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Abstract

The performance of Large Language Models
(LLMs) directly depends on the size of the con-
text that the model was trained on. Despite signif-
icant progress in increasing the context size of the
current models, some applications remain bottle-
necked by the number of processed tokens at in-
ference time. A particular mathematical problem
LLMs can be used for is inferring parameters in a
statistical model, given data-points as input. Here
we make a case demonstrating that discrete diffu-
sion models offer a promising avenue for scaling
such parameter prediction tasks, by combining the
outputs of the same model evaluated on different
parts of the training data. We propose DISCRETE
FEYNMAN-KAC CORRECTORS— a framework
that allows for controlling the generated distribu-
tion of discrete masked diffusion models at in-
ference time. We derive Sequential Monte Carlo
(SMC) algorithms that, given a trained discrete
diffusion model, sample from its annealed distri-
bution or the product of distributions with differ-
ent conditions. Notably, our framework does not
require any training, finetuning and external re-
ward functions. Finally, we apply our framework
to amortized linear regression using LLaDA and
demonstrate that it drastically outperforms the
standard inference procedure in terms of accuracy
and adherence to prompt format.

1. Introduction

The success of diffusion models in continuous domains,
such as the generation of images (Rombach et al., [2022),
videos (Wang et al.| 2023} Blattmann et al., 2023)), or 3D
protein structures (Abramson et al., 2024} |Watson et al.,
2023)), has motivated their application to discrete data spaces.
Indeed, modeling discrete data such as text or biological
sequences using diffusion processes is a promising direction
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since they do not rely on sequential token generation as
with autoregressive models, which can impose arbitrary
orderings on data (e.g., molecular structures and protein
sequences (Lee et al.| 2025b; |Alamdari et al., 2023))), or can
suffer from exposure biases that limit long-horizon planning
or reversal reasoning in natural language domains (Berglund
et al., 2023 Nie et al., [2025)).

Discrete diffusion models can be formulated as a continuous-
time Markov process that progressively transforms data to
noise through a series of random transitions, and then learns
to reverse the process and recover the original data (Camp+
bell et al., |2022; [Lou et al.l 2023; Sahoo et al.| [2024; |Shi
et al.| |2024). While this process learns the unconditional
distribution of the data, it is crucial to be able to control gen-
erations based on user desiderata (for example, conditioning
on desired target properties of a protein (Gruver et al.,[2023)))
or optimize outputs based on downstream objectives (for
example, sampling from modes). Several notable contribu-
tions have developed methods to approximately sample from
conditional distributions, requiring access to external classi-
fiers(Vignac et al., [2022; [Nisonoff et al.,|2024; [Tang et al.,
2025) or correction schemes (Nisonoff et al., 2024} |Gruver
et al.,[2023). [Lee et al.| (2025a)) derived the exact transition
rates needed to sample from the tempered conditional dis-
tribution (p}3" n(2) o g (2)q: (y|z)?) using a Sequential
Monte Carlo (SMC) resampling scheme. More recently,
methods based on external reward models (Rector-Brooks
et al.,|2024) have been proposed to improve the quality of
generated samples from discrete diffusion models, similar
to reinforcement learning from human feedback (RLHF)
approaches in Large Language Model (LLM) settings. In
general, LLMs an extensive history of improving sample
quality with a wide range of approaches. The simplest
ones to implement involve in-context methods, which use
prompting strategies like chain-of-thought reasoning (Wei
et al., 2022} [Tmani et al.,2023)) to improve sample quality.
However, these approaches require manual curation, pro-
hibiting generalizability. Recent trends have moved towards
automated prompt optimization (Fernando et al., 2023)) or
fine-tuning the entire model using RL or supervised fine-
tuning (DeepSeek-All [2025).

The quality of text generated by discrete diffusion models is
still quite far from the best modern LLMs (Nie et al.| [2025)).
While the gap will likely close with scaling and fine-tuning
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protocols (Black et al.| 2023 |Domingo-Enrich et al., [2024;
Fan et al.| 2023)), we can begin to improve generations by
changing our sampling strategies from diffusion processes
that already exist. To do this, we look at advances in the do-
main of continuous diffusion models, which have introduced
techniques that enable sampling from interesting densities
without the need for external models or extra computational
overhead. For example, |Skreta et al.| (2024) proposed an
on-the-fly It6 density estimator that allows sampling from a
mixture of densities or equal densities. |Skreta et al.|(2025)
presented the Feynman-Kac Correctors, which enable sam-
pling from annealed densities (pa““eal( ) o< q¢(x)?) or a

product of multiple densities (ppmd( ) o T, ¢i(x)) by
simulating weighted stochastic differential equations (SDEs)
using SMC resampling.

Inspired by these methods, we introduce DISCRETE
FEYNMAN-KAC CORRECTORS (DFKC) — a principled
framework to enable exact sampling from annealed and
product densities of pre-trained discrete diffusion models.

