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ABSTRACT

Recent advances in large-scale pretrained vision models have demonstrated impressive
capabilities across a wide range of downstream tasks, including cross-modal and multi-
modal scenarios. However, their direct application to 3D human skeleton data remains
challenging due to fundamental differences in data format. Moreover, the scarcity of large-
scale skeleton datasets and the need to incorporate skeleton data into multi-modal action
recognition without introducing additional model branches present significant research op-
portunities. To address these challenges, we introduce Skeleton-to-Image Encoding (S2I), a
novel representation that transforms skeleton sequences into image-like data by partitioning
and arranging joints based on body-part semantics and resizing to standardized image
dimensions. This encoding enables, for the first time, the use of powerful vision-pretrained
models for self-supervised skeleton representation learning, effectively transferring rich
visual-domain knowledge to skeleton analysis. While existing skeleton methods often de-
sign models tailored to specific, homogeneous skeleton formats, they overlook the structural
heterogeneity that naturally arises from diverse data sources. In contrast, our S2I representa-
tion offers a unified image-like format that naturally accommodates heterogeneous skeleton
data. Extensive experiments on NTU-60, NTU-120, and PKU-MMD demonstrate the
effectiveness and generalizability of our method for self-supervised skeleton representation
learning, including under challenging cross-format evaluation settings.

1 INTRODUCTION

Recent years have witnessed the remarkable success of large-scale vision-pretrained models, such as Vision
Transformers (ViTs) (Dosovitskiy et al., 2021)), Masked Autoencoders (MAE) (He et al.,[2022), and Vision-
Language Models (VLMs) (Jia et al. 2021 [Singh et al., |2022), across diverse visual recognition and
understanding tasks. These models leverage abundant image data to learn transferable representations and
are increasingly adapted to other modalities, including depth maps (Xia & Wul [2024; |Yang et al., 2024b),
IR images (Zhang et al., 2023} |Paranjape et al.| 2025), video sequences (Tong et al., |2022; |Wang et al.,
2023;2022a)), and even point clouds (Wang et al.| 2022b}; |[Zhang et al.,|2022b). A common strategy is to
project non-image modalities into 2D formats, enabling direct use of image-pretrained models. While this
works for dense 3D data like point clouds, applying similar projections to 3D skeleton data poses unique
challenges. Skeletons are inherently sparse (only 15-30 joints per frame) and exhibit articulated structures
with strong semantic relationships—unlike unstructured point clouds. Moreover, skeleton sequences span
temporal dimensions critical for motion understanding, making naive 2D projections inadequate.

While direct application of vision models to skeleton data is non-trivial, skeleton-based representation learning
remains fundamental for understanding human motion. Skeleton data provides a compact, appearance-
invariant, and high-level abstraction of human activities, making it particularly valuable for tasks such as
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Figure 1: The existing methods train the skeleton models directly, while the proposed method converts
skeleton data into image-like data and then train with the pre-trained vision models.

action recognition, gait analysis, and human-computer interaction. Furthermore, as multi-modal action
recognition gains traction, skeleton data serves as a complementary modality that can enhance robustness
and interpretability when effectively integrated with dense visual inputs like RGB images and depth maps.
However, the scarcity of large-scale annotated skeleton datasets and the incompatibility of skeleton structures
with vision model architectures limit current methods’ generalization ability across diverse tasks and scenarios.

To overcome these challenges, we introduce an approach that leverages pretrained Vision Models—such as
MAE (He et al.,[2022)) and DiffMAE (Wei et al.,[2023)— for skeleton representation learning. This extends the
use of vision models beyond 2D images to the 3D skeleton domain by transferring rich knowledge from large-
scale image pretraining. At the core of this approach is our proposed Skeleton-to-Image Encoding (S2I), a
novel representation method that reformats skeleton sequences into image-like representation compatible
with vision models. Specifically, the 3D joint coordinates (z, y, z) are directly mapped to RGB channels,
converting motion patterns into pseudo-images. To ensure semantic consistency, we first partition skeleton
joints into five body parts: torso, left arm, right arm, left leg, and right leg. These are then reordered by
following the body part sequence, and within each part, joints are further sorted in a top-down manner
based on their physical positions. We then stack these reordered joints across the temporal dimension,
producing a spatial-temporal image-like representation of the entire skeleton sequence. Finally, the generated
representation is resized to the standard image input size (224 x 224) for compatibility with vision models.
As a result, our method enables, for the first time, the direct application of powerful pretrained vision models
for self-supervised skeleton representation learning, effectively transferring rich visual domain knowledge to
the skeleton domain without requiring task-specific architectural modifications. A visual comparison between
existing skeleton pipelines and our approach is shown in Figure [T}

Current skeleton-based methods are typically designed for homogeneous skeleton formats, relying on fixed
joint definitions and dataset-specific architectures. Such designs limit their scalability and hamper adaptation
to skeleton data with varying joint configurations, coordinate systems, or capture devices. As a result, these
methods struggle in cross-format scenarios, where skeleton layouts differ significantly across datasets. In
contrast, our proposed S2I provides a unified and format-agnostic representation. By abstracting skeleton
data into a consistent image-like structure, our method naturally supports joint training across multiple
heterogeneous skeleton datasets, facilitating universal skeleton representation learning. Using diverse skeleton
formats collectively, our approach enhances model generalization and captures richer motion dynamics.

Through extensive experiments on benchmark datasets, including NTU-60, NTU-120, and PKU-MMD, we
demonstrate that our method achieves competitive performance in self-supervised skeleton representation
learning. Notably, our approach shows exceptional effectiveness in challenging cross-format evaluation,
exhibiting strong generalizability across heterogeneous skeleton formats.

