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ABSTRACT

Dataset distillation has witnessed significant progress in synthesizing small-scale
datasets that encapsulate rich information from large-scale original ones. Partic-
ularly, methods based on generative priors show promising performance, while
maintaining computational efficiency and cross-architecture generalization. How-
ever, the generation process lacks explicit controllability for each sample. Previ-
ous distillation methods primarily match the real distribution from the perspec-
tive of the entire dataset, whereas overlooking conceptual completeness at the in-
stance level. This oversight can result in missing or incorrectly represented object
details and compromised dataset quality. To this end, we propose to incorpo-
rate the conceptual understanding of large language models (LLMs) to perform a
CONCept-infORmed Diffusion process for dataset distillation, in short as CON-
CORD. Specifically, distinguishable and fine-grained concepts are retrieved based
on category labels to explicitly inform the denoising process and refine essential
object details. By integrating these concepts, the proposed method significantly
enhances both the controllability and interpretability of the distilled image gen-
eration, without replying on pre-trained classifiers. We demonstrate the efficacy
of CONCORD by achieving state-of-the-art performance on ImageNet-1K and its
subsets. It further advances the practical application of dataset distillation meth-
ods. The code implementation is attached in the supplementary material.

1 INTRODUCTION

In the current digital era, vast volumes of data are produced and disseminated across online platforms
on a daily basis. The abundance of data boosts the training of robust neural network models, which
often outperform human experts in a variety of domains (He et al., 2016; Dosovitskiy et al., 2022;
Brown et al., 2020; Deng et al., 2009; Devlin et al., 2018). However, the heavy dependence on data
also causes unbearable burden on the storage space and computational consumption. Strong neural
networks often demand days or even months of training on high-capacity hardware, and this issue
is exacerbated for more complex foundation models (Radford et al., 2021; He et al., 2022; Touvron
et al., 2023; Bai et al., 2023). While pre-trained models are mostly available for general use, devel-
oping new networks from scratch remains necessary for certain specialized domains, and would be
particularly challenging for resource-constrained research teams. In this context, Dataset Distilla-
tion (DD) emerges as a solution to condense rich information from original large-scale datasets into
much smaller surrogate datasets (Wang et al., 2018; Zhao et al., 2021; Yu et al., 2023; Sachdeva &
McAuley, 2023). With substantially reduced training time, the surrogate datasets aim to restore the
performance levels of the original data for practical applications.

Typical DD methods incorporate meta-learning or metric matching to condense rich information
into surrogate sets, and have achieved considerable performance on various benchmarks (Wang
et al., 2018; Zhao et al., 2021; Nguyen et al., 2021b; Loo et al., 2022; Kim et al., 2022b). However,
the distillation phase itself often demands even longer time compared with the training process on
the original dataset (Cui et al., 2023; Sun et al., 2024). It would still be impractical for individual
researchers to perform distillation on personalized datasets. Besides, these methods are easily bi-
ased towards the architecture adopted in the distillation phase, necessitating specialized designs to
mitigate cross-architecture generalization challenges (Zhou et al., 2023; Wang et al., 2023a).
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Figure 1: Comparison on example generated images with and without our proposed CONCORD
method. C indicates that CONCORD is applied. Incorporating rich knowledge from LLMs, CON-
CORD refines instance-level conceptual completeness, and enhances the overall dataset quality.

Recently, a series of methods integrate generative models to synthesize training data (Cazenavette
et al., 2023; Gu et al., 2024a; Su et al., 2024; Moser et al., 2024). The pre-acquired generative prior
within these models contributes to better cross-architecture generalization as well as significantly
lower distillation consumption. While the synthetic images yield state-of-the-art performance, the
distillation process lacks explicit controllability for each sample. Most existing approaches condense
information by mimicking the distribution of real data at the dataset level. On the one hand, the lack
of instance-level control might result in conceptual incompleteness, where essential object details
may be missing or inaccurately represented in the generated images. Due to the constrained storage
budget typical of DD benchmarks, this information loss cannot be sufficiently compensated. On
the other hand, the distribution imitation is difficult to interpret, as the dataset quality can only be
measured indirectly through training performance. It also raises a question: does merely imitating
the real distribution suffice for generating effective surrogate datasets?

To this end, we intend to explicitly enhance instance-level conceptual completeness during the dif-
fusion process with the assistance of large language models (LLMs). LLMs have obtained extensive
conceptual understanding across a variety of objects, which can be utilized to facilitate examining
and refining the defects and incorrect concept representations in the images. Our method involves
initially retrieving distinguishable concepts specific to the target categories, and subsequently per-
forming the CONCept-infORmed Diffusion inference (in short as CONCORD) to supplement miss-
ing or incorrect details. The approach offers several advantages. Firstly, the fine-grained control
exerted by the retrieved concepts allows for more accurate refinement of object details, which also
enables higher levels of personalization. Secondly, the concepts provide explicit explanations why
the generated images are better suited for model training. Additionally, we employ concepts from
similar categories to construct negative samples, thereby ensuring more accurate and stabilized con-
trol over the generation process. By prioritizing the enhancement of crucial concepts in addition to
distribution imitating, our method generates more effective distilled data for training models.

As shown in Fig. 1, the samples generated by Minimax (Gu et al., 2024a) often fail to include com-
plete and correct concepts for their respective categories, e.g., unrealistic back legs of the beagle and
a missing wing in the cabbage butterfly image. With the assistance of rich knowledge from LLMs,
the proposed CONCORD method significantly improves the conceptual completeness, and reduces
image defects. The proposed CONCORD method can be plugged into any diffusion-based genera-
tive pipelines for dataset distillation. We conduct extensive experiments on both Minimax and Stable
Diffusion baselines (Ramesh et al., 2022) to illustrate the superiority of CONCORD, which achieves
state-of-the-art performance on the full ImageNet-1K dataset and its subsets. Notably, the method
only incorporates descriptive concepts to inform the diffusion process, eliminating the dependence
on pre-trained classifiers. It reduces the required computational consumption, and thereby enhances
the practicality of our approach for broader application possibilities.

2 RELATED WORK

Dataset Distillation Aiming at reducing the demanded storage and computational consumption
for training neural networks, dataset distillation (DD) has been increasingly investigated in recent
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years (Yu et al., 2023; Sachdeva & McAuley, 2023) and achieved broad applications (Gu et al.,
2024b; Xiong et al., 2023; Maekawa et al., 2024; Wang et al., 2023b). DD synthesizes small-scale
datasets reflecting rich information from the original large-scale ones and is firstly designed with
meta-learning schemes (Wang et al., 2018; Nguyen et al., 2021b;a; Zhou et al., 2022; Loo et al.,
2022; 2023). The optimization is conducted upon a meta loss where a neural network or estimation
is built on the surrogate data and then evaluated on the real data. Other methods optimize the
synthetic images by matching training characteristics with real images (Zhao et al., 2021; Zhao &
Bilen, 2023; Liu et al., 2023; Vahidian et al., 2024; Cazenavette et al., 2022; Zhao et al., 2023).
The imitation on real distribution effectively improves the information contained in small surrogate
datasets. Data parametrization (Kim et al., 2022b; Liu et al., 2022; Wei et al., 2024) and generative
prior (Cazenavette et al., 2023; Gu et al., 2024a; Wang et al., 2023a) are also considered for more
efficient DD method construction. However, most of existing DD methods remain as black boxes,
lacking the ability of explicitly controlling the distilling direction. As a result, the practicality of
DD methods are still poor from real-world applications. In this work, we aim at enhancing both the
interpretability and controllability of the dataset distillation process.