We look to apply this method to improve the performance of
a text diffusion model on a difficult mathematical problem:
that of inferring parameters in a statistical model, given
data-points as input within the context. In particular, our
method allows partitioning the context data into disjoint
prompts, and then sampling from the product of the model
conditioned on the prompts. This allows us to bypass po-
tential issues with long contexts for the parameter inference
problem (Li et al., [2024)).

Ours contributions in this work are as follows:

* We derive a principled framework to enable exact sam-
pling from annealed distributions or the product of
multiple distributions of pre-trained discrete diffusion
models without any computational overhead.

* We demonstrate how DFKC can be used to predict
linear regression parameters by sampling from a prod-
uct of distributions using LLaDA, a text diffusion
model. We find that it significantly outperforms joint
in-context prompting strategies, both in terms of cor-
rectness and percentage of valid outputs.

2. Background

We consider continuous-time Markov chains (CTMC) or
jump processes on the discrete state spaces. Namely, ev-
ery variable z; can take values in the range 0, ...m, and
the time ¢ is in the interval ¢ € [0, 1]. All such processes
are described by the Forward Kolmogorov Equation (FKE)
(Kolmogoroft} [1931) that is why our main results are stated
in terms of these equations.

For the discrete diffusion, we consider the specific case of
masked diffusion processes and introduce a specific ‘mask’

state m into the set of discrete states. We assume that the
simulation can be done by discretizing the corresponding
FKE in time, and when describing this we use the standard
notation: Cat(z| ) denotes the categorical distribution
with probabilities m, §;; is the Kronecker symbol.

2.1. Simulating Forward Kolmogorov Equation (FKE)

The forward Kolmogorov equation for continuous-time
Markov chains describes the evolution of the transition prob-
ability as follows

6p(xs—J|fct—z

ZA (k,j)p
8p(mt =jlzs=k)
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Correspondingly, when a boundary condition p;—¢(i) =
p(zo = i) is present, we can define the evolution of the
marginal distributions via FKE, i.e.

0
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In practice, one can parameterize the time-evolution of the
marginals by specifying the rate matrix. However, the defini-
tion of the rate matrix A;(%, j) introduces some constraints
on the family of the possible rate matrices

S A0 ) =0, Aii) SO, Ai,§) >0, Vi#j.
J
Fortunately, this constraints can be easily satisfied by param-
eterizing only the off-diagonal terms of the matrix A (i, j)
and defining the diagonal term A;(%,4) as the negative sum
over the off-diagonal terms. Analogously to (Gat et al.|
2024), this yields
Opy (i) _ .. . .. .

5 = D (AU (i) — Adli )pe(@) . G)

J#i
To draw samples from p;(i) one can draw samples from
po(?) and simulate FKE by discretizing it in time. Namely,
at every iteration, one samples from the following condi-
tional probability

p(mt—&-dt =7 | Ty = Z) = (51‘3‘ + tht(i,j) + O(dt) ,i.e

xt+dt ~ Cat(xtert | 61] + tht(Z,])) . (4)
In this work, we are interested in FKE of the form
P _ S, i)pe() — Al f)pe)
* & ®)
Jj#i
+ e (1) (9(8) — By, (1) 9:(4))

where the first term corresponds to the standard FKE as in
Eq. (3) and the second term corresponds to re-weighting of
the samples according to g (7). In general, the second term
does not extend the family of jump processes described by
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the standard FKE because it can be incorporated into the
rate matrix (see Appendix [A.T). However, importantly, this
term allows using the Feynman-Kac formula for sampling
from the marginals p; (%)

Epp () @(x) o Eelo g ), ©)
where z; is simulated according to Eq. ().

In particular, to simulate Eq. (3)), one can extend the states
x, with the weights w; and jointly simulating the following
equations

Ti4dt ™~ Cat (l’t_;,_dt | 5%1} + tht (LE, ’y)) , (7)
Wipdr = Wy + dtgy(xt) - )]

Finally, the weighted samples (2., w?.) can be used for the
Self-Normalized Importance Sampling (SNIS) estimator

Eprn$(x) =)

i Zj eXP(w%)

or just to construct the corresponding empirical measure.

2.2. Discrete Masked Diffusion

Analogously to continuous-space diffusion models (Song
et al.,[2021), the discrete diffusion models operate by map-
ping the data distribution py () to a simple marginal pq ()
and then simulating the reverse process. In particular,
masked diffusion models define a conditional probability
p(zs = j|x; = i) as a probability of switching to the m-th
which denotes the utility ‘mask’ state, i.e.

p(fﬂs = _] | Ty = Z) = (1 - as,t)émj + as,tfsij . (10)
Clearly, &, cannot be an arbitrary function; hence, ap-

plying the master equation we get that all the conditional
probabilities from Eq. (I0) can be described as

Qs

. . Qg
plas = jlar = i) = (1 - at)amj + 255, an

where we denote o == Qi5,0. This yields rate matrix

.. 1 da
A, j) = ()Ttaitt(aij —Omj) - (12)

See the derivation in Appendix[A.2]

To sample from the data distribution py (i) we have to sample
from the simple marginal p;(¢) and simulate the process in
the inverse time 7 = 1 — ¢t. The reverse-time marginals
p1—-(4) also follow FKE but with a different rate matrix

