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DINO and DINOv2 are two methods widely used for learning representations of
unlabeled imagery data at large scales. Their learned representations often give
state-of-the-art performance for downstream tasks, such as image classification and
segmentation. However, their training pipelines are highly complex and unstable,
so it is difficult to improve and adapt them to new domains. In particular, they em-
ploy many empirically motivated design choices and carefully tuned hyperparam-
eters to ensure that the representations do not collapse. In this work, we posit that
we can remove many such-motivated idiosyncracies in the pre-training pipelines,
and only need to add an explicit coding rate term in the loss function to avoid col-
lapse of the representations. As a result, we obtain highly simplified variants of
the DINO and DINOv2 model families, which we call SimDINO and SimDINOv2,
respectively. Notably, their training pipelines are more robust to different design
choices, such as network architecture and hyperparameters, and they learn even
higher-quality representations, measured by performance on downstream tasks,
offering a Pareto improvement over the corresponding DINO and DINOv2 model
families. This work highlights the potential of using simplifying design principles
to improve empirical outcomes in deep learning.

1. Introduction
Self-supervised learning (SSL) is the toolkit of choice to learn representations for large datasets
of unlabeled images [1–12], captioned images [13], videos [14], and text [15–18], among other
modalities. In the context of image SSL, there are two main approaches: reconstructive [10], where
the goal is to reconstruct some function of the true image data from a “view”, i.e., corruption or
augmentation, and contrastive [1], where the goal is, for each image, to have the features of different
views of the image all be close, and features of views of different images be far.

Within contrastive SSL, a key challenge lies in preventing representation collapse, where models learn
trivial solutions that map all inputs to the same output. One common approach to address this is
through the use of negative samples, which explicitly encourages representations of different images
to be dissimilar. Thus far, the success of using negative samples depends on having a large batch
size [3, 5], which poses computational challenges at scale. Methods which attempt to avoid this
bottleneck by using negative samples in more implicit and indirect ways to avoid collapse [8] can
cope with smaller batch sizes, but often require training pipelines with numerous carefully tuned
components and hyperparameters to avoid collapse, making them difficult to adapt and improve.

The state-of-the-art for image SSL is generally considered to be the DINOv2 model family [12]. It is
built on the DINO model family [8]. Both classes of models are trained using contrastive SSL and
thus run into the representation collapse issue. While DINOv2 explicitly and directly uses negative
samples to avoid collapse, it inherits much of its training pipeline from DINO, which uses negative
samples more indirectly. As such, both model families’ training pipelines are highly complex and
unstable, requiring many tweaks and careful hyperparameter selection in order for the training to
converge for a given architecture. Despite this capriciousness, the trained models’ representations
are highly useful for downstream tasks, and are widely used in different contexts [19, 20].

Our contributions. In this work, we remove many tweaks and hyperparameters from the DINO
and DINOv2 training pipelines, replacing them with a term in the objective which explicitly uses
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Figure 1: The DINO pipeline (above) and SimDINO pipeline (below), with the selected teacher (global)
view vg and the student (in this case local) view vc. Here, an input image is turned into patches. Then a global
view vg and another view vc are randomly sampled. The global view is pushed through the teacher encoder,
while the other view is pushed through the student encoder. Only in the DINO pipeline, we apply expensive post-
processing operations, such as a dimension-increasing linear layer and a high-dimensional softmax, to feature vectors.

negative samples. We show empirically that this term, which involves the total coding rate regularizer
[21–23], enables a simple, robust, and computationally efficient training pipeline, which in partic-
ular does not require large batch sizes. We show that the resulting models, named SimDINO and
SimDINOv2, learn representations which have the same or higher state-of-the-art performance as
those learned by DINO and DINOv2 across a variety of downstream tasks. Our work underscores
the value of understanding and simplifying pipelines to improving performance in vision SSL.

1.1. Notation

Let C,H,W,D,N, d ≥ 1 be positive integers. Let the space of finite sequences of vectors in RD be
denoted as RD×∗ =

⋃∞
T=1 RD×T . Our data will be imagesX ∈ RC×H×W . We will consider different

augmentations, or views, of the input data X , such as rotations or crops of imagery data; we can
represent a view as a function v : RC×H×W → RD×Nv whereNv is the number of tokens in the view.

Let Sd−1 ⊆ Rd be the (d− 1)-dimensional ℓ2-sphere. For the purpose of representation learning, we
will consider an encoder neural network parameterized by weights θ ∈ Θ, as a function fθ : RD×∗ →
Sd−1 × SN

d−1. We can factor fθ = (f cls
θ , fpatch

θ ) where f cls
θ : RD×∗ → Sd−1 outputs the so-called

class token feature (i.e., an aggregate representation of the input data) and fpatch
θ : RD×∗ → SN

d−1

outputs the patch tokens’ features (i.e., a patch-based representation of the input data). The network
is implemented by a Vision Transformer [24, 25] with appendedmulti-layer perceptrons (MLPs) to
post-process each aggregate and patch-based feature followed by an ℓ2-normalization.

