

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_call_asts, new_parents);
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_call_asts);

13 (pre_asts, allocated_asts)

14 3}

1 fn new_call_ast(

2 idx: Idx,

8] pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

4 pre_ast_nearest_right: Option<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let (caller, PreAst::Ast(caller_ast)) = pre_ast_nearest_left2.first()? else {
7 return None;

8

9

b

let (
10 delimited_arguments,
11 PreAst::Ast(AstData: :Delimited {
12 left_delimiter_idx,
13 left_delimiter,
14 right_delimiter,
15 b,
16) = pre_ast_nearest_right?
17 else {
18 return None;
19 8
20 if let Some((_, snd)) = pre_ast_nearest_left2.second() {
21 match snd {
22 PreAst: :Keyword(kw) => match kw {
23 Keyword: :Defn(kw) => match kw {
24 DefnKeyword: :Struct | DefnKeyword::Enum => return None,
25 DefnKeyword: :Fn => match left_delimiter.delimiter() {
26 Delimiter::Parenthesis | Delimiter::Box => return None,
27 Delimiter::Curly => (),
28 iB
29 3,
30 Keyword: : Stmt(kw) => match kw {
31 StmtKeyword: :Let => (),
32 StmtKeyword: : If => match left_delimiter.delimiter() {
33 Delimiter::Parenthesis | Delimiter::Box => (),
34 Delimiter::Curly => return None,
35 ¥,
36 StmtKeyword: :Else => return None,
37 D
38 1
39 PreAst: :0pr(opr) => match opr {
40 Opr::Prefix(_) | Opr::Binary(_) => match left_delimiter.delimiter() {
41 Delimiter::Parenthesis | Delimiter::Box => (),
42 Delimiter::Curly => return None,
43 I8
44 Opr::Suffix(_) => return None,
45 Bo
46 PreAst::LeftDelimiter(_) => (),
47 PreAst::RightDelimiter(_) => return None,
48 PreAst::Ast(snd_ast) => {
49 if let AstData::Ident(_) = snd_ast
50 && left_delimiter == LCURL
51 {
52 match caller_ast {
53 AstData: :Binary {
54 opr: BinaryOpr::LightArrow,
55
56 }
57 | AstData::Delimited {
58 left_delimiter: LPAR,
59 right_delimiter: RPAR,
60 ..
61 }=>0,
62 _ => return None,
63 }
64 } else {
65 return None;
66 }
67 }
68 PreAst: :Separator(_) => (),
69 3}
70 }
71 if left_delimiter_idx != idx {
72 return None;
73 3
74 Some (AstData::Call {
75 caller,

50

Published as a conference paper at COLM 2025

76 delimited_arguments,

77 left_delimiter,

78 right_delimiter,

79 b))

80 %

1 fn reduce_pre_asts_by_call(

2 pre_asts: Seq<Option<PreAst>>,

3 new_asts: Seq<Option<AstData>>,

4) -> (Seqg<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();

6 let new_asts_nearest_right = new_asts.nearest_right();
7 reduce_pre_ast_by_call

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)
9 .decouple()

=
o
-

1 fn reduce_pre_ast_by_call(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,
4 new_ast_nearest_right: Option<(Idx, AstData)>,
5 pre_ast: Option<PreAst>,

6) —> (Option<PreAst>, Option<Idx>) {

7 if let Some((

8

9

idx1,
AstData::Call {
10 delimited_arguments,
11
12 h
13)) = new_ast_nearest_left
14 && delimited_arguments == idx
15 {
16 (None, Some(idx1))
17 } else if let Some((idx1, AstData::Call { caller, .. })) = new_ast_nearest_right
18 && caller == idx
19 {
20 (None, Some(idx1))
21 } else {
22 (pre_ast, None)
23 }
24 }

E5 Definitions

In this section, we lay down the definition of reduce_by_defn .

1 pub(super) fn reduce_by_defn(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seg<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_defn_asts =

8 new_defn_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_defn(pre_asts, new_defn_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_defn_asts, new_parents);

12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_defn_asts);

13 (pre_asts, allocated_asts)

14 3}

1 fn new_defn_ast(

2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let PreAst::Keyword(Keyword: :Defn(keyword)) = pre_ast? else {

7 return None;

8 8

9 {

10 let Some((ident_idx, PreAst::Ast(AstData::Ident(ident)))) = pre_ast_nearest_right2.first()
11 else {

12 return None;

13 b8

14 let Some((content, PreAst::Ast(content_ast))) = pre_ast_nearest_right2.second() else {
15 return None;

16 it

51

Published as a conference paper at COLM 2025

17 match keyword {

18 DefnKeyword: :Struct => match content_ast {
19 AstData::Delimited { .. } => (),

20 _ => return None,

21 1

22 DefnKeyword: :Enum => match content_ast {
23 AstData::Delimited { .. } => (),

24 _ => return None,

25 B

26 DefnKeyword: :Fn => match content_ast {

27 AstData::Call { .. } => (),

28 _ => return None,

29 h

30 }

31 Some (AstData: :Defn {

32 keyword,

33 ident,

34 ident_idx,

35 content,

36 D

37 3}

38)

1 fn reduce_pre_asts_by_defn(

2 pre_asts: Seq<Option<PreAst>>,

3 new_asts: Seq<Option<AstData>>,

4) -> (Seg<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();
6 let new_asts_nearest_right = new_asts.nearest_right();
7 reduce_pre_ast_by_defn

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)
9 .decouple()

10 %

1 fn reduce_pre_ast_by_defn(

2 idx: Idx,

8] new_ast_nearest_left: Option<(Idx, AstData)>,

4 new_ast_nearest_right: Option<(Idx, AstData)>,

5 pre_ast: Option<PreAst>,

6) -> (Option<PreAst>, Option<Idx>) {

7 if let Some((idx1, ast)) = new_ast_nearest_left {
8 match ast {

9 AstData: :Defn {

10 keyword,

11 ident_idx,

12 ident,

13 content,

14 oo

15 } if ident_idx == idx || content == idx => (None, Some(idx1)),
16 _ => (pre_ast, None),

17

18 } else if let Some((idx1, AstData::Defn { .. })) = new_ast_nearest_right
19 && false

20 {

21 (None, Some(idx1))

22 } else {

23 (pre_ast, None)

24 3}

25 %}

G Transformer Symbol Resolution Proof

Here we lay down the code for symbol resolution. The actual process involves many details
such as computing ranks (the exact position of an AST node among its siblings), scopes, and
roles (a more precise version of AST, computed from its parent recursively), definitions and
resolutions.