. 1 oy pe(4)
B = ——10ij — Omi . 13

t(zﬂj) a: 8t < J pt(m) ( )
Note that this rate matrix models the probability of the jump
from i to j and for ¢ # m no jump happens, which motivates
the parameterization only of the entries B;(m, 7). Thus, to
simulate the reverse process, one has to parameterize the

ratio of probabilities

N 4’ (j )

St(m7]a0) pt(m) 9 (14)
which is called ‘score’ in (Lou et al., 2023} Benton et al.,
2024) or, equivalently (as shown in (Shi et al., |2024))), the
denoising distribution

Iit((Jm)) = 0mj + 7 ftatp(xo =Jjler=m), (15

which is parameterized as

p(xo = jlozy =m) = (1 — 6,,5)softmax(NN(z¢; 6));.

Both these parameterizations can be learned by maximizing
the same Evidence Lower Bound (ELBO) objective. Due
to slight changes in the notation and chronology of the
exposition, we re-derive these equations in Appendix[A.3]

3. DISCRETE FEYNMAN-KAC CORRECTORS

In this section, we introduce DISCRETE FEYNMAN-KAC
CORRECTORS— a framework that allows for inference-time
control of discrete diffusion models. In particular, given a
trained discrete diffusion model sampling from p;—o(i), we
modify the inference process to control the temperature 7' =
1/ of the distribution of generated samples p***¢2!(;) o
pfzo (¢). Furthermore, for two different models (or the same
model with different conditions) p;_, (i) and p7_,(i), we
derive the inference procedure that samples from the product
of corresponding marginals pP™°4() o< pi_q(1)p7_q (7).

To draw samples from pa*¢2l () or pP4(7) we define cor-
responding marginals (e.g., ptﬁ (7)) on the entire time in-
terval ¢ € [0,1]. The time-derivative of these marginals
defines another FKE, the corresponding rate matrices, and
the re-weighting functions. Notably, our inference process
does not require any additional training or finetuning. For
each case, as we demonstrate, one require only the ratio
of densities from Eq. (T4), or, equivalently, the denoising
distribution from Eq. (I3).

3.1. Temperature Annealing

First, we state our result in the most general form applied
to the forward Kolmogorov equation with arbitrary rate
matrix A;(7,7). Since we do not assume any structure of
the matrix, it is easier to reason in terms of Eq. (3) because it
uses only off-diagonal entries and does not require ensuring
the normalization condition. The equation for the annealed
process is presented in the following theorem.
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Theorem 3.1 (Temperature Annealing). Consider the for-
ward Kolmogorov equation for marginals

ap{;t(i) - Z(At(j’i) () — Ae(3,5)pe(3)) . (16)

J#

For the temperature annealed marginals q;(i) oc p;(4)5,
the following equation holds

8(]5151) — Z (Adnneal(j, )Qt( ) Aanneal(l j)Qt( ))+

JF#i
+q:(0) (9¢(4) — B (5)9¢(4)) » (17)
where
1-B;
azmen(q, ) = BA G, ) P (18)
P (J)
ge(i) = (AF™l(i, j) — BA(i,)) . (19)

J#i

Thus, to anneal an FKE one has to know the rate matrix
A4 (i, j) and the ratio of probabilities p; () /p:(j), which is
the case for the masked diffusion processes as we specify in
the following corollary.

Corollary 3.2 (Annealed Masked Diffusion). For the rate
matrix of the reverse-time masked diffusion from Eq. (13)),

Theorem[3.1]yields
B day A0
Banneal (51" _ 5mi t , 20
BT ( k)
LB oy pe(d) _ plG)
_ P g — .l
gt (l) o It ; (pt (m) ptﬁ (m) ( )

This corollary demonstrates that both the new rate matrix
and the weighting term can be efficiently evaluated in prac-
tice. In more detail, when parameterizing the score from
Eq. one can obtain the new rate matrix by raising the
score to power 3 and multiplying the matrix by 5. Same
holds for the parameterization of the denoising distribution.
Indeed
B B

) s A @0 =jlz =m), @2)

pr (m) (1 t)
which corresponds to multiplying the parameterized logits
by [ and raising o to power 3. Finally, the weighting term
requires the summation of the density ratio over j, which
is the output index; hence, it does not require additional
function evaluations.

See Appendix [B.T|for the proofs.

3.2. Product of marginals

Sampling from the product of distribution can be interpreted
as unanimous voting since if one of the probabilities is zero
the entire product is zero (Hinton, [1999). Thus, this proce-
dure can describe a collaborative generation process where
the results must satisfy the requirements of all the partici-
pants. Inspired by this potential application, we state our
general result describing the product of marginals following
the forward Kolmogorov equations.