Our contributions can be summarized as follows: (1) We propose a novel pipeline that leverages vision-
pretrained models and their weights for skeleton-based representation learning, bridging the modality gap
between images and skeleton sequences. (2) We introduce Skeleton-to-Image Encoding, a unified representa-
tion method that reformats sparse 3D skeleton data into image-like inputs, compatible with vision models and
resilient to skeleton format variations. (3) We explore our method’s effectiveness for heterogeneous skeleton
representation learning and propose a universal skeleton pretraining strategy, enabling cross-format learning
across multiple skeleton datasets.
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2 RELATED WORKS

Skeleton Action Recognition. In recent years, deep learning has been widely used in skeleton action
recognition, owing to its strong capability in feature extraction and representation learning. Existing methods
typically adopt Recurrent Neural Networks (RNNs)(Du et al., 2015b; |Liu et al., 2017 |Zhang et al.,|2017),
Convolutional Neural Networks (CNNs)(Du et al.,2015a;|Ke et al.,|2017;|L1 et al., 2018]), Graph Convolutional
Networks (GCNs)(Yan et al., 2018 |Shi et al.,[2019;|Chen et al.,|2021)), and Transformers-based models (Zhang
et al.,[2021b; Zhou et al.| 2022) to directly learn skeleton representations. However, most existing methods
are specifically designed for homogeneous skeleton formats, assuming fixed joint numbers. Such designs
inherently limit their scalability and generalization to datasets with diverse skeleton structures. In contrast, our
proposed S2I representation offers a format-agnostic solution that naturally handles heterogeneous skeleton
layouts, enabling more flexible and robust skeleton representation learning.

Self-Supervised Skeleton Representation Learning. Self-supervised skeleton representation learning has
become a promising direction to reduce reliance on costly manual annotations. Recent methods mainly
adopt contrastive learning (Li et al.| [ 2021; |Guo et al., 2022} Zhang et al.|[2022a) and masked modeling (Mao
et al., 2023 /Wu et al.| 2024} [2023)) to learn discriminative features from unlabeled skeleton data. In contrast,
large-scale pretrained vision models have shown remarkable transferability across diverse downstream tasks
and even different modalities. However, leveraging such pretrained models for skeleton data remains largely
unexplored due to the inherent gap in data formats. In this work, we propose S2I, which reformats skeleton
sequences into image-like inputs, enabling the direct use of vision-pretrained models for skeleton tasks.

Self-Supervised Representation Learning on Images. Self-supervised learning has gained significant
traction in computer vision for its ability to learn effective representations without manual annotations.
Contrastive learning methods exploit augmentation invariance to learn instance-discriminative features from
images and videos (He et al.,|2020; |Chen et al.| [2020; |Qian et al.| [2021)). More recently, masked modeling has
emerged as a powerful alternative to contrastive methods. MAE (He et al., [2022) reconstructs masked pixel
values using an asymmetric encoder-decoder architecture, providing a simple yet effective framework for
visual representation learning. BEiT (Bao et al.l [2022) follows a mask-then-predict strategy, using visual
tokens generated by a pre-trained tokenizer as prediction targets. Diff MAE (Wei et al.,[2023)) further enhances
MAE by introducing a denoising diffusion process to iteratively reconstruct masked regions. In this work, we
evaluate our proposed S2I representation using both MAE and DiffMAE pretrained models.

3 METHOD
3.1 SKELETON-TO-IMAGE ENCODING

As discussed in Section [I] our objective is to leverage vision-pretrained models for skeleton representation
learning. This enables the effective utilization of large-scale vision models and their pretrained weights for
skeleton-based tasks. Furthermore, adopting a unified vision model backbone facilitates multi-modal action
recognition, where diverse data modalities can be seamlessly integrated.

To achieve this, skeleton data must be reformatted into a representation compatible with image-based models.
Specifically, it is essential to encode spatial-temporal information from skeleton sequences in a form analogous
to image data, thereby enabling knowledge transfer from pretrained vision models. However, a fundamental
challenge arises from the inherent differences in data structures. While image data is typically represented as
tensors of size 3 x 224 x 224 for vision models, skeleton sequences are structured as 7' x J x 3, where T’
denotes the temporal length of the sequence, and .J x 3 represents the 3D coordinates (z, y, z) of skeleton
joints. To bridge this discrepancy, we propose a straightforward yet effective mapping strategy. The 3D
joint coordinates (x,y, z) are directly assigned to the RGB channels of an image, with each spatial axis
corresponding to one color channel. The remaining challenge is to project the T x J spatial-temporal data
into the 224 x 224 image plane, ensuring compatibility with standard vision model inputs.
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Figure 2: Illustration of the Skeleton-to-Image Encoding (S2I) process, which transforms skeleton sequences
into image-like representations via joint partitioning, temporal stacking, and interpolation.
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To bridge the gap between skeleton sequences and image-based model inputs, we propose Skeleton-to-Image
Encoding (S2I), a novel representation that transforms skeleton sequences into dense, image-like data
compatible with vision models (e.g., MAE, Diff MAE), as illustrated in Figure 2} Specifically, we partition the
human skeleton into five semantic body parts: spine, left arm, right arm, left leg, and right leg. This strategy,
widely adopted in prior works (Li et al.} 2020j (Cai et al., 2019; | Zhang et al., 202 1a)), follows the kinematic
structure of the human body and can be generalized across skeleton formats.

Within each part, joints are arranged along their kinematic chain, ordered by distance from the torso. For
example, joints in the left leg are sequenced as: left hip — left knee — left ankle — left foot. This ordering
preserves the spatial relationships inherent in the skeleton structure. For temporal modeling, the 3D positions
of each joint across 7" frames are stacked to form a spatio-temporal feature map of size T x J, where (z, vy, z)
coordinates are assigned to the RGB channels of the image. Finally, to match the input requirements of
vision models (e.g., 224 x 224), we apply linear interpolation along both temporal and joint dimensions,
resizing them independently to a fixed resolution of 224 x 224. This yields an image-like representation of
the skeleton sequence while preserving essential spatial-temporal patterns.