Diffusion Models Diffusion models have acquired substantial success in generating high-quality
images (Ho et al., 2020; Dhariwal & Nichol, 2021; Kingma et al., 2021; Nichol & Dhariwal, 2021).
There have also been a series of works focusing on diffusion-based image manipulating or editing.
DiffusionCLIP incorporates a CLIP model into the diffusion model fine-tuning to provide optimiza-
tion guidance (Kim et al., 2022a). DiffuseIT, DiffEdit and Prompt-to-Prompt integrate the editing
into manifold constraint, mask guidance and cross attention control, respectively (Kwon & Ye, 2023;
Couairon et al., 2023; Hertz et al., 2023). However, most of them manipulate image instances fol-
lowing certain instructions. SDEdit proposes to control the training data generation, yet it requires
the assistance of pre-trained models (Yeo et al., 2024). In this work, we design a training-free de-
noising guidance towards images suitable for model training.

3 METHOD

In this section, we demonstrate the detailed modules of our proposed CONCept-infORmed Diffusion
method (CONCORD). Firstly, we present the preliminary knowledge on dataset distillation and the
possibility of performing concept-informed diffusion in Sec. 3.1. Subsequently we illustrate the
design of concept acquirement and objective design in Sec. 3.2 and Sec. 3.3, respectively.

3.1 CONCEPT-INFORMED DIFFUSION

Given a target real dataset T = {(xi, yi)}|T |
i=1, the aim of dataset distillation is to generate a small

surrogate dataset S = {(x̂i, yi)}|S|
i=1, where |S| ≪ |T |, such that training a network on S ap-

proximates as closely as possible the performance attained when training on T . Typical methods
incorporate meta-learning or metric matching to condense the information from real data into the
surrogate dataset. However, the dependence on bi-level optimization often leads to excessive com-
putation demands and bias towards specific adopted architectures (Sun et al., 2024; Zhou et al.,
2023). Recently, methods utilizing the generative priors of diffusion models emerge as solutions for
more efficient dataset distillation (Gu et al., 2024a; Su et al., 2024; Moser et al., 2024).

Diffusion for Distillation Diffusion-based generative models learn data distributions via denois-
ing. Firstly, a forward process is defined by obtaining x(T ) from clean data x(0) ∼ q(x(0)) as a
Markov chain of gradually adding Gaussian noise at time steps t (Ho et al., 2020):

q(x(1:T )|x(0)) :=

T∏
t=1

q(x(t)|x(t−1)), where q(x(t)|x(t−1)) := N (x(t);
√

1− βtx
(t−1), βtI), (1)

where βt ∈ (0, 1) is a variance schedule. Denoting αt := 1 − βt and ᾱt :=
∏t

s=0 αs, x(t) at an
arbitrary time step t can be directly sampled with a Gaussian noise ϵ ∼ N (0, I):

x(t) =
√
ᾱtx

(0) +
√
1− ᾱtϵ. (2)

Denoising diffusion probablistic models (DDPMs) approximate the data distribution with a network:

pθ(x
(t−1)|x(t)) = N (x(t−1);µθ(x

(t), t),Σθ(x
(t), t)), (3)
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“I want to use some visual descriptions to
identify different classes in ImageNet.
Please first consider whether there exist
classes with similar appearance to
{$class_name}. Then please give 10 short
phrases describing the appearance features
that the {$class_name} has and can be used
to distinguish it from other classes. The
phrases should only focus on visual
appearance of body parts or components.”

$class_name = “goldfish” [“smooth bright orange or red-orange scales”,
“distinctive, large, round eyes on a small head”,
“rounded, fan-shaped tail fin that spreads out”,…]

𝑝 𝜃

x(") x("$%)
…

x(&)

x('$%)x(')

𝒪 x ' , 𝒞

denoise𝜖( x ' , 𝑡

Figure 2: The pipeline of the proposed CONCORD method. Descriptive concepts are retrieved and
utilized to inform the diffusion denoising process. The samples with better instance-level concept
completeness help to construct a surrogate dataset with better overall quality.

where

µθ(x
(t), t) :=

1
√
αt

(
x(t) − 1− αt√

1− ᾱt
ϵθ(x

(t), t)

)
, (4)

and the ϵθ(x(t), t) is the predicted noise, where θ is optimized by:

min
θ

Et,x(0)∼q(x(0)),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtx

(0) +
√
1− ᾱtϵ, t)∥2

]
. (5)

By denoising a fixed number of random noises, a surrogate dataset can be generated that encap-
sulates the distribution of original data. Gu et al. (2024a) introduce additional minimax criteria to
distill more representative and diverse samples from real data, improving the quality of the gener-
ated surrogate datasets. However, the distilling process primarily focuses on imitating dataset-level
concept distributions, while overlooking the instance-level conceptual completeness at the inference
stage. Since the final distilled samples are directly derived from random noise, without explicit
control over the content, essential object details might be missing or incorrectly represented in the
generated images. Moreover, the constrained storage budget typical of dataset distillation bench-
marks limits the ability to compensate the instance-level information loss by increasing data scale,
further compromising the quality of the distilled dataset. Thus, there is an urgent demand for tech-
niques that allow for explicit control during the denoising process, enhancing both the conceptual
completeness and the overall quality of the surrogate dataset.

Concept Informing Dhariwal & Nichol (2021) introduce classifier guidance with the gradients of
a classifier network ∇x(t) log pϕ(y|x(t), t) during the diffusion process. However, when the classi-
fier can acquire activations from a broad set of possible details to make predictions, the conceptual
completeness associated with the specific category can remain insufficient. Therefore, we propose
to explicitly inform the diffusion process with fine-grained and distinguishable concepts tied to the
category (e.g., attributes). The concept-informed diffusion offers several advantages: firstly, various
concepts of a category provide more detailed information compared with using the category alone,
allowing for explicit reasoning and refinement during the generation process. Secondly, on circum-
stances where classifiers are difficult to obtain, concepts remain viable given the category. We define
the set of concepts associated with the category label of the current sample x(t) as C = {aj}|C|j=1,
where |C| is a pre-defined number of concepts. Subsequently, an objective O(x(t), C) can be derived
reflecting the semantic similarity between the generated sample and these concepts. The informed
denoising process can be represented with the objective as:

pθ(x
(t−1)|x(t)) = N (x(t−1);µθ(x

(t), t) + Σθ(x
(t), t)∇x(t)O(x(t), C),Σθ(x

(t), t)), (6)

Song et al. (2020) introduce another form of denoising diffusion implicit models (DDIMs) that
construct a deterministic non-Markovian inference process as:

x(t−1) =
√
ᾱt−1x̂

(0) +
√
1− ᾱt−1 · ϵθ(x(t), t), (7)

where the estimated observation x̂(0) of clean original data x(0) can be obtained by computing the
posterior expectation with x(t) (Robbins, 1992):

x̂(0) :=
x(t)