Proof Sketch of Theorem 2. First, we need to define the type for scopes. It is represented by a
tiny sequence of indices of curly brace block AST that enclose the type/function/variable.
We assign the scope by walking through the ASTs in a top-down manner. We not only
assign scopes to item definitions, we also: (1) assign scopes to ASTs representing curly
brace blocks, with these scopes equal to the scope of block itself, and (2) assign scopes
to identifiers waiting to be resolved, with these scopes equal to the maximum possible

52

Published as a conference paper at COLM 2025

scope of its resolved definition. The computation process is easily represented in Cybertron,
indicating attention is expressive enough for this calculation and it only takes O(D) number
of layers.

After obtaining all the scopes for all items, it takes only one additional layer to obtain the
symbolic resolution through attention. As attention is expressed through the dot product
of two linear projections Q and K, we have to choose the representation of the scope type
properly to finish the proof. The full details are in Appendix G.

G.1 Ranks

1 #[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]

2 pub struct Rank(u8);

3

4 impl Rank {

5 fn next(self) -> Self {

6 Self(self.0 + 1)

7 3

8 3

9

10 pub fn calc_ranks(asts: Seg<Option<Ast>>) -> Seqg<Option<Rank>> {
11 let counts = asts.count_past_by_attention(asts, |ast, astl1| {
12 let Some(ast) = ast else { return false };

13 let Some(ast1) = astl else { return false };

14 ast.parent == astl.parent

15 8

16 (|lc: usize, ast]| {

17 ast?;

18 Some (Rank(c.try_into().unwrap()))

19)

20 .apply(counts, asts)

21 %}

22

23 pub fn calc_ranksl(asts: Seq<Option<Ast>>, n: usize) -> Seg<Option<Rank>> {
24 let mut ranks: Seg<Option<Rank>> = asts.map(|_| None);
25 for _ in 0..n {

26 ranks = calc_sibling_indicies_step(asts, ranks);
27 3}

28 ranks

29 }

30

31 fn calc_sibling_indicies_step(

32 asts: Seq<Option<Ast>>,

88 ranks: Seqg<Option<Rank>>,

34) -> Seqg<Option<Rank>> {

35 let previous_ranks = ranks.nearest_left_filtered_by_attention(asts, asts, |ast, ast1]| {
36 let Some(ast) = ast else { return false };

37 let Some(ast1) = astl else { return false };

38 ast.parent == astl.parent

39 s

40 let ranks = (|ast, rank, previous_rank: Option<Option<Rank>>| {
41 let _ = ast?;

42 if let Some(rank) = rank {

43 return Some(rank);

44 }

45 let Some(previous_rank) = previous_rank else {

46 return Some(Default::default());

47 D3

48 Some (previous_rank?.next())

49 b))

50 .apply(asts, ranks, previous_ranks);

51 ranks

52 }

In the above, count_past_by_attention that count is representable by transformers by utilizing

directly hard attention and the starter token. If the count is ¢, we shall get ¢/ (¢ + 1) from
the attention directly.

G.2 Scopes

const D: usize = 8usize;

1

2

3 pub struct Scope {

4 enclosing_blocks: BoundedVec<Idx, D>,

53

Published as a conference paper at COLM 2025

5 1}

6

7 impl Scope {

8 pub fn from_ast(idx: Idx, ast: AstData, parent_scope: Scope) -> Self {
9 match ast {

10 AstData::Delimited {

11 left_delimiter_idx,

12 left_delimiter: LCURL,

13 right_delimiter: RCURL,

14 } => Self {

15 enclosing_blocks: parent_scope.enclosing_blocks.append(idx),
16 b

17 _ => parent_scope,

18 }

19 }

20

21 pub fn new(idx: Idx) -> Self {

22 Self {

23 enclosing_blocks: todo!(),

24 }

25 }

26

27 pub fn append(self, idx: Idx) -> Self {

28 Self {

29 enclosing_blocks: self.enclosing_blocks.append(idx),
30 3}

31 3

32 3}

33

34 impl Scope {

35 pub fn contains(self, other: Self) -> bool {

36 let len = self.enclosing_blocks.len();

37 if len > other.enclosing_blocks.len() {

38 return false;

39 }

40 for i in @..len {

41 if self.enclosing_blocks[i] != other.enclosing_blocks[i] {
42 return false;

43 }

44 }

45 true

46 }

47 3}

48

49 pub fn infer_scopes(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Scope>> {
50 let mut scopes = initial_scope.apply_enumerated(asts);

51 for _ in 0..n {

52 let parent_scopes = parent_queries(asts, scopes);

53 scopes = infer_scopes_step(asts, parent_scopes, scopes);
54 3}

55 scopes

56 %}

574

58 fn initial_scope(idx: Idx, ast: Option<Ast>) -> Option<Scope> {
59 let ast = ast?;

60 if ast.parent.is_some() {

61 return None;

62 }

63 let scope = Scope::default();

64 Some (Scope: : from_ast(idx, ast.data, scope))
65 3}

66

67 fn infer_scopes_step(

68 asts: Seq<Option<Ast>>,

69 parent_scopes: Seq<Option<Scope>>,

70 scopes: Seq<Option<Scope>>,

71) -> Seq<Option<Scope>> {

72 infer_scope_step.apply_enumerated(asts, parent_scopes, scopes)
73}

74

75 fn infer_scope_step(

76 idx: Idx,

77 ast: Option<Ast>,

78 parent_scope: Option<Scope>,

79 scope: Option<Scope>,

80) -> Option<Scope> {

81 if let Some(scope) = scope {

82 return Some(scope);