2. Simplifying DINO and DINOv2

2.1. Recap of the Original DINO Pipeline

The goal of DINO is to learn an aggregate representation of the input imagewhich contains informa-
tion about large-scale semantics of the input (e.g., the locations and properties of different objects in
the image). They do this via a pre-training pipeline [8] which is depicted in Figure 1 (above), and
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we also describe it throughout this section. The main idea is to take multiple views (i.e., different
crops) of the data, and ensure that the features generated by these views are consistent with each
other (in a sense which will be made precise shortly) as much as possible. If the views each contain
a salient part of the input such as a central object, the feature corresponding to any viewwould then
contain information about this central object. The end goal is that the feature of any large-enough
view contains information about all relevant objects in the input image, which can then be extracted
for use in downstream tasks such as image classification or image segmentation.

In the rest of the section, we will discuss the pre-training pipeline. As is common in contrastive SSL,
the DINO framework uses two networks: a so-called teacher network parameterized by θt ∈ Θ, and
a so-called student network parameterized by θs ∈ Θ. During pre-training, the loss will encourage
the student’s representation to align with the teacher’s representation, even though the teacher is
simultaneously being updated using student weights; this is known as self-distillation, and can be
viewed as an optimization strategy or even implicitly regularizing the objective [7].

During the pipeline, we process each image X in the following way. First, we sample at random a
view, or crop, vc, independently ofX ; the view can either be a “global view” (i.e., a large crop) or a
“local view” (i.e., small crop), selected randomly. We denoteXc := vc(X). In addition, we sample
a global view vg independently of X and vc, and denote Xg := vg(X).1 Views are implemented in
the same way as in DINO; they are formally described in Appendix A for the sake of completeness.

The first (local or global) viewXc is fed to the student network2 fθs to get an aggregate representa-
tion zcls

c (θs), while the global view Xg is fed to the teacher network fθt to get zcls
g (θt), i.e.:

zcls
c (θs) := f cls

θs (Xc), zcls
g (θt) := f cls

θt (Xg). (1)

Now, it is totally possible to directly compare and evaluate these features. However, DINO adds
several post-processing steps, arguing that they improve performance and prevent collapse:

• They add a weight-normalized linear layer [26] hξDINO : Rd → Rm where m≫ d, called the
“DINO head” and parameterized by ξDINO, and pass both zcls

c and zcls
g through this layer.

• They center the teacher-computed features using a learned vector µ ∈ Rm.
• They take a temperature-weighted softmax of both features to compute probability vectors

in Rm, sometimes called prototype scores, which they then can compare using cross-entropy.

Mathematically, the post-processing steps to get probability vectors for each view is as follows:

pcls
c (θs, ξ

DINO) := softmax(hξDINO(zcls
c (θs))/τ), (2)

pcls
g (θt, ξ

DINO,µ) := softmax([hξDINO(zcls
g (θt))− µ]/τ), (3)

where τ > 0 is the temperature parameter. Finally, the loss (to be minimized) encourages pcls
c and

pcls
g to be close together using a symmetrized cross-entropy-based functional dCE, which effectively

distills the teacher into the student by aligning the predicted outputs:

LDINO(θs, θt, ξ
DINO,µ) := E[dCE(p

cls
c (θs, ξ

DINO),pcls
g (θt, ξ

DINO,µ))] (4)

where the expectation is overX , the (local or global) view vc, and the global view vg sampled i.i.d.,
and the function dCE is defined via the cross-entropy as

dCE(p, q) :=
1

2
(CE(p, q) + CE(q,p)) , CE(p, q) := −

m∑
i=1

pi log qi. (5)

When training, DINOestimates the expectation in (4) by a stratified plug-in estimator over a batch of
sample images. That is, to estimate the expectation, we condition onX then estimate the conditional

1More precisely, let c be a random vector containing the boundaries of the crop, so that vc crops exactly the
region supplied by c. Analogous notation can be defined for g and vg .

2Note that the parameters θs and θt each contain a positional encoding over all patches; when a view is fed
through the network, it receives a interpolated positional encoding corresponding to the tokens’ length.
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expectation E[dCE(·, ·) | X] via plug-in using several different global views (usually two global
views, which play the role of the arbitrary view vc and the global view vg) and several different
local views, and finally average over X to obtain the estimate. The optimization of this estimated
loss, too, is done in an ad-hoc way; while all four parameters θs, θt, ξDINO,µ are updated at each
iteration, they update in different ways:

• The parameters θs and ξDINO are updated via an iteration of a stochastic gradient descent
(SGD)-type algorithm, such as Adam, using the loss (4), and the derivatives for backprop-
agation are only computed through the first argument of the dCE function in (4).