√
ᾱt

−
√
1− ᾱt√
ᾱt

ϵθ(x
(t), t). (8)
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Algorithm 1: Concept-Informed Diffusion
Input: diffusion model θ, original dataset T , concept set {C}, required sample number NS
Output: surrogate dataset S
Initialize the surrogate dataset S = {}
for index in 1...NS do

Obtain a random noisy sample x(T ) and a category label c
Retrieve the positive and negative concepts C and C̃ from {C} according to label c
for time step t in T...1 do

Predict the noise ϵθ(x
(t), t)

Calculate the concept matching objective O(x(t), C, C̃) according to Eq. 12
Update the predicted noise ϵ̂ according to Eq. 9
Conduct denoising step to obtain x(t−1) according to Eq. 7

end
Add the predicted clean sample to the surrogate set S ← x(0)

end

Similarly, we can apply the concept informing through:

ϵ̂ := ϵθ(x
(t), t)− λ

√
1− ᾱt∇x(t)O(x(t), C), (9)

where λ is the informing weight adjustable for control extent. The updated ϵ̂ is subsequently used
for the above reverse diffusion process. When the informing can be applied to both frameworks, in
this work, we mainly incorporate DDIM for developing our algorithm.

3.2 CONCEPT ACQUIREMENT

Based on the aim of enhancing the discriminative details and mitigating conceptual incompleteness
in the generated images, we intend to explicitly inform the diffusion process with distinguishable
concepts. While concluding or manually designing visual concepts being infeasible for a large
number of categories, large language models (LLMs) offer a valuable solution with rich conceptual
understanding acquired during the training process. Inspired by this, we design prompts for the cor-
responding categories in the target dataset to elicit fine-grained attributes from LLMs, which are used
as concepts to inform the diffusion process. Menon & Vondrick (2023) design prompts to retrieve
descriptions used for zero-shot image classification. While our task shares certain similarity, it dif-
fers primarily in the nature of the required descriptions. Descriptions used for classification should
comprehensively reflect various aspects of the corresponding category. In comparison, those used
for constructing surrogate datasets are supposed to be distinguishable across different categories to
ensure that the generated data can facilitate model training. Therefore, we design an example prompt
shown in Fig. 2, where distinction from other classes is emphasized for retrieving descriptions.

Concept Validity Evaluation Once a set of concepts is obtained, it is crucial to evaluate their
validity on actual data, as some concepts may not be well-represented in the real data due to biases
in data collection. Thus, before the concept matching process, we first retrieve an over-abundant
amount of concepts, and then filter them through a validity evaluation process to identify those
with the strongest relevance to the real data. For this purpose, we utilize a CLIP model to extract
embedded features from both real images and textual descriptions. For a category l, the activation
A of a text description c on the images {xi; yi = l}|l|i=1 can be calculated by:

A =

〈
1

|l|

l∑
i=1

ψ(xi), ψ(c)

〉
, (10)

where ψ(·) denotes the embedded feature extraction function of the CLIP model, and ⟨·, ·⟩ computes
the cosine similarity. We select a pre-defined number of |C| descriptions for each category with the
highest activation scores for further use in the informing process. This ensures that the selected
concepts retain the integrity of the knowledge distilled from the real dataset, making them more
representative and relevant for improving instance-level conceptual completeness in generated data.
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3.3 CONCEPT MATCHING

With the distiguishable concepts acquired, a straightforward approach to measure the relationship
between the generated sample x(t) and the corresponding concepts C = {cj}|C|j=1 is to compute their
cosine similarity:

O(x(t), C) = − 1

|C|

|C|∑
i=1

〈
ψ(x(t)), ψ(ci)

〉
, (11)

which is similar to the concept validity evaluation process. We argue that beyond the positive in-
forming from the concepts associated with the corresponding category, it is equally important to
adjust the diffusion control by considering the overall dataset distribution. Therefore, we employ
concepts from other categories as negative samples to provide more stable diffusion guidance.

Contrastive Matching Inspired by the contrastive loss adopted in CLIP training (Radford et al.,
2021; Patel et al., 2023), we propose a similar strategy to incorporate negative concepts. Since multi-
ple positive concepts should work together to provide adequate guidance, we modify the supervised
contrastive loss (Khosla et al., 2020) into an image-text version:

O(x(t), C, C̃) = − 1

|C|

|C|∑
i=1

log

(
exp(⟨ψ(x(t)), ψ(ci)⟩/τ)

exp(⟨ψ(x(t)), ψ(ci))/τ⟩+
∑

aj∈C̃ exp(⟨ψ(x(t)), ψ(cj))/τ⟩

)
,

(12)
where C̃ denotes the set of negative concepts.

Negative Concept Selection With a large number of potential negative categories, selecting ap-
propriate negative concepts is essential for effectively informing the diffusion process. We first com-
pute the cosine similarity between the category labels, and use the similarity as sampling weight for
negative category selection. This approach ensures that categories with higher similarity to the target
category are prioritized as negative samples. Compared with random selection, the similarity-based
approach offers more precise control over the diffusion process. Additionally, compared with a fixed
range of negative categories, the dynamic sampling allows for more diverse denoising control.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We adopt Minimax (Gu et al., 2024a) and Stable Diffusion unCLIP Img2Img (Ramesh et al., 2022)
as baselines to evaluate our proposed training-free approach, which is applied at the inference stage.
The informing weight λ in Eq. 9 is set as 1. For each category, 5 descriptive attributes are selected
with the highest activation scores, as detailed in Sec. 3.2. And 10 negative descriptions from dif-
ferent categories are used for contrastive loss calculation. A total denoising step number of 50 is
adopted for the generation process, and the generated images are resized to 224×224 for subsequent
validation. The validation protocol follows RDED (Sun et al., 2024), where soft label is adopted to
obtain better performance. The model training lasts for 300 epochs. All reported results are based
on 3 random runs, with the averaged accuracy and the variance included. All the experiments are
conducted on a single NVIDIA A100 GPU. Further implementation details are provided in Sec. B.

We believe that DD for small-resolution datasets has been well solved by previous methods. Thus,
the main experiments in this work are conducted on ImageNet-1K (Deng et al., 2009) and its sub-sets
including ImageNet-100 and ImageWoof (Fastai). Additionally, we incorporate Food-101 (Bossard
et al., 2014) as another benchmark to evaluate the effectiveness of the proposed CONCORD method.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Firstly we conduct the experiments on standard benchmarks, reporting the performance on multiple
different architectures. The compared methods include MTT (Cazenavette et al., 2022), SRe2L (Yin
et al., 2023), RDED (Sun et al., 2024), DiT (Peebles & Xie, 2023), Minimax (Gu et al., 2024a), and
Img2Img (Ramesh et al., 2022). The results on ImageWoof, ImageNet-100, and the full ImageNet-
1K are shown in Tab. 1 and Tab. 2, respectively.
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Table 1: Performance comparison with state-of-the-art methods on ImageWoof. The superscript C

indicates the application of our proposed CONCORD method. Bold entries indicate best results,
and underlined ones illustrate improvement over baseline.