83 3}

84 Some (Scope: : from_ast(idx, ast?.data, parent_scope?))
85 %}

54

Published as a conference paper at COLM 2025

G.3 Roles

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
2 pub enum Role {

3 LetStmt {

4 pattern: Idx,

5 initial_value: Option<Idx>,
6 3

7 LetStmtInner {

8 pattern: Idx,

9 initial_value: Idx,
10 },

11 LetStmtIdent,

12 LetStmtTypedVariables {
13 variables: Idx,

14 ty: Idx,

15 ¥,

16 StructDefn(Ident),

17 EnumDefn(Ident),

18 FnDefn(Ident),

19 FnDefnCallForm {

20 fn_ident: Ident,

21 scope: Scope,

22 hH

23 FnParameters {

24 fn_ident: Ident,
25 has_return_ty: bool,
26 scope: Scope,

27 h

28 FnParametersAndReturnType {
29 fn_ident: Ident,
30 parameters: Idx,

31 scope: Scope,

32 return_ty: Idx,

33 }

34 FnBody(Ident),

35 StructFields(Ident),
36 FnParameter {

37 fn_ident: Ident,
38 rank: Rank,

39 ty: Idx,

40 fn_ident_idx: Idx,
41 scope: Scope,

42 h

43 FnParameterIdent {

44 scope: Scope,

45 Yo

46 FnParameterSeparated {
47 fn_ident: Ident,
48 rank: Rank,

49 scope: Scope,

50 o

51 FnParameterType {

52 fn_ident: Ident,
53 rank: Rank,

54 Yo

55 FnOutputType {

56 fn_ident: Ident,
57 }

58 StructField {

59 ty_ident: Ident,
60 field_ident: Ident,
61 ty_idx: Idx,

62 3,

63 StructFieldType {

64 ty_ident: Ident,
65 field_ident: Ident,
66 h

67 TypeArgument,

68 TypeArguments,

69 StructFieldSeparated(Ident),
70 LetStmtVariablesType,
71 LetStmtVariables,

72 %}

1 impl Ast {

2 n role(self) -> Option<Role> {
3 match self.data {
4 AstData::LetInit {
5 expr,

55

Published as a conference paper at COLM 2025

6 pattern,

7 initial_value,

8 } => Some(Role::LetStmt {

9 pattern,

10 initial_value,

11 »,

12 AstData: :Defn {

13 keyword,

14 ident_idx,

15 ident,

16 content,

17 } => Some(match keyword {

18 DefnKeyword: :Struct => Role::StructDefn(ident),
19 DefnKeyword: :Enum => Role::EnumDefn(ident),
20 DefnKeyword: :Fn => Role::FnDefn(ident),

21 DB

22 _ => None,

23 }

24 }

25 %}

1 pub fn calc_roles(

2 asts: Seq<Option<Ast>>,

8] scopes: Seq<Option<Scope>>,

4 n: usize,

5) -> Seq<Option<Role>> {

6 let mut roles: Seq<Option<Role>> = asts.map(|ast| ast?.role());
7 let ranks = calc_ranks(asts);

8 for _ in @..n {

9 let parent_roles = parent_queries(asts, roles);

10 roles = calc_roles_step(asts, parent_roles, roles, ranks, scopes);
11 3}

12 roles

13

1 fn calc_roles_step(

2 asts: Seq<Option<Ast>>,

3 parent_roles: Seq<Option<Role>>,

4 roles: Segq<Option<Role>>,

B ranks: Seqg<Option<Rank>>,

6 scopes: Seq<Option<Scope>>,

7) —> Seqg<Option<Role>> {

8 calc_role_step.apply_enumerated(asts, parent_roles, roles, ranks, scopes)
9 3

1 fn calc_role_step(

2 idx: Idx,

3 ast: Option<Ast>,

4 parent_role: Option<Role>,
5 role: Option<Role>,

6 rank: Option<Rank>,

7 scope: Option<Scope>,

8) —-> Option<Role> {

9 if let Some(role) = role {

10 return Some(role);

11 3}

12 let ast = ast?;

13 if let Some(role) = ast.role() {
14 return Some(role);

15 }

16 match parent_role? {

17 Role::LetStmt {

18 pattern,

19 initial_value,

20 } => match ast.data {

21 AstData::Ident(ident) if idx == pattern => Some(Role::LetStmtIdent),
22 AstData: :Binary {

23 lopd,

24 opr: BinaryOpr::Assign,
25 ropd,

26 lopd_ident,

27 } if lopd == pattern => Some(Role::LetStmtInner {
28 pattern,

29 initial_value: ropd,
30 D,

31 _ => None,

32 I8

33 Role: :LetStmtInner {

34 pattern,

85 initial_value,

56

Published as a conference paper at COLM 2025

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

> =>{
if idx == pattern {
match ast.data {

AstData: :Ident(ident) => Some(Role::LetStmtIdent),

AstData: :Binary {
lopd,
lopd_ident,
opr,
ropd,

} => Some(Role::LetStmtTypedVariables {
variables: lopd,
ty: ropd,

»,

_ => todo! (),

3
} else {
None
3
3}
Role::LetStmtIdent => todo!(),
Role: :FnParameterIdent { scope } => todo!(),
Role::StructDefn(ident) => match ast.data {
AstData::Literal(_) => todo!(),
AstData::Ident(_) => None,
AstData: :Prefix { opr, opd } => todo!(),
AstData: :Binary {
lopd,
opr,
ropd,
lopd_ident,
} => todo!(),
AstData: :Suffix { opd, opr } => todo!(),
AstData: :Delimited {
left_delimiter_idx,
left_delimiter,
right_delimiter,
} => Some(Role::StructFields(ident)),
AstData: :SeparatedItem { content, separator } => todo!(),
AstData::Call { .. } => todo!(),
AstData::LetInit {
expr,
pattern,
initial_value,
} => todo!(),
AstData::Return { result } => todo!(),
AstData::Assert { condition } => todo!(),
AstData::If { condition, body } => todo!(),
AstData::Else { if_stmt, body } => todo!(),
AstData: :Defn {
keyword,
ident_idx,
ident,
content,
=> todo! (),