• The parameters θt and µ are updated via exponentially moving averages (EMAs) of the
student weights θs and the average output of the DINO head E[hξDINO(zcls

c (θs))] (in practice
taken over a minibatch), respectively. Mathematically, for a decay parameter λ ∈ [0, 1], at
each iteration we compute θt ← λθt + (1− λ)θs and µ← λµ+ (1− λ)E[hξDINO(zcls

c (θs))].

Both the decay parameter λ and the temperature parameter τ change along the optimization trajec-
tory, and their schedule is another design decision.

As previously mentioned, many of the ad-hoc methods and choices described above are due to a
tension: a trivial solution to optimizing (4) is to enforce that fθs and fθt collapse, i.e., become or ap-
proximate the constant function, which map each local and global view to the same feature z or
even to the same probability vector p. To explain why DINO does not collapse, we wish to highlight
the centering operation in (3), which computes batch statistics during its EMA update, hence using
negative samples and implicitly pushing different samples’ features apart, even though the precise
conceptual mechanism by which this occurs is not clear and involves a careful interaction between
the centering vector and temperature scaling [8]. Indeed, Caron et al. [8] shows that collapsed solu-
tions are common without very carefully tuning the EMA schedule and temperature schedule, and
arguing that the remaining hyperparameters and choices would severely degrade the performance
if perturbed. Amore in-depth discussion of the tension, and the added complexity required to train
a model in spite of it, is in Appendix B. As we will see, if this tension is alleviated in an alternative
way, many hyperparameters can be removed and the rest can be changed robustly.

2.2. From DINO to SimDINO
To go from DINO to SimDINO, we ask and answer a very basic question:

Can we just directly compare the features zcls
c and zcls

g ?

If we could do this, then we could avoid the large DINO head, the centering operation, the soft-
maxes, and the cross-entropy based loss. However, the mechanism in DINO for avoiding represen-
tation collapse via negative samples would therefore be removed. Thus, we have a second question:

Can we efficiently use the negative samples’ features explicitly to enforce non-collapse?

For the first question, we argue that the most simple squared Euclidean distance, namely

dℓ2(x,y) :=
1

2
∥x− y∥22 (6)

works at least as well as the cross-entropy-based functional (5) applied to an affine transformation
of the features, as in (4). For the second question, we argue that we may directly penalize the
covariance of the features in order to avoid collapse, as follows. For a hyperparameter ε > 0, define
the (total) coding rate [21–23] of a symmetric positive semidefinite matrix Γ ∈ Rd×d as

Rε(Γ) :=
1

2
logdet

(
I +

d

ε2
Γ

)
, (7)

In words, Rε is an approximation to the rate distortion of a Gaussian random variable with covari-
ance Γ (and this approximation is perfect in the limit ε → 0). More concretely, it is a measure of
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size of the covariance, even if the underlying variables are non-Gaussian. Thus one way to ensure
non-collapse is to add −Rε(Cov[z

cls
v (θs)]) as a regularizer in the objective, leading to the loss

LSimDINO(θs, θt) := E[dℓ2(z
cls
c (θs), z

cls
g (θt))]− γRε(Cov[z

cls
c (θs)]). (8)

where γ > 0 is a hyperparameter. Note that dℓ2(zcls
c , zcls

g ) = −(zcls
c )⊤zcls

g since zcls
c , zcls

g ∈ Sd−1.

When training, similar to DINO,we estimate the expectation and covariance in (8) by a type of plug-
in estimator. Namely, the expectation is estimated similar to DINO, just using dℓ2 instead of dCE. To
estimate the coding rate, we sub-sample several zcls

c (θs) over bothX and vc,3 estimate Cov[zcls
c (θs)]

on that sub-sample via plug-in, estimate Rε of the population covariance by calculating it on the
sample covariance, then average the estimates over all sub-samples. We conjecture that the latter
estimator has lower variance compared to the naive plug-in estimator forCov[zcls

c (θs)] as it is similar
to variance-reduction methods in statistics [27], which we hypothesize might be a factor as to why
SimDINO can handle a smaller batch size than other contrastive SSL methods that explicitly use
negative samples but avoid collapse using higher-variance or more implicit regularizers.

The overall pipeline is shown in Figure 1 (bottom). Note that it is much simpler than DINO.

After training, we discard student weights and use teacher weights for evaluation.

