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Abstract

Reinforcement learning from human feedback (RLHF) has been an effective tech-
nique for aligning AI systems with human values, with remarkable successes in
fine-tuning large-language models recently. Most existing RLHF paradigms make
the underlying assumption that human preferences are relatively homogeneous,
and can be encoded by a single reward model. In this paper, we focus on address-
ing the issues due to the inherent heterogeneity in human preferences, as well as
their potential strategic behavior in providing feedback. Specifically, we propose
two frameworks to address heterogeneous human feedback in principled ways:
personalization-based one and preference-aggregation-based one. For the former,
we propose two approaches based on representation learning and clustering, respec-
tively, for learning multiple reward models that trade-off the bias (due to preference
heterogeneity) and variance (due to the use of fewer data for learning each model
by personalization). We then establish sample complexity guarantees for both
approaches. For the latter, we aim to adhere to the single-model framework, as
already deployed in the current RLHF paradigm, by carefully aggregating diverse
and truthful preferences from humans. We propose two approaches based on reward
and preference aggregation, respectively: the former utilizes social choice theory
to aggregate individual reward models, with sample complexity guarantees; the
latter directly aggregates the human feedback in the form of probabilistic opinions.
Under the probabilistic-opinion-feedback model, we also develop an approach
to handle strategic human labelers who may bias and manipulate the aggregated
preferences with untruthful feedback. Based on the ideas in mechanism design, our
approach ensures truthful preference reporting, with the induced aggregation rule
maximizing social welfare functions.

1 Introduction
As AI models are becoming more powerful, there is greater emphasis on aligning their performance
and priorities with the preferences of human users. In this context, reinforcement learning from
human feedback (RLHF) has emerged as a promising approach, because it combines pre-trained large
language models with direct human feedback (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al.,
2022). RLHF utilizes human feedback in the form of preferences over multiple responses in order to
fine-tune the output of a pre-trained model, for example, by encouraging certain responses or types
of output. The finetuning can be done by either learning a user reward model over user preference
data, or by using the preference data directly (through direct preference optimization (Rafailov et al.,
2024)). In either case, accurately approximating user preferences is an important task, which becomes
way more challenging when the target group of users is heterogeneous (Figure 1) (Pollak and Wales,
1992; Boxall and Adamowicz, 2002).
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Q1: Which smartphone company is the biggest?

Homogeneous Feedback

𝐴!: 
Samsung seems 

great!

𝐴": 
The capital of the 
US is Washington, 

DC.

𝐴#: 
Apple is the 

biggest company. 

𝐴! would be the right answer!

Q2: Which company is the best for making phones?

Heterogeneous Feedback

𝐵!: 
Samsung is the 
best company.

𝐵": 
It might depend on 
what you prioritize 
for the smartphone. 

𝐵#: 
Apple has a really 
good design for the 

iPhone. 

Preference
𝐵" > 𝐵# > 𝐵!

Preference
𝐵! > 𝐵# > 𝐵"

Cluster 1 Cluster 2

LLM

LLM

LLM

LLM

LLM

LLM

Solution 1) Personalization 
with Representation Learning
- Leveraging the Common 
Structure of Human Rewards

Solution 2) Personalization 
with Clustering
-  Cost Efficient 
-  Bias–Variance Tradeoff

Solution 3) Aggregating with 
Social Choice Theory
- DSIC Mechanism
- Social Welfare Maximization

Figure 1: We demonstrate a setting where humans might have heterogeneous feedback. We provide a
personalization-based framework and a human preference aggregation-based framework.

This paper contributes to this literature by providing a holistic study of learning (different) reward
models from heterogeneous user preference data. There are two major challenges in this context. The
first (C1) is a pure learning one: preference data from each individual might not be sufficiently rich
to construct an accurate model of heterogeneous users. The second (C2) is after learning different
reward models for heterogeneous users, how to aggregate them carefully to learn a single model.
Moreover, with humans (who are oftentimes viewed as rational decision-makers) involved in the loop,
they might strategically misreport their preferences to manipulate this aggregated model. For example,
in online rating systems, users may provide extreme feedback to disproportionately influence the
overall ratings toward their viewpoint. Our approach develops ways of tackling these challenges.
To address (C1), we adopt two approaches based on representation learning, which assume that
individual reward functions share a structure through a common representation. We model each
reward function as the inner product of a common representation and a parameter vector. Given the
lack of sufficient individual feedback, having a shared structure by representation helps articulate
each user’s reward model. The first approach constructs a personalized reward model for each
user. In this approach, we find a common representation and learn each individual’s parameter
vector by pooling every individual feedback. The second approach segments user preferences
into clusters and learns a reward model for each cluster. This approach is useful when individual
reward functions might not be available due to insufficient data. By assuming “diversity of user’s
parameter vectors”, which means that individual parameter vectors span the entire space of parameters
(a common assumption in multi-task learning), we show that this approach enables better sample
complexity results. Leveraging data from all users helps learn the common representation, as the
diversity assumption guarantees sufficient information about every dimension of the representation.
To address (C2), we first estimate the parameters for each individual’s reward model using the
individual’s preference comparison data. Then, we aggregate reward models using a family of reward
aggregation rules, which follows six pivotal axioms from social choice theory. We then provide
sample complexities of the policy induced from the single aggregated reward model. We additionally
provide a model with a different feedback type - probabilistic opinion. Concretely, instead of choosing
a single answer from a pool of candidate answers, we allow the human labeler to choose a probability
distribution over the answers, which indicates how much the labeler likes those answers. This type
of feedback can arguably express the labeler’s preference more accurately. Moreover, probabilistic
opinion feedback does not require the relationship between the human reward model and preference.
We consider various aggregation rules to aggregate their probabilistic opinion vectors into one. We
showed that our suggested probabilistic opinion aggregation rule is equivalent to reward aggregation
rules following six pivotal axioms, under the Plackett-Luce model (Plackett, 1975; Luce, 2005).
To deal with the strategic misreport problem, we adopt a mechanism design approach whereby users
correctly reporting their preferences is incentivized. We model each human labeler’s utility as a
quasi-linear function, considering both the distance between her probabilistic opinion vector and the
aggregated opinion vector, and the associated costs. Under this model, we show that our proposed
aggregation rule maximizes social welfare. Lastly, we design an incentive-compatible mechanism to
guarantee truthful reporting by inducing proper cost in the human feedback collection process.

1.1 Related Work
We defer a detailed related work and comparison with recent work to Appendix E.

2



Notation. The matrix O denotes an all-zero matrix, while I stands for an identity matrix, of proper
dimensions. We use A ≻ O to denote that matrix A is a positive definite matrix. The function σ
represents the Sigmoid function, defined by σ(x) = 1/(1 + exp(−x)). The notation [K] denotes
the set {1, 2, . . . ,K}. ∆(A) refers to a probability vector in R|A|. The term σ2

k(A) denotes the k-th
largest singular value of matrix A. ∥x∥2 refers to the ℓ2-norm. We also define ∥x∥Σ =

√
x⊺Σx for a

positive definite matrix Σ. For a matrix M , the norm ∥M∥F denotes the Frobenius norm of M .

2 Preliminaries
Most existing RLHF processes (for language model fine-tuning) consist of two main stages: (1)
learning a model of human rewards (oftentimes from preference data), and (2) fine-tuning with the
reference policy through Reinforcement Learning algorithms, e.g., Proximal Policy Optimization
(PPO) (Schulman et al., 2017). It may also be possible to avoid the explicit learning of reward
functions while fine-tuning the policy directly from preference data (Rafailov et al., 2024).

Markov Decision Processes. We define the state s as an element of the set of possible prompts or
questions, denoted by S , and the set of actions a, contained inA, as the potential answers or responses
to these questions. Consider an RLHF setting with N human labelers (or users), each of whom has
their own reward function. This setting can be characterized by a Markov Decision Process (MDP)
with N reward functions, represented by the tuple M = (S,A, H, (Ph)h∈[H], r = (ri)i∈[N ]), where
H denotes the length of the horizon, Ph : S ×A 7→ ∆(S) is the state transition probability at step
h ∈ [H], T := (S ×A)H denotes the set of all possible trajectories, and ri : T → R is the reward
function for individual i and trajectory τ ∈ T , representing the utility of human user i from a sequence
of responses to a given prompt. We assume −Rmax ≤ ri(τ) ≤ Rmax for every τ ∈ T and i ∈ [N ],
for some Rmax > 0. This reward model also covers the case that ri(τ) =

∑
h∈[H] rh,i(sh, ah),

where rh,i : S × A → R denotes the state-action reward function for each step h and individual i,
and τ = (s1, a1, s2, a2, . . . , sH , aH). The MDP concludes at an absorbing termination state with
zero reward after H steps. A policy πh : (S ×A)h−1×S → ∆(A) is defined as a function mapping
trajectories to distributions over actions for each step h ∈ [H] within the horizon H . We define the
history-dependent policy class as Π. The collection of these policies across all steps is denoted by
π= (πh)

H−1
h=1 . The expected cumulative reward of a policy π is given by J(π; ri) := Eτ,π[ri(τ)]

where the expectation in the formula is taken over the distribution of the trajectories under the policy
π. Trajectory occupancy measures, denoted by dπ : T → [0, 1], are defined as dπ(τ) := Pπ(τ),
which denotes the probability of generating trajectory τ following policy π.

Relationship between Preference and Reward Function. For the MDP with M =
(S,A, H, (Ph)h∈[H], r = (ri)i∈[N ]), if we compare two trajectories τ0 and τ1, we define some
random variable o such that o = 0 if τ0 ≻ τ1, and o = 1 if τ0 ≺ τ1. Here, τ0 ≻ τ1 indicates that
τ0 is preferred than τ1. We assume that Pri(o = 0 | τ0, τ1) = Φ(ri(τ0) − ri(τ1)) for all i ∈ [N ],
where Φ : R → [0, 1] is a monotonically increasing function, which satisfy Φ(x) + Φ(−x) = 1
and log Φ(x) is a strongly convex function. For example, Φ(x) = σ(x) indicates the BTL model
(Definition 4.1 below), a frequently used model for the relationship between preference and reward.
Also, we define Pr(· | τ0, τ1) := (Pr1(· | τ0, τ1)⊺, . . . , PrN (· | τ0, τ1)⊺)⊺. We call Pr and Pri a
preference probability vector induced by the reward vector r and the reward ri.

3 Provable Personalized RLHF via Representation Learning
3.1 Learning Personalized Reward Model
In this subsection, we provide the first approach in the personalization-based framework, based on
representation learning.

Reward Function Class. We will assume that we have access to a pre-trained feature function
ϕ : T → Rd, which encodes a trajectory of states and actions (i.e., questions and answers) to a
d-dimensional feature vector. This covers the case where feature ϕh : S × A → Rd is defined
at each state-action pair, i.e., ϕ(τ) :=

∑
h∈[H] ϕh(sh, ah) for trajectory τ = (s1, a1, . . . , sH , aH).

For example, it is common to use the penultimate layer of an existing pre-trained LLM or other
pre-trained backbones to encode a long sentence to a feature vector (Donahue et al., 2014; Gulshan
et al., 2016; Tang et al., 2016).
Our first goal is to learn multiple reward models for each human user using preference datasets. First,
we define the reward function class as

Gr =
{
(⟨ψω(ϕ(·)), θi⟩)i∈[N ]

∣∣ψω ∈ Ψ, θi ∈ Rk and ∥θi∥2 ≤ B for all i ∈ [N ]
}
,
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for some B > 0, where Ψ is the set of representation functions parameterized by ω ∈ Ω, i.e.,
Ψ = {ψω | ω ∈ Ω}, where ψω : Rd → Rk. We assume that d ≫ k. We denote θθθ = (θ1, . . . , θN ),
and to emphasize the relationship between reward and (ω,θθθ), we will write rω,θi(·) := ⟨ψω(ϕ(·)), θi⟩
for each individual i ∈ [N ] and rω,θθθ(·) := (rω,θ1(·), · · · , rω,θN (·))⊺ ∈ RN . From this section, we
will write r⋆ = (r⋆1 , . . . , r

⋆
N ) as the underlying human reward functions.

Assumption 1 (Realizability). We assume that the underlying true reward can be represented as
r⋆i (·) = ⟨ψ⋆(ϕ(·)), θ⋆i ⟩ for some representation function ψ⋆ ∈ Ψ (in other words, there exists some
ω⋆ ∈ Ω such that ψω⋆ = ψ⋆) and ∥θ⋆i ∥2 ≤ B for each individual i ∈ [N ].

To emphasize (ω,θθθ), we define shorthand notation Pω,θθθ := Prω,θθθ as the preference probability in-
duced by rω,θθθ. We also write Pω,θ := P⟨ψω(ϕ(·)),θ⟩, which is the probability induced by ⟨ψω(ϕ(·)), θ⟩.
3.1.1 Algorithms
We introduce our algorithm for learning personalized policy. Compared to traditional RLHF algo-
rithms (Ziegler et al., 2019; Ouyang et al., 2022; Zhu et al., 2023), we consider personalized reward
function by representation learning.
Algorithm 1 outputs a joint estimation of ψ⋆ and θθθ⋆ with maximum likelihood estimation (MLE),
together with personalized policies. The input of the algorithm is D̂ = ∪i∈[N ]D̂i where D̂i =

{(o(j)i , τ
(j)
i,0 , τ

(j)
i,1 )j∈[Np]}. Here, τ (j)i,t is sampled from the distribution µt for t = 0, 1, and o(j)i ∼

Pr⋆i (·|τ
(j)
0 , τ

(j)
1 ). First, we estimate the reward function of human users. After estimating the

reward functions, we construct a confidence set for the reward function as follows: Confidence set
(Equation (F.1)) with ζ ′ = C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+ ξ2(k+log(N/δ))

η2Np
+ λB2

)
, whereC8, λ >

0 are constants, ξ := maxx∈[−2Rmax,2Rmax]

∣∣∣Φ′(x)
Φ(x)

∣∣∣, κ := (minx∈[−2Rmax,2Rmax] Φ
′(x))−1, and η :=

minx∈[−2Rmax,2Rmax]

(
Φ′(x)2−Φ′′(x)Φ(x)

Φ(x)2

)
. In the case that Φ(x) = σ(x) (i.e. Φ is a Sigmoid), ξ ≤ 1

and κ = η = 1
2+exp(−2Rmax)+exp(2Rmax)

. This confidence set will be related to Theorem 3.1. Lastly,
we find the best policy based on the pessimistic expected value function. µi,ref in Algorithm 1 is a
known reference trajectory distribution for individual i ∈ [N ], and it can be set as µ1. We defer
Algorithm 5 which addresses a scenario where a new human user, who was not a labeler before, aims
to learn their own reward models.
3.1.2 Results and Analyses
For ease of analysis, we consider the case where the sizes of preference datasets for each individual
i ∈ {0} ∪ [N ] are identical, i.e., D̂i = {(o(j)i , τ

(j)
i,0 , τ

(j)
i,1 )j∈[Np]}, satisfies |D̂i| = Np for all i ∈

{0} ∪ [N ]. The result in this section can also be extended to the case with |D̂i| = Np,i for each
individual i. We defer all the proofs of this section to Appendix G.
Definition 3.1 (Concentrability Coefficient). The concentrability coefficient, w.r.t a reward vector
class Gr, human user i, a target policy πtar (which policy to compete with, which potentially can
be the optimal policy π⋆i corresponding to r⋆i ), and a reference policy µref, is defined as follows:

Cr (Gr, πtar , µref , i) := max

0, sup
r∈Gr

Eτ0∼πtar ,τ1∼µref [r
⋆
i (τ0)−r⋆i (τ1)−ri(τ0)+ri(τ1)]√

Eτ0∼µ0,τ1∼µ1

[
|r⋆i (τ0)−r⋆i (τ1)−ri(τ0)+ri(τ1)|2

]
 . We also define

the concentrability coefficient (Cr(Gr, πtar, µref)) of the reward scalar class in Appendix D.

(Zhan et al., 2023) provides an interpretation of concentrability coefficient. For example, if µref = µ1,

the value of Cr (Gr, πtar , µ1, i) ≤
√

maxτ∈T
dπtar (τ)

µ0(τ)
, so this reflects the concept of “single-policy

concentrability” (Rashidinejad et al., 2021; Zanette et al., 2021; Ozdaglar et al., 2023), which is
commonly assumed to be bounded in the offline RL literature.