IPC (Ratio) Test Model MTT SRe2L RDED DiT Minimax MinimaxC unCLIP unCLIPC

1 (0.08%)
ConvNet 28.6±0.8 - 18.5±0.9 20.5±0.8 16.7±0.2 17.8±0.8 20.5±0.4 19.9±0.7

ResNet-18 - 13.3±0.5 20.8±1.2 18.3±0.7 15.3±1.1 16.9±1.0 16.7±0.7 17.4±1.1

ResNet-101 - 13.4±0.1 19.6±1.8 17.1±1.3 14.2±1.1 14.9±1.3 14.9±0.2 15.3±1.3

10 (0.8%)
ConvNet 35.8±1.8 - 40.6±2.0 42.2±1.2 41.2±0.8 43.1±0.5 40.1±0.8 41.2±0.8

ResNet-18 - 20.2±0.2 38.5±2.1 38.2±1.1 42.8±1.1 44.4±0.9 37.9±1.1 40.7±0.4

ResNet-101 - 17.7±0.9 31.3±1.3 31.1±0.3 35.7±0.9 36.5±0.9 30.7±0.9 31.9±1.1

50 (3.8%)
ConvNet - - 61.5±0.3 59.9±0.2 61.1±0.8 62.5±0.9 59.5±1.4 60.4±0.4

ResNet-18 - 23.3±0.3 68.5±0.7 65.9±0.2 67.8±0.5 69.2±1.0 63.6±0.6 66.1±1.1

ResNet-101 - 21.2±0.2 59.1±0.7 60.1±1.1 62.2±0.6 63.6±0.2 60.0±1.0 60.8±0.9

Table 2: Performance comparison with state-of-the-art methods on ImageNet-100 (left) and
ImageNet-1K (right). The superscript C indicates the application of our proposed CONCORD
method. Bold entries indicate best results, and underlined ones illustrate improvement over baseline.

Method IPC
1 10 50

SRe2L 3.0±0.3 9.5±0.4 27.0±0.4

RDED 8.1±0.3 36.0±0.3 61.6±0.1

DiT 8.2±0.1 29.5±0.4 59.8±0.5

Minimax 5.8±0.2 31.6±0.1 64.0±0.5

MinimaxC 7.1±0.2 33.3±0.6 64.9±0.3

unCLIP 7.1±0.1 26.9±0.4 64.6±0.2

unCLIPC 7.7±0.2 28.1±0.7 65.4±0.4

Method IPC
1 10 50

SRe2L 0.1±0.1 21.3±0.6 46.8±0.2

RDED 6.6±0.2 42.0±0.1 56.5±0.1

DiT 6.1±0.1 41.3±0.3 56.6±0.2

Minimax 6.0±0.1 43.4±0.3 59.1±0.1

MinimaxC 6.4±0.2 43.8±0.6 59.4±0.2

unCLIP 5.9±0.2 42.0±0.3 58.1±0.2

unCLIPC 6.2±0.3 42.5±0.2 58.5±0.1

Under the 1 Image-per-class (IPC) setting, previous methods MTT and RDED have demonstrated
the best performance, with the vanilla DiT model also showing strong results. Minimax is fine-tuned
to enhance the representativeness and diversity of the generated data. Although it is less effective
under small IPC settings, the performance superiority is more substantial as the IPC increases. The
unCLIP Img2Img model is not specifically trained or fine-tuned on ImageNet, but still yields com-
parable performance by direct inference. When the proposed CONCORD method is applied to both
baseline methods, significant performance improvements are observed across all IPC settings and
architectures. These results indicate that refining instance-level conceptual completeness is essential
for constructing more effective distilled datasets. However, we can also notice that the performance
gain is less significant as the class number increases. A potential explanation is that the influence
of instance-level quality diminishes as the overall data scale is larger. Despite this, the proposed
CONCORD method achieves state-of-the-art performance on the full ImageNet-1K dataset and its
subsets, especially on large IPC settings, further supporting its effectiveness in dataset distillation.

Additionally, we conduct experiments on Food-101 with unCLIP Img2Img as the baseline in Tab. 3.
It simulates actual DD application scenarios for custom datasets. The results suggest that methods
based on generative prior are capable and practical to perform custom DD tasks without extra train-
ing efforts. While the unCLIP baseline performs worse than random selection under the 50-IPC
setting, the proposed CONCORD method still enhances the quality of distilled datasets across all
IPC settings. It opens up new possibilities for resource-limited researchers to perform custom DD.

4.3 ABLATION STUDY AND DISCUSSION

In this section we conduct component analysis and experimental results on extended settings. By
default, the experiments are conducted on ImageWoof, with unCLIP Img2Img as the baseline.

Prompt Design We employ LLMs to retrieve essential visual descriptions as the informing target.
The description quality is crucial for achieving optimal informing effects. Therefore, a quantita-
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Table 3: Performance comparison with un-
CLIP Img2Img on Food-101 dataset.

Method IPC
1 10 50

Random 5.0±0.1 30.1±0.1 64.0±0.2

unCLIP 6.4±0.1 30.7±0.2 61.3±0.3

unCLIPC 6.9±0.1 32.0±0.2 62.5±0.2

Table 4: Comparison with different prompts for
concept retrieval on ImageWoof.

Method IPC
1 10 50

Classification 17.6±2.0 38.2±1.3 64.1±0.7

Ours-3.5 16.8±0.5 38.8±0.2 65.4±1.1

Ours-4 17.4±1.1 40.7±0.4 66.1±1.1

Table 5: Comparison with different negative
description selection on ImageWoof.

Method IPC
1 10 50

Random 15.5±1.6 39.5±1.2 64.9±0.2

Similar-10 16.1±0.6 38.3±0.9 65.3±1.2

Similar-25 15.9±1.0 37.9±0.4 64.5±0.5

Similar-50 15.9±1.4 38.3±1.2 64.6±0.4

Weighted 17.4±1.1 40.7±0.4 66.1±1.1

Table 6: Ablation study on the optimization baseline
and objectives on ImageWoof.

Base Objective IPC
1 10 50

DiT None 18.3±0.7 38.2±1.1 65.9±0.2

Contrastive 20.3±0.7 40.5±1.2 67.6±0.4

unCLIP

None 16.7±0.7 37.9±1.1 63.6±0.6

Classifier 16.9±0.7 38.5±1.0 65.2±0.8

Cosine 18.2±1.6 39.7±1.1 63.9±0.2

Contrastive 17.4±1.1 40.7±0.4 66.1±1.1

tive comparison between different prompt design and LLM models is provided in Tab. 4. Menon
& Vondrick (2023) design prompts to retrieve descriptions for zero-shot classification, denoted as
“Classifition” in the table. While the retrieved concepts improve performance when IPC=1, the
impact is less significant for larger IPCs. Accordingly, we design a new prompt (shown in Fig. 2)
that emphasizes distinguishable appearance features. The descriptions are retrieved from GPT-3.5
and GPT-4, and the GPT-4 version achieves overall the best performance improvement. Detailed
examples of the retrieved descriptions are shown in Fig. 7 for further investigation.

Negative Description Selection In the contrastive objective of Eq. 12, negative concepts are intro-
duced for more accurate informing. While the extra constraint potentially brings more information,
the selection of negative concepts is critical for stable optimization. Therefore, we evaluate the influ-
ence of different selection strategies in Tab. 5. Firstly, random selection from all categories consid-
erably enhances the quality of the distilled dataset. Given that concepts from similar categories can
serve as more challenging negative guidance, we narrow the random selection range to include only
the top-similar categories, denoted as “Similar-#” with the number indicating the range. However,
the unstable performance improvement suggests that limiting the diversity of negative concepts can
harm the informing effect. Eventually, we propose to adopt a weighted sampling strategy based on
category similarity. By simultaneously emphasizing similar categories and maintaining diversity,
the strategy achieves the most significant and stable performance improvement.