2.3. From DINOv2 to SimDINOv2
The pipeline of the DINOv2 framework [12], as shown in Figure 2 top, is built upon the DINO
pipeline, and has two main goals: first, learn an aggregate representation which contains large-scale
semantics of the input (i.e., the goal of DINO); second, learn patch-based representations which have
fine-grained semantic information about each patch and its local neighborhood. Themain new ideas
to achieve this, drawn from the iBOT pipeline [9], are that the input to the student has some masked
patches, and that the loss also computes similarity of the patch-based features. To see why this works,
consider if some patches are masked, and the model is able to predict masked patches using their
unmasked neighbors, then from each patch the model can extract strong information about the
semantics of nearby patches, which is an idea similar in spirit to masked autoencoding [10]. Thus,
these two ideas from iBOTwould furnish our model with informative patch-based representations.

We now discuss the pre-training pipeline, before discussing our modifications. Formally, starting
with tokenized imagesX ∈ RD×N , we take a view vm sampled at random; the view can be a global
view or a local view, but it also replaces a fraction α ∈ [0, 1] of the tokens in the view with a learnable mask
token xmask (as in [10], the mask token is shared across all views). We denote Xm := vm(X). We
also take a global view vg without masking, independently of vm andX , and denote Xg := vg(X).

Now that we have this setup, we do similar operations to DINO pipeline, with some changes:

• There is an additional “iBOT head”, processing the patch-based features column-wise, with
different weights ξiBOT (cf the “DINO head” with weights ξDINO).

• Both the “DINO head” and “iBOT head” are untied between teacher and student, giving
four different weights ξDINO

s , ξDINO
t , ξiBOT

s , ξiBOT
t .

• The centering operation on teacher-output features is performed on both the aggregate fea-
tures and (column-wise) on the patch-wise features.

• The centering operation uses three iterations of the Sinkhorn-Knopp algorithm [28, 29],
denoted below by SKCenter, instead of an EMA, and is parameter-free but more expensive.
Note that the Sinkhorn-Knopp algorithm uses features from all images in each minibatch.

Let zi ∈ Rd be the ith column of Zpatch (and similar for pi → P patch). Then, formally we have
(zcls

g (θt),Z
patch
g (θt)) := fθt(Xg), (zcls

m (θs),Z
patch
m (θs)) := fθs(Xm), (9)

3In practice, we only let vc be a global view for efficiency, and offer the following heuristic justification. If the
expected similarity term in (8) is large, then there is little difference between the features of local and global
views. Hence Cov[zcls

c (θs)] ≈ Cov[zcls
g′ (θs)], where vg′ is a randomly sampled global view.
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Figure 2: The DINOv2 pipeline (above) and SimDINOv2 pipeline (below), with the selected teacher
(global) view vg and the student (either local or global, and partially masked) view vm. The main addition to
the pipeline in Figure 1 is the masking (here masked patches are denoted by ×), and the added loss on image
patch features. As before, the SimDINOv2 training operates directly on the learned representations.

pcls
m (θs, ξ

DINO
s ) := softmax(hξDINO

s
(zcls

m (θs))/τ), (10)
pi
m(θs, ξ

iBOT
s ) := softmax(hξiBOT

s
(zi

m(θs))/τ), 1 ≤ i ≤ N, (11)
pcls
g (θt, ξ

DINO
t ) := softmax(SKCenter[hξDINO

t
(zcls

g (θt))]/τ), (12)
pi
g(θt, ξ

iBOT
t ) := softmax(SKCenter[hξiBOT

t
(zi

g(θt))]/τ), 1 ≤ i ≤ N. (13)

We then compute the loss using all generated probability vectors, as follows:

LDINOv2(θs, θt, ξ
DINO
s , ξiBOT

s , ξclst , ξpatcht ) :=
1

2
E

[
dCE(p

cls
m (θs, ξ

DINO
s ),pcls

g (θt, ξ
DINO
t )) (14)

+
1

N

N∑
i=1

dCE(p
i
m(θs, ξ

iBOT
s ),pi

g(θt, ξ
iBOT
t )) · 1patch imasked by vm

]
− γ Entropy(zcls

m (θs)), (15)

where 1E is the indicator function on eventE (namely evaluating to 1 ifE occurs, and 0 otherwise),
and the Entropy functional is the differential entropy; it plays a similar role as the coding rate Rε

in SimDINO (and shortly SimDINOv2) in ensuring non-collapse. It is estimated by Oquab et al.
[12] using the KoLeo estimator [30]) which explicitly uses negative samples. However, the KoLeo
estimator is a non-parametric estimator of the expectation of a function of a high-dimensional prob-
ability density [31], and so it has relatively high sample-complexity (i.e., required batch size).