Application & Advantage. Our S21I reformats skeleton sequences into image-like representations that are
inherently robust to variations in skeleton structures. By abstracting skeleton data into a unified format,
it enables seamless representation of diverse skeleton layouts without relying on dataset-specific joint
definitions. In contrast, conventional skeleton-based methods are tightly coupled to homogeneous skeleton
formats, assuming fixed joint numbers, which limits their scalability across datasets with differing skeleton
structures. Even recent works (Yang et al.l 2021bj |Liu & Wang] [2022) that attempt cross-format evaluations
still rely on shared joint subsets, fundamentally adhering to homogeneous representations.

Our approach differs by introducing a format-agnostic representation paradigm. This design decouples
skeleton representations from dataset-specific joint configurations, enabling direct integration of skeleton
data from multiple heterogeneous sources. As a result, S2I naturally supports cross-format representation
learning, where models trained on one skeleton format can generalize to others. Furthermore, it facilitates
universal representation pretraining by jointly leveraging diverse skeleton datasets, similar to practices in
large-scale image pretraining, without requiring task-specific architectural modifications. A visual comparison
between conventional skeleton pipelines and the two proposed settings is provided in Appendix [A.4]

3.2  VISION REPRESENTATION MODELS

Our proposed S2I reformats skeleton data into image-like data, enabling seamless application of vision-
pretrained models for skeleton representation learning. Unlike skeleton networks, our approach leverages the
general-purpose architecture and pretrained weights of powerful vision models.

In this work, we evaluate two representative vision models to demonstrate the effectiveness of our repre-
sentation: MAE (He et al.| [2022) and DiffMAE (Wei et al.|, [2023). Both models are originally designed for
image representation learning and pretrained on large-scale ImageNet datasets, providing rich visual priors
that can be effectively transferred to the skeleton domain through our unified representation. MAE learns
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visual representations by reconstructing masked image patches from the visible context. Leveraging our S2I
encoding to convert skeleton sequences into image-like data, we reuse ImageNet-pretrained MAE weights
and perform skeleton pretraining via masked reconstruction. DiffMAE further enhances this framework by
incorporating iterative denoising processes inspired by diffusion models. Following the same strategy, we
utilize ImageNet-pretrained Diff MAE weights and conduct skeleton pretraining using our S2I representation.

The skeleton-pretrained models are evaluated on downstream skeleton tasks to validate the effectiveness of our
proposed S2I representation. While we focus on MAE and DiffMAE in this work, our S2I representation is
compatible with a broad range of vision models, including emerging generative and multimodal architectures.

3.3 MASK SAMPLING STRATEGY

The effectiveness of masked modeling largely depends on the masking strategy employed during pretraining.
To optimize representation learning for skeleton data, we investigate several masking strategies applicable to
both image-based and skeleton-specific contexts. Random Masking is the standard approach used in image-
based masked modeling (He et al.| 2022), where image patches are randomly masked without considering
spatial relationships. Formally, given a mask ratio r, we randomly select | x NN | patches to mask from the
total NV patches in the skeleton image representation. Block Masking increases pretraining task difficulty by
masking contiguous regions of the input. Starting from randomly selected seed positions, blocks of adjacent
patches are masked together, encouraging the model to learn stronger local structural relationships. Beyond
these general strategies, we introduce two skeleton-specific masking schemes designed to better capture
the unique spatial-temporal structure of human motion: Joint Masking focuses on the spatial domain by
randomly masking joints across the skeleton body, challenging the model to infer missing joint positions
based on articulated body structure. Temporal Masking targets the temporal dimension by masking entire
frames or temporal slices, encouraging the model to capture dynamic motion patterns from partial sequences.

3.4 TRAINING OBJECTIVES

We adopt a two-stage training pipeline for skeleton action recognition, leveraging our Skeleton-to-Image
(S2I) representation to adapt vision-pretrained models to the skeleton domain.

In the first stage, we perform self-supervised skeleton representation learning by applying masked modeling
on our S2I representation, using the ImageNet-pretrained MAE (He et al}[2022) and DiffMAE (Wei et al.
2023) as backbones. Given a skeleton sequence X € R3*224x22% ransformed via S2I, we apply masked
modeling to learn skeleton representations: For MAE, we minimize the reconstruction loss between the
original input and the reconstruction of the masked patches:

1
L =
MAE = T ;

where M denotes the set of masked patches, X is the reconstructed patch, and X is the ground truth. For
DiffMAE, we follow (Wei et al.,|2023)) and reconstruct the masked regions through a denoising diffusion
process, conditioned on the visible parts. The loss is defined as:

LpitMAE = Eta0.c |2 — Do (25, t, Eo(x3)) Hz ) 2)

where 20, is the original masked region, z!, is the noised version at diffusion step ¢, 20 is the visible region,
E denotes the encoder, and Dy is the diffusion decoder.

N 2
Xi =X )’ M

In the second stage, we evaluate the skeleton-pretrained encoders on downstream skeleton action recognition
tasks by attaching a classification head and optimizing with cross-entropy loss: Lcg = — Zle Ye 1og Yo,
where C'is the number of classes, y. is the ground-truth label, and g is the predicted probability. Depending
on evaluation protocol, we either perform linear probing with a frozen encoder or fine-tune the entire model.
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4 EXPERIMENTS
4.1 DATASETS