Theorem 3.3 (Product of FKEs). Consider two forward
Kolmogorov equations with different rate matrices A} (i, 5)

and A%(i, 7), i.e.
)= A2 G,0pt20) - T 4G9 0).
i i
For the product of marginals q;(i) o< pt(i)p?(i), the fol-
lowing equation holds
0q: (i ro o
a9 _ > (A1) - A )+ @
+ q(4) (9¢ (1) — Ejg,(5)9:(4)) » 24)
where

prodi N gl i p2( ) 2 . p%(])
At (7.7) . At( ])p%< ) +A ( )p%(z) ) (25)

EDY (A?“d(m i) — AL (i,§) — A%(i,j)) . (26)

i

Importantly, the new rate matrix and the weighting terms are
defined in terms of both rate matrices Al( i,7) and A2(i, 5)
and the ratios of probabilities p} (i) /p; (5) and p2 (i) /p?(5).
All these quantities are available in the masked diffusion
models. To be precise, we present the corresponding reverse-
time rate matrix and the weighting term in the following
corollary.

Corollary 3.4 (Product of Masked Diffusions). For the
rate matrix of the reverse-time masked diffusion from

Eq. (13), Theorem[3.3]yields

1/ 2/
1 Oy 9815 — B plt () pi() ’ @7
a Ot

i) = (5mi%z (ptl(]) + i (j) ~ pe() pt(j))'

ar 8t = \pi(m)  pi(m) pi(m

BY(i, j) =

According to these formulas, both the rate matrix and the
weights can be efficiently evaluated with a single forward
pass through each network. Indeed, the evaluation of the
rate matrix requires only the multiplication of scores or
multiplication of the corresponding logits of the denoising
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probabilities
1(s 2 2
p(3) pi() )
=0mj+ —- (28)
pi(m) pi(m) Tl a)?

pH(zo = j o =m)p*(zo = j |z =m). (29)

The weights g:(7) have to be evaluated only for the states
that are still masked because of the §,,,; term, and this can
be done by multiplying the probability ratios and summing
them over the output dimension.

See Appendix [B.2]for the proofs.

4. Experiments

We evaluate the product formula for DFKC. from Theo-
rem[3.3] on an amortized parameter prediction task.

Given a dataset of examples X = {(x;,9;)},, and a
parametric model fy(x), we wish to use a diffusion language
model to infer parameters € which fit the data.

The problem of inferring parameters is equivalent to hav-
ing the model sample from a posterior distribution over
parameters p(6|X). However, unlike more classical statis-
tical methods, we wish to perform this computation solely
through the text interface of the language model, which al-
lows us to more flexibly incorporate prior beliefs. A related
task has been studied where, given a dataset, autoregressive
language models make predictions on unseen inputs x*, pos-
sibly with a specified Bayesian predictive prior (Requeima
et al.| [2024; Mittal et al.| [2025)).

A large number of examples in the input prompt gives the
language model a more difficult calculation task. Addition-
ally, larger context sizes have been shown to cause degrada-
tion in certain tasks (Hsieh et al., |2024; |Li et al., [2024]).

For a partition of the dataset into K equal subsets X =
Uszl X}, we can note that the posterior distribution over
factors as:

K
p(0]X) o< p(B)p(X16) = p(6) [ [ p(X:l6)  (30)
N k
oc p(0)"* [ [ p(61 ) (31)
k

Each p(0|Xy) is approximately sampled from by the lan-
guage model with a prompt P}, containing the dataset A;.
The factorization above therefore implies that the product
formulation of DFKC, stated in Theorem [3.3|can be used
to sample from the target posterior.

We evaluate this task on a synthetic dataset generated us-
ing the linear predictor fy(z) = 612 + 6, corrupted with
Gaussian observation noise with standard deviation 0.1. We
assume a uniform prior, so that Eq. (31)) becomes a simple
product over posteriors. We use the LLaDA masked dis-
crete diffusion model to predict the values of (6, 61) (Nie

et al.} 2025). For DFKC, the data is partitioned into K = 5
subsets for prompting the model, which we evaluate against
the “joint" prompting technique which uses the undivided
dataset. Further experimental details are included in Ap-

pendix

The mean-square error for the inferred parameters (com-
pared to the ground truth) are plotted in Fig.[I] Regardless
of the number of SMC samples used during inference, the
evaluation is done on a single particle chosen at random.

In Fig.[Ta]we assess the ability of our method to infer param-
eters as the size of the dataset grows. We observe that the
joint prompting technique generally grows more inaccurate
with increasing data, while the DFKC product (with M =5
SMC samples) remains more stable. Additionally we note
that joint prompting often outputs text which doesn’t con-
form to the format prescribed in the prompt. This means that
many outputs are unable to be parsed. These invalid outputs
are omitted from the errors in Fig. and the remaining
number of valid outputs is reported in Fig. [Ibl Outputs
obtained from the DFKC product were in the correct for-
mat for all experiments. Text samples from the joint and
product inference are included in Appendix |D|to illustrate
this phenomenon.

Fig.[2aexamines how the performance varies as DFKC is
run with more SMC samples. A single sample corresponds
to the case without resampling, so the improvement in mov-
ing from M = 1 SMC sample to M > 4 highlights the
benefits of the resampling step. As more samples are used,
we see a trend of decreasing error until about M = 8, before
the prediction error increases again. We hypothesize that
the performance doesn’t improve monotonically with more
SMC samples due to inaccuracies in the model itself. In
other words, with a larger number of samples, we may be
sampling more accurately from the model’s predictions for
0, but it isn’t necessary that this improves accuracy.