C

3,
Role: :EnumDefn(_) => None, // ad hoc
Role: :FnDefn(fn_ident) => match ast.data {
AstData::Literal(_) => todo!(),
AstData::Ident(_) => None,
AstData: :Prefix { opr, opd } => todo!(),
AstData: :Binary {
lopd,
opr,
ropd,
lopd_ident,
} => todo! (),
AstData: :Suffix { opd, opr } => todo!(),
AstData::Delimited {
left_delimiter_idx,
left_delimiter,
right_delimiter,
} => todo!(),
AstData: :SeparatedItem { content, separator } => todo!(),
AstData::Call {
delimited_arguments,

} => Some(Role: :FnDefnCallForm {
fn_ident,
scope: match scope {
Some(scope) => scope.append(delimited_arguments),
None => Scope: :new(delimited_arguments),

57

Published as a conference paper at COLM 2025

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

1
DR
AstData::LetInit {

expr,

pattern,

initial_value,
} => todo! (),
AstData::Return { result } => todo!(),
AstData: :Assert { condition } => todo!(),
AstData::If { condition, body } => todo!(),
AstData::Else { if_stmt, body } => todo!(),
AstData: :Defn {

keyword,

ident_idx,

ident,

content,
} => todo! (),

}

Role: :FnDefnCallForm { fn_ident, scope } => match ast.data {
AstData::Literal(_) => todo!(),
AstData::Ident(_) => todo!(),

AstData: :Prefix { opr, opd } => todo!(),
AstData: :Binary {
lopd,
opr,
ropd,
lopd_ident,
> =>{
if opr == BinaryOpr::LightArrow {
Some(Role: : FnParametersAndReturnType {
fn_ident,
parameters: lopd,
return_ty: ropd,
scope,
»
} else {
unreachable! ()
3
3
AstData::Suffix { opd, opr } => todo!(),
AstData::Delimited {
left_delimiter_idx,
left_delimiter,
right_delimiter,
} => match left_delimiter.delimiter() {
Delimiter::Parenthesis => Some(Role::FnParameters {
fn_ident,
has_return_ty: false,
scope,
D,
Delimiter::Box => todo!(),
Delimiter::Curly => Some(Role::FnBody(fn_ident)),
3
AstData: :SeparatedItem { content, separator } => todo!(),
AstData::Call { .. } => todo!(),
AstData::LetInit {
expr,
pattern,
initial_value,
} => todo!(),
AstData::Return { result } => todo!(),
AstData: :Assert { condition } => todo!(),
AstData::If { condition, body } => todo!(),
AstData::Else { if_stmt, body } => todo!(),
AstData: :Defn {
keyword,
ident_idx,
ident,
content,
} = todo!(),

},

Role: :FnParameters {
fn_ident, scope,

} => match ast.data {

AstData::Binary {
lopd,
opr,
ropd,
lopd_ident,
> =>{
if opr == BinaryOpr::Typels {

58

Published as a conference paper at COLM 2025

211

Some(Role: :FnParameter {
fn_ident,
fn_ident_idx: lopd,
rank: rank.unwrap(),

ty: ropd,
scope,
»
} else {
unreachable! ()
3
3
AstData::SeparatedItem { .. } => Some(Role::FnParameterSeparated {
fn_ident,
rank: rank.unwrap(),
scope,
DB

_ => unreachable! (),
}
Role: :FnBody(_) => None,
Role::StructFields(ty_ident) => match ast.data {
AstData: :Binary {
lopd,
opr,
ropd,
lopd_ident,
y=>{
assert_eq! (opr, BinaryOpr::Typels);
Some(Role: :StructField {
ty_ident,
field_ident: lopd_ident.unwrap(),
ty_idx: ropd,
»
3
AstData: :SeparatedItem { content, separator } => {
Some(Role: :StructFieldSeparated(ty_ident))
3
_ => None,
1,
Role: :FnParameter {
fn_ident,
fn_ident_idx,
rank,
ty,
scope,

y=>{
if idx == ty {
Some(Role: :FnParameterType { fn_ident, rank })
} else if idx == fn_ident_idx {
Some (Role: :FnParameterIdent { scope })
} else {
None

3
3
Role: :FnParameterSeparated {
fn_ident,
rank,
scope,
} => match ast.data {
AstData: :Binary {
lopd,
opr,
ropd,
lopd_ident,
y=>{
if opr == BinaryOpr::Typels {
Some(Role: :FnParameter {
fn_ident,
fn_ident_idx: lopd,
rank,
ty: ropd,
scope,
D)
} else {
unreachable! ()
3}
3
_ => unreachable! (),
3,
Role::StructField {
ty_ident,

59

Published as a conference paper at COLM 2025

279 field_ident,

280 ty_idx,

281 3= {

282 if idx == ty_idx {

283 Some(Role: :StructFieldType {

284 ty_ident,

285 field_ident,

286 H

287 } else {

288 None

289 }

290 3}

291 Role: :StructFieldSeparated(ty_ident) => match ast.data {
292 AstData: :Binary {

293 lopd,

294 opr,

295 ropd,

296 lopd_ident,

297 }=>{

298 assert_eq! (opr, BinaryOpr::Typels);
299 Some(Role: :StructField {

300 ty_ident,

301 field_ident: lopd_ident.unwrap(),
302 ty_idx: ropd,

303 3D

304 3}

305 _ => unreachable! (),

306 3,

307 Role: :FnParameterType { .. } | Role::StructFieldType { .. } | Role::TypeArgument => {
308 match ast.data {

309 AstData: :Delimited {

310 left_delimiter_idx,

311 left_delimiter,

312 right_delimiter,

313 } => Some(Role: :TypeArguments),

314 _ => None,

315 }

316 }

317 Role: :TypeArguments => match ast.data {

318 AstData::Ident(_) => Some(Role::TypeArgument),
319 AstData::Delimited {

320 left_delimiter_idx,

321 left_delimiter,

322 right_delimiter,

323 } => todo!(),

324 AstData: :SeparatedItem { content, separator } => todo!(),
325 AstData::Call {

326 caller,

327 caller_ident,

328 left_delimiter,

329 right_delimiter,

330 delimited_arguments,

331 } => todo!(),

332 _ => None,

333 3,

334 Role: :FnParametersAndReturnType {

335 fn_ident,

336 parameters,

337 return_ty,

338 scope,

339 } = {

340 if idx == parameters {

341 Some(Role: :FnParameters {

342 fn_ident,

343 has_return_ty: true,

344 scope,

345 1))