We consider the case that (θi)i∈[N ] are diverse (Assumption 2), which is critical for improving
the sample complexity of Algorithm 1 by outputting (π̂′

i)i∈[N ]. We will additionally assume the
uniqueness of the representation up to the orthonormal linear transformation (Assumption 3), and
uniform concentration of covariance (Assumption 4). These assumptions are commonly used in
multi-task learning (Du et al., 2021; Tripuraneni et al., 2021; Lu et al., 2021)
Assumption 2 (Diversity). The matrix Θ⋆ = [θ⋆1 , · · · , θ⋆N ] ∈ Rk×N satisfies σ2

k(Θ
⋆) ≥ Ω (N/k).

Assumption 2 means that θi is evenly distributed in Rd space for i ∈ [N ], which indicates “diverse”
human reward function.
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Assumption 3 (Uniqueness of Representation (up to Orthonormal-Transformation)). For any
representation functions ψ,ψ′ ∈ Ψ and ϵ > 0, if there exists {vi}Ti=1, {v′i}Ti=1, and a tra-
jectory distribution µ that satisfy 1

T

∑
i∈[T ] Eτ∼µ∥ψ(ϕ(τ))⊤vi − ψ′(ϕ(τ))⊤v′i∥2 ≤ ϵ, where

W = [v1, v2, · · · , vT ] ∈ Rk×T satisfies σ2
k(W ) ≥ Ω (T/k), and ∥vi∥2 ≤ B for all i ∈ [T ].

Then, there exists a constant orthonormal matrix P such that

∥ψ(ϕ(τ))− Pψ′(ϕ(τ))∥2 ≤ ckϵ/B
for all trajectory τ where c > 0 is a constant.

This assumption posits that if two representation functions, ψ and ψ′, yield sufficiently small differ-
ences in expected squared norms of their inner products with corresponding vectors over trajectory dis-
tributions, then they are related by a constant orthonormal transformation. If ψω(ϕ(s, a)) := ωϕ(s, a)
where ω is k × d orthonormal matrix, we can prove that Assumption 3 holds with non-degenerate
ϕ(s, a) distribution (Appendix G.4.2).
Definition 3.2. Given distributions µ0, µ1 and two representation functions ψ,ψ′ ∈ Ψ, define the
covariance between ψ and ψ′ with respect to µ0, µ1 to be

Σψ,ψ′(µ0, µ1) := Eτ0∼µ0,τ1∼µ1
[(ψ(ϕ(τ0))− ψ(ϕ(τ1)))(ψ′(ϕ(τ0))− ψ′(ϕ(τ1)))

⊺] ∈ Rk×k.
Define the symmetric covariance as

Λψ,ψ′(µ0, µ1) =

[
Σψ,ψ(µ0, µ1) Σψ,ψ′(µ0, µ1)
Σψ′,ψ(µ0, µ1) Σψ,ψ′(µ0, µ1)

]
.

We make the following assumption on the concentration property of the representation covariances.
Assumption 4. (Uniform Concentrability). For any δ ∈ (0, 1], there exists a number
Nunif(Ψ, µ0, µ1, δ) such that for any n ≥ Nunif(Ψ, µ0, µ1, δ), the empirical estimation Λ̂ψ,ψ′(µ0, µ1)
of Λψ,ψ′(µ0, µ1) based on n independent trajectory sample pairs from distributions (µ0, µ1), with
probability at least 1− δ, will satisfy the following inequality for all ψ,ψ′ ∈ Ψ:

1.1Λψ,ψ′(µ0, µ1) ⪰ Λ̂ψ,ψ′(µ0, µ1) ⪰ 0.9Λψ,ψ′(µ0, µ1).
Assumption 4 means that the empirical estimate Λ̂ψ,ψ′(µ0, µ1) closely approximates the true
Λψ,ψ′(µ0, µ1) with high probability. Similarly, if ψω(ϕ(τ)) := ωϕ(τ), Npoint(Ψ, µ0, µ1, δ) = Õ(d)
(Du et al., 2021, Claim A.1). If distributions µ0, µ1 are clear from the context, we omit the notation
µ0, µ1 for Σψ,ψ′(µ0, µ1) and Λψ,ψ′(µ0, µ1). Moreover, we also write Σψ,ψ as Σψ for notational
convenience.
We present the gap of the expected value function between the target policy πi,tar and the estimated
policy π̂i for each individual i ∈ [N ]. Here, πi,tar, which may be the optimal policy π⋆i over r⋆i , serves
as the policy that π̂i will compare with.

Theorem 3.1. (Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. For any
δ ∈ (0, 1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂′

i of Algorithm 1 satisfies

J(πi,tar; r
⋆
i )− J(π̂′

i; r
⋆
i )

≤

√
cCr(Gr, πi,tar, µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+

ξ2(k + log(N/δ))

η2Np
+ λB2

) (3.1)

where c > 0 is a constant.

Lastly, we can also use the learned representation for a new human user in Appendix G.1.1.
Remark 1 (Sample Complexity). For Theorem 3.1, if we naively learn the personalization model
without representation learning, NGr (1/(NNp)) will be very large. For example, if we use linear
representation ϕω(x) = ωx and ω is a d × k orthonormal matrix, then log(NGr (1/NNp)/δ) ≤
O ((dk +Nk) log (RmaxNNp/δ)) while naive personalization with

G′r =
{
(⟨ϕ(·), θi⟩)i∈[N ]⟩

∣∣ θi ∈ Rd and ∥θi∥2 ≤ B for all i ∈ [N ]
}

provides NG′
r
(1/(NNp)) ≤ O (Nd log (RmaxNNp/δ)). Since d ≫ k, the bound of Equa-

tion (3.1)’s right-hand side has a significant improvement when we use representation learning.
If the representation function class is an MLP class, we can use a known bracket number by Bartlett
et al. (2017).
We also point out that the existing technique from representation learning literature does not cover the
case with general representation function learning with a log-likelihood loss function with O(1/Np)
rate, to the best of our knowledge. The technical results are thus of independent interest.
Lastly, we examine the tightness of our analysis by the theoretical lower bound of the sub-optimality
gap of personalization.
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Theorem 3.2 (Informal, Lower Bound for the Sub-Optimality Gap of Personalization). For any
k > 6 and large Np, there exists a representation function ϕ(·) and C > 0 so that

min
i∈[N ]

inf
π̂

sup
Q∈CB

(
max
π∗∈Π

J(π∗; rω,θi)− J(π̂; rω,θi)
)
≥ C ·

√
k

Np
,

where CB is a family of MDP with N reward functions.
Our approach for personalized reward lower bound builds upon (Zhu et al., 2023, Theorem 3.10). By
Theorem 3.2, for general representation function class, we establish that Algorithm 1 is near-optimal
for the sub-optimality of the induced personalization policy, as log(NGr (1/NNp)) can be small so

that
√
k
log(NGr (1/(NNp))/δ)

NNp
can be dominated by

√
k
Np

. Note that if Ψ is a linear representation

class, Theorem 3.1 still has a
√
k gap compared to the lower bound (Theorem 3.2). This gap is also

observed in (Tripuraneni et al., 2020). We will leave the sharpening of this
√
k factor for future.

3.2 Personalized RLHF via Human User Clustering
We now provide the second approach in the personalization-based framework, through human user
clustering. In particular, fine-tuning an LLM for each individual may be impractical. We thus propose
an alternative approach that segments human users into clusters and fine-tunes an LLM for each
cluster. This strategy entails deploying K clustered models, which can be smaller than the number
of human users N . A critical aspect of this methodology is the way to generate clusters. This
clustering-based personalization has also been studied in the federated (supervised) learning literature
(Mansour et al., 2020; Ghosh et al., 2020; Sattler et al., 2020). We introduce our algorithm next,
based on the algorithmic idea in Mansour et al. (2020).
3.2.1 Algorithms
We partition all the N human users into K clusters and find the best parameters for each cluster:

max
(r(k))k∈[K]

∑
i∈[N ]

1

N
max
k∈[K]

∑
j∈[Np]

logPr(k)

(
o
(j)
i

∣∣ τ (j)
i,0 , τ

(j)
i,1

)
. (3.2)

Algorithm 2 outputs K clustered policies and a map from human users to clusters. The input of the
algorithm is D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ

(j)
i,0 , τ

(j)
i,1 )j∈[Np]}, which is the same as Algorithm 1.

After estimating the representation parameter ω̂, the algorithm will estimate the reward function
parameters (θ̂(k))k∈[K] with Equation (F.3). Lastly, we find the best policy based on the expected
value function. We also provide a practical algorithm that uses DPO (Rafailov et al., 2024) (and also
refer to Appendix D) and EM (Moon, 1996) algorithms to solve Equation (F.3) in Algorithm 3.
3.2.2 Results and Analyses
To analyze the clustering-based personalization approach, we adapt the notion of label discrepancy
in Mohri and Muñoz Medina (2012) to our RLHF setting, for preference data and a given reward
function class. We defer all the proofs of this section to Appendix H.

Definition 3.3 (Label Discrepancy). Label discrepancy for preference distribution Di and Dj , which
are distributions of (o, τ0, τ1), with reward function class Gr is defined as follows:

disc(Di,Dj ,Gr) = max
r∈Gr

∣∣∣EDi
logPr(o | τ1, τ0)− EDj

logPr(o | τ1, τ0)
∣∣∣.

The discrepancy is defined as the supremum value of the difference between the log-likelihood of the
preference data when taking expectations over two human dataset distributions. This quantity will be
used in the analysis to characterize the gap between the log-likelihood of the estimated parameters
and the underlying parameters. A similar concept is frequently used in domain adaptation (Mansour
et al., 2009) and federated learning (Mansour et al., 2020).

Theorem 3.3. (Total Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. Also,
assume that Cr(Gr, π, µi,ref, i) ≤ C ′

max for all policy π and i ∈ [N ]. For any δ ∈ (0, 1], all i ∈ [N ]

and λ > 0, with probability at least 1− δ, the output ((π̂(k))k∈[K], f̂) of Algorithm 2 satisfies
∑
i∈[N]

(
J(πi,tar; r

⋆
i ) − J(π̂

f̂(i)
; r
⋆
i )
)

≤ cNκ

(
log(2K/δ) + kK log(Np/k)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp︸ ︷︷ ︸
(i)

+

 ∑
i∈[N]

1

N
disc(Di, Cf̂(i),Gψ⋆ ))

2

︸ ︷︷ ︸
(ii)

+

(
log(NGψ⋆ (1/NNp)/δ)

NNp

)2)1/4

,

where c > 0 is a constant.Note that Theorem 3.3 addresses the bias-variance tradeoff: as the number of clusters (K) increases,
term (i) (variance) increases, while term (ii) (bias) decreases.
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4 Reward and Preference Aggregation
This section adheres to the RLHF setting with a single LLM, while handling the heterogeneous human
feedback by reward/preference aggregation. For reward aggregation, we first estimate individual
reward functions and then aggregate these functions to form a unified reward model. In comparison,
for preference aggregation, we introduce a novel framework termed “probabilistic opinion pooling”.
Specifically, instead of relying on binary comparison data, human users provide feedback as probabil-
ity vectors. This approach eliminates the need to aggregate heterogeneous preferences via reward
functions, allowing for the direct aggregation of probabilistic opinions provided by users.

4.1 Reward Aggregation
We introduce the following reward aggregation rules (Equations (4.1) and (4.2)), which are favorable
as they satisfy several pivotal axioms in social choice theory. These axioms – monotonicity, symmetry,
continuity, independence of unconcerned agents, translation independence, and the Pigou-Dalton
transfer principle – are crucial for ensuring fairness and consistency in the decision-making process
(List, 2013; Skiadas, 2009, 2016). We present the definition of these axioms in Appendix I.1 for
completeness. The aggregation rules are presented as follows:

Aggα(r) =

{
1
α log

(
1
N

∑
i∈[N] exp(αri)

)
α ̸= 0

1
N

∑
i∈[N] ri α = 0

(4.1)

Agg′α(r) =

{
1
Nα

∑
i∈[N](exp(αri) − 1) α ̸= 0

1
N

∑
i∈[N] ri α = 0

(4.2)
where r = (r1, . . . , rN )⊺ is a reward vector with trajectory input. Note that Equation (4.1) and
Equation (4.2) are equivalent in the sense of the associated optimal policy, as log(x) is monoton-
ically increasing. We can verify that limα→−∞ Aggα(r) = mini∈[N ] ri and limα→∞ Aggα(r) =
maxi∈[N ] ri. This implies that when α is small (or large), the reward aggregation rule emphasizes
mini∈[N ](or maxi∈[N ])ri, respectively. When α = 0, Equation (4.1) represents utilitarianism, and
when α→ −∞, Equation (4.1) represents a Leximin-based aggregation rule (List, 2013).

4.1.1 Algorithm and Analysis
Algorithm 4 outputs a joint estimation of ψ⋆ and θθθ⋆ with maximum likelihood estimation as Algo-
rithm 1. The procedure is overall the same as Algorithm 1, except the last step for estimating the best
policy for the pessimistic expected value function associated with the aggregated reward function.

Theorem 4.1. (Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. For any
δ ∈ (0, 1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂ of Algorithm 4 satisfies

J(πtar;Aggα(r
⋆))− J(π̂;Aggα(r

⋆))

≤

√
cαCr(Gr, πtar, µref)2

(
kκ2 log(NGr (1/(NNp))/(δ/N))

NNp
+

ξ2(k + log(N/δ))

η2Np
+ λB2

)
where cα > 0 is a constant depending on α, and other constants are defined in Section 3.1.1.

We defer the proof of Theorem 4.1 to Appendix I.3. Lastly, we prove the tightness and near-optimality
of our analysis for Algorithm 4 by providing a theoretical lower bound of the sub-optimality gap of
aggregation, which is deferred to Appendix I.2.

4.2 Preference Aggregation with Probabilistic Opinion Data

Consider a set of questions {s(j)}j∈[Np], and for each question s(j), there are K potential answers

denoted by A(j) := {a(j)k }k∈[K]. Traditional RLHF methods involve human labelers i ∈ [N ]

selecting a preferred answer fromA(j). This approach limits the human feedback to a singular choice,
which, though being simple, restricts the expressiveness of human preferences.
To address this, we introduce a new setting whereby human labelers provide feedback as a probability
vector q(j)i ∈ ∆(A(j)), which is also called probabilistic opinion in social choice theory (Stone,
1961; Lehrer and Wagner, 2012). Here, ∆(A(j)) represents the set of all possible distributions over
the answers in A(j). This allows labelers to quantify their preferences across multiple answers rather
than selecting only one, and can be implemented in practice without increasing too much of overload
for feedback collection.
Our setup does not assume a predefined relationship between each reward function for every human
labeler and their preferences. Instead, we aggregate the diverse probabilistic preferences of multiple
labelers into a consensus probability distribution over the answers. We define an aggregation function
(or a probabilistic opinion pooling function), Agg-pα(P ), which takes a tuple of human preference
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distributions P = (P1, . . . , PN ) ∈ (∆(A))N and maps it to a single probability distribution in ∆(A)
where A is the potential answer set. For each a ∈ A,

Agg-pα(P)(a) :=


(
∑
i∈[N](Pi(a))

α)1/α∑
a′∈A(

∑
i∈[N](Pi(a

′))α)1/α
α ̸= 0

(
∏
i∈[N] Pi(a))

1/N∑
a′∈A(

∏
i∈[N] Pi(a

′))1/N
α = 0

. (4.3)

The case where α = 0 is referred to as the geometric pooling function (McConway, 1978)♮. Interest-
ingly, Equation (4.3), which describes the aggregation of probabilistic preferences, has a connection
to Equation (4.2), concerning reward aggregation, under the assumption of the Plackett-Luce model
for the relationship between reward functions and preference models (Definition 4.1). We then
formalize the connection between the probabilistic opinion pooling in Equation (4.3) and the reward
aggregation rule in Equation (4.1). We defer the proof of Theorem 4.2 to Appendix I.6.