5. Related Work

Several works propose methods for improving alignment in
discrete diffusion models.

Reward Fine-tuning These methods often assume an
external reward function r(z) and adjust the pretrained
model’s parameters using reinforcement learning algo-
rithms, with the goal of sampling from the product
r(x)g:(x). Several of these works are applicable to discrete
diffusion models (Venkatraman et al.| 2024} Rector-Brooks
et al.| 2024; Wang et al.| 2025). Our method leaves the pre-
trained model fixed, and therefore doesn’t require a costly
fine-tuning stage.

Inference Time Alignment Several methods perform ad-
ditional computation at inference time to sample from a
target product distribution (the product being taken with
either an external model r(z), or a classifier extracted from
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(a) The mean squared error (MSE) between predicted and true
parameters is lower (better) with DFKC compared to joint prompt-
ing when estimating parameters from an increasing number of
data samples. = indicates p < 0.02 and = indicates p < 0.05
according to a one-sided Student’s 7-test.
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(b) DFKC generates a higher percentage of valid, parseable out-
puts compared with joint prompting at all numbers of data samples.

Figure 1: Effect of data quantity on predicting linear regression
parameters.

the model’s distribution, ¢;(y|z) as in classifier-free guid-
ance (Ho & Salimans| [2022)). These methods often involve
an approximation which means they produce biased sam-
ples from the target product (Vignac et al., [2022} |Gruver|
et al., 2023} Nisonoff et al., 2024} [Tang et al.| 2025)). [Lee
et al.| (2025a) propose using SMC to correct this bias in the
case of a tempered product pzeg] Peond oy o qu(2) g (y|2)P.
Our work extends such an SMC based strategy to general
products, as well as an annealed target ¢°(x). [He et al.
(2025)) recently proposed a similar SMC-based technique
for such problems, however, they do not evaluate the method
on discrete diffusion tasks.

6. Conclusion

In this paper, we propose DISCRETE FEYNMAN-KAC COR-
RECTORS— a framework that allows for re-purposing dis-
crete diffusion models at inference time without retraining
them. In particular, our theoretical findings demonstrate that
sampling from the annealed distributions or product of dis-
tributions can be efficiently done by combining the learned
probability ratios and running SMC algorithms. Our empir-
ical study supports our derivations and demonstrates that

Joint prompt
25.00- —e— DFKC product
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15.00-

MSE (V)

10.00-

5.00- \//

| | | | | |
1.0 2.0 4.0 8.0 16.0 32.0

Num. SMC samples

(a) Increasing the number of SMC samples for DFKC improves
over no SMC resampling, although the gain is largest with 4 or
8 samples. Taking the product has a lower (better) mean squared
error (MSE) than joint prompting, and resampling with DFKC
significantly improves this further.
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+ 804 /

3 7 C/// //;//
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(b) DFKC generates consistently generates 100% valid, parseable
outputs at all SMC sample sizes while joint prompting only gener-
ates 72% valid prompts on average.

Figure 2: Effect of SMC sample size on predicting linear regression
parameters.

the proposed approach is much more efficient for estimating
the parameters of amortized linear regression than the stan-
dard inference procedure. This unlocks novel applications
of discrete diffusion models, in particular for problems of
amortized parameter inference.

We envision multiple applications of this framework in the
future including function-conditioned protein generation,
temperature annealing for discrete Monte Carlo algorithms,
collaborative generation of language and code. Crucially,
for all these applications DISCRETE FEYNMAN-KAC COR-
RECTORS grants a fine control over the distribution. Further-
more, the controlling capabilities of our framework can be
further extended by introducing negative guidance, mixture
of distributions, and reward-tilted distributions.
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A. Background Proofs

A.1. Weighted Forward Kolmogorov Equation

Consider the forward Kolmogorov equation with the weighting term

Do) S a3 palh) — 3 A D) + 22 ()01 3) — 32K (8)).

k#j k#j k

‘We can re-write the last term as

- zk:ps(k)gs(k)) = Zps(k)ps (4)(95 () — gs5(k))
= Zpe s (1) (5, F)|9s (4) — 95 (K)|
= Zps o (5, k) > 01195 () — gs (k) Ips (k) —
- Zps o, (j, k) < 0|95 (4) — g5 () ps (4)

where o(j, k) is the sign of (gs(j) — gs(k)). Let’s define

By(k,j) = ps(k)Los(5, k) > 0]lgs(4) — 9s(k)] = Bs(j, k) = ps(j)Llos(k, j) > 0lgs(k) — gs(5)] -
Using the fact that o5(k, j) = —o05(j, k), we have