We can greatly simplify this pipeline by using the same ideas as introduced in SimDINO. Namely,
we dispense with the DINO/iBOT heads, the Sinkhorn-Knopp centering, and the softmaxes, and
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compute the Euclidean distance-based loss directly on normalized features. We obtain the loss

LSimDINOv2(θs, θt) :=
1

2
E

[
dℓ2(z

cls
m (θs), z

cls
g (θt)) +

1

N

N∑
i=1

dℓ2(z
i
m(θs), z

i
g(θt))1patch imasked by vm

]
(16)

− γRε(Cov[z
cls
m (θs)]). (17)

The same caveats as in SimDINO apply with respect to how the expectations and covariances are
estimated, and the optimization and evaluation procedures carry over. In the sequel, we will show
that these greatly simplified designs actually help the model performance.

Optimal value for γ. In both the SimDINO loss (8) and the SimDINOv2 loss (16), in order to aid
learningwhilemaking sure neither the distance termnor the regularizer termdominates, we choose
γ up to an absolute constant factor so that it balances the asymptotic order of the gradient (Frobe-
nius) norms of both terms. By the Cauchy-Schwarz inequality, it suffices to equalize the norms of
the gradients of each term w.r.t. the features Zc. Since the features are normalized on the sphere, it
holds that the gradient norm of the distance term isO(1). For the second term, assuming thatwe use
n samples to estimate the covariance, Theorem 1 (Appendix C) says that the gradient norm of the
second term isO(

√
dmin{d, n}/n/ε). Tomake these equivalent, we take γ = Θ(ε

√
n/(dmin{d, n})).

The same rate holds for SimDINOv2. We recognize that this choice of γ is ultimately a heuristic, and
the constant factor needs to be tuned, but it helps to scale SimDINO and SimDINOv2 in practice.

3. Experiments and Evaluations
In this section, we present empirical results of our proposed SimDINO and SimDINOv2models and
compare them to the original DINO and DINOv2 model families. In particular, we examine their
differences in learned representation both quantitatively and qualitatively. Our empirical studies
aim to answer the following questions:

1. Do our proposed SimDINO and SimDINOv2 models achieve better performance, higher
quality representations, and greater training stability than their original counterparts?

2. Do our proposed simplified pipelines yield similar emergent segmentation properties, an
iconic feature of the original DINO?

We provide evidence for positive answers to both questions. Overall, our experiments show that our
proposed SimDINOmodel families can achieve better performance than the original DINO families
while being significantly simpler and more robust to various hyperparameter choices.

3.1. Experiment Setup

Model architecture. Since our method is directly built upon DINO, we adopt settings as close as
possible to the original method for fair comparison. Specifically, for all inputs we set patch size
to be 16; we use the small, base, and large models of the ViT [24] architecture as the backbone,
which is connected to a projector composed of three MLP layers with a hidden size of 2048 and an
output dimension of 256. The output features after the projector are ℓ2 normalized. Specifically
for original (i.e., not simplified) DINO models, these normalized features are then fed to a weight-
normalized linear layer that outputs a high-dimensional (e.g., ≈ 65, 000) vector, before computing
the temperature-weighted softmax and then the cross-entropy loss.

Datasets andoptimization. Weuse the ImageNet-1k dataset for pretraining across allmethods. For
fair comparison, we closely follow the settings from the original works. Following [8, 12], we choose
AdamW as the optimizer and use the same optimization strategies (e.g. learning rates, warm-up
schedules). For training, we use 10 local views of resolution 96×96 and 2 global views of resolution
224× 224 for all experiments. We provide more details on hyperparameter choices in Appendix D.
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3.2. Experiment Results
ImageNet Classification. We report the classification accuracies on ImageNet-1k in Table 1. Fol-
lowing [8], we evaluate both k-NN accuracy and linear accuracy on the ViT backbones pretrained
by the DINO model families and our simplified variants. We observe that for both DINO and DI-
NOv2 paradigms, our simplified methods are able to outperform the original pipelines, demon-
strating their advantages and effectiveness. Furthermore, we observe that applying identical hyper-
parameter settings fromViT-B to ViT-L results in instability and divergence in DINO. In contrast, we
find that training SimDINO on ViT-L with the same hyperparameter configurations used for ViT-
B yields a steady improvement in performance. To better understand the optimization dynamics
of SimDINO, we also visualize the evolution of accuracy during the entire training process in Fig-
ure 3. It can be observed that performance of SimDINO steadily improves as training progresses,
while optimization of DINO noticeably slows down, with even a slight performance drop near the
end of training. Together, these results demonstrate our simplified pipelines’ stability and ease of
optimization compared to the originals.
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Figure 3: Evolution of k-NN accuracy of ViT-
B trained for 100 epochs using DINO and
SimDINOparadigms on Imagenet-1K. Accu-
racy is measured at every 10 epochs.