Definition 4.1. The Plackett-Luce (PL) model (Plackett, 1975; Luce, 2005) quantifies the likelihood
that a trajectory τk is preferred over all other pairs in the set {τk}k∈[K] by assigning it a probability
defined as

Pr
(
τk ≻ τk′∀k′ ̸= k

∣∣ (τk)k∈[K]

)
=

exp(r(τk))∑
k′∈[K] exp(r(τk′))

where r is the reward function for a human labeler. In the case where k = 2, this formulation
simplifies to the Bradley-Terry-Luce (BTL) Model (Bradley and Terry, 1952).

Theorem 4.2. (Relationship between Reward Aggregation and Preference Aggregation). Suppose
human preferences are modeled by the PL model, and all human labelers share a common lower
bound on their reward functions. Let (Ri(a))a∈A represent the reward function associated with
action a ∈ A and Pi ∈ ∆(A) denote the corresponding probabilistic opinion for individual i ∈ [N ].
Then, the preference aggregation Agg-pα(P), is equivalent to the preference derived under the PL
model with the aggregated rewards (Aggα(R(a)))a∈A for any α ∈ [−∞,∞].

While we generally do not presuppose any specific relationship between probabilistic opinions and
reward functions, Theorem 4.2 shows that under the classical choice model of Plackett-Luce, these
two aggregation rules can coincide.

We defer the algorithm for probabilistic opinion pooling in Appendix I.7. We can use the aggregated
probabilistic opinions to fine-tune the policy using DPO-based algorithm.

5 Mechanism Design for Preference Aggregation
Suppose that human labeler i (i ∈ [N ]) provides preference data by probabilistic opinion Pi ∈ ∆(A).
We now consider the natural scenario where the labelers may be strategic – given they are human
beings with (certain degree of) rationality. In particular, knowing the form of preference aggregation
(and the fact that they may affect the process), human labelers may provide untruthful feedback of
their preference, in order to benefit more in terms of their actual utility/preference. In particular, the
untruthful preference may bias the aggregated preference (that LLM will be fine-tuned over) towards
their own preference, and thus manipulates the LLM output.
An Example with Untruthful Feedback. Consider a set of N labelers evaluating two answers,
where each labeler expresses a probabilistic opinion on the answers (a1, a2). Specifically, suppose
labeler N believes that a1 is slightly preferable to a2, represented by the probability vector PN =
(0.6, 0.4)⊺. Conversely, all other labelers i ∈ [N − 1] have probabilistic opinion favoring the second
answer, represented by Pi = (0.2, 0.8)⊺. We assume that the aggregation of these opinions employs
the Agg-p−∞ rule, defined as Agg-p−∞(P )(at) =

mini∈[N] Pi(at)

mini∈[N] Pi(a1)+mini∈[N] Pi(a2)
for t = 1, 2, where

P represents the matrix of probabilistic opinions across all labelers and answers. Under truthful
reporting, the aggregated result would be calculated as Agg-p−∞ (P ) = (1/3, 2/3)

⊺. However,
labeler N can strategically provide an untruthful probabilistic opinion to distort the aggregated
result toward his original view: If labeler N reports a distorted opinion of P ′

N = (13/15, 2/15)⊺

instead of (0.6, 0.4)⊺, the new aggregated opinion becomes Agg-p−∞ (P ′) = (0.6, 0.4)
⊺, where

P ′ = (P1, . . . , PN−1, P
′
N ), which aligns exactly with labeler N ’s probabilistic opinion, while

further deviating from other labelers’ actual preference. This example underscores the potential of

♮We refer Appendix I.5 for the discussion of the case with α = 0.
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strategic behavior in the aggregation of probabilistic opinions, and thus highlights the importance of
incentivizing truthful preference reporting.
To address the untruthful feedback issue, we resort to the ideas in mechanism design (Nisan and
Ronen, 1999; Börgers, 2015; Roughgarden, 2010). Specifically, we will develop mechanisms that
can impose some cost on human labelers, so that they do not have the incentive to report untruthful
preferences. For a given question s, we assume that labeler i’s probabilistic opinion vector is pi, and
the aggregated vector being p = Agg-p(P ) where P = (p1, · · · , pN ). We additionally impose cost
ci > 0 to labeler i based on the reports and aggregation results. We assume the following quasi-linear
utility of labeler i : ui(P ) := d(pi,Agg-p(P ))− ci(P ) where d(·, ·) measures the distance between
two probability distribution. Under this utility model, we design an incentive-compatible mechanism
to elicit truthful reports.

Theorem 5.1 (Informal). For any distance function d(·, ·) in a given class, there exists an aggregation
rule in (4.3) maximizes social welfare Welfare(P ) :=

∑N
i=1 d(pi,Agg-p(P )). Moreover, inspired by

the Vickery-Clarke-Groves mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973), we can design
proper cost function ci ≥ 0, which makes truthful reporting incentive-compatible.

Here incentive-compatibility means for labeler i, whatever the other labelers’ reports are, truthful
reporting will always maximize her own utility function. Intuitively, our mechanism punishes labeler
i through cost ci for the externality she posed on other labelers, i.e., if she makes other labelers worse
off based on the aggregation outcome. We defer detailed explanation of this section in Appendix I.9.

Imposing Cost for Human Feedback Collection. Though not being enforced in most existing
RLHF frameworks, we believe it is reasonable and possible to incorporate it in the feedback collection,
especially in scenarios where a single reward model (and thus a single LLM) is mandated. For exam-
ple, the future large models may be regulated by some administrative agency, e.g., the government.
These agencies’ objective is for social good, despite the heterogeneity in human preferences, and
also possess the power to enforce cost to human labelers, e.g., via taxing. It may also be possible for
big technology companies who train LLMs, e.g., OpenAI, to incentivize truthful feedback through
personalized and strategic (negative) payment (which corresponds to the cost here) to human labelers.

Remark 2. An analog of Theorem 5.1 can also be applied to reward aggregation. Additionally, under
the PL model, the mechanism design for reward aggregation and preference aggregation coincide.

6 Experiments
We now conduct an empirical evaluation of our methods’ performance on a text summarization
task, using the Reddit TL;DR summarization dataset and the Reddit TL;DR human feedback dataset
(comparison and axes evals) (Stiennon et al., 2020). We used GPT-J 6B (Wang and Komatsuzaki,
2021) and LLaMA3 8B models (Meta, 2024) in our experiments. We defer details in Appendix J.

6.1 Experiment 1: Reward Model Performance with comparison Dataset

In Experiment 1, we compared our Algorithm 1 and Algorithm 2 with naive RLHF methods. We
constructed a reward model using a supervised fine-tuned language model and added a linear layer
to represent individual reward functions, as in our model in Section 3.1. We provide a detailed
discussion of the reward model structure for general representation and linear representation in
Appendix J. We used two clusters for the personalized reward model with user clustering. We
evaluated the reward models based on their accuracy in correctly assigning higher rewards to chosen
summaries over rejected summaries in the validation set. Our results, shown in Figure 2, indicate that
clustering methods can efficiently learn the personalized reward model. Furthermore, personalization
with general representation learning is necessary, as indicated by the performance gap compared
to personalization with linear representation learning. Notably, for LLaMA3 8B, the performance
differences between the Naive method and both PG and CG are statistically significant by t-test
(p < 0.006).

6.2 Experiment 2: Output Examples of Reward Aggregation with axes Dataset
In Experiment 2, we aggregated three axes rewards using Equation (4.1) with α = −∞,−1, 0, 1,∞.
We included representative outputs from these aggregated results in Appendix J.1.
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A Societal Impact

Our work is mainly theoretical, and aimed at better understanding RLHF with heterogeneous feedback,
with principles, algorithms, and analyses. As such, we do not anticipate any direct positive or negative
societal impact from this research.

B Limitations

Our works provided overall theoretical analysis and experimental validation. However, due to the
computational issue, we experimented on the 6B and 8B models, and also we did not calculate the
penalty for the pessimism in our Algorithms.

C Table of Notation

Notation Definition
N Number of Individuals
S State Space
A Action Set
H Horizon Length
Ph Transition Probability at Horizon h
r Reward
T Trajectory Set
τ Trajectory

J(π; ri) Eτ,π [ri(τ)]
dπ(τ) Occupancy Measure: Pπ(τ)

Φ: R→ [0, 1] Strongly Convex Function Mapping Reward to Preference
σ(x) Sigmoid Function: ex

1+ex

Pri(o = 0 | τ0, τ1) Φ(ri(τ0)− ri(τ1))
ψω : Rd → Rk Representation Function

Ψ {ψω | ω ∈ Ω}

Gr
Set of Reward Functions:

{(⟨ψω(ϕ(·)), θi⟩)i∈[N ] | ψω ∈ Ψ, θi ∈ Rk and ∥θi∥2 ≤ B for all i ∈ [N ]}
NGr (ϵ) Bracket Number of Gr Associated with ϵ
rω,θj (·) ⟨ψω(ϕ(·)), θj⟩
rω,θθθ(·) (rω,θ1(·), · · · , rω,θN (·)) ∈ RN
r⋆i (·) Ground-truth Reward: ⟨ψ⋆(ϕ(·)), θ⋆i ⟩

ψ⋆(= ψω⋆) Ground-truth Representation Function
Rmax −Rmax ≤ r⋆i (τ) ≤ Rmax

D̂ ∪i∈[N ]D̂i
D̂i {(o(j)i , τ

(j)
i,0 , τ

(j)
i,1 )j∈[Np]}

Np Np = |D̂1| = |D̂2| = ... = |D̂N |
Cr (Gr, πtar , µref , i) Defined in Definition 3.1
C ′

r(Gr, π⋆, µ1, i) Defined in Equation (G.10)
Aggα(r) Defined in Equation (4.2)

Agg-pα(p)(a) Defined in Equation (4.3)

D Deferred Definition

Bracketing Number. We modify and adopt the definition of the bracketing number of preferences
introduced by (Zhan et al., 2023), with some adjustments. Consider Gr as the class of functions
representing sets of reward vectors, where each reward vector is denoted by (ri)i∈[N ]. Assume g1
and g2 maps (τ0, τ1) ∈ T × T to 2N -dimensional vectors. A pair (g1, g2) constitutes an ϵ-bracket if
for every pair of trajectories (τ0, τ1) and for each i ∈ [N ], it holds that g1(· | τ0, τ1) ≤ g2 (· | τ0, τ1)
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and ∥g1 (· | τ0, τ1) − g2 (· | τ0, τ1) ∥1 ≤ ϵ. The ϵ-bracketing number of Gr, denoted by NGr (ϵ), is
defined as the minimum number of ϵ-brackets (gb,1, gb,2)b∈[NGr(ϵ)]

required such that for any reward
vector r ∈ Gr, there exists at least one bracket b ∈ [NGr(ϵ)] such that for all pairs of trajectories
(τ0, τ1), gb,1(· | τ0, τ1) ≤ Pr(· | τ0, τ1) ≤ gb,2(· | τ0, τ1) holds.

Concentrability Coefficient for a Reward Scalar Class This definition is exactly the same with
the concentrability coefficient of preference as outlined by (Zhan et al., 2023).

Definition D.1 (Zhan et al. (2023)). The concentrability coefficient, with a reward vector class Gr,
a target policy πtar (which policy to compete with (potentially optimal policy π⋆)), and a reference
policy µref, is defined as follows:

Cr (Gr, πtar , µref ) := max

0, sup
r∈Gr

Eτ0∼πtar ,τ1∼µref [r
⋆ (τ0)− r⋆ (τ1)− r (τ0) + r (τ1)]√

Eτ0∼µ0,τ1∼µ1

[
|r⋆ (τ0)− r⋆ (τ1)− r (τ0) + r (τ1)|2

]
 .

Direct Preference Optimization (DPO) (Rafailov et al., 2024). Consider the case with Markovian
reward and policy, i.e., the reward r : S ×A → R is a function of state s and action a, and the policy
π : S → ∆(A) is also depending only on the state s. Also, assume that we compare actions for each
state rather than the whole trajectories. In the fine-tuning phase using RL, when KL-regularization
with the reference policy πold is employed, the optimal policy is given by:

π(a | s) = 1

Z(s)
πold(a | s) exp

(
r(s, a)

β

)
,

where Z(s) serves as a normalization factor that is independent of the answer a, and β represents the
coefficient for KL regularization. Integrating the BTL model into this framework yields:

πRLHF = argmin
π

− E(s,a0)≻(s,a1)

[
log σ

(
β log

π(a0 | s)
πold(a0 | s)

− β log π(a1 | s)
πold(a1 | s)

)]
,

where σ denotes the Sigmoid function (Rafailov et al., 2024). This formulation bypasses the step of
explicitly estimating the reward function.

E Related Work

Reinforcement Learning from Human Feedback. Empirical evidence has demonstrated the
efficacy of incorporating human preferences into reinforcement learning (RL) for enhancing robotics
(Abramson et al., 2022; Hwang et al., 2024) and for refining large-scale language models (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022). These human inputs take various forms, such
as rankings (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022), demonstrations (Finn et al.,
2016), and scalar ratings (Warnell et al., 2018). A few approaches have been explored empirically to
personalize RLHF. For example, assigning fine-grained rewards to small text segments to enhance
the training process (Wu et al., 2024), or training each human labeler’s reward model with Multi-
Objective Reinforcement Learning perspective (Jang et al., 2023; Hwang et al., 2024) have been
proposed. Moreover, (Li et al., 2024) suggested the training of each human labeler’s reward model
directly using personalized feedback with human embedding obtained by the human model, and also
an approach for the clustering with finding cluster embedding.

On the theory front, the studies of RLHF have received increasing research interest. The most related
prior works are (Zhu et al., 2023; Zhan et al., 2023; Wang et al., 2024), where (Zhu et al., 2023)
investigated the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952) within the context of a
linear reward framework; while (Zhan et al., 2023) generalized the results to encompass more general
classes of reward functions. Both works concern the setting with offline preference data. (Xiong
et al., 2024) provided a theoretical analysis for KL-regularized RLHF. In the online setting, (Wang
et al., 2024) established a correlation between online preference learning and online RL through
a preference-to-reward interface. Yet, to the best of our knowledge, there is no prior work that
has analyzed RLHF with heterogeneous feedback with theoretical guarantees (except the recent
independent works discussed in detail below).
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Representation Learning. Early work of (Baxter, 2000) established a generalization bound that
hinges on the concept of a task generative model within the representation learning framework.
More recently, (Tripuraneni et al., 2021; Du et al., 2021) demonstrated that, in the setup with linear
representations and squared loss functions, task diversity can significantly enhance the efficiency of
learning representations. Moreover, (Tripuraneni et al., 2020) provided a representation learning with
general representation and general loss functions. Representation learning has been extended to the
reinforcement learning setting as well. For low-rank Markov Decision Processes, where both the
reward function and the probability kernel are represented through the inner products of state and
action representations with certain parameters, (Agarwal et al., 2020; Ren et al., 2022; Uehara et al.,
2021) explored the theoretical foundations for learning these representations. Also, (Ishfaq et al.,
2024; Bose et al., 2024) analyzed the sample complexity of multi-task offline RL.

Reward and Preference Aggregation. Preference aggregation is the process by which multiple
humans’ preference orderings of various social alternatives are combined into a single, collective
preference or choice (List, 2013). Arrow’s Impossibility Theorem demonstrates that no aggregation
rule for preference orderings can simultaneously meet specific criteria essential for ensuring a fair
and rational aggregation of each human user’s preferences into a collective decision (Arrow, 1951).
Therefore, people considered replacing preference orderings with assigning real numbers to social
alternatives (Sen, 2018; Moulin, 2004), which is sometimes called a reward (welfare) function †

for each human user. (Skiadas, 2016; Moulin, 2004) provided reward (welfare) aggregation rules
which satisfy several desirable properties. Furthermore, an alternative method to circumvent Arrow’s
impossibility theorem involved aggregating preferences via probabilistic opinion (Stone, 1961; Lehrer
and Wagner, 2012). In this approach, opinions are represented as probability assignments to specific
events or propositions of interest.