For evaluation, we conduct experiments on five datasets: NTU-60 (Shahroudy et al.,|2016), NTU-120 (Liu
et al.,[2020), PKU-MMD (L1u et al.| 2020), NW-UCLA (Wang et al.,[2014)), and Toyota (Das et al.,|2019).
The first three use 25-joint skeletons, while NW-UCLA and Toyota contain 20 and 13 joints, respectively.
NTU-60 is the most widely used benchmark for skeleton action recognition, comprising 56,880 skeleton
sequences across 60 action classes performed by 40 subjects. In our experiments, we follow the standard
cross-subject (C-sub) and cross-view (C-view) evaluation protocols. NTU-120 is the largest skeleton-based
action recognition dataset to date, containing 114,480 samples across 120 action classes, collected from 106
subjects across 32 setups with varying locations and backgrounds. We follow the official cross-subject (C-sub)
and cross-setup (C-set) evaluation protocols for benchmarking. PKU-MMD is a large-scale benchmark for
continuous multi-modality 3D human action understanding, featuring approximately 20,000 action instances
in 51 categories. PKU-MMD consists of two subsets: Part I (easier, cleaner data) and Part II (challenging,
noise data). We follow the cross-subject protocol for both subsets in our experiments. NW-UCLA contains
1,494 action samples from 10 classes, performed by 10 subjects and captured using three Kinect v1 cameras.
Each skeleton consists of 20 joints. Toyota is a real-world dataset for daily living activity recognition,
containing 16,115 videos across 31 classes. We follow the original evaluation protocols, conducting transfer
learning experiments under both cross-subject (CS) and cross-viewl (CV1) settings.

4.2 EXPERIMENTAL SETUP

Network Architecture. For both MAE and DiffMAE, we adopt the ViT-B architecture as the encoder.
The decoder consists of eight transformer blocks, each with a channel dimension of 512. In DiffMAE, the
decoder follows a cross-self attention design inspired by the original Transformer encoder-decoder structure.
Specifically, in each decoder block, the noised tokens first attend to the visible latent representations via a
cross-attention layer, followed by self-attention among noise tokens to refine predictions. [1_-]

Data Processing Details. For NTU-60, NTU-120, PKU-MMD, and Toyota, we follow the data pre-processing
in (Zhang et al.| [2020), sequence level translation based on the first frame is performed to be invariant to the
initial positions. If one frame contains two persons, it is split into two single-skeleton frames. For NW-UCLA,
we adopt the data pre-processing in (Cheng et al.| 2020).

Implementation Details. For the self-supervised skeleton representation learning stage, we initialize the
models with ImageNet-pretrained MAE and DiffMAE weights, and adopt their default implementation
configurations (He et al.| 2022; |Wei et al.,|2023)). For skeleton action recognition, we use SGD with Nesterov
momentum (0.9) for linear probing, with an initial learning rate of 0.2 decayed via cosine annealing. For
fine-tuning, we employ the AdamW optimizer with an initial learning rate of 0.001, decayed by cosine
annealing. All skeleton action recognition experiments are trained for 100 epochs. The batch size is set to
128 for all datasets, except for NW-UCLA, where a smaller batch size of 32 is used. !

4.3 ABLATION STUDY

We conduct ablation studies on the NTU-60 C-sub to examine three key aspects of our method: (1) the
effectiveness of Skeleton-to-Image representation, (2) the impact of image-pretrained weights, and (3) the
choice of masking strategies and skeleton modalities.

Effectiveness of Skeleton-to-Image Representation with Vision Models. To evaluate the viability of using
image-based models for skeleton representation learning, we evaluate MAE and DiffMAE architectures in
combination with our proposed Skeleton-to-Image Encoding. As shown in Table[I] both models achieve
strong performance after skeleton SSL pretraining, followed by linear probing or fine-tuning, demonstrating

"Detailed network configurations and more implementation details are provided in Appendix and
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Figure 3: Effect of mask ratio
Strategy | Ratio | Linear Probe Fine-tune Method | Linear Probe  Fine-tune
Joint 75 82.3 90.4 Joint 83.1 91.0
Temporal | 75 82.9 90.7 Motion 70.5 89.7
Random | 75 83.1 91.0 Bone 8L.0 90.8
Group 75 81.3 90.3 3-stream | 85.8 93.1
Table 2: Comparison of masking strategies. Table 3: Comparison of skeleton modalities.

the viability of vision models for skeleton representation learning. These results demonstrate that, despite
being designed for dense image data, vision models can effectively process structured skeleton sequences
when equipped with appropriate representations. Skeleton-to-Image Encoding serves as an effective bridge,
enabling the reuse of powerful vision models without task-specific architectural modifications.

Impact of Image-Pretrained Weights. We further examine the benefit of ImageNet-pretrained weights
by comparing models trained from scratch and models initialized with pretrained weights. Table[I]shows
that image-pretraining yields substantial gains in both linear probing and fine-tuning settings. In the linear
probing scenario, pretrained MAE improves from 52.0% (scratch) to 72.2%, while pretrained Diff MAE
improves from 52.0% to 71.3%. This substantial gap highlights the benefit of transferring generic visual
representations to the skeleton domain. Furthermore, even after Skeleton Pretrain, pretraining with image data
continues to provide notable gains, underscoring the importance of leveraging large-scale image-pretrained
weights. These findings confirm that image-pretrained weights serve as a strong and transferable starting point
for skeleton representation learning, significantly enhancing performance. Given DiffMAE’s consistently
superior performance, we adopt it as the default backbone for subsequent studies and comparisons.

Effect of Masking Ratio. We investigate the influence of different masking ratios using Diff MAE. As shown
in Figure [3] increasing the masking ratio generally improves representation quality, with 75% yielding the
best results in both linear probing and fine-tuning. Based on these findings, we adopt a 75% masking ratio as
the default setting for subsequent ablation studies and main comparisons.

Masking Strategies. We evaluate joint, temporal, random, and group masking strategies. Results in Table[2]
indicate that random masking consistently outperforms others. While joint and temporal masking provide
competitive results, group masking underperforms, suggesting that overly structured masking may limit the
model’s capacity. Consequently, we adopt random masking with 75% ratio as our default strategy.