Method Model Epochs k-NN Linear
DINO ViT-B 100 72.85 76.33
SimDINO ViT-B 100 74.89 77.26
DINO ViT-L 100 – –
SimDINO ViT-L 100 75.64 77.36
DINOv2 ViT-B 100 76.96 78.68
SimDINOv2 ViT-B 100 78.05 79.66
DINOv2 ViT-L 100 80.80 82.01
SimDINOv2 ViT-L 100 81.11 82.41

Table 1: Performance comparison on ImageNet-
1K. SimDINO and SimDINOv2 consistently out-
perform the original DINO and DINOv2 model
families. They are also more stable, while train-
ing of DINO on ViT-L diverged (row 3).

Object Detection and Segmentation. To gain deeper insights on the learned representation, we
evaluate the performance of models trained using our simplified DINO algorithms on segmenta-
tion and object detection tasks. Specifically, we adopt MaskCut [32], an effective unsupervised ap-
proach of extracting features from a frozen vision backbone for segmentation and object detection.
In Figure 4, we present qualitative segmentation results by applying MaskCut on mdoels trained
with both DINO and SimDINO. Both methods are observed to produce meaningful segmentation
results, confirming the emerging properties similar to the original DINO when using our simpli-
fied algorithm. To quantitatively evaluate the quality of these representation, we further perform
MaskCut on the COCO val2017 dataset [33] and report our results in Table 2. These results show
SimDINO achieves much stronger performance on segmentation and detection tasks than DINO
when trained on the same network (row 2 vs 3), and overall even outperforms DINO trained on
a smaller patch size4 (row 2 vs 4). These results corroborate that the SimDINO produces features
suitable for downstream tasks including segmentation and detection.

4. Conclusion
In this work, we identify that the reasons for many empirically motivated design choices in the
original DINO and DINOv2 are to avoid collapse of the learned representation. We show that

4When trained using DINO, ViT models with smaller patch sizes tend to outperform those with larger ones
on various tasks including segmentation, as observed in [8, 32].
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Figure 4: Visualization of MaskCut segmentation results from DINO ViT-B/16(row 1), SimDINO
ViT-B/16(row 2) and SimDINO ViT-L/16(row 3) on selected images.

Detection↑ Segmentation↑
Method Model AP50 AP75 AP AP50 AP75 AP
SimDINO ViT-L/16 5.4 1.9 2.4 4.5 1.4 1.9
SimDINO ViT-B/16 5.2 2.0 2.5 4.7 1.5 2.0
DINO ViT-B/16 3.9 1.5 1.8 3.1 1.0 1.4
DINO ViT-B/8 5.1 2.3 2.5 4.1 1.3 1.8

Table 2: Object detection and segmentation via MaskCut evaluated on COCO val2017 [33] un-
der COCO’s official evaluation protocol. SimDINO conclusively performs better than the DINO at
detection and segmentation metrics, comparable with DINO with smaller path size(16 vs 8).

these complicated design choices can be significantly reduced or simplified by adding a coding-rate-
related regularization term. The resulting simplifiedmodels, called SimDINO and SimDINOv2, are
even better in terms of performance for downstream tasks, and their pretraining pipelines are much
more robust to different settings and hyperparameters, offering a Pareto improvement against the
DINO and DINOv2 model families. Our work demonstrates the value of simplifying deep learn-
ing pipelines as well as making tradeoffs as explicit as possible when designing high-performance
vision SSL models.

In light of these overarching contributions, there are several possible opportunities for future work.
On the theoretical side, our simplified framework provides an entry point for studying the geometric
properties of the global optima of self-supervised learning losses. Further study in Appendix E
shows that in the framework of the paper, it is possible to set up a self-supervised objective that
does not require self-distillation to optimize, making a theoretical analysis much easier, while the
resulting model is still quite powerful and practically usable. On the empirical side, one can apply
the paradigm of making implicit design choices more explicitly present in the loss to more self-
supervised learning frameworks, making existing pipelines more stable and the resulting models
of better performance.
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A. Formal Description of Local and Global Views
Each local view, say vℓ acts as follows, given an input imageX of shape (C,H,W ). First, for a hyper-
parameter ploc ∈ [0, 1] it crops a rectangular component fromX of shape (C,Hℓ,Wℓ), whereHℓ and
Wℓ are chosen such that HℓWℓ = plocHW , i.e., the crop is a fraction ploc of the whole image. Then
the component is resized to shape (C, Sloc, Sloc), where Sloc is a hyperparameter, and then divided
intoNloc := S2

loc/P
2 square patches of shape (C,P, P ), where the patch size P is a hyperparameter.