Comparison with Recent Works. While preparing the present work, we noticed two recent inde-
pendent works that are closely related. Firstly, (Chakraborty et al., 2024) considered the aggregation
of reward models with heterogeneous preference data, focusing on aligning with the Egalitarian
principle in social choice theory. In contrast, we provide a framework with various aggregation
rules and also prove that the aggregation rules we considered are also welfare-maximizing. More
importantly, we design mechanisms for human feedback providers so that they can truthfully report
their preferences even when they may be strategic. Moreover, we also develop another framework to
handle heterogeneous preferences: the personalization-based one. Finally, we establish near-optimal
sample complexity analyses for the frameworks we developed.

More recently, (Zhong et al., 2024) provided a theoretical analysis of reward aggregation in RLHF,
focusing primarily on linear representations. Our work, in comparison, considers general represen-
tation functions and general relationships between reward function and preference. Unlike (Zhong
et al., 2024), where they focused on reward aggregation, we focus on personalization for every human
labeler and also employ clustering techniques for personalization. (Zhong et al., 2024) and our paper
also both investigated the case that reward and preference are not related. Our paper suggested a
probabilistic opinion pooling with a mechanism design to effectively elicit truthful human preferences,
presuming human labelers may be strategic. In contrast, (Zhong et al., 2024) analyzed an algorithm
for a von Neumann winner policy, where a von Neumann winner policy is a policy that has at least a
50% chance of being preferred compared to any other policy. Moreover, (Zhong et al., 2024) also
explored the Pareto efficiency of the resulting policy.

Fundamentals of Auction Theory. Consider the sealed-bid auction mechanism (Vickrey, 1961),
where each participant i ∈ [N ] privately submits a bid bi(x) for every possible outcome x ∈ X , whose
true value is pi(x) ∈ R. An auction is termed a Dominant Strategic Incentive-Compatible (DSIC)
auction (Roughgarden, 2010) if revealing each participant’s true valuation is a weakly dominant
strategy, i.e., an individual’s optimal strategy is to bid their true valuation of the item, bi(x) = pi(x)
for all x ∈ X , irrespective of the bids b−i(x) submitted by others for all x ∈ X . This mechanism is
also called a truthful mechanism (Roughgarden, 2010). An auction has a social-welfare-maximizing
allocation rule (Roughgarden, 2010) if the outcome x is argmaxx∈X

∑
i∈[N ] pi(x).

†In our paper, we regard the reward function as a welfare function in social choice theory.
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F Deferred Pseudocode of Algorithms

Algorithm 1 Personalized RLHF via Representation Learning

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ
(j)
i,0 , τ

(j)
i,1 )j∈[Np]} is the preference dataset for

the ith individual.
Estimate ω⋆ and θθθ⋆ by

(ω̂, θ̂θθ)← argmax
ω∈Ω,∥θi∥2≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np]

logPω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Construct a confidence set of the reward function by

R′(D̂)← ∩i∈[N ]

{
rω,θθθ

∣∣∣ 1

Np

∑
j∈[Np]

∣∣(rω̂,θ̂i
(τ

(j)
i,0 )− rω̂,θ̂i

(τ
(j)
i,1 ))− (rω,θi(τ

(j)
i,0 )− rω,θi(τ

(j)
i,1 ))

∣∣2 ≤ ζ′
}

(F.1)

Compute policy with respect toR(D̂) (orR′(D̂)) for all i ∈ [N ] by

π̂′
i ← argmax

π∈Π
min

r∈R′(D̂)

(
J(π; ri)− Eτ∼µi,ref [ri(τ)]

)
(F.2)

Output: (ω̂, θ̂θθ, (π̂′
i)i∈[N ]).

Algorithm 2 Personalized RLHF via Clustering

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ
(j)
i,0 , τ

(j)
i,1 )j∈[Np]} is the preference dataset for

the ith individual, and ω̂ form Algorithm 1.
Learn θ(i) and the clustering map f : [N ]→ [K] by

(θ̂(k))k∈[K] ← argmax
∥θ(k)∥2≤B for all k∈[K]

∑
i∈[N ]

max
k∈[K]

∑
j∈[Np]

logPω̂,θ(k)(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ) (F.3)

f̂(i)← argmax
k∈[K]

∑
j∈[Np]

logPω̂,θ̂(k)(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ) for all i ∈ [N ]

For each k ∈ [K],

π̂(k) ← argmax
π∈Π

(
J(π; rω̂,θ̂(k))− Eτ∼µ1

[rω̂,θ̂(k)(τ)]
)
.

Output: ((π̂(k))k∈[K], (θ̂(k))k∈[K], ω̂, f̂).
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Algorithm 3 ClusterDPO: Learning K clustered policies by DPO

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {a(j)i,0 ≻ a
(j)
i,1 , s

(j)
i )j∈[Np]} is the preference dataset for

the ith individual, β is a parameter for DPO
Randomly select K human users p1, . . . , pK and initialize π0

(k) for all k ∈ [K] as

π0
(k) ← argmax

π∈Π

∑
j∈[Np]

log σ

(
β log

π(a
(j)
pk,0
| s(j)pk )

πold(a
(j)
pk,0
| s(j)pk )

− β log
π(a

(j)
pk,1
| s(j)pk )

πold(a
(j)
pk,1
| s(j)pk )

)

Randomly initialize f0(i) for i /∈ {p1, . . . , pK}
for t ∈ [T ] do

Randomly select K human users p1, . . . , pK .
for i ∈ [N ] do

if i /∈ {p1, . . . , pK} then
Define f t(i)← f t−1(i)

end if
end for
Assign f t(pk) for all k ∈ [K] as

f t(pk)← argmax
s∈[K]

∑
j∈[Np]

log σ

β log πt−1
(s) (a

(j)
pk,0
| s(j)pk )

πold(a
(j)
pk,0
| s(j)pk )

− β log
πt−1
(s) (a

(j)
pk,1
| s(j)pk )

πold(a
(j)
pk,1
| s(j)pk )


(F.4)

Run a few steps of optimization to update πt−1
(s) for all s ∈ [K] (for example, gradient ascent or

Adam) to maximize∑
f(pk)=s

∑
j∈[Np]

log σ

(
β log

π(a
(j)
pk,0
| s(j)pk )

πold(a
(j)
pk,0
| s(j)pk )

− β log
π(a

(j)
pk,1
| s(j)pk )

πold(a
(j)
pk,1
| s(j)pk )

)

and obtain πt(s) for all s ∈ [K].
end for
Assign fT+1(i) for all i ∈ [N ] as

fT+1(i)← argmax
s∈[K]

∑
j∈[Np]

log σ

β log πT(s)(a(j)i,0 | s(j)i )

πold(a
(j)
i,0 | s

(j)
i )
− β log

πT(s)(a
(j)
i,1 | s

(j)
i )

πold(a
(j)
i,1 | s

(j)
i )


Output: (πT(k))k∈[K] and fT+1

Algorithm 4 RLHF with Reward Aggregation

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ
(j)
i,0 , τ

(j)
i,1 )j∈[Np]} is the preference dataset for

the ith human, λ > 0, and ω̂ from Algorithm 1. We also use Equation (F.1) for constructing a
confidence set of reward functionR′(D̂).
Compute policy with respect toR′(D̂) for all i ∈ [N ] by

π̂ ← argmax
π∈Π

min
r∈R′(D̂)

(J(π;Aggα(r1, . . . , rN ))− Eτ∼µref [Aggα(r1, . . . , rN )(τ)]) . (F.5)

Output: (ω̂, θ̂θθ, π̂).
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G Deferred Proofs in Section 3.1

G.1 Deferred Explanation of Algorithm 5 for a New Human User

Algorithm 5 addresses a scenario where a new human user, who was not a labeler before, aims to learn
their own reward models using representations previously learned by other human users, focusing
solely on learning θ⋆0 . They leverage the learned representation ψω̂ from Algorithm 1. The input of
the algorithm is D̂0 = {(o(j)0 , τ

(j)
0,0 , τ

(j)
0,1 )j∈[Np]}. Algorithm 5 provides an estimation of θ⋆0 with MLE

using the frozen representation ψω̂ . Similarly, after estimating the reward function, we construct confi-
dence set for the MLE estimation with ζ = C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+ ξ2(k+log(1/δ))

η2Np
+ λB2

)
for a constantC8 > 0. Lastly, we find the best policy based on the pessimistic expected value function.
µ0,ref in Algorithm 5 is a known reference trajectory distribution.

Algorithm 5 Transferable RLHF for a New Human User via Representation Learning

Input: Dataset D̂0 = {(o(j)0 , τ
(j)
0,0 , τ

(j)
0,1 )j∈[Np]} and ω̂ from Algorithm 1.

Estimate θ⋆0 by
θ̂0 ← argmax

∥θ0∥2≤B

∑
j∈[Np]

logPω̂,θ0(o
(j)
0 | τ

(j)
0,0 , τ

(j)
0,1 )

Construct a confidence set of the reward function by

R(D̂)←
{
rω,θ0

∣∣ 1

Np

∑
j∈[Np]

∣∣(rω̂,θ̂0
(τ

(j)
0,0 )− rω̂,θ̂0

(τ
(j)
i,1 ))− (rω,θ0(τ

(j)
0,0 )− rω,θ0(τ

(j)
0,1 ))

∣∣2 ≤ ζ

}

Compute policy with respect toR(D̂) by

π̂0 ← argmax
π∈Π

min
r0∈R(D̂0)

(
J(π; r0)− Eτ∼µ0,ref [r0(τ)]

)
Output: (π̂i)i∈[N ].

G.1.1 Expected Value Function Gap for a New Human User

We have expected value function gap for a new human user as follows:

Theorem G.1. (Expected Value Function Gap for a New Human User). Suppose Assumptions 1, 2, 3,
and 4 hold. For any δ ∈ (0, 1] and λ > 0, with probability at least 1− δ, the output π̂0 of Algorithm 5
satisfies

J(π0,tar; r
⋆
0)− J(π̂0; r⋆0)

≤

√
cCr(Gr, πi,tar, µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(1/δ))

η2Np
+ λB2

)
where c > 0 is a constant.

We defer this proof to Appendix G.6.

G.2 Expected Value Function Gap without Diversity Assumption

Firstly, we provide an algorithm for each reward function learning without Assumptions 2, 3, and 4.

• Confidence set (Equation (G.1)) for the MLE estimation as (Liu et al., 2022), which is
also used in (Liu et al., 2023; Zhan et al., 2023; Wang et al., 2024; Zhan et al., 2022),
with ζ = C1 log(NGr (1/(NNp))/δ) for a constant C1 > 0, which will be related to
Theorem G.2. the definition of bracketing number (NGr ) is deferred to Appendix D.

We will provide the expected value function gap of the output of Algorithm 6 and the reference policy.
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Algorithm 6 Personalized RLHF via Representation Learning - without Diversity Assumption

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ
(j)
i,0 , τ

(j)
i,1 )j∈[Np]} is the preference dataset for

the ith individual.
Estimate ω⋆ and θθθ⋆ by

(ω̂, θ̂θθ)← argmax
ω∈Ω,∥θi∥2≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np]

logPω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Construct a confidence set of the reward function by

R(D̂)←
{
rω,θθθ

∣∣∣∣ ∑
i∈[N ]

∑
j∈[Np]

logPω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ) ≥

∑
i∈[N ]

∑
j∈[Np]

logPω̂,θ̂i
(o

(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )− ζ

}
(G.1)

Compute policy with respect toR(D̂) (orR′(D̂)) for all i ∈ [N ] by

π̂i ← argmax
π∈Π

min
r∈R(D̂)

(
J(π; ri)− Eτ∼µi,ref [ri(τ)]

)
(G.2)

Output: (ω̂, θ̂θθ, (π̂i)i∈[N ]).

Theorem G.2. (Total Expected Value Function Gap). Suppose Assumption 1 holds. For any
δ ∈ (0, 1], with probability at least 1− δ, the output (π̂i)i∈[N ] of Algorithm 1 satisfies∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r⋆i )) ≤

√
cκ2NC2

max log(NGr (1/NNp)/δ)

Np
,

where Cmax := maxi∈[N ] Cr(Gr, πi,tar, µi,ref, i) and c > 0 is a constant.

Corollary G.1. (Expected Value Function Gap). Suppose Assumption 1 holds. For any δ ∈ (0, 1]
and all i ∈ [N ], with probability at least 1− δ, the output π̂i of Algorithm 1 satisfies

J(πi,tar; r
⋆
i )− J(π̂i; r⋆i ) ≤

√
cκ2Cr(Gr, πi,tar, µi,ref, i)2 log(NGr (1/NNp)/δ)

Np
,

where c > 0 is a constant.

Note that the results above do not need any assumption on (θ⋆i )i∈[N ]. Still, as Np → ∞, π̂i has
comparable or better performance than the comparator policy πi,tar, which approaches the optimal
policy if πi,tar = π⋆i . We will leverage the proof of Theorem G.2 to prove Theorem 3.1. To be
specific, we will improve the bound for Corollary G.1, as the gap of the expected value function does
not decay with N , which is the number of human users. We defer the proofs of Theorem G.2 and
Corollary G.1 to Appendix G.3.

G.3 Proof of Theorem G.2 and Corollary G.1

Theorem G.2. (Total Expected Value Function Gap). Suppose Assumption 1 holds. For any
δ ∈ (0, 1], with probability at least 1− δ, the output (π̂i)i∈[N ] of Algorithm 1 satisfies∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r⋆i )) ≤

√
cκ2NC2

max log(NGr (1/NNp)/δ)

Np
,

where Cmax := maxi∈[N ] Cr(Gr, πi,tar, µi,ref, i) and c > 0 is a constant.

Corollary G.1. (Expected Value Function Gap). Suppose Assumption 1 holds. For any δ ∈ (0, 1]
and all i ∈ [N ], with probability at least 1− δ, the output π̂i of Algorithm 1 satisfies

J(πi,tar; r
⋆
i )− J(π̂i; r⋆i ) ≤

√
cκ2Cr(Gr, πi,tar, µi,ref, i)2 log(NGr (1/NNp)/δ)

Np
,
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where c > 0 is a constant.

Before having a proof of Theorem G.2 and Corollary G.1, we provide two general properties of MLE
estimates, which is a slightly modified version of (Zhan et al., 2023) and (Liu et al., 2022).

Lemma 1 ((Zhan et al. (2023), Lemma 1, reward vector version)). For any δ ∈ (0, 1], if r ∈ Gr,
with dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ

(j)
i,0 , τ

(j)
i,1 )j∈[Np]}, τ

(j)
i,0 ∼ µ0, τ (j)i,1 ∼ µ1, and

o
(j)
i ∼ Pr⋆i (·|τ

(j)
0 , τ

(j)
1 ), there exist C1 > 0 such that∑

i∈[N ]

∑
j∈[Np]

log

(
Pri(o

(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pr⋆i (o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

)
≤ C1 log(NGr (1/(NNp))/δ)

holds.

Lemma 2 ((Liu et al. (2022), Proposition 14, scalar version)). For any δ ∈ (0, 1], with probability at
least 1− δ, if r ∈ G′r, with dataset D̂ = {(o(j), τ (j)0 , τ

(j)
1 )j∈[M ]} where τ (j)0 ∼ µ0, τ (j)1 ∼ µ1, and

o(j) ∼ Pr⋆(·|τ (j)0 , τ
(j)
1 ),

Eµ0,µ1

[
∥Pr(· | τ (j)0 , τ

(j)
1 )− Pr⋆(· | τ (j)0 , τ

(j)
1 )∥21

]
≤ C2

M

 ∑
j∈[M ]

log

(
Pr⋆(o

(j) | τ (j)0 , τ
(j)
1 )

Pr(o(j) | τ (j)0 , τ
(j)
1 )

)
+ log(NG′

r
(1/M)/δ)


holds where C2 > 0 is a constant.

Lemma 3 ((Liu et al. (2022), Proposition 14, vector version)). For any δ ∈ (0, 1], with probability at
least 1− δ, if r ∈ G′r , with dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , τ

(j)
i,0 , τ

(j)
i,1 )j∈[Np]}, τ

(j)
i,0 ∼ µ0,

τ
(j)
i,1 ∼ µ1, and o(j)i ∼ Pr⋆i (·|τ

(j)
0 , τ

(j)
1 ),

1

N

∑
i∈[N ]

Eµ0,µ1

[
∥Pri(· | τ

(j)
0 , τ

(j)
1 )− Pr⋆i (· | τ

(j)
0 , τ

(j)
1 )∥21

]

≤ C2

NNp

∑
i∈[N ]

∑
j∈[Np]

log

(
Pr⋆i (o

(j) | τ (j)0 , τ
(j)
1 )

Pri(o
(j) | τ (j)0 , τ

(j)
1 )

)
+ log(NG′

r
(1/(NNp))/δ)


holds where C2 > 0 is a constant.