= ps(k)gs(k)) = > Bu(k, )ps(k) = > Bs(G, k)ps (i) -
k k k

Finally, using the fact that B,(j, j) = 0, we have

Pl) 52 Ak pa0) = 32 A s () + e () 02) — (B9 (8)

k#j k#j k
= Y (As(k, ) + Bs(k, )ps (k) = > (As (G, k) + By, k)ps (4)
k#£j k#j

By(k,j) = ps(k)L[os (4, k) > 0]|gs(5) — gs(k)].
A.2. Discrete Masked Diffusion

First, we consider 1-d case, m is the mask state and « ; is the noise schedule, i.e. the noising process is defined as

plrs=jlog=1i)=(1- @s,t)émj + Q5,104
plas = j oy =) =Zp(xs = jle. = k)p(x, = k|2, = i)
- Z as 7‘ mj + Qs T‘(Sk?j)(( dr,t)amk + dr7t5ik)

= (1 — Qs.0)0mj (Gt + (1 — @ y)) + G r (1 — @ t)Omyj + @r10i5)
= ((1 = s,p) + Qs (1 = Q)0 + Qs Qi -
Thus, the following relations must hold
T=tgr=(1—=0Qsp) + Qsr(1 = Q) Qsp = sy
—Qst = — QptQsy, OQst = QsrQry,
Qg t = Qp Qs p -
Thus, any function that satisfy the following equation works

Vi<r< S, ds,t = @s,rdr,t .

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
(46)

(47)
(43)
(49)

(50)
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Denoting o5y = a5 ,9, we have

a . . (o} e}
asy = —, and p(ms—]xt—z)—(lS)éijrsdij.
(677 Qi Qg

From here, the rate matrix of the noising process is

o Oplzs =gl =1) 1 Oy
Au(ij) = Ds - = aftﬁ(@j — Omy) -
A.3. Reverse-time Masked Diffusion
In general, the reverse-time FKE for the marginals is
8p1—7'(j) — _ 8ps(])
or O0s |, .,
Ops(J
= paij)=ZA G, k)ps () = D Aslk, 5)ps(k)
k#j k#j
s (k
= > AR ) j§(>
k#j k#j
_ ‘ . ‘ N ps(d)
= ZBs(k,J)ps(k) = > Bu(G,k)ps(§), Bu(k,j) = As(j, k) =% .
k#j k#j ps(k)
J #J

Thus, the rate matrix for the reverse-time process is

Bu(i.g) = AP |

In particular, for the masked diffusion, we have

10 ] 1 0 10 ]
oy Ot pe(i) ot (z) pt(z) oy Ot pe(m)
Furthermore, analogously to the derivation from (Shi et al. 2024) (Appendix H.3), we have
po(i) . po (i =m|xzg=1) p(xg =1i|xs =m)
xtfj‘xo Z xo—@‘.’ﬂt m)p(xt m|x0_l)p(xt7]|x072)
pxo—z|xt m) p(xo =i|zy =m)
= = = 1 —a)dm; 0ij
Z m|x0_l)p(xt ]|I’0 7’ 1_at +Oét(5;m (( Oét) ]+O[t J)
1 . o .
1 a Zi:((l — )0y + dij)p(xo = 0| 2p = M) = 6y + ?tatp(xo =jlze=m).

where we used the fact that p(xg = m) = 0.

B. DISCRETE FEYNMAN-KAC CORRECTORS Proofs

B.1. Annealing

Theorem B.1 (Temperature Annealing). Consider the forward Kolmogorov equation for marginals o t(i)

D

(52)

(53)

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)

> i2i(Ae(4,)pe(j) — At(i, 7)pe(i)). For the temperature annealed marginals g4 (i) o< pq (i )P, the following equanon

holds

a(gt(l) _ Z (Aanneal(!77 )Qt( ) Aanﬂeal(@ j)Qt( )) +qt(i) (gt(i) — eq(j)gt(j)) ,

J#i

1—ﬁ 5
Aanneal( ) BAt(Z ])17(.), gt(i) = Z(Aanneal( ) ﬁAt(Z .7))

yz (]) i

10

(62)

(63)
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Proof. Consider the forward Kolmogorov equation for the given rate matrix A (i, j)

8pt ZAt .75 pt ZAt { j ps

J#i J#i
0 . '
logpt ZAt J,%) z ZAt %) Z(At(%@)pt(é))
J#i J#i J#i be

Then the annealed target ¢ (i) := p’ (i) /Z; follows

B B )
v log ¢:(j) = Bglogpt(Z) ~ 51082

- ¥ (pai ()) BAGLS)) ~ g o 2

J#i

i i#i
=Aeel i)

Denoting the second term as g;(j), we have

ot
JFi

)

Aanneal( ) BAt(]v >]ﬁ75(1)’ gt(i) ::Z(Aanneal( ) ﬁAt(l j))

i

Note that we do not anymore guarantee

ZAunnewl( ) =0,

J
and this is why we need to introduce the re-weighting term g; (7).

Finally, we have to show that the weights are self-normalized, i.e.