More Skeleton Modalities. In skeleton-based recognition, joint data can be augmented by deriving motion
and bone modalities. We evaluate these modalities individually and in combination using DiffMAE fine-
tuning to assess their effectiveness within vision models. As shown in Table[3] joint features perform strongly,
while motion and bone streams offer complementary cues. Fusing all three modalities yields substantial
improvements, reaching 85.8% (linear probing) and 93.1% (fine-tuning). This confirms that multi-modality
fusion remains effective even when skeleton data is reformatted as images and processed by vision models. In
subsequent main results, we report the results of both the Joint stream (S2I) and the 3-stream fusion (3s-S2I).

4.4 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Linear Evaluation Results. In linear evaluation, we freeze the pretrained backbone and train a supervised
linear classifier on top. Table f] shows results on NTU-60, NTU-120, and PKU-MMD. Despite using image-
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M | NTU-60 | NTU-120 | PKU-MMD
ethod
| C-sub C-view | C-sub C-set | Phase ] Phase Il

LongT GAN (Zheng et al.||2018) 39.1 48.1 - - 67.7 26.0
P&C (Su et al.{[2020) 50.7 76.3 427 417 59.9 25.5
MS?L (Lin et al.[[2020) 52.6 - - - 64.9 27.6
SkeletonMAE (Wu et al.|[2023) 74.8 71.7 72.5 735 82.8 36.1
3s-SkeletonCLR (Li et al.[[2021) 75.0 79.8 60.7 62.6 85.3 -
3s-Colorization (Yang et al.[|2021b) | 75.2 83.1 - - - -
ISC (Thoker et al.[[2021) 76.3 85.2 67.1 67.9 80.9 36.0
GL-Transformer (Kim et al.|[2022) 76.3 83.8 66.0 68.7 - -
3s-CrosSCLR (Li et al.[|2021) 77.8 834 679  66.7 84.9 21.2
3s-AimCLR (Guo et al.{[2022) 78.9 83.8 68.2  68.8 87.4 39.5
CMD (Mao et al.[[2022) 79.4 86.9 703 715 - 43.0
3s-CPM (Zhang et al.||2022a) 83.2 87.0 73.0 74.0 90.7 51.5
3s-ActCLR (Lin et al.|[2023) 84.3 88.8 743 757 - -
MAMP (Mao et al.[[2023) 84.9 89.1 78.6  79.1 92.2 53.8
MacDiff (Wu et al.|[2024) 86.4 91.0 794 802 92.8 -
S2I (Ours) 83.1 88.0 750 755 88.0 574
3s-S2I (Ours) 85.8 89.7 789  80.3 923 62.0

Table 4: Comparison of Linear Evaluation results on NTU 60, NTU and PKU datasets. 3s- represents the
ensemble results of joint(J), bone(B) and motion(M) streams. Bold and underlined indicate the best and
second best results, respectively. The same notation applies throughout.

5 . | NTU-60
Method | NTU60 | NTU-120 Method | b | Coview
| C-sub  C-view | C-sub C-set
- | (1%)  (10%) | (1%) (10%)

AimCLR (STTFormer) (Guo et al.{[2022} | 83.9 90.4 746 772 >

CrosSCLR (STTFormer) (Li et al.J2021) | 846 905 | 750 779 LonsT AN Zlepe ol [POI8} | 352 €20 | - -
CPM (Zhang et al.|2022a) 848 911 784 789 fLin et a0 >3 > ) :

o : ASSL (St et al.|[2020} - 643 - 698

3s-CrosSCLR (L1 et al.[[2021) 86.2 92.5 80.5 80.4 1SC -

' (Thoker et al.][2021] 357 659 | 381 725
3s-AimCLR (Gro el aLlZ02) 869 928 | 801 809 35-CrosSCLR {Li et al|2021] SLI 744 | 500 778
SkeletonMAE{Wu et al JlZ0Z3) 866 929 | 768 79.1 3s-Colorization {Yang et al.|2021b] | 483 717 | 525 789
3s-Colorization (Yang et al.||2021b) 88.0 94.9 - - CMD (Mao et al.[12022] 50.6 754 | 53.0 802
3s-ActCLR (Lin et al.[[2023) 88.2 939 82.1 84.6 3s-Hi-TRS (Chen et al.|[2022] 493 777 | 515  8l.1
MCC (Su et al.J[202T} 897 963 | 813 835 35-AimCLR {Guo et al.| 2022 548 782 | 543 816
ViA (Yang et al.[[2024a} 89.6 964 | 850 865 35-CMD (Mao et al.J 2022] 556 790 | 555 824
3s-Hi-TRS (Chen et al.|[2022} 90.0 957 | 853 874 CPM (Zhang et al.|[2022a) 567 730 | 575 771
MAMP (Mao et al.|[2023}] 931 975 | 900 913 SkeletonMAE (Wu et al.]|2023] 544 806 | 546 835
MacDiff (Wu et al.| 2024) 92.7 973 _ R MAMP (Mao et al.}}2023] 66.0 880 | 687 915
910 : o0 967 T me §19 MacDiff (Wu et al.| 2024] 65.6 882 | 773 925
3§—S(21‘;g\)1r§) 931 977 | %02 912 521 (Ours) 714 848 | 733 878

: ° - . L= 35-821 (Ours) 752 883 | 777 917

Table 5: Comparison of Fine-tuning results on the NTU-60  Tuple 6: Comparison of semi-supervised re-
and NTU-120 datasets. sults on the NTU-60 dataset.

pretrained vision models without skeleton-specific architectures, our S2I achieves competitive performance
compared to recent specialized methods. Specifically, S21 attains 83.1% and 88.0% on NTU-60 (C-sub and
C-view), and 75.0% on NTU-120 (C-sub), demonstrating its effectiveness in bridging skeleton data with
vision models. By integrating joint, motion, and bone streams, 3s-S2I further enhances representation quality,
achieving state-of-the-art results on NTU-60 C-sub (85.8%), NTU-120 C-set (80.3%), and PKU 1II (62.0%).