346 } else if idx == return_ty {

347 Some(Role: :FnOutputType { fn_ident })
348 } else {

349 unreachable! ()

350 }

351 }

352 Role::FnOutputType { fn_ident } => todo!(),
353 Role::LetStmtTypedVariables { variables, ty } => {
354 if idx == variables {

355 Some(Role: :LetStmtVariables)

356 } else if idx == ty {

357 Some(Role: :LetStmtVariablesType)
358 } else {

359 unreachable! ()

60

Published as a conference paper at COLM 2025

360 }

361 }

362 Role::LetStmtVariablesType => todo!(),
363 Role::LetStmtVariables => todo! (),

364 }

365 %

G.4 Defns

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
2 pub struct SymbolDefn {

3 pub symbol: Symbol,

4 pub scope: Option<Scope>,

5

1 pub fn calc_symbol_defns(

2 asts: Seq<Option<Ast>>,

8] scopes: Seq<Option<Scope>>,

4 n: usize,

5) -> Seq<Option<SymbolDefn>> {

6 let roles = calc_roles(asts, scopes, n);

7 calc_symbol_defn.apply_enumerated(asts, roles, scopes)
8 1}

1 fn calc_symbol_defn(

2 idx: Idx,

8] ast: Option<Ast>,

4 role: Option<Role>,

5 scope: Option<Scope>,

6) -> Option<SymbolDefn> {

7 match ast?.data {

8 AstData::Ident(ident) => match role? {
9 Role::LetStmt { .. } => unreachable!(),
10 Role::LetStmtVariables | Role::LetStmtIdent => Some(SymbolDefn {
11 symbol: Symbol {

12 ident,

13 source: idx,

14 data: SymbolData::Variable,
15 3,

16 scope,

17 D,

18 Role: :FnParameterIdent { scope } => Some(SymbolDefn {
19 symbol: Symbol {

20 ident,

21 source: idx,

22 data: SymbolData::Variable,
23 B

24 scope: Some(scope),

25 »,

26 _ => None,

27 Do

28 AstData: :Defn {

29 keyword,

30 ident_idx,

31 ident,

32 content,

3B } => Some(SymbolDefn {

34 symbol: Symbol {

35 ident,

36 source: idx,

37 data: SymbolData::Item {

38 kind: keyword.into(),

39 3,

40 3,

41 scope,

42 D,

43 => None,

44 }

45 3}

G.5 Resolutions

1 pub enum SymbolResolution {

2 Ok (Symbol),

3 Err(SymbolResolutionError),
4 3}

61

Published as a conference paper at COLM 2025

1 pub enum SymbolResolutionError {
2 NotResolved,

8] NotYetDeclared(Symbol),

o)

1 pub fn calc_symbol_resolutions(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<SymbolResolution>> {
2 let scopes = infer_scopes(asts, n);

3 let symbol_defns = calc_symbol_defns(asts, scopes, n);

4 let idents = asts.map(|ast| match ast?.data {

B AstData::Ident(ident) => Some(ident),

6 _ => None,

7 s

8 let symbols = symbol_defns

9 .map(| symbol_defn| Some(symbol_defn?.symbol))

10 .first_filtered_by_attention(

11 (lident, scope| (ident, scope)).apply(idents, scopes),
12 symbol_defns,

13 | (ident, scope), symbol_defn| {

14 let Some(ident) = ident else { return false };

15 let Some(symbol_defn) = symbol_defn else {

16 return false;

17 b8

18 if let Some(symbol_defn_scope) = symbol_defn.scope {
19 if 1symbol_defn_scope.contains(scope.unwrap()) {
20 return false;

21 3}

22

23 symbol_defn.symbol.ident == ident

24 Bo

25)

26 .map(|s| s.flatten());

27 finalize.apply_enumerated(idents, symbols)

28}

In the above code, we use a somehow complicated attention which we should
illustrate why it's representable by transformers. The essence is to prove

symbol_defn_scope.contains(scope.unwrap()) can be represented as part of the inner prod-
uctin Q" K. This can be done by looking closer to what contains does. Consider two scopes,
scopel and scope2 , which are sequences of bracket ast indices (can be null). The function

returns true if the sequence of scopel contains the sequence of scope2 as prefix, which can

be achieved by Y; x,' y; where x;, y; are the encoding of ith ast indices of scopel and scope2

after some transformations (different transformations because the function is asymmetric)
so that x;' y; = 0 if and only if either x; is a None or x; represents the same thing as y;, and
x] y; < 0 otherwise. More concretely, if x; is a None, x; = 0 by choice, and equal to (1, ;)
otherwise where u; corresponds to the encoding of the ith ast index of scopel ; if y; is a
None, y; = 0 by choice, and equal to (—1,v;) otherwise where A > 0 and v; corresponds to
the encoding of the ith ast index of scope2 . We should choose the encoding u;, v; such that

u] v; = 1if and only if they encode the same index, which is obviously easy enough.
1 fn finalize(idx: Idx, ident: Option<Ident>, symbol: Option<Symbol>) -> Option<SymbolResolution> {
2 let _ = ident?;

3 let Some(symbol) = symbol else {

4 return Some(SymbolResolution: :Err(SymbolResolutionError::NotResolved));
5 b8

6 match symbol.data {

7 SymbolData::Item { .. } => (),

8 SymbolData: :Variable => {

9 if idx < symbol.source {

10 return Some(SymbolResolution::Err(

11 SymbolResolutionError: :NotYetDeclared(symbol),

12));

13 }

14 }

15 3}

16 Some (SymbolResolution: :Ok(symbol))

17 3}

62

Published as a conference paper at COLM 2025

H Transformer Type Checking Proof

Here we lay down the code for type analysis. It should be noted that we didn’t completely
implement all the details. Things like struct fields, enum variant fields are left out. However,
we already cover the essential mechanism of type analysis, making it sufficient for proof
purposes.