Note that r⋆ does not need to be in G′r for the above lemmas. Lemma 1 states that the log-likelihood
logPr for a preference dataset generated by the reward model r⋆ cannot exceed the log-likelihood
logPr⋆ for a preference dataset generated by the reward model r⋆, with a gap related to the bracket
number of Gr. Lemma 3 states that the ℓ1 distance between likelihood function Pr⋆ and Pr for
all r ∈ G′r can be bounded with the difference between log-likelihood logPr⋆ and logPr for a
preference dataset generated by the reward model r⋆ with a gap related to the bracket number of G′r .

Proof of Theorem G.2 and Corollary G.1. We define the event E1, E2 as satisfying (Lemma 1,
Lemma 3) with δ ← δ/2, respectively, so we have P(E1 ∩ E2) > 1− δ. We will only consider the
under event E1 ∩ E2. Then, we can guarantee that∑

i∈[N ]

∑
j∈[Np]

logPω̂,θ̂i(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

≤
∑
i∈[N ]

∑
j∈[Np]

logPω⋆,θ⋆i (o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ) + C1 log(NGr (1/(NNp))/δ),

which indicates that r⋆(= rω⋆,θθθ⋆) ∈ R(D̂). Moreover, by the definition of Equation (G.1), if
rω,θθθ, rω′,θθθ′ ∈ R(D̂),∣∣ ∑

i∈[N ]

∑
j∈[Np]

logPω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )−

∑
i∈[N ]

∑
j∈[Np]

logPω′,θ′i
(o

(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )
∣∣

≤ C1 log(NGr (1/(NNp))/δ)
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holds, since
∑
i∈[N ]

∑
j∈[Np]

logPω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ) is bounded by∑

i∈[N ]

∑
j∈[Np]

logPω̂,θ̂i(o
(j)
i | τ (j)i,0 , τ

(j)
i,1 ) by definition of ω̂, θ̂θθ if rω,θθθ ∈ Gr. Therefore, by

Lemma 3, we have

1

N

∑
i∈[N ]

Eµ0,µ1

[
∥Pω,θi(· | τ

(j)
i,0 , τ

(j)
i,1 )− Pω⋆,θ⋆i (· | τ

(j)
i,0 , τ

(j)
i,1 )∥

2
1

]

≤ C2

NNp

∑
i∈[N ]

∑
j∈[Np]

log

(
Pω⋆,θ⋆i (o

(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pω,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

)
+ log(NGr (1/(NNp))/δ)


≤ C2

NNp
(C1 log(NGr (1/(NNp))/δ) + log(NGr (1/(NNp))/δ))

=
C3

NNp
log(NGr (1/(NNp))/δ)

for any rω,θθθ ∈ R(D̂), where C3 = C2(C1 + 1). Then, by the mean value theorem, for any
rω,θθθ ∈ R(D̂), we have

1

N

∑
i∈[N ]

Eµ0,µ1

[
|(rω,θi(τi,0)− rω,θi(τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))|

2
]

≤ κ2

N

∑
i∈[N ]

Eµ0,µ1

[
∥Pω,θθθ(· | τ

(j)
i,0 , τ

(j)
i,1 , i)− Pω⋆,θθθ⋆(· | τ

(j)
i,0 , τ

(j)
i,1 , i)∥

2
1

]
≤ C3κ

2

NNp
log(NGr (1/(NNp))/δ).

(G.3)

Now, we define for all policy π,

ri,inf
π := argmin

r∈R(D)

(
J(π, ri)− Eτ∼µi,ref [ri(τ)]

)
.

Then, we can bound the difference of the expected cumulative reward of a policy πi,tar and π̂i by

J(πi,tar; r
⋆
i )− J(π̂i; r⋆i )

= (J(πi,tar; r
⋆
i )− Eτ∼µi,ref [r

⋆
i (τ)])− (J(π̂i; r

⋆
i )− Eτ∼µi,ref [r

⋆
i (τ)])

≤
(i)

(J(πi,tar; r
⋆
i )− Eτ∼µi,ref [r

⋆
i (τ)])

− (J(πi,tar; r
i,inf
πi,tar

)− Eτ∼µi,ref [r
i,inf
πi,tar

(τ)]) + (J(π̂j ; r
i,inf
π̂i

)− Eτ∼µi,ref(r
i,inf
π̂i

(τ)))

− (J(π̂i; r
⋆
i )− Eτ∼µi,ref [r

⋆
i (τ)])

≤
(ii)

(J(πi,tar; r
⋆
i )− Eτ∼µi,ref [r

⋆
i (τ)])− (J(πi,tar; r

i,inf
πi,tar

)− Eτ∼µi,ref [r
i,inf
πi,tar

(τ)])

= Eτi,0∼πi,tar,τi,1∼µi,ref [(r
⋆
i (τi,1)− r⋆i (τi,0))− (ri,inf

πi,tar
(τi,1)− ri,inf

πi,tar
(τi,0))]

≤ Cr(Gr, πi,tar, µi,ref, i)

√
Eµ0,µ1

[∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣2]

(G.4)
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Here, (i) holds since π̂j is a distributional robust policy for R(D̂) (Equation (G.1)) and (ii) holds
due to the definition of ri,inf

π̂i
. Therefore, if we sum Equation (G.4) over i ∈ [N ], we have∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r⋆i ))

≤ Cmax

∑
i∈[N ]

√
Eµ0,µ1

[∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣2]

≤ Cmax

√√√√N
∑
i∈[N ]

Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣∣2]

≤ Cmax

√
C3Nκ2 log(NGr (1/NNp)/δ)

Np
,

which proves Theorem G.2. Moreover, we have

J(πi,tar; r
⋆
i )− J(π̂i; r⋆i )

≤ Cr(Gr, πi,tar, µi,ref, i)

√
Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣∣2]

≤ Cr(Gr, πi,tar, µi,ref, i)

√√√√∑
i∈[N ]

Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣∣2]

≤ Cr(Gr, πi,tar, µi,ref, i)

√
C3κ2 log(NGr (1/NNp)/δ)

Np

which proves Corollary G.1.

G.4 Discussion on Assumption 3

G.4.1 Comparing with (Lu et al., 2021, Assumption 6.4)

Assumption 5 ((Lu et al. (2021), Assumption 6.4)). For any representation functions ψ,ψ′ ∈ Ψ and
ϵ > 0, if there exists v, v′ ∈ Rd that satisfy

E∥ψ(x)⊤v − ψ′(x)⊤v′∥2 ≤ ϵ

Then there exists a constant invertible matrix P such that

∥ψ(x)− Pψ′(x)∥2 ≤ o(ϵ/∥v∥2) = o(ϵ/∥v′∥2).

for all x.

Assumption 3 bears similarity to Assumption 5; however, the latter is notably more stringent.
For instance, consider the case where v = v′ = e1 without loss of generality. If it holds that
E∥ψ1(x) − ψ′

1(x)∥2 ≤ ϵ, then it implies ψ ∼ Pψ′. In this context, ψ1 and ψ′
1 represent the

first coordinates of ψ and ψ′, respectively. The assumption that similarity in the first coordinate
necessitates equivalence of the entire representations (ψ ∼ Pψ′) is a strong assumption.

G.4.2 Case Study (Linear Representation): ψω(x) = ωx and ω is an Orthonormal Matrix

Proposition 1. Assume that ψω(ϕ(τ)) = ωϕ(τ) where ω is a k × d orthornormal matrix. For any
representation functions ψω, ψω′ ∈ Ψ and ϵ > 0, if there exists {vi}Ti=1, {v′i}Ti=1, and a trajectory
distribution µ that satisfy

1

T

∑
i∈[T ]

Eτ∼µ∥ψω(ϕ(τ))⊤vi − ψω′(ϕ(τ))⊤v′i∥2 ≤ ϵ (G.5)

25



dand V = [v1, v2, · · · , vT ] ∈ Rk×T satisfies σ2
k(W ) ≥ Ω (T/k), and ∥vi∥2 ≤ B for all i ∈ [T ]. If

Σ := Eµ[ϕ(τ)ϕ(τ)⊺] ≻ O, then there exists a constant invertible matrix P such that

∥ψω(ϕ(τ))− Pψω′(ϕ(τ))∥2 ≤ ckϵ/B

where c > 0 is a constant.

Proof. By Equation (G.5), we have

(ω⊺V − (ω′)⊺V ′)⊺Σ(ω⊺V − (ω′)⊺V ′) ≤ Tϵ,

where V ′ = [v′1, . . . , v
′
T ] ∈ Rk×T . Since Σ ≻ O, we have

∥ω⊺V − (ω′)⊺V ′∥2 ≤ Tϵ.

By (Yu et al., 2015, Theorem 4), there exist an orthonormal matrix P such that

∥ω − P (ω′)⊺∥2 ≤ ckϵ

where c > 0 is a constant, which concludes Proposition 1.

G.5 Proof of Corollary G.2

With Assumption 2 and Assumption 3, ψ⋆ and ψω are close up to an orthonormal matrix transforma-
tion, as asserted below:

Corollary G.2. (Closeness between ψ⋆ and ψω). Suppose Assumptions 1, 2, and 3 hold. For any
δ ∈ (0, 1], with probability at least 1 − δ, if rω,θθθ ∈ R′(D) as specified in Algorithm 1, then there
exists an orthonormal matrix Pω such that[
∥ψ⋆(ϕ(τ0))− ψ⋆(ϕ(τ1))− Pω(ψω(ϕ(τ0))− ψω(ϕ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2

for all τ0, τ1, where crep > 0 is a constant.

Proof. By Equation (G.3), if we use Assumption 3 with Θ⋆/B, we can find an orthonormal matrix
Pω such that[
∥ψ⋆(ϕ(τ0))− ψ⋆(ϕ(τ1))− Pω(ψω(ϕ(τ0))− ψω(ϕ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2

for all τ0, τ1, where crep > 0 is a constant.

G.6 Proof of Theorem 3.1

Lemma 4. Suppose Assumptions 1, 2 and 3 hold. For any δ ∈ (0, 1] and λ > 0, with probability at
least 1− δ, r⋆ ∈ R′(D̂), i.e., the underlying reward functions are an element of Equation (F.1).

Proof. Assume that Corollary G.2 holds with probability 1− δ/2 for ω̂, i.e.,[
∥ψ⋆(ϕ(τ0))− ψ⋆(ϕ(τ1))− Pω̂(ψω̂(ϕ(τ0))− ψω̂(ϕ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2
.

(G.6)

We only consider the event that Equation (G.6) holds. We will use this Pω̂ for the proof of Theorem 3.1.
We will approach similarly with the proof of (Zhu et al., 2023). Consider the following optimization
problem:

maximize
∥θ∥i≤B

f(θi) :=
1

Np

∑
j∈[Np]

logPω̂,θi(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 ).
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Then, we have θ̂i = argmax
∥θ∥i≤B

f(θi) and

∇f(θi) =
1

Np

∑
j∈[Np]

(
Φ′(⟨ψω̂(ϕ(τ (j)i,0 ))− ψω̂(ϕ(τ

(j)
i,1 )), θi⟩)

Φ(ψω̂(ϕ(τ
(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 )), θi⟩)

111(o
(j)
i = 0)

−
Φ′(⟨ψω̂(ϕ(τ (j)i,1 ))− ψω̂(ϕ(τ

(j)
i,0 )), θi⟩)

Φ(ψω̂(ϕ(τ
(j)
i,1 ))− ψω̂(ϕ(τ

(j)
i,0 )), θi⟩)

111(o
(j)
i = 1)

)(
ψω̂(ϕ(τ

(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 ))

)
∇2f(θi) =

1

Np

∑
j∈[Np]

Φ′′(x
(j)
i )Φ(x

(j)
i )− Φ′(x

(j)
i )2

Φ(x
(j)
i )2

(
ψω̂(ϕ(τ

(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 ))

)(
ψω̂(ϕ(τ

(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 ))

)⊺
where x(j)i = ⟨ψω̂(ϕ(τ (j)i,0 )) − ψω̂(ϕ(τ

(j)
i,1 )), θi⟩. Here, we also define ψω̂(D̂i) ∈ RNp×k such as

every j ∈ [Np]th row is
(
ψω(ϕ(τ

(j)
i,0 ))− ψω(ϕ(τ

(j)
i,1 ))

)
.

Then, we have

∇2f(θi) ⪯ −ηΣ̂ψω̂ := − η

Np

∑
j∈[Np]

(
ψω̂(ϕ(τ

(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 ))

)(
ψω̂(ϕ(τ

(j)
i,0 ))− ψω̂(ϕ(τ

(j)
i,1 ))

)⊺
where η := minx∈[−2Rmax,2Rmax]

(
Φ′(x)2−Φ′′(x)Φ(x)

Φ(x)2

)
. For example, if Φ(x) = σ(x), then η =

1
2+exp(−2Rmax)+exp(2Rmax)

.

Then, by the Taylor expansion of f , we have

f(θ̂i)− f(P ⊺
ω̂θ

⋆
i )− ⟨∇f(P

⊺
ω̂θ

⋆
i ), θ̂i − P

⊺
ω̂θ

⋆
i ⟩ ≤ −

η

2
∥θ̂i − P ⊺

ω̂θ
⋆
i ∥2Σ̂ψω̂

.

Since θ̂i = argmax
∥θ∥i≤B

f(θi), for any λ > 0, we have

∥∇f(P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1∥θ̂i − P ⊺

ω̂θ
⋆
i ∥Σ̂ψω̂+λI ≥ ⟨∇f(P

⊺
ω̂θ

⋆
i ), θ̂i − P

⊺
ω̂θ

⋆
i ⟩ ≥

η

2
∥θ̂i − P ⊺

ω̂θ
⋆
i ∥2Σ̂ψω̂

.

(G.7)

We define a random vector V ∈ RNp as follows:

Vj =


Φ′(⟨ψ⋆(ϕ(τ(j)

i,0 ))−ψ⋆(ϕ(τ(j)
i,1 )),θ⋆i ⟩)

Φ(ψ⋆(ϕ(τ
(j)
i,0 ))−ψ⋆(ϕ(τ(j)

i,1 )),θ⋆i ⟩)
w.p. Φ(ψ⋆(ϕ(τ

(j)
i,0 ))− ψ⋆(ϕ(τ

(j)
i,1 )), θ

⋆
i ⟩)

−Φ′(⟨ψ⋆(ϕ(τ(j)
i,1 ))−ψ⋆(ϕ(τ(j)

i,0 )),θ⋆i ⟩)
Φ(ψ⋆(ϕ(τ

(j)
i,1 ))−ψ⋆(ϕ(τ(j)

i,0 )),θ⋆i ⟩)
w.p. Φ(ψ⋆(ϕ(τ

(j)
i,1 ))− ψ⋆(ϕ(τ

(j)
i,0 )), θ

⋆
i ⟩)

for all j ∈ [Np]. Define ξ = maxx∈[−2Rmax,2Rmax]

∣∣∣Φ′(x)
Φ(x)

∣∣∣. If Φ(x) = σ(x), ξ ≤ 1. Then, we can
verify that E[V ] = 0 and |Vj | ≤ ξ for all j ∈ [Np].