Fine-tuning Evaluation Results. In Fine-tuning protocol, an MLP head is attached to the pre-trained
backbone and the whole network is fully fine-tuned. As shown in Table 5] our S2I achieves competitive
performance on NTU-60 and NTU-120 without skeleton-specific model designs. By bridging skeleton data
with vision-pretrained models, S2I adapts effectively to skeleton tasks. With multi-stream fusion, 3s-S2I
reaches state-of-the-art results, confirming the scalability of our approach.

Semi-supervised Evaluation Results. In semi-supervised protocol, both the classification head and the
pretrained encoder are fine-tuned using only a small fraction of the training set. We evaluate on NTU-60
with 1% and 10% of the training set. As shown in Table[6] our S2I achieves strong performance with 71.4%
(1%) and 88.4% (10%) under C-sub setting. With multi-stream fusion, 3s-S2I achieves state-of-the-art results,
reaching 75.2% (1%) and 88.3% (10%), validating the effectiveness of S2I in low-label regimes.
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] . Table 8: Cross-format transfer learning results from
Table 7: Comparison of transfer learning results on  NTU-60 to Toyota and NW-UCLA datasets
PKUMMD II dataset. '

Method | NTU120 C-sub  NTU60 C-sub PKU-I PKU-II Toyota-CS NW-UCLA
Self-pretrain 86.6 91.0 94.0 65.8 64.5 91.6
Universal-pretrain 87.0 91.6 95.2 71.1 68.0 93.5

Table 9: Universal pretraining evaluation on multiple skeleton datasets.

Transfer Learning Evaluation Results. In the transfer learning evaluation protocol, models are first pre-
trained on a source dataset and then fine-tuned on a distinct target dataset to assess the generalization of
learned representations. Here, PKU-MMD II serves as the target dataset, while NTU-60, NTU-120, and
PKU-MMD I are used as source datasets. As shown in Table[7} our method achieves strong performanceacross
all transfer settings, demonstrating superior generalization and robustness over existing methods.

4.5 BROADER APPLICATIONS

As discussed in Section [3.1] our proposed S2I provides a unified representation for tackling both Cross-
Format Transfer Learning and Universal Skeleton Representation Learning. To demonstrate its advantages,
we conduct experiments under these two settings.

Cross-Format Transfer Learning Evaluation Results. We evaluate S2I on three heterogeneous skeleton
datasets: NTU-60 (25 joints), Toyota (13 joints), and NW-UCLA (20 joints). Existing methods often require
joint downsampling or interpolation to match skeleton formats, which leads to information loss or noise. In
contrast, our S2I approach preserves structural information by converting skeleton sequences into a format-
agnostic image representation. As shown in Table 8] S2I achieves clear improvements over prior works.
Specifically, 3s-S2I reaches 53.8% on Toyota (CV1), surpassing existing methods by a significant margin.

Universal Representation Pretraining Evaluation Results. To further validate the generalizability of our
representation, we conduct universal representation learning by aggregating training data from multiple
datasets (NTU120-Csub, PKU-I-CS, PKU-II-CS, Toyota-CS, and NW-UCLA). The experiments are
performed on joint data. As shown in Table [0} the universal pretraining consistently boosts performance
across all evaluated datasets compared to individual dataset self-pretraining.

5 CONCLUSION

In this paper, we propose Skeleton-to-Image Encoding (S2I), a simple yet effective representation that
bridges skeleton sequences with vision-pretrained models. By reformatting spatial-temporal skeleton data
into image-like structures, S2I enables direct use of powerful pretrained vision models without requiring
skeleton-specific design modifications. Extensive experiments on five benchmark datasets show that S2I
achieves competitive performance in skeleton representation learning, supporting challenging tasks such as
cross-format skeleton transfer learning and universal skeleton pretraining. In the future, we plan to extend
S2I to other larger vision models (e.g., VLMs and multi-modal vision models) and explore its potential in
multi-modal action recognition, including joint modeling with RGB videos and other sensor data.

“More details of implementations and skeleton partitioning are provided in Appendix
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A APPENDIX

We provide additional materials in the Appendix that could not be included in the main manuscript due to
space constraints. The appendix consists of five parts: (1) detailed descriptions of the network architecture
used in our experiments (MAE (He et al., |2022) and DiffMAE (Wei et al., 2023))); (2) pretraining strategies
applied for skeleton representation learning; (3) downstream evaluation protocols, including fine-tuning
and linear probing; (4) a structural comparison between existing pipelines and our proposed method under
cross-format and universal settings; (5) implementation details for universal skeleton representation learning,
including skeleton partitioning strategies and preprocessing procedures.

A.1 NETWORK ARCHITECTURE AND CONFIGURATIONS

MAE (He et al., 2022). Our MAE implementation follows the asymmetric encoder-decoder architecture
proposed in (He et al.l [2022). The encoder is a Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2021)),
where “16” denotes the patch size. It operates only on the visible (unmasked) patches, without using any
mask tokens. Each patch is linearly projected and added with fixed sinusoidal positional embeddings. The
encoder consists of 12 Transformer blocks, each composed of a multi-head self-attention layer (Vaswani et al.|
2017), a feed-forward MLP, and LayerNorm (Ba et al., 2016) applied before both submodules. A standard
class token is used during fine-tuning but omitted during pretraining. The decoder is lightweight and receives
both the encoded visible patches and learnable mask tokens. It comprises 8 Transformer blocks (Vaswani
et al.,|2017) with a hidden size of 512 and projects the output back to pixel space to reconstruct the original
input. Reconstruction is performed only on masked patches, and the loss is computed as the mean squared
error (MSE) between the predicted and ground-truth pixel values.