Optimization We adopt a contrastive design of the objective to incorporate negative descriptions
and stabilize the informing process. Accordingly, different objective forms are compared in Tab. 6
to evaluate the effectiveness of this design. After tuning, the informing weight for classifier guid-
ance is set as 0.05 for best performance, which provides consistent improvement over the baseline.
However, the supervision from a class-level is too coarse to refine the necessary details for sample
generation. This limitation is evident in the superior performance achieved by the contrastive objec-
tive, which offers more detailed guidance. Additionally, the reliance on extra pre-trained classifiers
also reduces the practicality of classifier guidance. Comparatively, the cosine objective in Eq. 11
yields even larger improvement when only 1 image is used for training. As the IPC grows, the
performance improvement decreases, potentially due to limited diversity from only positive con-
cepts. Since the proposed CONCORD method is designed to work without the need for pre-trained
classifiers, we focus exclusively on concept informing in the main experiments.

We also conduct experiments on the vanilla DiT model without Minimax fine-tuning, where the top-
1 accuracy improves by 2% across different IPCs. It further validates our hypothesis that instance-
level conceptual completeness is essential for dataset distillation methods based on generative prior.
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"legs covered in thick fur",
"short, sturdy legs with strong paws",
"otter-shaped head with expressive eyes”,
"wiry, short coat with a rough texture",
"narrow, slightly elongated muzzle"

“Border terrier”

weight 

Figure 3: Comparison between images informed by fine-grained descriptive concepts (the first row)
and the class name alone (the second row). From left to right the informing weight is gradually
increased. Descriptions and corresponding image details are highlighted to illustrate better control
with distinguishable concepts.

And the proposed CONCORD method can be broadly applied to existing diffusion pipelines to
enhance the quality of the distilled datasets, which proves its practicality.

Sample Visualization We present example generated images with and without our proposed
CONCORD method in Fig. 1. The baseline Minimax (Gu et al., 2024a) generates images with
realistic texture and diverse variations. However, it overlooks the instance-level conceptual com-
pleteness, where essential concepts are often incorrect or missing (e.g., the unnatural shape of the
coffee mug and the absence of beacon in the beacon image). By applying the CONCORD method,
the generated images demonstrate substantial improvement in representing essential object details.
In dataset distillation, where the number of samples is limited, the instance-level defects can severely
affect the quality of the distilled dataset. In contrast, by emphasizing conceptual completeness at the
instance level, our proposed CONCORD method enhances the overall quality of generated samples,
also providing interpretability for the superior performance.

Effectiveness of Descriptions We employ descriptive attributes generated by language models as
concepts to inform the denoising process. In Fig. 3 we compare the informing effects using de-
tailed descriptions versus class names. For avoiding the influence of objective forms, we perform
the experiments using cosine similarity as in Eq. 11, and only match positive concepts. Several
conclusions can be drawn from the comparison of results. Firstly, while class names provide cer-
tain level of concept understanding, fine-grained descriptions offer more precise control over the
diffusion process. For instance, when informed by a description like “legs covered in thick fur”, the
length of the leg fur visibly increases as the informing weight grows, whereas images constrained
by only the class name do not show a similar trend. Secondly, as the informing weight increases,
images constrained by class names tend to collapse more quickly. It indicates that fine-grained con-
cept informing provides better stability during the diffusion process compared with relying solely
on class names. Thirdly, crucial descriptions such as “otter-shaped head with expressive eyes” ef-
fectively constrain the diffusion process. Even as images start to collapse, the head shape remains
similar to the original generation result. In contrast, without explicit constraints from fine-grained
descriptions, images informed by the class name show concept shift in these discriminative details.

IPC Scale-up An advantage offered by distillation methods based on generative prior is the flex-
ibility to create surrogate datasets of varying sizes. Beyond the standard small-size benchmarks,
we further extend the dataset size to 200 IPC in Fig. 4a. Across all IPC settings, the proposed
CONCORD method provides consistent improvement upon both Minimax and unCLIP baselines.
Notably, with 200 images per class, Minimax with CONCORD achieves the top-1 accuracy attained
with the entire original ImageWoof dataset, following the same validation protocol.

9
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Figure 4: (a) Applying the proposed concept informing brings consistent improvement across all
IPC settings. With 200 Images per class, our method achieves the performance attained with the full
original set. (b/c) Parameter analysis on informing weight λ and negative sample number.

4.4 PARAMETER ANALYSIS

There are multiple hyper-parameters involved in the proposed method. In this section, we perform
analysis by adjusting the parameter to observe the influence on the performance.

Informing Weight λ The informing weight controls the degree of influence applied to the denois-
ing diffusion process. As shown in Fig. 4b, setting λ = 0 results in standard inference without
concept informing. As λ increases within a reasonable range, the performance is also improved,
indicating that the injected concept information enhances the quality of distilled datasets. However,
if λ is too high, it disrupts the standard denoising process, leading to performance drop. Through
comparison, we set the value of λ as 2.0 for balance between sufficient control and stable denoising.

Negative Sample Number The number of negative concepts is critical for constructing an effec-
tive contrastive loss. Therefore, we investigate the influence of negative sample number in Fig. 4c.
When zero negative samples are used, cosine objective is applied for informing as in Eq. 11. Both
too few or too many negative samples lead to unstable optimization and sub-optimal performance.
Unlike standard contrastive learning, where the encoder separates different instances, the goal in
DD is to focus on emphasizing essential object concepts. Therefore, enhancing positive concepts is
more important. Based on our analysis, we adopt 10 negative samples in the contastive objective to
provide an appropriate constraint while maintaining stable optimization.

5 CONCLUSION

In this work, we propose to incorporate the conceptual understanding of large language models
(LLMs) to enhance instance-level image quality for dataset distillation. Specifically, distinguishable
concepts are retrieved based on category labels, and are subsequently utilized to inform the diffusion-
based sample generation process. The conceptual completeness obtained by the proposed CONCept-
infORmed Diffusion (CONCORD) process mitigates the information loss caused by image defects,
leading to higher overall quality of distilled datasets. CONCORD is evaluated on multiple baselines,
and achieves state-of-the-art performance on the full ImageNet-1K dataset. The generated real-
looking images with necessary details provide explicit interpretability for their effectiveness, and
also prompt new possibilities of down-stream applications of dataset distillation.

Limitations and Future Works The proposed concept informing method significantly improves
the instance-level concept completeness, and thereby enhances the performance of the distilled data.
But simultaneously, it also involves extra computational cost. Since the informing is conducted
throughout the diffusion denoising process, the method might not be applicable to few-step diffusion
techniques, which aim to reduce computational overhead. In future works, we will explore efficient
diffusion inference techniques for more practical dataset distillation.
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Reproducibility Statement We have provided implementation details regarding the baseline
preparation, the proposed CONCORD method as well as the evaluation process in the Appendix
Sec. B. We use the publicly available ImageNet dataset as well as its subsets for conducting experi-
ments. Additionally, the utilized source code is attached in the supplementary material, and will be
made public upon acceptance.
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APPENDIX

The appendix is organized into the following sections: In Sec. A we provide additional justification
from the literature as far as the utility of using LLM-based concept informed learning. In Sec. B we
introduce the implementation details of our method. In Sec. C we present more experiment results
and analysis on the proposed CONCORD method. In Sec. D we show example generated images to
better illustrate the effect of the proposed concept informing method.