Also, define V ′ ∈ RNp as follows:

V ′
j =


Φ′(⟨ψω̂(ϕ(τ

(j)
i,0 ))−ψω̂(ϕ(τ

(j)
i,1 )),P⊺

ω̂
θ⋆i ⟩)

Φ(ψω̂(ϕ(τ
(j)
i,0 ))−ψω̂(ϕ(τ

(j)
i,1 )),P⊺

ω̂
θ⋆i ⟩)

w.p. Φ(ψ⋆(ϕ(τ
(j)
i,0 ))− ψ⋆(ϕ(τ

(j)
i,1 )), θ

⋆
i ⟩)

−Φ′(⟨ψω̂(ϕ(τ
(j)
i,1 ))−ψω̂(ϕ(τ

(j)
i,0 )),P⊺

ω̂
θ⋆i ⟩)

Φ(ψω̂(ϕ(τ
(j)
i,1 ))−ψω̂(ϕ(τ

(j)
i,0 )),P⊺

ω̂
θ⋆i ⟩)

w.p. Φ(ψ⋆(ϕ(τ
(j)
i,1 ))− ψ⋆(ϕ(τ

(j)
i,0 )), θ

⋆
i ⟩)

for all j ∈ [Np]. ∇f(P ⊺
ω̂θ

⋆
i ) can be written as

∇f(P ⊺
ω̂θ

⋆
i ) =

1

Np
ψω̂(D̂i)⊺V ′

i =
1

Np
ψω̂(D̂i)⊺Vi +

1

Np
ψω̂(D̂i)⊺(V ′

i − Vi).

Therefore, we can bound ∥∇f(P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 by

∥∇f(P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 ≤ ∥

1

Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1︸ ︷︷ ︸

(i)

+ ∥ 1

Np
ψω̂(D̂i)⊺(V ′

i − Vi)∥(Σ̂ψω̂+λI)−1︸ ︷︷ ︸
(ii)

.
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Step 1: Bounding (i).
Define M = 1

N2
p
ψω̂(D̂i)(Σ̂ψω̂ + λI)−1ψω̂(D̂i)⊺, then we have

∥ 1

Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1 = V ⊺MV.

We can check

Tr(M) ≤ k

Np
, Tr

(
M2
)
≤ k

N2
p

, ∥M∥F = σ1(M) ≤ 1

Np

in the same way with (Zhu et al., 2023, Page 19). Therefore, as V ’s components are bounded,
independent, and EV = 000, we can use Bernstein’s inequality in quadratic form (for example, (Hsu
et al., 2012, Theorem 2.1) and (Zhu et al., 2023, Page 19)), so we have

∥ 1

Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1 ≤ ξC4

√
k + log(N/δ)

Np
(G.8)

for a constant C4 > 0 with probability at least 1− δ/(2N).

Step 2: Bounding (ii).
We have

∣∣Φ′(x)
Φ(x) −

Φ′(y)
Φ(y)

∣∣ ≤ ξ|x− y| by the mean value theorem if x, y ∈ [−2Rmax, 2Rmax], so

|Vi − V ′
i | ≤ max

τ0,τ1
ξ|⟨(ψ⋆(ϕ(τ0))− ψ⋆(ϕ(τ1)))− (Pω̂ψω̂(ϕ(τ0))− Pω̂ψω̂(ϕ(τ1))), θ⋆i ⟩|

≤ ξ

√
k
crepκ2 log(NGr (1/(NNp))/δ)

NNp
.

Therefore, we have

∥ 1

Np
ψω̂(D̂i)⊺(V ′

i − Vi)∥(Σ̂ψω̂+λI)−1 ≤
ξC5√
Np

√
k
κ2 log(NGr (1/(NNp))/δ)

NNp
(G.9)

where C5 > 0 is a constant.

Step 3: Combining (i) and (ii).

Combining Equation (G.8) and Equation (G.9), we have

∥∇f(P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 ≤

ξC5√
Np

√
k
κ2 log(NGr (1/(NNp))/δ)

NNp
+ ξC4

√
k + log(N/δ)

Np

≤ C6

√
k
ξ2κ2 log(NGr (1/(NNp))/δ)

NNp
+
ξ2(k + log(N/δ))

Np

for a constant C6 > 0 with probability at least 1− δ/N and Equation (G.7) provides

∥θ̂i − P ⊺
ω̂θ

⋆
i ∥Σ̂ψω̂ ≤ C7

√
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2,

which is equivalent to

1

Np

∑
j∈[Np]

∣∣⟨(ψω̂(ϕ(τ (j)i,0 ))− ψω̂(ϕ(τ
(j)
i,1 ))), θ̂i − P

⊺
ω̂θ

⋆
i ⟩
∣∣2

≤ C2
7

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
,

with probability at least 1− δ/N .
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Now, we will bound 1
Np

∑
j∈[Np]

∣∣(rω̂,θ̂i(τ (j)i,0 )− rω̂,θ̂i(τ
(j)
i,1 ))− (r⋆i (τ

(j)
i,0 )− r⋆i (τ

(j)
i,1 ))

∣∣2:

1

Np

∑
j∈[Np]

∣∣(rω̂,θ̂i(τ (j)i,0 )− rω̂,θ̂i(τ
(j)
i,1 ))− (r⋆i (τ

(j)
i,0 )− r

⋆
i (τ

(j)
i,1 ))

∣∣2
=

1

Np

∑
j∈[Np]

∣∣⟨ψω̂(ϕ(τ (j)i,0 ))− ψω̂(ϕ(τ
(j)
i,1 )), θ̂i⟩ − ⟨ψ

⋆(ϕ(τ
(j)
i,0 ))− ψ

⋆(ϕ(τ
(j)
i,1 )), θ

⋆
i ⟩
∣∣2

≤ 2

Np

∑
j∈[Np]

∣∣⟨(ψω̂(ϕ(τ (j)i,0 ))− ψω̂(ϕ(τ
(j)
i,1 ))), θ̂i − P

⊺
ω̂θ

⋆
i ⟩
∣∣2

+
2

Np

∑
j∈[Np]

∣∣⟨ψω̂(ϕ(τ (j)i,0 ))− ψω̂(ϕ(τ
(j)
i,1 ))− Pω̂(ψ

⋆(ϕ(τ
(j)
i,0 ))− ψ

⋆(ϕ(τ
(j)
i,1 ))), θ

⋆
i ⟩
∣∣2

≤ 2C7

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
+

2

Np
Npk

crepκ
2 log(NGr (1/(NNp))/δ)

NNp

≤ C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
for a constant C8 > 0. Combining this result for all i ∈ [N ], Lemma 4 holds.

Lemma 5. Suppose Assumptions 1, 2, 3, and 4 hold. For any δ ∈ (0, 1], with probability at least
1− δ, for any rω,θθθ ∈ R′(D̂),

Eµ0,µ1

[
|(rω,θi(τi,0)− rω,θi(τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))|

2
]

≤ C9

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
where C9 > 0 is a constant.

Proof. For any τ0, τ1, by Assumption 4, with large Np ≥ Nunif(Ψ, µ0, µ1, δ), we have the analog of
Equation (G.3):

Eµ0,µ1

[
|(rω,θi(τi,0)− rω,θi(τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))|

2
]

=

[
θi
−θ⋆i

]⊺
Λϕω,ϕψ⋆ (µ0, µ1)

[
θi
−θ⋆i

]
≤ 1.1

[
θi
−θ⋆i

]⊺
Λ̂ϕω,ϕψ⋆ (µ0, µ1)

[
θi
−θ⋆i

]
≤ 1.1C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
which concludes the proof.

Theorem 3.1. (Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. For any
δ ∈ (0, 1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂′

i of Algorithm 1 satisfies
J(πi,tar; r

⋆
i )− J(π̂′

i; r
⋆
i )

≤

√
cCr(Gr, πi,tar, µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+

ξ2(k + log(N/δ))

η2Np
+ λB2

) (3.1)

where c > 0 is a constant.

Proof. We have
J(πi,tar; r

⋆
i )− J(π̂′

i; r
⋆
i )

≤ Cr(Gr, πi,tar, µi,ref, i)

√
Eµ0,µ1

[∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (ri,inf
πi,tar(τi,1)− r

i,inf
πi,tar(τi,0))

∣∣2]
≤

√
cCr(Gr, πi,tar, µi,ref, i)2

(
kκ2 log(NGr (1/(NNp))/δ)

NNp
+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
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where c > 0 is a constant, which is similar to the proof of Theorem G.2.

In the exactly same way, we can prove Theorem G.1, so we omit the proof of Theorem G.1

G.7 Proof of Theorem 3.2

We present the formal version of Theorem 3.2.

Theorem G.3. (Lower Bound for the Sub-Optimality Gap of Personalization). For any k > 6, Np ≥
CkΛ2 and Λ ≥ 2, there exists a representation function ϕ(·) so that

min
i∈[N ]

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗; rω,θi)− J(π̂; rω,θi)
)
≥ CΛ ·

√
k

Np
,

where

CB(Λ) :=
{
Q :=

(
{µ0, µ1} , {τ (j)i,0 , τ

(j)
i,1 }i∈[N ],j∈[Np], ω,θθθ

) ∣∣C ′
r(Gr, π⋆, µ1, i) ≤ Λ for all i ∈ [N ]

}
is the family of MDP with N reward functions and H = 1 instances, where

C ′
r(Gr, π⋆, µ1, i) := max

0, sup
r∈Gr

Eτ0∼π⋆,τ1∼µ1
[r⋆i (τ0)− r⋆i (τ1)− ri (τ0) + ri (τ1)]√

1
Np

∑Np
j=1

[∣∣∣r⋆i (τ (j)i,0

)
− r⋆i

(
τ
(j)
i,1

)
− ri

(
τ
(j)
i,0

)
+ ri

(
τ
(j)
i,1

)∣∣∣2]
 .

(G.10)

All results in this paper still hold for the new concentrability coefficient C ′
r.

Proof of Theorem 3.2. We follow the construction in Theorem 3.10 of (Zhu et al., 2023).

We will only consider H = 1 case. Assume k can be divided by 3 without loss of gen-
erality. Let S := {0, 1, ..., k/3− 1} and A := {a1, a2, a3}. Let ψω(ϕ(s, a1)) = e3s,
ψω(ϕ(s, a2)) = e3s+1, and ψω(ϕ(s, a3)) = 0. Also, let v−1 := {1/d, 1/d+∆,−2/d−∆} and
v1 := {1/d+ 2∆, 1/d+∆,−2/d− 3∆}. We construct 2|S| instances in CB. Let w ∈ {±1}|S|

and θw := [vw1
, vw2

, ..., vw|S| ]. Let µ0(s, a1) =
1−2Λ2

|S| , µ0(s, a2) =
2Λ2

|S| , and µ1(s, a3) = 1 for any
s ∈ S.

According to (Zhu et al., 2023),
∥∥∥Σ−1/2

D Es∼ρ [ψω(ϕ(s, π⋆(s)))]
∥∥∥
2
≤ Λ, where ρ is the uniform

distribution over S. At the same time, for any θw we have ∥θw∥2 ∈ ΘB when taking B = 1, d > 6
and ∆ < 1/(6d).

Next, we will show that C ′
r(Gr, π⋆, µ1, i) ≤ Λ. By definition, we have∥∥∥Σ−1/2

D Es∼ρ [ψω(ϕ(s, π⋆(s)))]
∥∥∥
2
=
∥∥∥Σ−1/2

D Es∼ρ,a∼π⋆(· | s),(s′,a′)∼µ1
[ψω(ϕ(s, π

⋆(s)))− ψω(ϕ(s′, a′)]
∥∥∥
2
,

since a′ ≡ a3 by definition of µ1 and ψω(ϕ(·, a3)) ≡ 0. Then, by Section D.1. of (Zhan et al.,
2023), we have C ′

r(Gr, π⋆, µ1, i) ≤
∥∥∥Σ−1/2

D Es∼ρ [ψω(ϕ(s, π⋆(s)))]
∥∥∥
2
≤ Λ. Therefore, combined

with Theorem 3.10 of (Zhu et al., 2023), we finished the proof.

H Proof of Section 3.1.2

Corollary G.2 holds with probability 1− δ/3, so we have

max
τ0,τ1
∥(ψ⋆(ϕ(τ0))− ψ⋆(ϕ(τ1)))− Pω̂(ψω̂(ϕ(τ0))− ψω̂(ϕ(τ1)))∥2 ≤ k

C3κ
2 log(NGr (1/(NNp))/δ)

NNpB2
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Lemma 6 (Mansour et al. (2020)). For any δ ∈ (0, 1], with probability at least 1 − δ, the output
((π̂(k))k∈[K], (θ̂(k))k∈[K], ω̂, f̂) of Algorithm 2 satisfies

max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i]

log

 Pω̂,θ′i(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pω̂,θ̂
f̂(i)

(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )


≤ CclusterNNp

√ log(2K/δ)

Np
+

√
kK log(Np/k)

Np
+
∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψω̂ )

 ,

where Ck := ∪f̂(i)=kDi, Ccluster > 0 is a constant, and Gψω := {rω,θ | ∥θ∥ ≤ B} for all ω ∈ Ω.

Claim 1. For any δ ∈ (0, 1], with probability at least 1−δ, for arbitraryDi andDj , the gap between
label discrepency with reward function class Gψω̂ and Gψ⋆ is bounded as follows:

∣∣disc(Di,Dj ,Gψω̂ )− disc(Di,Dj ,Gψ⋆)
∣∣ ≤ 2C10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

for i, j ∈ [N ] where C10 > 0 is a constant. We recall the definition of Gψw = {⟨ψw, θ⟩ | ∥θ∥2 ≤ B}.

Proof. ∣∣∣∣EDi logPω̂,P⊺
ω̂
θ(o | τ1, τ0)− EDi logPω⋆,θ(o | τ1, τ0)

∣∣∣∣
≤ EDi

∣∣∣∣ logPω̂,P⊺
ω̂
θ(o | τ1, τ0)− logPω⋆,θ(o | τ1, τ0)

∣∣∣∣
≤ ξEDi

∣∣⟨Pω̂(ψω̂(ϕ(τ1))− ψω̂(ϕ(τ0)))− (ψ⋆(ϕ(τ1))− ψ⋆(ϕ(τ0))), θ⟩
∣∣

≤ C10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

where ξ := maxx∈[−Rmax,Rmax]

∣∣∣Φ′(x)
Φ(x)

∣∣∣, which is also defined in Appendix G.

Theorem 3.3. (Total Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. Also,
assume that Cr(Gr, π, µi,ref, i) ≤ C ′

max for all policy π and i ∈ [N ]. For any δ ∈ (0, 1], all i ∈ [N ]

and λ > 0, with probability at least 1− δ, the output ((π̂(k))k∈[K], f̂) of Algorithm 2 satisfies

∑
i∈[N]

(
J(πi,tar; r

⋆
i ) − J(π̂

f̂(i)
; r
⋆
i )
)

≤ cNκ

(
log(2K/δ) + kK log(Np/k)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp︸ ︷︷ ︸
(i)

+

 ∑
i∈[N]

1

N
disc(Di, Cf̂(i),Gψ⋆ ))

2

︸ ︷︷ ︸
(ii)

+

(
log(NGψ⋆ (1/NNp)/δ)

NNp

)2)1/4

,

where c > 0 is a constant.

We note that due to the
√
kK/Np order on the right-hand side of Lemma 6, we have a slower rate

in Theorem 3.3 than Theorem 3.1. This gap is mainly due to the fact that the analysis of Lemma 6
should cover uniformly for arbitrary f̂ , and also due to a difference between max and expectation of
max, which is bounded using McDiarmid’s inequality.

Proof. By Claim 1 with Lemma 6, we have

∑
i∈[N ]

∑
j∈[Np,i]

log

 Pω⋆,θ⋆i (o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pω̂,θ̂
f̂(i)

(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )


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≤ max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i]

log

 Pω⋆,θ′i(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pω̂,θ̂
f̂(i)

(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )


≤
(i)

max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i]

log

 Pω̂,θ′i(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )

Pω̂,θ̂
f̂(i)

(o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1 )


+NNpC10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

≤ CclusterNNp

(√
log(2K/δ)

Np
+

√
kK log(Np/k)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψŵ)

)

≤ C11NNp

(√
log(2K/δ)

Np
+

√
kK log(Np/k)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψ⋆))

)
,

where ω̂ is a learned parameter from the representation learning, and C11 > 0 is a constant. Here, (i)
came from the same reason with Claim 1. Therefore, by Lemma 2, we have

Eµ0,µ1

[
∥Pω̂,θ̂f(i)(· | τ

(j)
i,0 , τ

(j)
i,1 )− Pw⋆,θ⋆(· | τ

(j)
i,0 , τ

(j)
i,1 )∥

2
1

]
≤ C11

(√
log(2K/δ)

Np
+

√
kK log(Np/k)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψ⋆)) +

log(NGψω̂ (1/NNp)/δ)

NNp

)
.