H.1 Type Signatures

1 #[deri

2 ve(Debug, PartialEq, Eq, Clone, Copy)]

3 pub struct TypeSignature {

4 pub key: TypeSignatureKey,

5 pub ty: Type,

6 1}

1 #[derive(Debug, PartialEq, Eq, Clone, Copy)]

2 pub enum TypeSignatureKey {

8] FnParameter { fn_ident: Ident, rank: Rank 3},

4 FnOutput { fn_ident: Ident 3},

5 StructField { ty_ident: Ident, field_ident: Ident },
6 3}

1 pub(super) fn calc_ty_signatures(

2 asts: Seq<Option<Ast>>,

3 roles: Seq<Option<Role>>,

4 ty_terms: Seq<Option<Type>>,

5) -> Seq<Option<TypeSignature>> {

6 calc_ty_signature.apply(roles, ty_terms)

7}

1 fn calc_ty_signature(role: Option<Role>, ty_term: Option<Type>) -> Option<TypeSignature> {
2 let key = match role? {

3 Role: :FnParameterType { fn_ident, rank } => {

4 TypeSignatureKey: :FnParameter { fn_ident, rank }
5 3

6 Role: :StructFieldType {

7 ty_ident,

8 field_ident,

9 } => TypeSignatureKey: :StructField {

10 ty_ident,

11 field_ident,

12 3,

13 Role::FnOutputType { fn_ident } => TypeSignatureKey::FnOutput { fn_ident },
14 Role: :FnParameters {

15 fn_ident,

16 has_return_ty: false,

17 scope,

18 }=>{

19 let key = TypeSignatureKey::FnOutput { fn_ident }
20 let ty = Type::new_ident(Ident::new("unit"));
21 return Some(TypeSignature { key, ty });

22 }

23 _ => return None,

24 I

P5 // put it here!

26 let ty = ty_term?;

27 Some (TypeSignature { key, ty })

28 3}

H.2 Type Inference

1 pub struct TypeInference {
2 pub ty: Type,
3 1}

1 pub fn calc_ty_inferences(

2 asts: Seq<Option<Ast>>,

3 symbol_resolutions: Seq<Option<SymbolResolution>>,
4 roles: Seq<Option<Role>>,

5 ty_terms: Seq<Option<Type>>,

6 ty_signatures: Seq<Option<TypeSignature>>,

7 n: usize,

63

Published as a conference paper at COLM 2025

8) —-> Seqg<Option<TypeInference>> {

9 let mut ty_inferences = infer_tys_initial(asts, ty_signatures);

10 let mut ty_designations =

11 calc_initial_ty_designations(asts, roles, symbol_resolutions, ty_inferences, ty_terms);
12 for _ in 0..n {

13 ty_inferences |= infer_tys_step(asts, symbol_resolutions, ty_inferences, ty_designations);
14 ty_designations |= calc_ty_designations_step(roles, symbol_resolutions, ty_inferences);
15 }

16 ty_inferences

17 '}

1 fn infer_tys_initial(

2 asts: Seq<Option<Ast>>,

3 ty_signatures: Seq<Option<TypeSignature>>,

4) -> Seg<Option<TypeInference>> {

5 inference_literal_tys(asts).or(infer_fn_call_tys(asts, ty_signatures))
6

}

1 fn inference_literal_tys(asts: Seq<Option<Ast>>) -> Seq<Option<TypeInference>> {
2 asts.map(|ast| match ast?.data {

3 AstData::Literal(lit) => match lit {

4 Literal::Int(_) => Some(Typelnference {

5 ty: Type::new_ident(Ident::new("Int")),

6 D,

7 Literal::Float(_) => Some(TypelInference {

8 ty: Type::new_ident(Ident::new("Float")),
9 DB

10 Do

11 _ => None,

12 b))

13 3}

1 fn infer_fn_call_tys(

2 asts: Seq<Option<Ast>>,

B ty_signatures: Seq<Option<TypeSignature>>,

4) -> Seq<Option<TypeInference>> {

5 ty_signatures

6 .first_filtered_by_attention(asts, ty_signatures, |ast, ty_signature| {
7 let Some(ast) = ast else { return false };

8 let Some(TypeSignature {

9 key: TypeSignatureKey::FnOutput { fn_ident 3},

10 ..

11 }) = ty_signature

12 else {

13 return false;

14 b8

15 match ast.data {

16 AstData::Call {

17 caller,

18 caller_ident,

19 left_delimiter,

20 right_delimiter,
21 delimited_arguments,
22 } if caller_ident == Some(fn_ident) => true,
23 _ => false,

24 }

25 »

26 .map(|ty_inference| {

27 Some (TypeInference {

28 ty: ty_inference??.ty,
29 »

30 »

31 }

H.3 Type Expectations

1 pub struct TypeExpectation {

2 pub ty: Type,

3 pub source: TypeExpectationSource,
4 3

1 pub enum TypeExpectationSource {
2 CallArgument { caller_ident: Ident, rank: Rank },
3}

64

Published as a conference paper at COLM 2025

1 pub fn calc_ty_expectations(

2 asts: Seq<Option<Ast>>,

8] ranks: Seqg<Option<Rank>>,

4 ty_signatures: Seq<Option<TypeSignature>>,

5) -> Seq<Option<TypeExpectation>> {

6 let parent_asts = asts.index(asts.map(|ast| ast?.parent)).map(Option::flatten);
7 let grandparent_asts = asts