DiffMAE (Wei et al.,[2023). Our implementation of Diff MAE follows the asymmetric encoder-decoder
architecture proposed in (Wei et al.} 2023), using ViT-B/16 as the encoder. The encoder processes only visible
patches, and the decoder reconstructs masked regions from noisy inputs sampled through a forward diffusion
process. Following the original design, we append a LayerNorm to the encoder output, followed by a linear
projection to align feature dimensions with the decoder. Fixed sinusoidal positional embeddings are added to
both the encoder and decoder inputs. We do not use relative positional encodings or layer scale. Additionally,
separate linear projections are applied to clean and noisy tokens, respectively.

Unlike MAE, which directly regresses pixel values, Diff MAE formulates masked region prediction as a
conditional generation task via a diffusion-based denoising process. Specifically, we adopt the cross decoder
variant, where each noisy token (corresponding to a masked patch) independently attends to encoder outputs
via cross-attention, without interacting with other noise tokens. This avoids shortcut paths and promotes more
effective encoder pretraining. For the diffusion process, we follow a linear variance schedule (Ho et al.,2020),
with the number of timesteps set to 7' = 1000.

A.2 PRETRAINING SETUP AND STRATEGIES

MAE (He et al., 2022). We follow the general pretraining setup of MAE (He et al., 2022), with modifications
to accommodate the smaller scale and different nature of skeleton datasets compared to ImageNet. Specifically,
we use a batch size of 512 and train for 800 epochs. For data augmentation, we employ a customized pipeline
designed for S2I skeleton representation. In contrast to the original MAE, which uses standard image
augmentations such as ColorJitter and DropPath, we adopt lightweight and semantically consistent
transformations: random horizontal flip (p = 0.5), random rotation, random affine scaling and translation,
and additive Gaussian noise with standard deviation. All augmentations are applied before normalization. All
other components, including optimizer settings and learning rate schedule, remain consistent with the original
MAE. The full configuration is summarized in Table
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Table 10: Pretraining settings for MAE on S2I representation.

Config \ Value
Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum B1, B2 = 0.9,0.95
Batch size 512
Learning rate schedule cosine decay
Epochs 800
Warmup epochs 40
Augmentation Horizontal flip (p=0.5), Random rotation,
Random affine, Gaussian noise

DiffMAE (Wei et al., [2023). We follow the official DiffMAE pretraining setup on ImageNet, using the
same optimizer, learning rate schedule, and number of training epochs (1600). To account for the smaller
scale of skeleton dataset, we reduce the batch size to 512. In place of RandomResizedCrop, we adopt a
skeleton-related augmentation pipeline consisting of horizontal flip, random rotation, affine transformation,
and additive Gaussian noise, as detailed above. The full pretraining configuration is summarized in Table[T1]

For the diffusion process, we follow the noise schedule formulation in (Wei et al.,2023)), where each forward
sample x}"* is reparameterized as:

.’L’;ﬂ = v/ c_utxgl —+ v 1— th,

with ¢y = 1 — 5, and &y = Hle «;. To control the noise level, we introduce a hyperparameter p
following (Wei et al., 2023)), which modulates the variance schedule by exponentiating each (; as ﬁf . We
set p = 1.0 by default, which recovers the standard linear schedule in (Ho et al., 2020), where (3; increases
linearly from 10~# to 0.02.

Table 11: Pretraining settings for Diff MAE on S2I representation.

Config \ Value
Optimizer AdamW
Weight decay 0.05
Base learning rate 1.5e-4
Optimizer momentum 51,82 = 0.9,0.95
Batch size 512
Learning rate schedule cosine decay
Epochs 1600
Warmup epochs 40
Augmentation Horizontal flip (p=0.5), Random rotation,
Random affine, Gaussian noise

A.3 DOWNSTREAM TRAINING PROTOCOLS: FINE-TUNING AND LINEAR PROBING

We extract features from the encoder output for downstream tasks, including fine-tuning and linear probing.
Following the standard ViT design (Dosovitskiy et al.||2021)), which includes a class token, we append an
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auxiliary dummy token to the input sequence during pretraining, as in (He et al.|[2022). This token is treated
as the class token and used for classification in both fine-tuning and linear probing.

Fine-tuning. Our fine-tuning protocol follows standard supervised ViT training (Dosovitskiy et al.,2021)),
with simplified configurations tailored for skeleton-based inputs. Specifically, we omit image-based data aug-
mentation and regularization techniques such as RandAugment, label smoothing, mixup, and cutmix. Instead,
we apply a skeleton-related augmentation pipeline, including horizontal flip, rotation, affine transformation,
and Gaussian noise. We use the AdamW optimizer with a base learning rate of 1le—3 and a cosine learning
rate decay schedule. Layer-wise learning rate decay is applied with a decay rate of 0.75, following (Bao et al.,
2021). We set the batch size to 128 for NTU-60, NTU-120, PKU-MMD, and Toyota datasets, and reduce it to
32 for the smaller NW-UCLA dataset to prevent overfitting. The warmup period is fixed to 10 epochs, and
training is performed for 100 epochs in total.

Table 12: Fine-tuning settings for S2I representation.

Config \ Value

Optimizer AdamW

Base learning rate le-3

Weight decay 0.05

Layer-wise Ir decay 0.75

Batch size 128 (NTU/PKU/Toyota), 32 (N-UCLA)

Learning rate schedule cosine decay

Warmup epochs 10

Training epochs 100

Augmentation Horizontal flip (p=0.5), Random rotation,
Random affine, Gaussian noise

Linear probing. For linear probing, we freeze the encoder and train only a linear classification head on top
of the extracted features. We follow a simplified setup without additional regularization such as weight decay,
label smoothing, or mixup. The optimizer is SGD with a base learning rate of 0.2, cosine decay schedule, and
momentum set to 0.9. A warmup of 10 epochs is applied, and training is conducted for 100 epochs in total.
We use the same skeleton-related data augmentation as in fine-tuning. Detailed configurations are listed in
Table

Table 13: Linear probing settings for S2I representation.