Here, we used NGψω̂ (1/NNp) = NGψ⋆ (1/NNp). Now, we get the similar bound with Equa-
tion (G.3):

1

N

∑
i∈[N ]

EDi

[∣∣∣(rω̂,θ̂
f̂(i)

(τi,0)− rω̂,θ̂
f̂(i)

(τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))
∣∣∣2]

≤ C11κ
2

(√
log(2K/δ)

Np
+

√
kK log(Np/k)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψ⋆)) +

log(NGψ⋆ (1/NNp)/δ)

NNp

)
.

Lastly, we use the following:

J(πi,tar; r
⋆
i )− J(π̂i; r⋆i )

= (J(πi,tar; r
⋆
i )− Eτ∼µi,ref(r

⋆
i (τ)))− (J(π̂i; r

⋆
i )− Eτ∼µi,ref(r

⋆
i (τ)))

= (J(πi,tar; r
⋆
i )− Eτ∼µi,ref(r

⋆
i (τ)))− (J(πi,tar; r̂i)− Eτ∼µi,ref(r̂i(τ)))

+ (J(πi,tar; r̂i)− Eτ∼µi,ref(r̂i(τ)))− (J(π̂j ; r̂i)− Eτ∼µi,ref(r̂i(τ)))

+ (J(π̂i; r̂i)− Eτ∼µi,ref(r̂i(τ)))− (J(π̂i; r
⋆
i )− Eτ∼µi,ref(r

⋆
i (τ)))

≤ 2C ′
max

√
Eµ0,µ1

[∣∣(r⋆i (τi,0)− r⋆i (τi,1))− (r̂i(τi,0)− r̂i(τi,1))
∣∣2]
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where the last inequality came from the fact that π̂i is the best policy with respect to r̂f(i). Therefore,
summing the above relationship with i ∈ [N ] provides∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r⋆i ))

≤ C12Nκ

(
log(2K/δ)

Np
+
kK log(Np/k)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+

∑
i∈[N ]

1

N
disc(Di, Cf̂(i),Gψ⋆))

2

+

(
log(NGψ⋆ (1/NNp)/δ)

NNp

)2
)1/4

.

Remark 3. In contrast to the results in Section 3.1, we additionally assume Cr(Gr, π, µ1, i) ≤ C ′
max

in Theorem 3.3. To adopt a pessimistic approach, constructing a confidence set for clustered reward
functions across all clusters is necessary. However, the ambiguity of which human user belongs to
which cluster complicates this analysis, as pessimism would need to be applied to every potential
cluster. Consequently, defining a confidence set for every possible clustering scenario is required,
significantly complicating the analysis of the algorithm.

H.1 Why do We Provide Algorithm 3?

Given the inherent complexity of this hierarchical optimization problem, which presents more
challenges than standard optimization tasks (Anandalingam and Friesz, 1992), we propose a novel
algorithm that circumvents the need for explicit reward function estimation in Algorithm 3. Our
approach begins by randomly assigning each human user to a cluster. Subsequently, we reassign
random human users to the cluster where the policy most effectively maximizes their empirical DPO
loss (Equation (F.4)). Finally, we refine our solution by optimizing the DPO loss function for the
selected human users within each cluster, thereby enhancing the overall policy effectiveness.

I Proof of Section 4

I.1 Six Pivotal Axioms for Reward Aggregation

For the completeness of the paper, we introduce six pivotal axioms for reward aggregation (Moulin,
2004).

• Monotonicity: For two reward vectors, r = (r1, . . . , rN )⊤ and r′ = (r′1, . . . , r
′
N )⊤ such

that ri = r′i for i ̸= j and rj > r′j for some j ∈ [N ], then r ≻ r′. This is related to
Pareto optimality, indicating that if one vector is strictly better than another in at least one
dimension and no worse in any other, it is considered superior.

• Symmetry: The reward aggregation function should treat all individuals equally. The
outcome should not depend on the identities of the individuals but only on their rewards.

• Independence of Unconcerned Agents: If for an individual j ∈ [N ], rj = r′j , then the
magnitude of rj does not influence the comparison between r and r′.

• The Pigou-Dalton Transfer Principle: If ri < rj and r′i + rj = r′j + ri for a pair
(i, j) ∈ [N ]× [N ] and rk = r′k for all k ̸= i, j ∈ [N ], then r′ ≻ r. This condition implies
that, all else being equal, a social welfare function should favor allocations that are more
equitable, reflecting a preference for balancing the rewards between individuals i and j.

• Translation Independence: If r ≻ r′, then r + c ≻ r′ + c for c ∈ RN .
• Continuity: In the context of social choice with a continuous preference scale, continuity

means that small changes in the individual preferences should not lead to abrupt changes in
the collective decision.

Equation (4.2) and its monotonically increasing transformation is only reward aggregation that
satisfying the above six axioms. In (Zhong et al., 2024), the consider Scale Independence rather than
Translation Independence, which is defined as follows:
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• Scale Independence: If r ≻ r′, then λ · r ≻ λ · r′ for λ > 0.

In this case, the reward aggregations that satisfying six axioms are

Aggα(r) =
{ 1

Nα

∑
i∈[N ] r

α
i α ̸= 0∏

i∈[N ] ri α = 0

for α ∈ [−∞,∞].

I.2 Deferred Statement of Lower Bound for the Sub-Optimality Gap of Aggregation

Theorem I.1. (Lower Bound for the Sub-Optimality Gap of Aggregation). For any k > 6, Np ≥
CkΛ2,Λ ≥ 2, and α ∈ R there exists a representation function ϕ(·) so that

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;Aggα(rω,θθθ))− J(π̂;Aggα(rω,θθθ))
)
≥ CΛ ·

√
k

Np
,

where

CB(Λ) :=
{
Q :=

(
{µ0, µ1} , {τ (j)i,0 , τ

(j)
i,1 }i∈[N ],j∈[Np], ω,θθθ

) ∣∣C ′
r(Gr, π⋆, µ1, i) ≤ Λ for all i ∈ [N ]

}
is the family of MDP withN reward functions andH = 1 instances. C ′

r is defined in Equation (G.10).

I.3 Proof of Theorem 4.1

Theorem 4.1. (Expected Value Function Gap). Suppose Assumptions 1, 2, 3, and 4 hold. For any
δ ∈ (0, 1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂ of Algorithm 4 satisfies

J(πtar;Aggα(r
⋆))− J(π̂;Aggα(r

⋆))

≤

√
cαCr(Gr, πtar, µref)2

(
kκ2 log(NGr (1/(NNp))/(δ/N))

NNp
+

ξ2(k + log(N/δ))

η2Np
+ λB2

)
where cα > 0 is a constant depending on α, and other constants are defined in Section 3.1.1.

Proof. Define Cα := maxx,y,z,w∈[−Rmax,Rmax]
|(exp(αx)−exp(αy))−(exp(αz)−exp(αw))|

α|(x−y)−(z−w)| for α ̸= 0

and Cα = 1 for α = 0. Then we know that Cα <∞. Now, in the same way of proof of Theorem 3.1,
we have
J(πtar;Aggα(r

⋆
1 , . . . , r

⋆
N ))− J(π̂;Aggα(r

⋆
1 , . . . , r

⋆
N ))

≤ Cr(Gr, πtar, µref)

√
Eµ0,µ1

[∣∣(Aggα(r⋆(τ1))− Aggα(r⋆(τ0)))− (Aggα(rinf
πtar

(τ1))− Aggα(rinf
πtar

(τ0)))
∣∣2]

≤ Cr(Gr, πtar, µref)

√√√√√C2
αEµ0,µ1

 1

N

∑
i∈[N ]

∣∣(r⋆i (τ1)− r⋆i (τ0))− (rinf
πtar

(τ1)− rinf
πtar

(τ0))
∣∣2

≤

√
cα

(
kκ2 log(NGr (1/(NNp))/(δ/N))

NN2
p

+
ξ2(k + log(N/δ))

η2Np
+ λB2

)
.

where the last line is from Lemma 5, which conclude the proof.

I.4 Proof of Theorem I.1

Theorem I.1. (Lower Bound for the Sub-Optimality Gap of Aggregation). For any k > 6, Np ≥
CkΛ2,Λ ≥ 2, and α ∈ R there exists a representation function ϕ(·) so that

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;Aggα(rω,θθθ))− J(π̂;Aggα(rω,θθθ))
)
≥ CΛ ·

√
k

Np
,

where

CB(Λ) :=
{
Q :=

(
{µ0, µ1} , {τ (j)i,0 , τ

(j)
i,1 }i∈[N ],j∈[Np], ω,θθθ

) ∣∣C ′
r(Gr, π⋆, µ1, i) ≤ Λ for all i ∈ [N ]

}
is the family of MDP withN reward functions andH = 1 instances. C ′

r is defined in Equation (G.10).
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Proof. We start with the same setting and the same instances that achieve the lower bounds with
Theorem 3.2. Since

Es[Aggα(r)(s, π
⋆)− Aggα(r)(s, π

′)] ≥ Ω

Es[
∑
i∈[N ]

(ri(s, π
⋆)− ri(s, π′))]

 ≥ Ω

(
CΛ ·

√
k

Np

)

We can finish the proof for all α ∈ R. The first inequality holds by definition when α = 0. When α ̸=
0, for any i ∈ [N ], we have exp(ri(s, π⋆))−exp(ri(s, π′)) ≥ exp(−Rmax) |ri(s, π⋆)− ri(s, π′)| ≥
Ω
(
CΛ ·

√
k
Np

)
.

I.5 Remark on Aggregation of Probabilistic Opinion (Equation (4.3))

Remark 4. The case where α = 0 is referred to as the geometric pooling function (McConway,
1978). This function is known for preserving unanimity and not being eventwise independent,
while it does satisfy external Bayesianity (Madansky, 1964; Dietrich and List, 2016). External
Bayesianity mandates that updating the probabilities with new information should yield consistent
results regardless of whether the update occurs before or after the aggregation process (Genest,
1984).

I.6 Proof of Theorem 4.2

Theorem 4.2. (Relationship between Reward Aggregation and Preference Aggregation). Suppose
human preferences are modeled by the PL model, and all human labelers share a common lower
bound on their reward functions. Let (Ri(a))a∈A represent the reward function associated with
action a ∈ A and Pi ∈ ∆(A) denote the corresponding probabilistic opinion for individual i ∈ [N ].
Then, the preference aggregation Agg-pα(P), is equivalent to the preference derived under the PL
model with the aggregated rewards (Aggα(R(a)))a∈A for any α ∈ [−∞,∞].

Proof. By the PL modeling, we have

Pi(a) =
exp(Ri(a))∑

a′∈A exp(Ri(a′))
. (I.1)

We divide Equation (I.1) by Pi(afix), we have

Ri(a) = logPi(a)− (logPi(s, afix)−Ri(afix)) := logPi(a)− Ci (I.2)

where Ci := logPi(afix)−Ri(afix). Since Ri(a) have upper bound as Ci, and we assumed that every
reward Ri(a) have the same upper bound, we can assume Ci = C for every i. Therefore, plugging
Equation (I.2) provides the equivalence between Aggα(R) and Agg-pα(P ).

I.7 Deferred Algorithm for Human Feedback with Probabilistic Opinions

Now, we provide an algorithm that uses the feedback in the form of probabilistic opinions (Al-
gorithm 7). The only difference from the DPO algorithm (Rafailov et al., 2024) is to change the
deterministic answer ai to the ai sampled based on the probabilistic opinion pooling, which is in the
second line in the for loop of Algorithm 7.

I.8 Relationship between KL divergence and variant of α-Renyi divergence.

By L’Hôpital’s rule, we have

lim
α→1

1

1− α

1−
∑
j∈A

pij

(
qij
pij

)1−α
 =

∑
j∈A

lim
β→0

(
−pij log

(
qij
pij

)(
qij
pij

)β)
= KL(p, q).
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Algorithm 7 Probabilistic Opinion Pooling DPO (POP-DPO)

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {q(j)i (s
(j)
i ), s(j), i)}j∈[Np] is the probabilistic opinion

dataset for the ith individual, q(j)i ∈ ∆(A) with |A| = 2, β is a parameter for DPO, α is a
parameter for aggregation
for every epoch do

For every question s(j) where j is in the batch, q(j) := Agg-pα(q
(j)).

Sample a(j)0 ∼ Multinomial(q(j)) and define a(j)1 as non-selected answer.
Run a few steps of optimization to update π (for example, gradient ascent or Adam) to maximize∑

j∈batch

log σ

(
β log

π(a
(j)
0 | s(j))

πold(a
(j)
0 | s(j))

− β log π(a
(j)
1 | s(j))

πold(a
(j)
1 | s(j))

)
end for
Output: π

I.9 Deferred Explanation of Mechanism Design for RLHF

In this setup, we will first prove the existence of a cost function ci : ∆(A)N → R for all i ∈ [N ]
that induces truthful reporting of probabilistic opinions from human labelers. Here, the input of
ci is the probabilistic opinion of every human labeler. This is also called the dominant strategy
incentive-compatible (DSIC) mechanism (Nisan and Ronen, 1999; Börgers, 2015; Roughgarden,
2010). Then, we prove that there exists an aggregation rule and cost function that induce DSIC,
and also maximize social welfare. We denote each human labeler’s underlying (true) probabilistic
opinion as pi

(
s(j)
)

for each question s(j). Accounting for such cost, we define the utility function of
individual i for question s(j) as

u
(j)
i

(
pi

(
s(j)
)
,
(
Pi

(
s(j)
))

i∈[N ]

)
= −d

(
pi

(
s(j)
)
,Agg-p

((
Pi

(
s(j)
))

i∈[N ]

))
− ci

((
Pi

(
s(j)
))

i∈[N ]

)
.

Here, d : ∆(A) × ∆(A) → R represents the distance between the underlying true probabilistic
opinion and the aggregated preference. Moreover, we define the welfare function of individual i from
addressing question s(j) as Wel(j)i (O) = −d(pi(s(j)), O) for any O ∈ ∆(A).

Remark 5 (Examples of Distance Function d). We can instantiate d(p, q) as the KL-divergence. Also,
we may instantiate dα(p, q) = sgn(α) 1

1−α
∑
j∈A

(
1− pαj q

1−α
j

)
, which is a variant of the α-Renyi

divergence for α ̸= 0. One can easily check that dα(p, q) ≥ 0. In fact, one can also prove that
limα→1 dα(p, q) = d(p, q) with d(p, q) being the KL-divergence (Appendix I.8).

I.9.1 Mechanism and Guarantees

We design a mechanism inspired by the Vickery-Clarke-Groves mechanism (Vickrey, 1961; Clarke,
1971; Groves, 1973), as defined below.

Definition I.1 (VCG Mechanism). Assume that there are n strategic agents and a finite set X of
outcome, and each individual i has a private valuation vi for each outcome x ∈ X . The bidding
b = (b1, . . . , bN )⊺ ∈ (R|X|)N where bi ∈ R|X| is bidding for all outcome of individual i ∈ [N ].
Define their utility function as vi(x(b))− ci(b), where x : (R|X|)N → X is the allocation rule and
ci : (R|X|)N → R is the cost function. The summation of welfare function of all agents is defined
as Wel(x) =

∑
i∈[N ] vi(x) for all x ∈ X . The goal is to design x and (ci)i∈[N ] functions to make

a DSIC and welfare-maximizing mechanism. The following x and ci for i ∈ [N ] is DSIC welfare
maximizing mechanism:

x(b) = argmax
x∈X

∑
i∈[N ]

bi(x), ci(b) = max
x∈X

∑
j ̸=i

bj(x)−
∑
j ̸=i

bj(x(b)) for all i ∈ [N ].

Unfortunately, the classical VCG mechanism presents certain limitations such as it cannot be solved
in polynomial time in general (Nisan and Ronen, 1999; Börgers, 2015; Roughgarden, 2010). We
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here adopt certain forms of allocation rule (which corresponds to the aggregation rule in our RLHF
setting) and cost functions as follows, which allow the outcome set to be a simplex (with infinitely
many outcomes):

Agg-p(P ) = argmin
p∈∆(A)

∑
i∈[N ]

d(P , p), ci(P ) =
∑
j ̸=i

d(Pi,Agg-p(P ))− min
p∈∆(A)

∑
j ̸=i

d(Pi, p).