8 .index(parent_asts.map(|parent_ast| parent_ast?.parent))

9 .map(Option::flatten);

10 let ty_expectation_sources = calc_ty_expectation_source.apply(grandparent_asts, ranks);
11 let retrieved_ty_signatures = ty_signatures

12 .first_filtered_by_attention(

13 ty_expectation_sources,

14 ty_signatures,

15 | ty_expection_source, ty_signature| {

16 let Some(type_expectation_source) = ty_expection_source else {
17 return false;

18 b

19 let Some(type_signature) = ty_signature else {
20 return false;

21 b8

22 match (type_expectation_source, type_signature.key()) {
23 (

24 TypeExpectationSource: :CallArgument {
25 caller_ident,

26 rank: ranke,

27 Yo

28 TypeSignatureKey: :FnParameter {

29 fn_ident,

30 rank: ranki,

31 o

32) if caller_ident == fn_ident && rank® == rankl => true,
33 _ => false,

34 }

35 15

36)

37 .map(Option::flatten);

38 (|ty_expectation_source: Option<TypeExpectationSource>,

39 retrieved_ty_signature: Option<TypeSignature>| {

40 Some (TypeExpectation {

41 ty: retrieved_ty_signature?.ty(),

42 source: ty_expectation_source?,

43)

44 D

45 .apply(ty_expectation_sources, retrieved_ty_signatures)
46

1 fn calc_ty_expectation_source(

2 grandparent_ast: Option<Ast>,

8] rank: Option<Rank>,

4) -> Option<TypeExpectationSource> {

5 let grandparent_ast = grandparent_ast?;

6 let rank = rank?;

7 match grandparent_ast.data {

8 AstData::Call {

9 caller,

10 caller_ident: Some(caller_ident),

11 left_delimiter,

12 right_delimiter,

13 delimited_arguments,

14 } => Some(TypeExpectationSource::CallArgument { caller_ident, rank }),
15 _ => None,

16 3}

17 3}

H.4 Type Errors

1 pub enum TypeError {

2 TypeMismatch { expected: Type, actual: Type },
3}

1 pub fn calc_ty_errors(

2 ty_inferences: Seq<Option<TypeInference>>,

3 ty_expectations: Seq<Option<TypeExpectation>>,

4) -> Seq<Option<TypeError>> {

5 calc_ty_error.apply(ty_inferences, ty_expectations)
6 1}

65

Published as a conference paper at COLM 2025

1 fn calc_ty_error(

2 ty_inference: Option<Typelnference>,

8] ty_expectation: Option<TypeExpectation>,
4) -> Option<TypeError> {

5 let ty_inference = ty_inference?;

6 let ty_expectation = ty_expectation?;

7 if ty_inference.ty == ty_expectation.ty {
8

None
9 } else {
10 Some (TypeError: :TypeMismatch {
11 expected: ty_expectation.ty,
12 actual: ty_inference.ty,
13 »
14 3}
15 3}

I Lower Bounds

struct <ty-ident-1> {3}
struct <ty-ident-2> {}
struct <ty-ident-3> {}
struct <ty-ident-4> {}

fn <f-ident-1>(a: <arg-ty-ident-1>) {}
fn <f-ident-2>(a: <arg-ty-ident-2>) {}
fn <f-ident-3>(a: <arg-ty-ident-3>) {}
fn <f-ident-4>(a: <arg-ty-ident-4>) {}

O ® N U W N

11 fn g() {
12 let x: <ty-ident> = ...;
13 <f-ident>(x);

I.1 Lower bounds for RNN: Easy Bounds due to Memory

Proof of Theorem 4. Our proof resonates with the proof of Theorem 4.6 in Wen et al. (2024)
and Theorem 8 in Bhattamishra et al. (2024). For L,D,H € N, suppose that D makes
MiniHuskyAnnotated, ;; to be nontrivial, i.e., one can define functions with one parameter

and use function calls. Simple calculations shows we can choose D = 7and H = 1. Ifa RNN
represents a function maps any token sequence of length L in MiniHuskyAnnotated, ;;

to its type errors represented as a sequence of values of type Option<TypeError> , then the

memory right before type checking must store all previous type signatures, the number of
which can be as many as ()(L) in the worst case. Assuming proper numerical discretization,
the memorization of these type signatures would require the memory size to be (}(L) in the
worst case. O

J Additional Experiment Details

J.1 An Example of Input Data
Below is a data piece with f =10,a =5,c =5,d =3,v =0.2,e = 0.5

1 fn rename_file (i : Float , sum : Float) { }

2 fn parse_data (list : Int , value : Bool , stack : Float , k : Float , msg : Float) { }

3 fn parse_json (position : Bool) { }

4 fn find_by_id (error : Float) { rename_file (60.1 , 94.1) ; 3}

5 fn merge (group : Int , table : Float , error : Bool , count : Int) { parse_data (7 , false , 49.1 , 33.1
, 4.1) 5 3

6 fn log_info (val : Bool , m : Bool , xml : Float , path : Float) { parse_json (true) ; }

7 fn process (function : Int , value : Float , keys : Bool) { find_by_id (88.1) ; rename_file (value ,
40.1) ; }

8 fn validate_response (end : Int , z : Float , max : Bool) { merge (1 , true , 27.1 , 72) ; parse_data (
11, 85, 35.1, 14.1 , true) ; }

9 fn print_message (algorithm : Float) { parse_json (92) ; log_info (true , algorithm , false , 26.1) ; }

10 fn print_help (max : Bool , tree : Int , method : Int , item : Bool) { process (25 , 28 , false) ;
rename_file (48 , 80.1) ; 1}

66

Published as a conference paper at COLM 2025

train_loss

n100000-f10-a5-c5-d3-v0.20-e0.50

= P—0—0--0—9

100 200,000

n100000-f10-a5-c5-d3-v0.20-e0.50

n100000-f10-a5-c5-d3-v0.20-e0.50

1.0 1.0
e mn e mn
transformer transformer
0.9 0.8
§ - 0~ 0 —0-0—-0—¢—0 o
(
20.8
o
z 200
{ @
o =]
71)
©o0.7 T
@ s
g 0.4
9, .
—-&-e L] To0.6 -0 -0 0-0-06—9 P!
0.2
0.5 ® mn
transformer
S 0.0 A 0.0 A
400150!)6?2100 100 ZOO#Paraﬁ%o 4001501}6(1)2100 0 100 ZDD#Para%%) 40015006;}2100

Figure 4: Figures for the dataset with (f,a,c, d,v,e) = (10,5,5,3,0.2,0.5).