A FURTHER ANALYTICAL GROUNDING

Perspective from XAI Explainable Artificial Intelligence (XAI) is an emerging area within ma-
chine learning that aims to provide users with greater insight into the functioning and mechanisms of
black-box models, such as neural networks. Standard practice often involves knowledge extraction
techniques, where broader, less precise, but simpler and thus more intuitive models are presented
to explain the behavior of complex machine learning models. However, it has been noticed that
this paradigm can be amended with the success and proliferation of LLMs (Ehsan et al., 2024). In
particular, LLMs enable a more iterative and active learning procedure, where user prompts can can
directly inform the learning process to accommodate user needs. Simultaneously, LLMs can period-
ically generate language-based explanations, offering updates on model progress and adjustments.

One of the key advantages of LLMs is their potential for personalization (Chen et al., 2024). Given
the rich variety of concepts derived from the extensive training data and the depth of developed mod-
els, LLMs are capable to foster a detailed and more human-centric understanding. This allows the
models to tune the learning process towards specific application-driven concerns. The effectiveness
of LLMs as explainers (Kroeger et al., 2023) provides the clear potential to address important use
case concerns that are difficult to represent through standard analytical loss functions. This adapt-
ability allows LLMs to bridge gaps between the learning objectives and real-world applications.

Perspective from Instrumental DD In the recent work by Kungurtsev et al. (2024), it has been ar-
gued that an important analytical consideration often overlooked in most optimization formulations
for dataset distillation is its instrumentality. Specifically, synthetic data is typically not just used to
solve the same learning problem in the same setting, but rather the dataset is expected to be used in
some broader applications of interest to the user. These applications may have information needs
that are not inherently condensed by standard off-the-shelf DD algorithms. By including additional
custom criteria into the DD optimization formulation, while still incorporating existing powerful
tools, DD can be more effectively steered towards performance on desired use cases. In this work,
concepts are employed to facilitate natural human taxonomy with respect to object identification
and recognition, and this consideration substantially improves the process by aligning the synthetic
dataset with desired test performance outcomes.

B MORE IMPLEMENTATION DETAILS

Baselines We adopt Minimax (Gu et al., 2024a) and Stable Diffusion unCLIP Img2Img (Ramesh
et al., 2022) as the baselines to illustrate the efficacy of our proposed concept informing method.
These two baselines represent two different application scenarios, as outlined below.

For Minimax, a fine-tuning process is conducted on ImageNet-1K. While fine-tuning on target
datasets yields superior performance, it also demands more resource consumption. Additionally,
class labels are utilized for conditioning the denoising process, which might be inconvenient when
extending the model to broader datasets. We adopt the default parameter setting in the original paper.
The entire ImageNet-1K is partitioned into 50 subsets, each containing data of 20 classes. For each
subset, a DiT model (Peebles & Xie, 2023) is fine-tuned for 8 epochs. The mini-batch size, repre-
sentative weight and diversity weight are set as 8, 0.002 and 0.008, respectively. During inference,
the corresponding fine-tuned model is loaded to generate data for specific classes.

For unCLIP Img2Img, we utilize the pre-trained model without any fine-tuning adjustments1. Ran-
dom real images are fed into the model simultaneously with text prompts to generate high-quality

1https://huggingface.co/radames/stable-diffusion-2-1-unclip-img2img
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samples without losing the information of original data distribution. We adopt 28 prompt templates
for generating images, e.g., “a photo of a nice {$class name}” (Radford et al., 2021). The utilization
of text prompts for conditioning provides significant flexibility, enabling data generation for custom
datasets without extra training efforts. While the absence of fine-tuning may lead to slight reduction
in generation quality, it allows for direct application of the proposed CONCORD method to any cus-
tom data given relevant text descriptions. During inference, the same pre-trained model is adopted
for generating images for all target categories.

Concept Acquirement We use GPT-4o to retrieve descriptive concepts for different categories.
The full adopted prompt is as follows:

You are an expert in computer vision and image analysis. Here is the task: <task>I want
to use some visual descriptions to identify different categories in ImageNet dataset. Please
first consider whether there exist categories with similar appearance to {$class name}. Then
please give 10 short descriptions describing the appearance features that the {$class name}
has and can be used to distinguish it from other classes. The phrases should only focus on
visual appearance of body parts or components instead of functioning. Each phrase should
be detailed but also shorter than 128 characters. Each phrase starts with non-capitalized
characters.</task> Give the answer in the form of <answer>[“$class name”, [“phrase1”,
“phrase2”, “phrase3”, “phrase4”, “phrase5”, “phrase6”, “phrase7”, “phrase8”, “phrase9”,
“phase10”]]</answer>.

After retrieving the original concepts, we perform a similarity calculation between the textual con-
cepts and real images of the corresponding category. The top 5 most similar concepts are selected
for the subsequent informed diffusion process, as described in Sec. 3.2. This approach helps ensure
that the selected concepts align closely with the real images, thereby enhancing the validity of the
concepts used in the diffusion process to a certain extent.

Informing The informing process involves similarity calculation between embeddings of images
and textual concepts. We use a CLIP model with ViT-L as the visual encoder, pre-trained on LAION-
2B data (Schuhmann et al., 2022) to encode these embeddings. The model weights can be down-
loaded from Hugging Face2. The generation process involves 50 denoising steps for each sample.
Prior to denoising, 5 descriptive concepts from the same class as well as 10 negative concepts each
from a different class are retrieved for the sample. Before extracting text embeddings, the concepts
are grouped with the corresponding class name using the following format:

{$class name} with {$concept}.

During each denoising step, the similarity between the generated sample and corresponding con-
cepts is calculated for the informing objective in Eq. 12. The informing weight λ is set as 1 for
optimal performance. The concept informing guides the denoising process to obtain completeness
on essential details, and thereby enhances the instance-level quality of the generated images.

Validation We adopt the validation protocol in RDED (Sun et al., 2024) to evaluate the perfor-
mance of distilled data. We mainly employ a ResNet-18 (He et al., 2016) architecture for experi-
ments, with additional ones run on ResNet-101 and ConvNets as shown in Tab. 1. Specifically, for
ImageWoof, ImageNet-100, ImageNet-1K, we adopt 5-layer, 6-layer, and 4-layer ConvNets, respec-
tively, consistent with the settings in RDED. For ImageWoof, the images are resized to 128×128 on
ConvNet-5, while for all other cases, the images are resized to 224×224 for evaluation.

For ImageNet and its subsets, we employ pre-trained models3 to generate soft labels and apply
Fast Knowledge Distillation (Shen & Xing, 2022). The models are trained for 300 epochs using
the AdamW optimizer, with an initial learning rate of 0.001 and a weight decay of 0.01. A cosine
annealing scheduler is used to adjust the learning rate. The mini-batch size for evaluation is set the
same as IPC, e.g., a mini-batch size of 10 is adopted for evaluating 10-IPC sets. The applied data

2https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K
3https://github.com/LINs-lab/RDED
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Table 7: Comparison with different optimization objec-
tives and their combination on ImageWoof.