0 )
ge(i) — o log Z; = g4(i) — Eig, (i) 9:(7) -

To verify this, we expand the derivative of the normalization constant

88 log Zy — Zt ; apt Z pt 7 logpt th Z(ﬂAt(]J)Z;f

J#i
Thus, we have

1=B; (i
> el - 5 los 2= 3 ai Z<5At(i’j’§f_ﬁ(.)—ﬂAtu,z’)p(J.))

[ 7 ]761' (])

() A
ZZ( p (5) 0

e t

4 (=T zz&mj

[VE i jFi

Zt (;Atzj ZAt.]7 ) )

11

- Ailid).

— . B(j) Qt(J) _ anneali . anneal i
= 3 (A2 G - A ) 4 A ) — ) -
~—— —

Oqu(i) _ Z (Aanneal(]’ D) — ARG 5 (i )> +:(9) (gt(i) - %log Zt> ,

tZ)

J) _ BAt(Lj)) .

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)
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where we denote A (i, j) = Ay(i,5) () Thus, we have

p, 7)"
BQt (’L) _ Aanneal .. . Aanneal . . . . E . 78
5 = D (AP, i) g (5) — AP ) (i) ) + qe (i) (96 (6) — Bg, )9:(5)) 5 (78)
j#i

anneal / : - .. piiﬁ(]) . anneal /: - .

At (]71) = ﬂAt(]vz)l_iﬂ,v gt(z) ::Z(At (17])7ﬂAt(Z>‘7)) . (79)
pe (i) j#i

For the formulation of the theorem we denote p?%“eal (1) = q¢(4). O

Corollary B.2 (Annealed Masked Diffusion). For the rate matrix of the reverse-time masked diffusion from Eq. (13),
Theorem[3.1)yields

B j B
Byenl(i, j) = . M<5ij —5mipﬁt(j)> » 9:(0) = o aatém"z<pt(j) - o ) | w
i

a Ot Pl (m) a; 9t pe(m) — pl(m)

Proof. The reverse-time rate matrix is
o1 Oy ()
B =——\0ij — Omi—% | - 81
t(Za.]) o ot ( 1J mzpt(m) ( )
Then the annealed

-8 . 1B 8.
anneal /: -\ __ .\ Dt (Z) _ ﬁaat o ) pt(]) t (Z) _ /8 aat L ) Pt (J)
By (%J) = ﬁBt(Z’j)piiﬁ(j) = o Ot (523 5mzpt(m)> ! = <5u Omi ) (82)

And the weighting term is

i) = anneal (; ;) _ i :ﬁ% ‘ pt(j) B pf(])
0= 2 D =B = 5m’;(pt<m> oim) )
B o p(G) PG\ _ B O ~~(mlG)  pG)

B.2. Product of FKEs

Theorem B.3 (Product of FKEs). Consider two forward Kolmogorov equations with different rate matrices Al (i, j) and

A2(4,5), ie.
aptu(i) o AL2(5 Dpl2( s AL2(5 Dol 25
o > ACG O G) = ) AL D)pt () - (85)
J#i J#i
For the product of marginals q;(i) o< p;(i)p? (i), the following equation holds
Oy (i rod/ . . . rod . . . . . .
qati ) = Z(A? 43, 1)a:(5) — AP d(@,j)(h(l)) + qe(8) (9:(8) — Ejogu(y9:(4)) (86)
J#i

where

Ag) = 410 B + 4206 B () = > (4=1.0) - 4k - 220.0)) . 6D

Proof. Consider two forward Kolmogorov equations with different rate matrices A} (i, j) and A?(i, j). For both we have
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the equations of the form

Ap, 2 (i . : . .
C ) S ARG 6) - Y ARG ) 59)
J#i i
9 1,2, EYPN f) 120 - IR l0) 12, .
p108p () = DA )T = D A0 =D | AG ) T — A () |- (89)
j#i Py (Z) j#i j#i 2 (7’)
Correspondingly, for the density q;(i) := p; (i)p?(i)/Z;, we have
0 0 0 2. 0
5 log (i) = 7 logpi (i) + 5 logpj (i) — 5 log Z, (90)
1 2(s o
_ AL Pl) AL(i, §) + A2(j, Pel) _ ye i,')—lo Z 1)
;( .0 = Ad) 4 42,00 A%0,5) ) - 5w
2 ; 1(; ; 9
Al j, pt(z) qt(]) +A2 ]72 pt(z) qt(]) 7A1 27] 7A2 17] > 7710 Z (92)
m( 0Dy ati) TGy iy ARG A ) - gy leaZ
2( 1(; ;
ptl 2--%(@}%(]) 1/ - 2--) 0
Al + A7 (4,1 - — — A, (i,5) — A7 (1, — —log Z (93)
m({ Do) TGy A T AGD ) gyl
=AP™4(5,0)
= 3 (At T - i) ) + 3 (A - AN - A ) < toeZe. %
J#i i
=g¢(4)
Finally, we have to show that the weights are self-normalized, i.e.
0 .
Qt(l) - ot log Z; = gt( ) Eiwqt(j)gt(J) . 95)
Expanding the derivative of the normalization constant, we have
0 1 1A OPE() o Oy (i) 9 9
57 108 Zi =Zt§i:<pt(2) o )= :Z:Qt() 57 108 (1) + 7 logpi (i) (96)
1(, 205
i (J) l/: - 2. D) 205 5
- q ) < —A (Z7J)+A (]72) - — A (27.]) . (97)
Z t 2( IO IO