J.2 Setups

Model details are shown in Table 1, and other hyperparameters are shown in Table 2.

Table 1: Model specification

Specification Value

Transformer

- Hidden size (d},) {8k |1 <k<8}U{240}
- Num attention heads 1

- Num hidden layers 8

- Intermediate size 24y,

- Max position embeddings | < 2048

RNN
- Hidden size
- Num layers

{8k|1<k<8}uU{256}
8

Table 2: Hyperparameters of experiments

Hyperparameter | Value

Dataset

-(n, f,d) { (100000, 10, 3), (200000, 20, 5), (300000, 40, 10), (400000, 80, 20) }
-(a,c,v,e) (5,5,0.2,0.5)

Number of epochs | 80

Train batch size 512

Optimizer Adam

LR scheduler Linear warmup-decay
- Warmup min Ir 1x107°

- Warmup maxIr | 1x 1073

- Warmup steps 990

J.3 Additional Results

Figures 4,5,6,7 include other metrics (train loss, accuracies for expected type in validation set,
and validation loss) in the experiments. Note that for the expressive power of the models,

training accuracies are better indicators.

67

Published as a conference paper at COLM 2025

n200000-f20-a5-c5-d3-v0.20-e0.50

Figure 5: Figures for the dataset with (f,4,c, d,v,e)

1.0

acc
4
©

-
®

o
S

pected_type

val_ex

n200000-f20-a5-c5-d3-v0.20-e0.50

-0 —g--0-0-0—0

mn
transformer

4
©

_acc
o
@

pected_type
=
u

3l
o

val_ex|

0.5

100 ZOO#Paraﬁ%o

f——
4001500600700
le4

n300000-f40-a5-c5-d5-v0.20-e0.50

*- 00 le--0—0—0—0

mn
transformer

100 ZOD#Para%'?so

f——
4001500600700
le4

n200000-f20-a5-c5-d3-v0.20-e0.50

1.0
® rmn
transformer
0.8
0.6
@
2 (S
5 -0 —0i-0—-0—0 -9 L]
>0.A
0.2
0.0 S
100 ZOO#Para%QSO 40015006?2100
= (20,5,5,3,0.2,0.5).
10 n300000-f40-a5-c5-d5-v0.20-e0.50
® rmn
transformer
0.8
0.6
@
2 *o-0o-p-0-0-0¢—o L}
g
0.4
0.2
0.0 S
100 ZOD#Para%QSO 40015006;}2}00

Figure 6: Figures for the dataset with (f,4,c, d,v,e) = (40,5,5,5,0.2,0.5).

1.0
e mn
transformer
0.8
00.6
@
°
q
£ - -q-0-0-0-¢-0 L]
S04
0.2
0.0 e —
100 200, 300 4001500600700
led
10 n300000-f40-a5-c5-d5-v0.20-e0.50
e mn
transformer
0.8
00.6
2
°
< - -8-m-0--0-0-6-0)
i
0.4
0.2
0.0 e
100 200,p. 300 4001500600700
led
n400000-f80-a5-c5-d10-v0.20-e0.50
® mn
transformer
0.8
00.6
2
°
q
£ - -o-a—o--0-0-¢-0 L]
S04
0.2
0.0 =
100 200, 300 400150[}6?:;00

1.0

acc
4
©

o
Y

pected_type.
°
g

val_ex|

n400000-f80-a5-c5-d10-v0.20-e0.50

o -o—-0o- 0-0-0—0

mn
transformer

100 200#Para%950

A
4001500600700
le4

n400000-f80-a5-c5-d10-v0.20-e0.50

® mn
transformer
0.8
0.6
@
2 [
E| haddul b oF Y T) L]
2
0.4
0.2
0.0 Hf——
100 ZOO#Para%Qé) 40015006?2}00

Figure 7: Figures for the dataset with (f,a,c, d,v,e) = (80,5,5,10,0.2,0.5).

68

	Introduction
	Related Work
	Preliminaries
	Programming Language Processing and The Target C-Like Language: Mini-Husky
	Expressive Power of Transformers as Efficient Compilers
	Abstract Syntax Tree Construction
	Symbol Resolution
	Type Analysis
	Proof Vehicle: Cybertron, a Domain-Specific Language

	Comparisons between Transformers and RNN
	A Lower Bound for RNNs for Type Checking
	Empirical Comparison between Transformers and RNNs

	Conclusions and Future Work
	Tree
	What are Trees
	Representations of Trees

	Context Free Grammar
	Neural Architectures
	Cybertron
	Introduction
	Philosophy: Sequential Representation of Everything
	Local and Global Types
	Computation Graph
	Functions over Local Types
	Functions over Global Types
	Syntax and Semantics of Cybertron
	Local World
	Global World

	Dyck Language

	Mini-Husky Details
	Additional Details about Compiler Tasks.

	Transformer AST Proof
	High Level Overview
	Operators
	Statements
	Generalized Call Forms
	Definitions

	Transformer Symbol Resolution Proof
	Ranks
	Scopes
	Roles
	Defns
	Resolutions

	Transformer Type Checking Proof
	Type Signatures
	Type Inference
	Type Expectations
	Type Errors

	Lower Bounds
	Lower bounds for RNN: Easy Bounds due to Memory

	Additional Experiment Details
	An Example of Input Data
	Setups
	Additional Results