Each patch is unrolled into a vector of lengthD := CP 2, and theNloc unrolled vectors are placed in
raster order to get the outputXℓ ∈ RNloc×D. Each global view vg acts the same as a local view, except
that the corresponding hyperparameters pglo, Sglo are larger than their local counterparts ploc, Sloc

(hence also Nglo vs. Nloc), while the patch size P (hence dimension D) remains the same.5

We use these local and global views for training. For evaluation or inference, we do a similar pro-
cedure: given X of shape (C,H,W ), we resize X proportionally so that its shorter edge is length
Leval, then take a square crop from the center of shape (C, Seval, Seval). This sequence is divided into
Neval := S2

eval/P
2 square patches of length (C,P, P ); each patch is unrolled into a vector of length

D := CP 2, and theNeval unrolled vectors are placed in raster order to get the outputXe ∈ RNeval×D.

B. Complex Interactions in DINO and Their Removal
We wish to showcase a finer point about why the DINO pipeline is so unstable. Notice that

CE(p, q) = −
m∑
i=1

pi log qi (18)

=

m∑
i=1

pi log(pi/qi)−
m∑
i=1

pi log pi (19)

= KL(p, q) +H(p) (20)

where KL is the KL divergence, and H is the entropy of a probability distribution. Therefore,

dCE(p, q) =
KL(p, q) + KL(q,p)

2︸ ︷︷ ︸
=dJS(p,q)

+
1

2
(H(p) +H(q)). (21)

The first term dJS(p, q) is the Jensen-Shannon divergence, which encourages p = q. The second
term encourages the entropy of p and q to be low, namely closer to one-hot vectors.

Now consider the DINO objective:

LDINO(θs, θt, ξ
DINO,µ) (22)

= E[dCE(p
cls
c (θs, ξ

DINO),pcls
g (θt, ξ

DINO,µ))] (23)

= E

[
dJS(p

cls
c (θs, ξ

DINO),pcls
g (θt, ξ

DINO,µ)) +
H(pcls

c (θs, ξ
DINO)) +H(pcls

g (θs, ξ
DINO,µ))

2

]
(24)

Suppose that, for example, hξDINO represented the identically zero function, andµ is a constantmul-
tiple of the ones vector. Then the first term in the loss is minimized, but the second term becomes as
large as possible (since both pcls are just 1

m1m, i.e., probability vectors corresponding to the uniform
distribution), so this is in general not the optimal solution. This implies that the learned hξDINO in
general is not degenerate. This enables the tradeoff between the EMA parameter λ and the temper-
ature parameter τ which enables non-collapse. If the objective just involved the JS divergence and
not the entropy term, or else had hξDINO be degenerate (manually set and frozen, for instance), or
else didn’t have a carefully set tradeoff between λ and τ , then the model would collapse. However,
SimDINO removes all of this complexity and replaces it with an explicit coding-rate-type term.

5Of course, we also need the patch size P to divide both the image sizes Sloc and Sglo.
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C. Theory for Hyperparameter Scaling
Let d, n be positive integers. Our main theorem is the following.
Theorem 1 (Scale of ∇Rε). We have

max
Z∈Rd×n

∥Zi∥2=1 ∀i

∥∥∥∥∇ZRε

(
ZZ⊤

n

)∥∥∥∥
F

≤
√

dmin{d, n}/n
4ε

(25)

Proof. Let α := d/(nε2) and let f : Rd×n → R be defined by

f(Z) := logdet(I + αZZ⊤), (26)

i.e., f(Z) = 2Rε(ZZ⊤/n). Now, let r := min{d, n}. For any matrix M , let σi(M) be its ith largest
singular value, for i = 1, . . . , d. First, note that since ∥Zi∥2 = 1 for all i, it holds

r∑
i=1

σi(Z)2 =

d∑
i=1

σi(Z)2 =

d∑
i=1

σi(ZZ⊤) = tr(ZZ⊤) =

d∑
i=1

(ZZ⊤)ii =

d∑
i=1

∥Zi∥2︸ ︷︷ ︸
=1

= d. (27)

Now, we can simplify the gradient. It holds

∇f(Z) = α(I + αZZ⊤)−1Z. (28)

Thus, it holds that

∥∇f(Z)∥2F = tr([∇f(Z)]⊤[∇f(Z)]) (29)
= α2 tr(Z⊤(I + αZZ⊤)−2Z). (30)

Using that the trace is the sum of singular values, it holds by taking the SVD of Z that

tr(Z⊤(I + αZZ⊤)−2Z) =

r∑
i=1

σi(Z
⊤(I + αZZ⊤)−2Z) (31)