(I.3)

Theorem I.2. (DSIC Welfare-Maximizing Mechanism). The aggregation rule and the cost function
as in Equation (I.3) provide a DSIC welfare-maximizing mechanism.

Due to the modeling, we have an advantage compared to the original VCG mechanism. The
minimization in the aggregation function can be achieved using a simple optimization method such
as gradient descent, which makes our aggregation rule and cost function computation easy, which is
in contrast with the original VCG mechanism.

Now, we connect our mechanism design with pre-defined preference aggregation function (Agg-pα
in Equation (4.3)). Theorem I.3 implies that Equation (4.3) is maximizing social welfare and also we
are available to construct the cost function to make human feedback truthful.

Theorem I.3. If we set d as a variant of the α-Renyi distance for α ̸= 0 (Remark 5) and define
d as KL-divergence for α = 0, the DSIC welfare-maximizing aggregation rule is Equation (4.3).
Therefore, aggregation rule Equation (4.3) is also welfare-maximizing with appropriate cost function.

If we assume the relationship between reward and preference follows the PL model (Definition 4.1),
then Equation (4.1) implies a welfare-maximizing aggregation rule, which connects reward aggrega-
tion and mechanism design. We defer all proofs for the results in Appendix I.9.1 to Appendix I.8.

I.9.2 Proof of Appendix I.9.1

The proof of Theorem I.2 is exactly the same as the proof of the fact that the VCG mechanism is
DSIC welfare-maximizing. The difference with the proof of the original VCG mechanism’s property
is the parametrization of bidding, which will be explained in this section.

Theorem I.2. (DSIC Welfare-Maximizing Mechanism). The aggregation rule and the cost function
as in Equation (I.3) provide a DSIC welfare-maximizing mechanism.

Proof. The aggregated result space ∆(A) corresponds to the output space X of Definition I.1. We
can interpret the bidding part, bj(x), of Definition I.1 as −d(Pj , p). So, instead of bidding on every
output without any rule, we can interpret the bidding as the minus distance function between their
own probabilistic opinion and aggregated probabilistic opinion. The underlying value function
therefore corresponds to −d(pj , p). This interpretation provides the same line of proof of the VCG
mechanism’s property.

By good parametrization of the VCG mechanism, we can also achieve the computational efficiency
of our cost function computation.

Theorem I.3. If we set d as a variant of the α-Renyi distance for α ̸= 0 (Remark 5) and define
d as KL-divergence for α = 0, the DSIC welfare-maximizing aggregation rule is Equation (4.3).
Therefore, aggregation rule Equation (4.3) is also welfare-maximizing with appropriate cost function.

Proof. We solve the optimization problem as follows:

argmin
p∈∆(A)

∑
i∈[N ]

dα(Pi, p) (I.4)

where dα(p, q) = sgn(α) 1
1−α

∑
j∈A

(
1− pαj q

1−α
j

)
.We can check that dα(p, q) is a convex function

with respect to q, as

d2

dq2j
dα(p, q) = αsgn(α)q−α−1

j ≥ 0.
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Therefore, Equation (I.4) can be solved with first-order condition:∑
i∈[N ]

(
Pij
pj

)α
= λ for all j ∈ A

which provides Equation (4.3).

J Experiment Details

For the Reddit TL;DR summarization dataset, (Stiennon et al., 2020) filtered the TL;DR summa-
rization dataset (Völske et al., 2017) to ensure quality. The Reddit TL;DR human feedback dataset
is constructed with two components: comparison and axes evals. The comparison compo-
nent contains labeled comparisons between pairs of summaries with workers identified by unique
IDs, while the axes evals component contains ratings of summaries along three axes: accuracy,
coverage, and coherence.

In Section 6.1, we fine-tuned the personalized reward model with Algorithm 1 and Algorithm 2,
without pessimism. We ranked workers based on the number of annotated comparisons in the training
split of the dataset and included the top 5 workers for training. To balance the number of samples
for each worker, we took the worker with the fewest samples among the top 5 as the baseline. We
then randomly sampled the same number of comparisons from the other workers so that each worker
had 5,373 comparison samples, resulting in a total of 26,865 samples for training. Similarly, for the
validation set, we applied the same method. We randomly sampled the same number of comparisons
as the worker with the fewest samples from the top 5 workers used in training. Each worker had
1,238 samples for validation, resulting in a total of 6,190 samples for validation. In Section 6.2, we
fine-tuned the personalized reward model using Algorithm 4, without incorporating pessimism. We
considered three types of reward functions: accuracy-reward, coverage-reward, and coherence-reward.
Since this dataset is only publicly available for the validation set (with 8,585 samples) and the test
set (with 6,313 samples), we used the validation set for fine-tuning the training set of our model and
validated it with the samples in the test set.

For reward model training, we used the AdamW optimizer (Loshchilov and Hutter, 2018) with a
learning rate of 1e-6 and a batch size of 8 for 1 epoch. The learning rate was linearly warmed up from
0 to 1e-6 over 150 steps. For fine-tuning the language model with the trained reward model, we used
the AdamW optimizer with a learning rate of 5e-6 and a batch size of 4. We employed Proximal Policy
Optimization (PPO) (Schulman et al., 2017) with 128 rollouts, which is the default setting in the
TRLX library (Havrilla et al., 2023). For SFT, for the GPT-J 6B model, we initialized a personalized
language model using an open-source SFT by CarperAI (Havrilla et al., 2023), which fine-tuned
the GPT-J 6B model (Wang and Komatsuzaki, 2021) with the Reddit TL;DR summarization dataset
using the TRLX library (Havrilla et al., 2023). For the LLaMA 3, as there is no fine-tuned open
model for the Reddit TL;DR summarization, we trained it with (Stiennon et al., 2020)’s dataset. We
used NVIDIA A100 80GB for every experiment.

For the reward model structure of the general representation function, we froze the first 70% of
the language model’s layers, using the outputs of these layers as the representation. For the linear
representation function, we froze the entire language model and only trained the additional final layer.
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J.1 Detailed Aggregated Results in Section 6.2

We provide the first 5 examples in the test set, and compare the results. The examples might have
undesirable vocabulary or topics.

Prompt 1
SUBREDDIT: r/AskReddit
TITLE: How do you get someone out of your head?
POST: Hi,
I’m 22, and I have been with my girlfriend for 5 years now. We recently
moved together. We’ve always loved each other intensely.

Problem, I recently started to have feelings for an other person (a friend).
This person has had a boyfriend for now 3 years, and has absolutely no
ideas. Those feelings were so strong, it was hard to hide them. After
2 months of me being distant and really sad, my girlfriend forced me to say
what was bothering me. I’m not a good liar, and now she knows.

We decided to give us a week alone, I went to my parents.

Now, I’m completely lost. I keep on thinking about this person, and I hate
that. I would like for those feelings to go away, to leave me alone. But
I can’t.

What do I do? It’s been 3 months now, and I’m just desperate.
TL;DR:

Aggregation with α = −∞
I’m in love with my girlfriend, but recently started to have feelings for
another person (a friend). How do you get someone out of your head?

Aggregation with α = −1
I don’t know how to get out of my head, to get over my feelings for someone
else, without cheating, without breaking up. Help.

Aggregation with α = 0
Have in couple for 5 years, moved in together. It has the tendency to fall
in love with other random people. How can I get those feelings to leave me
alone?

Aggregation with α = 1
I have a girlfriend I love, and also a friend that I have feelings for. I
don’t know how to get rid of those feelings. Please help.

Aggregation with α =∞
I’m with my girlfriend for 5 years, I have feelings for an other person and
I need to get those feelings gone.
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Prompt 2
SUBREDDIT: r/pettyrevenge
TITLE: So, my mom woke me up with a loud TV.
POST: She was in her living room, watching TV. This was at about 8:30 in
the morning, and she was exercising. She turned the TV up extra loud to
hear it over her excercycle, and woke me up. I went in there asking for
her to turn it down. She said she didn’t have to; I explained that I
always used headphones so she didn’t have to deal with my noise and that
she should give me a little more respect, given that I paid rent at the
time.

She disagreed. I went back to my room, rather pissed off at the lack of
equality. I had no lock on my door; but I had a dresser right next to it,
so I pulled one of the drawers out enough so that it caused the door to not
be openable. Then, I turned my speakers up really loud and blasted Gangnam
Style on repeat, with the bass cranked up as high as it could go.

If you hate Gangnam Style for being overplayed, you will see why I chose
that particular song. I personally don’t mind it. But here’s the thing
about my bass; it vibrates the walls, making one hell of a lot of noise.
Needless to say, my mom was not pleased and shut off the internet. But it
was oh so worth it.
TL;DR:

Aggregation with α = −∞
I make a racket when I sleep, then I play Gangnam Style at full volume to
"wake me up" and piss my mom off.

Aggregation with α = −1
Moms wake me up by watching me play video games. She calls it disrespect
for her having to listen to my music. I play Gangnam Style on repeat until
she shuts off the Internet.

Aggregation with α = 0
Mom was awake early and didn’t have to deal with my noise, so I played
Gangnam Style and left it at that.

Aggregation with α = 1
Mom wakes me up to background noise even when she does not have headphones
on. I crank up Gangnam style on repeat enough to cause some structural
damage to her house.

Aggregation with α =∞
So, my mom wakes me up with my TV; I pay rent, but don’t always have to bow
to her wishes. Fuck yes.
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Prompt 3
SUBREDDIT: r/relationships
TITLE: My girlfriend (20f) of two years cheated on me (20m) by kissing two
guys at a Halloween party.
POST: Lately her and I have been having a few problems, and these problems
have been brought up before a few times. One problem being that I don’t
show enough affection. I don’t tell her she’s pretty very often or don’t
compliment her much. I feel terrible about it, but this time I was really
trying to change for her.

For Halloween she went to visit her step brother at a college and I got
drunk with my friends and watched movies. Last night (11/1) we got in a
huge fight about me not changing and how our relationship won’t work out
and basically broke up over the phone. So in an effort to try and fix it
I drove to her house. She told me how at the parties she went to that two
guys kissed her. The first one she pushed away, but the second one I asked
her if she kissed him back and she said yes and that she did it because
it made her feel wanted, which I guess I haven’t been making her feel that
way lately. We cried, we talked about everything, we had great sex, and I
stayed over at her house just to sleep with her and then snuck out in the
morning so her parents wouldn’t know.

We both obviously want to work things out but aren’t sure if we should.
I love this girl, but the more I think about it, all I can think about is
her cheating on me, and more importantly, liking it. It makes me sick to
my stomach. Should I even try to fix it or would I be better off cutting
all ties.
TL;DR:

Aggregation with α = −∞
Girlfriend cheated on me for a feeling of closeness, should I even try to
fix things or am I just getting screwed?

Aggregation with α = −1
girlfriend cheated on me by kissing two guys last night. I love her and
don’t want to break up, but don’t know what to do. Is cheating even worth
fighting for?

Aggregation with α = 0
My girlfriend of two years, whom I love dearly, recently kissed two guys
at a Halloween party. Should I try to salvage the relationship or cut
everything off?

Aggregation with α = 1
Girlfriend of two years cheated on me by kissing two guys, I don’t know if
I should even try to fix it.

Aggregation with α =∞
Girlfriend of 2 years cheated on me with two guys last night. I feel sick
to my stomach. I do still love her, should I work things out or just cut
all ties?
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Prompt 4
SUBREDDIT: r/running
TITLE: One year post-pregnancy, aches and pains in hips and knees, can’t
even comfortably do day 1 of C25k. Help?
POST: I’ll try to keep this short!

*Background**

I’ve always been an on again/off again (very casual!) jogger, typically
doing 3 - 5 k
My knees have always been finicky, and I went to a physio who thought I had
"runner’s knee"
Pre-pregnancy, my "runner’s knee" would flare up when I got to the 8 - 10 k
distance range, even if I had a decent base (doing a C210k type program)

*Current Problem**

I had my baby a year ago, so all in all I haven’t run for about 1.5
years. I’m quite slim and have been doing aerobics-style classes for
the past year, so I’m not totally out of shape. Body weight exercises,
aerobics, bikes and ellipticals are all fine. However, when I run even the
tinyiest bit, or even go on a long walk or a hike, my pelvis gets very sore
and tight, and my knees start hurting very quickly. I already am doing
general squats/lunges/stretching type things.

I’m starting to feel like running just isn’t for me anymore. Which is a
bummer, because I really enjoy running!

Has anyone had something similar? Can anyone recommend some stretches
or exercises that might help? Should I see a Dr? Or should I just see a
physio? Not quite sure how to proceed.

Thanks!
TL;DR:

Aggregation with α = −∞
Have always been a runner, always had knee troubles, no longer pregnant,
aches and pains from running now. Help?

Aggregation with α = −1
Was a fan of running. Has your body ached? What happened when you started
running again? How did you go about it? :)

Aggregation with α = 0
Had runner’s knee, started jogging again immediately post-pregnancy,
getting back to where I was at pre-pregnancy. Now pelvis/knee pain after
even tiny runs. What do?

Aggregation with α = 1
running post-pregnancy, pelvis/knees are very unforgiving. How best to
proceed (stretches? exercises? etc.)? And what can I do to make it
better?

Aggregation with α =∞
1.5 year post-pregnancy, hip/knee pain while "running" even a few feet, no
injuries/illnesses/pain beforehand, not out of shape. Advice?
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Prompt 5
SUBREDDIT: r/tifu
TITLE: TIFU by getting scared for no reason and peeing on myself
POST: (Pre-apology for formatting errors since i’m on my phone)

Well, this was embarrassing and happened a few minutes ago.
I work at a small law office which shares a building with a few other
businesses, a dentist’s office and a military recruitment center. There
is no drinking fountain in the building, so I bring a giant 2L water bottle
which I sip on all day to keep hydrated and counteract all the copious
amounts of alcohol i drink (after work, of course). Unfortunately, I have
been cursed with a small bladder, and have to go pee sometimes 8-10 times a
day. Luckily the back door of my office opens up right near the bathroom,
so I can usually drain the main vein without embarrassing myself by being
frequently seen there.

As I was wrapping up work for the day, I realized I would have to pee one
more time before leaving. It was slightly after 5, so when I walked to
the bathroom, I wasn’t expecting to see anyone in there (it is the kind of
bathroom with a urinal and a stall).

Fuckup begins when I open the door and there is a dude who had just
finished shitting and was leaving the stall. For whatever reason this
terrified me for a split second and I jumped and gasped.

The guy was amused and chuckled and was like, did I scare you? I muttered
something like "haha, yeah, a little bit" and I kept my head down, beelined
to the urinal and unleashed the krakan.

I was super embarrassed and very preoccupied so I didn’t notice that the
bottom part of my untucked, button-down shirt had slipped into my urine
stream and was getting soaked. I didn’t realize it until it began to sort
of soak back onto my pant leg and getting my thigh wet.

Well, fuck, i thought. This sucks. Then i remembered my fiancee was
coming to pick me up straight from work so we could go grocery shopping.
I cleaned up as best as i could, but its still very obvious. Luckily I
have a P coat which is long enough to cover my pee-soaked netherregion, so
i may get through this unscathed. My girl didn’t
TL;DR:

Aggregation with α = −∞
was scared for no reason, and pissed on myself when doing so. Not sure if
I’m going to be able to avoid a major wardrobe change before tonight...

Aggregation with α = −1
I was startled by someone, lost my bladder control and pee’d all over
myself, after I finished up and was getting ready to leave for my fiancees
house. Fortunately for me, it looks like i just peed myself.

Aggregation with α = 0
I got scared for no reason and peed on myself, then covered it up with my
fiancee as we’re about to leave work, but it’s still visible.

Aggregation with α = 1
work didn’t have a toilet, had to use bathroom at my office. Sharted in
the bathroom stall and got my shirt stuck to me, but may have gotten rid of
all evidence of the incident by bringing a P coat
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Aggregation with α =∞
I jumped, freaked out, urinated, and forgot to change my wet shirt. When
I got home, I had to change the dress so my fiancee wouldn’t catch a
glimpse.
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