Method IPC
1 10 50

None 16.7±0.7 37.9±1.1 63.6±0.6

Classifier 16.9±0.7 38.5±1.0 65.2±0.8

Contrastive 17.4±1.1 40.7±0.4 66.1±1.1

Combination 16.7±0.3 38.8±1.9 65.7±0.7

Table 8: Inference time cost comparison of generating one
sample under the mini-batch size of 1 between the base-
lines and the proposed CONCORD method.

Method Minimax MinimaxC unCLIP unCLIPC

Time (s) 2.1 5.3 9.7 22.8

augmentation techniques include patch shuffling (Sun et al., 2024), random crop resize (Wong et al.,
2016), random flipping and CutMix (Yun et al., 2019). After training on the distilled dataset, the
model is then evaluated with the original validation set, and Top-1 accuracy is used as the validation
performance. Each experiment is performed for three times, and the mean accuracy and standard
variance are reported in the results.

For the Food-101 dataset, since no pre-trained models are provided by RDED, we train a ResNet-18
model on the original training set for 300 epochs, and use it for soft-labeling. It is important to note
that the utilization of pre-trained models is independent from the sample generation process, and is
only for fair comparison with state-of-the-art methods, which can be omitted in actual applications.

C EXTENDED EXPERIMENTS AND ANALYSIS

Ablation on Denoising Steps In the main experiments, we adopt 50 denoising steps for sample
generation. The effect of varying the number of denoising steps is evaluated and presented in Fig. 5,
with the unCLIP Img2Img model as the baseline. As the number of denoising steps increases, the
accuracy of the baseline distilled data shows an upward trend under the IPC setting of 10, while is
relatively consistent for the 50-IPC setting. For concept informing, fewer denoising steps result in
insufficient informing, leading to performance similar to that of original images. Conversely, when
too many denoising steps are used, the informing start to disrupt the standard denoising process,
leading to a drop in performance. While more fine-grained tuning of the informing weight could
potentially mitigate the negative effect, more denoising steps also lead to extra computational cost.
Therefore, we adopt 50 denoising steps as the standard setting.

Combining Concept Informing and Classifier Guidance The proposed CONCORD method in-
forms the diffusion process to contain more discriminative details for enhancing instance-level im-
age quality. While concept informing sharing similarity to classifier guidance, the key difference
is that CONCORD utilizes the similarity between generated samples and descriptive concepts as
optimization targets, without relying on pre-trained classifiers. We also conduct the experiment to
combine these two kinds of constraints together to simulate scenarios where pre-trained classifiers
are available. As shown in Tab. 7, when functioning independently, our proposed contrastive con-
cept informing outperforms classifier guidance. It supports our hypothesis that detailed descriptions
provide richer information compared with the category-level labels, and are more helpful in refining
the instance-level sample quality. However, when both types of guidance are combined, classifier
guidance does not provide additional information, and disrupts the concept informing process. As
a result, the combined approach shows less effective performance improvement on the generated
images. Therefore, in the main experiments, we exclusively use the proposed concept informing, as
it delivers better overall results and saves extra computational consumption.
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Table 9: Performance comparison with state-of-the-art methods on ImageWoof. The superscript C

indicates the application of our proposed CONCORD method. Bold entries indicate best results,
and underlined ones illustrate improvement over baseline.

IPC (Ratio) Test Model Random K-Center Herding IDM Minimax MinimaxC Full

1 (0.08%)
ConvNet 16.3±0.5 15.8±0.6 16.8±1.1 17.1±0.2 16.7±0.2 17.8±0.8 69.0±0.2

ResNet-18 15.1±0.2 15.7±0.8 16.1±0.4 16.7±0.5 15.3±1.1 16.9±1.0 76.9±0.1

ResNet-101 14.0±0.6 13.7±1.2 14.1±0.6 16.3±0.6 14.2±1.1 14.9±1.3 77.6±0.2

10 (0.8%)
ConvNet 40.5±1.5 37.1±0.9 41.2±0.4 38.5±0.6 41.2±0.8 43.1±0.5 69.0±0.2

ResNet-18 34.3±1.6 33.1±0.5 36.8±0.6 36.5±1.2 42.8±1.1 44.4±0.9 76.9±0.1

ResNet-101 32.1±1.0 31.6±0.3 33.8±0.4 30.8±1.2 35.7±0.9 36.5±0.9 77.6±0.2

50 (3.8%)
ConvNet 60.9±0.9 57.7±1.2 60.4±0.8 61.0±0.6 61.1±0.8 62.5±0.9 69.0±0.2

ResNet-18 67.1±1.0 64.3±0.9 67.6±0.5 64.9±0.6 67.8±0.5 69.2±1.0 76.9±0.1

ResNet-101 61.4±0.7 58.8±0.4 60.8±0.3 57.2±0.6 62.2±0.6 63.6±0.2 77.6±0.2

Extra Computational Cost We report the inference time cost for generating an image on both
Minimax and unCLIP Img2Img in Tab 8. Comparatively, introducing CONCORD increases the
original inference cost by approximately 1-1.5 times. unCLIP Img2Img involves Stable Diffusion
v2-1 model (Rombach et al., 2022), which demands more computational resources compared with
Minimax, which uses a DiT model (Peebles & Xie, 2023) as the denoising backbone. During infer-
ence, Minimax with CONCORD only requires about half the time of unCLIP baseline. Although
Minimax performs better as a baseline, the advantage is based on extra fine-tuning processes on
the target dataset. Therefore, the model choice in real-world applications should consider multiple
factors, including the balance between training and inference time consumption.

Comparison to More Baselines In addition to the results in Tab. 1, we also conduct experimental
comparison with random sampling, K-Center (Sener & Savarese, 2018), Herding (Welling, 2009)
and IDM (Zhao et al., 2023) in Tab. 9. For the methods based on original samples, we first resize
the images to 128×128 for ConvNet and 224×224 for ResNet before running validation.

K-Center and Herding are two methods selecting coresets from the original data, with unstable
performance improvement compared with random sampling. IDM is a dataset distillation method
based on distribution matching, which is effective under small IPC settings. However, as the re-
quired sample number increases, the generated images often perform worse than random selected
original samples. The baseline Minimax comparatively provides more stable information conden-
sation across different IPC settings. When combined with the proposed CONCORD method, the
overall dataset quality is significantly enhanced, surparssing all other methods in terms of accuracy.
Especially for ConvNet and ResNet-18 architectures, training with 50 images per class achieves
less than 10% performance gap from training with the entire original set. As larger models (e.g.,
ResNet-101) require mode data and training iterations to get good performance, there still remains
certain performance margin between distilled data and original full-set.

Feature Distribution Visualization We provide the feature distribution comparison in Fig. 6 to
illustrate the effects of our proposed CONCORD method.

Firstly, the left figure shows the t-SNE features of samples generated with and without the informing
of CONCORD. CONCORD works as a training-free guidance at the inference stage, without chang-
ing the main object in the images. By refining essential details in the generated samples, CONCORD
enhances instance-level conceptual completeness, and improves the overall quality of the distilled
datasets. However, these detail refinements have a mild effect on the feature distribution, indicat-
ing that with an already well-structured distribution, CONCORD can further improve performance
without disrupting the underlying data distribution.