Config \ Value

Optimizer SGD

Base learning rate 2e-1

Weight decay 0

optimizer momentum 0.9

Batch size 128

Learning rate schedule cosine decay

Warmup epochs 10

Training epochs 100

Augmentation Horizontal flip (p=0.5), Random rotation,
Random affine, Gaussian noise
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Figure 4: Comparison between the existing skeleton-specific pipeline and our proposed S2I-based pipeline
for transfer learning across datasets. (a) Existing methods first align joint formats before pretraining and
fine-tuning on target datasets, which may lead to information loss. (b) Our approach bypasses manual joint
selection by encoding the raw skeleton sequence into an image via S2I, enabling unified processing across
datasets using a vision model.

A.4 PIPELINE COMPARISON UNDER CROSS-FORMAT AND UNIVERSAL SETTINGS

Cross-Format Representation Learning. To evaluate cross-format transfer performance, we compare our
pipeline against the conventional transfer learning paradigm, using the transfer from NTU-60 to NW-UCLA
as an example. As illustrated in Figure[d] existing approaches typically begin by manually downsampling the
NTU-60 skeleton data (25 joints) to a shared 20-joint subset. A model is then pretrained on this reduced-
format data and fine-tuned on NW-UCLA, which naturally adopts the 20-joint format. This process requires
explicit joint alignment and may introduce structural mismatches, potentially degrading the quality of learned
representations.

In contrast, our S2I-based pipeline removes the need for manual joint selection. We directly encode the raw
skeleton sequences—regardless of their joint format—into semantically structured image-like representations.
Both NTU-60 and NW-UCLA inputs are processed uniformly by the same visual backbone without any
format-specific adaptation. This design enables seamless cross-format transfer while preserving the structural
integrity of the original data. Figure[d] provides a visual comparison of the two pipelines, highlighting the
simplicity and universality of our approach for cross-format transfer learning.

Universal Representation Pretraining. To facilitate universal skeleton representation learning across diverse
datasets, we compare our unified pipeline with traditional skeleton-specific approaches. As shown in Figure 3]
conventional methods require designing and training separate models tailored to each joint format (e.g.,
25-joint, 20-joint, 13-joint), resulting in limited scalability.

In contrast, our approach leverages the S21I (Skeleton-to-Image) encoding to transform skeleton sequences
with arbitrary joint formats into structured image representations. These representations are then processed by
a shared backbone model, enabling consistent and format-agnostic feature learning. This unified design elimi-
nates the need for joint-level alignment or model reconfiguration, allowing all skeleton datasets—regardless
of their original format—to contribute to a single pretraining framework. The resulting representation
is thus inherently universal, capable of generalizing across different skeleton domains with no structural
compromises.
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Figure 5: Comparison of skeleton-specific and universal representation learning pipelines. (a) Conventional
methods require format-specific models for each skeleton format. (b) Our method encodes arbitrary skeleton
formats into image representations via S21I, enabling unified pretraining with a single backbone model.

P
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Figure 6: Visualization of three commonly used skeleton formats: (a) 25-joint (NTU/PKU), (b) 20-joint (NW-
UCLA), and (c¢) 13-joint (Toyota). Each skeleton is partitioned into five semantic body parts—Spine, Left
Arm, Right Arm, Left Leg, and Right Leg—highlighted in different colors to ensure consistent representation
across formats.

A.5 UNIVERSAL REPRESENTATION PRETRAINING SETUPS

Implementation Details. To conduct the Universal Representation Pretraining experiments, we utilize the
training splits from multiple datasets, including NTU120 (C-sub) (Liu et all,2020), PKU-MMD I (CS)
et al.,[2020), PKU-MMD II (CS), Toyota-Smarthome (CS) (Das et al.,|[2019), and NW-UCLA
2014). Since the NTU60-C-sub (Shahroudy et al,[2016) training set is a subset of NTU120-C-sub, it is not
explicitly included.

To ensure consistent input distribution across datasets, we compute the mean and standard deviation of the
S2I RGB representations from the NTU120 C-sub training split, and use them to normalize the S21I inputs
from all other datasets for scale alignment and stable optimization. Additionally, due to the increased size
of the combined training data, we increase the batch size from 512 to 768, while keeping all other training
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Table 14: Semantic body part partitioning across different skeleton formats, using joint names.

Body Part | NTU/PKU (25 joints)

NW-UCLA (20 joints)

| Toyota (13 joints)

Spine head, neck, spine, middle of | head, spine, middle of spine, | head
spine, base of spine base of spine

Left Arm left shoulder, left elbow, left | left shoulder, left elbow, left | left shoulder, left elbow, left
wrist, left hand, left thumb, tip | wrist, left hand wrist
of left hand

Right Arm | right shoulder, right elbow, | right shoulder, right elbow, right | right shoulder, right elbow,
right wrist, right hand, right | wrist, right hand right wrist
thumb, tip of right hand

Left Leg left hip, left knee, left ankle, | left hip, left knee, left ankle, left | left hip, left knee, left ankle
left foot foot

Right Leg | right hip, right knee, right an- | right hip, right knee, right ankle, | right hip, right knee, right an-
kle, right foot right foot kle

configurations unchanged. All datasets are jointly trained in a unified manner, rather than using any sequential
or curriculum-based strategy.

Skeleton Partitioning for Different Formats. To support universal skeleton representation learning across
datasets with different joint formats, we consider three commonly used skeleton configurations, as shown in
Figure[6] The NTU-60, NTU-120, and PKU-MMD datasets adopt the 25-joint layout extracted by Kinect V2.
NW-UCLA provides 20-joint skeletons from Kinect V1, while the Toyota dataset offers 13-joint skeletons
estimated using LCRNet (Rogez et al., 2019).

To enable format-invariant learning, we partition the skeleton into five consistent body parts: Spine, Left Arm,
Right Arm, Left Leg, and Right Leg. Figure ] color-codes these body parts across the three skeleton formats,
and Table|14|lists the corresponding joint names for each part.
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