Thus, we have

> ai(i)gi(i) — loth > i Z(Ap“’d — Al (j,i )pq(‘?) — A2(5,0)
i 4 VE) t

- p () | a2 pi(j) .ip%(J) pi(j)
=2 ul §(A Vo A MGG - 46T ) o
ZZ(A L PR + A2 ot (D) (i) (100)
)
_ALGLR (R G) — A2, i)p <'>p§<j>) (101)
1 X .
At } .] At .]a ) Af(l’j) _Af(.]az) = 07 (102)
I )-72( )
where we denote
Ay(i,5) = AL (i, §)py ()p7(5) + AF (i, §)pi (7)P (3) - (103)
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Thus, we have

aqatt(z‘) — Z(Agrod(jJ)qt(j) _ Agmd(i,j)%@)) + @ (i) (9e(8) — Ejmgu(y9:(4)) (104)
Jj#i
APl (i, g) = Ap(i j)p?(j)+A2<z' j)p%(j) g:(i) =) (Ap“’d(j i) — A} (i, 5) — A3 (i j)). (105)
t ) t\" p%(l) t\" p%(l) ) o t 9 t \& t \ U
O

Corollary B.4 (Product of Masked Diffusions). For the rate matrix of the reverse-time masked diffusion from Eq. (13),
Theorem[3.3]yields

BPd(; ) = ait% (2% — S ]ff ((TQ) 5; ((2)) , (106)
(i) = o 5t 2 (ot s~ o s on
Proof. The reverse-time rate matrices are
) = g G (00 gl ) 2000 = 5 (0= ). 109
Then the rate matrix for the product is
Br6) = o i (30 = ook ) 3500+ g (59~ 9 ) o 1
= oo (- 5”;]:;((53) 5 o) (1o

OEDY (Bi’”d(jw’) —B%(m)—B?(m)) EELLTE (pfl(j) y B0 pf(j) p; ) ) (a1

J#i

C. Experimental Details

C.1. Amortized Linear Regression

All experiments were done on a single A100 GPU.

For each experiment, the dataset X was generated using (6o, 601) = (3.0,4.0), with z spaced linearly between [—10, 10],
and y; = 0Fx; + 03 + €, where € ~ N(0,0.12).

For inference with LLaDA, a temperature of 1.0 was used, and the random remasking strategy was applied. All predictions
were made in a single block, and the generation length was capped at 128 tokens.

The prompt used to generate predictions is of the form: "Assume a model of the form y =
a x x + b, where a and b are the parameters of the model. The observations

are given as (x,y) points, where y has Gaussian noise with standard deviation

0.1 added. Predict the parameters of linear regression for (x,y) points: "

+ (z1,91), ..., (zN,yn) + " Output the final answer as: "The best estimate for
parameters of the model are: a = _, and b = _" where _ is replaced with the
values of a and then b."

14
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D. Additional Experimental Results for Amortized Linear Regression

Some selected samples from the product and joint prompting strategies are included in Table|l}] We can note that outputs
using joint prompting often fail to adhere to the output format specified in the prompt, and sometimes cannot be parsed for
values of (6, 01 ). This issue wasn’t observed for the product prompt (using any number of particles).
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Data size

Joint Prompt OQutput

Product Prompt Output

N=10

N=20

N=50

N=100

The best estimate for parameters
of the model are: a = 4.337,
and b = -34.049

Based on the observed data
points, we can see a trend that
y 1s directly proportional to x.
The best estimate for the
parameters a and b is: a = 1.0,
and b = 0.0.

To obtain the best estimates for
the parameters (a and b), you
need to follow the detailed
steps of building a linear
regression model using Ordinary
Least Squares (also namedIM, and
guide, filter). These steps
involve typically a program such
as R or a statistical tool among
others. The objective is to
predict parameters, but after an
ensemble calculation, we are
going to use, known as the sum
of residuals, to estimate the
model’s parameters. The sum of
residuals helps us evaluate the
discrepancy of model with a
given residuals. Once I’ve made
these predictions, I’11 be able
to provide more precise feedback
on parameter estimates.

The best estimate for parameters
of the model are: a =
0x583C622F 052D29A9 +
00EAGF242949D26F and b = 0x
41796E30 0027A200 -
76CF406498D45505. Note: These
values of a and b are with 95%
confidence taking into account
the Gaussian balls added to
Python and Python recovery
points.

The best estimate for parameters
of the model are: a = 3.000,
and b = 10.004

The best estimate for parameters
of the model are: a = 3.82, and
b = 10.12.

The best estimate for parameters
of the model are: a = 1.344,
and b = -22.331

The best estimate for parameters
of the model are: a = 0.8313,
and b = 0.0564.

Table 1: Comparison between curated joint and product prompt outputs at varying data sizes.
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