Secondly, the middle figure compares the generated images with the original ones used as condi-
tioning in unCLIP Img2Img. The generated images closely align with the original data distribution,
validating their effectiveness in capturing the properties of the original dataset. It demonstrates the
suitability of using these generated images for training models.
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Figure 6: Feature distribution visualization of (a) samples generated by unCLIP with and without
CONCORD; (b) samples generated by unCLIP with CONCORD and original samples used for
conditioning; (c) samples generated by Minimax with CONCORD and original samples. Different
colors indicate different categories.

Cls Ours-3.5 Ours-4o

"bright blue overall in males",
"brownish females blend with surroundings",
"small size and conical beak",
"visible only in good lighting",
"females and young are streaky brown",
"frequent edges and clearings in habitat",
"feeds on insects and seeds",
"song is a high-pitched warble",
"breeds in North America, migrates to Central America", 
"territorial during breeding season"

"vibrant blue plumage covering the entire body", 
"small, rounded body with a compact build",
"dark, conical beak with a sharp tip",
"bright blue head with slightly darker wing tips", 
"short tail with a slightly notched appearance",
"subtle streaks of darker blue on the back",
"small, round eyes set against a blue face", 
"contrasting blackish wings and tail feathers", 
"plumage with a metallic sheen under sunlight", 
"short, stout legs with a bluish-gray hue"

"vibrant blue color in males", 
"small size",
"silver-gray beak",
"sings from high perches", 
"feeds on insects and seeds", 
"habitats include brushy fields", 
"migratory patterns",
"female brown colored", 
"distinctive sparrow-like shape", 
"often seen alone or in pairs"

indigo
bunting

Input

Cls Ours-3.5 Ours-4o

"rail vehicle that runs on tracks in urban streets",
"powered by overhead electrical wires",
"provides public transportation within cities",
"features multiple doors for passenger boarding",
"can accommodate seated and standing passengers",
"operates on a schedule and stops at designated stations", 
"historical versions known as trams or trolleys",
"modern variants are often part of a light rail system",
"essential in reducing urban traffic congestion",
"eco-friendly alternative to buses and cars"

"elongated, rectangular body with large windows",
"two or more sets of wheels running on tracks",
"overhead electrical pantograph or trolley pole",
"distinct front and rear ends with rounded corners",
"bright exterior colors, often with company branding",
"single or double doors for passenger entry",
"high, narrow roof with visible vents or lights",
"metal frame with smooth, streamlined sides",
"raised platform or steps for boarding",
"connected cars in a flexible, articulated design"

"overhead power lines",
"tracks on the road",
"long narrow shape",
"iconic city feature",
"carries passengers",
"large windows",
"historic charm",
"multiple cars linked",
"stops with platforms or signs",
"connected to overhead cables"

streetcar

Input

Figure 7: The comparison between concepts retrieved by different prompts and LLMs. “Cls” refers
to prompts used for zero-shot classification attribute retrieval. Example images of corresponding
classes are also presented to show their appearance features.

Lastly, the right figure shows the distribution of samples generated by Minimax with CONCORD
and the entire original set. The generated samples demonstrate comprehensive coverage over the
original distribution, ensuring that they represent a wide range of instances. While with sufficient
diversity brought by samples distributed near decision boundaries, the generated samples also re-
duces noise in the overlapping regions between categories. It makes the generated dataset stable and
effective for training models, when computational resources are limited.
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Figure 8: Example generated image comparison on Minimax with and without the proposed CON-
CORD method (denoted as C).

Analysis on the Retrieved Concepts The effects of different prompts and LLMs have been quan-
titatively investigated in Tab. 4. We further conduct qualitative comparison for the retrieved de-
scriptions to explicitly analyze the informing effects of different concepts. As shown in Fig 7, de-
scriptions of indigo bunting and streetcar are retrieved based on three settings: prompt for zero-shot
classification on GPT-4o (denoted as “Cls”), our adopted prompt on GPT-3.5, and our prompt on
GPT-4o. The “Cls” prompt retrieves general descriptions about the object. However, in many cases
the retrieved descriptions are still too coarse for fine-grained informing. The descriptions retrieved
by GPT-3.5 are more detailed, but contain a large number of non-visual attributes, which cannot
provide valid signal during concept informing. Comparatively, our adopted prompt on GPT-4 suc-
cessfully emphasizes the detailed visual features of corresponding categories. These fine-grained
descriptions enables the proposed CONCORD method to effectively enhance instance-level con-
ceptual completeness and further improves the overall quality of the distilled datasets.

D SAMPLE COMPARISON

We further present more example generated images in the following sections.

Comparison with Baselines Firstly, we show comparison on Minimax and unCLIP Img2Img with
and without applying the proposed CONCORD method in Fig. 8 and Fig. 9, respectively. When
baseline methods fail to present essential features and often lead to image defects, CONCORD
significantly enhances the conceptual completeness in samples.

Failure Cases We also present failure cases where the proposed CONCORD method fails to cor-
rect or supplement essential features in the images in Fig. 10. It can be seen that the informing
tries to modify some defects in the original image, but the eventual refinement is limited. There are
also some cases where the informing fails to find the missing or incorrect details. Especially the
informing fails to refine the details when the number of body parts is incorrect or the body part is
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Figure 9: Example generated image comparison on unCLIP Img2Img with and without the proposed
CONCORD method (denoted as C).
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Figure 10: Example cases where CONCORD fails to supplement or modify incorrect concepts in
the images (C indicates the application of CONCORD).
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takoyaki

apple pie beef tartare beignets bruschetta carrot cake chicken curry crab cakes donuts

eggs benedict french fries fried rice grilled salmon hamburger ice cream macarons onion rings

pancakes pizza scallops steakravioli spegetti bolognesepoutine

Figure 11: Example images generated by the proposed CONCORD method on the Food-101 dataset.
The class names are annotated below the images.

hyena

indigo bunting bald eagle tree frog leatherback turtle agama African crocodile water snake scorpion

ptarmigan macaw wallaby jellyfish rock crab flamingo bustard killer whale

Pekinese West Highland Siamese cat tigerPembroke tabby catmalamute

bee mantis monarch starfish marmot water buffalo polecat macaque

Figure 12: Example animal images generated by the proposed CONCORD method on the ImageNet-
1K dataset. The employed diffusion pipeline is the fine-tuned Minimax model. The class names are
annotated below the images.

completely missing in the original generation results. There is still much space for further improving
the instance-level sample quality for dataset distillation.

More Sample Visualization Additionally, we present more example samples across various cate-
gories to demonstrate the overall high quality of the dataset generated by the proposed CONCORD
method. Specifically, in Fig. 11 we present samples generated for the Food-101 dataset. In Fig. 12
images of animal categories in the ImageNet-1K dataset are generated by Minimax with CONCORD
applied. In Fig. 13 we show images of other categories in the ImageNet-1K dataset. The high-quality
generated samples form an effective surrogate dataset, which achieves state-of-the-art performance.
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Figure 13: Example other images generated by the proposed CONCORD method on the ImageNet-
1K dataset. The employed diffusion pipeline is the fine-tuned Minimax model. The class names are
annotated below the images.
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