=

r∑
i=1

σi(Z)2

[1 + ασi(Z)2]2
. (32)

In this case we directly optimize over the singular values, obtaining the problem

max
Z∈Rd×n

∥Zi∥2=1 ∀i

∥∇f(Z)∥F ≤ max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
. (33)

The function t 7→ t
(1+αt)2 on [0,∞) has a global maximum at t = 1

α , and the value is 1
4α . Therefore

it follows that

max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
≤ max

x∈Rr

xi≥0 ∀i

r∑
i=1

xi

(1 + αxi)2
=

r

4α
. (34)

Unpacking this notation, we obtain

∥∇f(Z)∥2F ≤ α2 · r

4α
=

αr

4
=

dmin{d, n}
4nε2

. (35)

Taking square roots, it holds

∥∇f(Z)∥F ≤
√

dmin{d, n}/n
2ε

. (36)

Therefore, ∥∥∥∥∇ZRε

(
ZZ⊤

n

)∥∥∥∥
F

≤ 1

2
∥∇f(Z)∥F ≤

√
dmin{d, n}/n

4ε
(37)

as desired.
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Remark 2. It is possible that the inequality

max
Z∈Rd×n

∥Zi∥2=1 ∀i

∥∇f(Z)∥F ≤ max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
. (38)

is met with equality; proving this would require exhibiting a Z fulfilling the constraints of the first
problem such that it has the prescribed singular values which solve the second problem. We do not
need to do so here for the purposes of using the bound (e.g., for learning rate scaling).
Remark 3. While the quick-and-dirty bound

max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
≤ r

4α
, (39)

by way of ignoring the constraint
∑r

i=1 xi = d seems like it could significantly loosen the bound, we
do not believe this is the case. In particular, when 1/α ≤ d/r, note that setting x1 = · · · = xr−1 = 1/α
and xr = d−(r−1)/α sandwiches the objective between (r−1)/(4α) and r/(4α), so themaximum is
at least the same asymptotic order, in the very reasonable case that ε is small enough that 1/α ≤ d/r,
i.e., using the definition of α, such that

1

α
≤ d

r
⇐⇒ ε2 ≤ d2

nmin{d, n}
=⇒ ε2 ≤ min

{
d

n
,
d2

n2

}
. (40)

Similar strategies should hold if we allow for an absolute constant c ≥ 1 such that 1/α ≤ cd/r, etc,
relaxing the requirement while preserving the asymptotic order of the LHS of (39).

D. More Experiment Details

D.1. Implementation Details
The training codes and hyperparameters for SimDINO and SimDINOv2 are derived from the re-
leased official settings in DINO and DINOv2 separately, see Table 3 for detailed comparison. Notes
that for SimDINOv2, we choose to use bfloat16 dtype in student backbone parameters and reduc-
tions for better numerical stabilitywhile othermodules uses the same FSDPmixed precision settings
from DINOv2.

E. DINOWithout Self-Distillation
Due to the explicit coding rate regularization, it is possible to train SimDINO without self-
distillation. To validate this, we train ViT-S models on ImageNet-1k by setting the teacher network
to be the student network at each iteration, effectively removing the EMA operation. Results are
presented in Table 4. We can see that the original DINO collapses under this setup for reasons dis-
cussed in Appendix B, while SimDINO is able to yield non-trivial performance. It is worth noting
that compared to training with full self-distillation, this variant primarily lags behind in terms of
k-NN performance while the gap in linear probe is significantly smaller.
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Hyperparameter SimDINOv2 DINOv2 SimDINOv1 DINOv1

Model

Patch size 16
Register Tokens 4 0
Pos-embedding anti-alias True False
Init layer scale 0.1 1e-5 -
Drop path rate 0.3 0.1
Output N prototypes removed 65536 removed 65536

Pipeline

Init EMAMomentum 0.9 0.992 0.996
Centering temperature removed 0.07 removed 0.07
Warm-up temperature removed 0.04 removed 0.04
Warm-up temperature epochs removed 30 removed 30
iBOT sample prob. 0.5 -
iBOT mask ratio 0.1-0.5 -
iBOT head tying False -
Koleo loss weight removed 0.1 -

Data

Global crops scale 0.4 - 1
Local crops scale 0.05 - 0.4
Local crops number 10
Global crops size 224
Local crops size 96

Optim.

Batch size 128x8 64x8
Epochs 100
Warm-up epochs 10
Freeze last layer epochs removed 1 removed 1
Learning rate 0.004 0.002
Layerwise lr decay 0.9 -
Weight decay 0.04
Weight decay end 0.4
Gradient clip 3.0 0.3

Table 3: Training Hyperparameters used in the experiments

Method Model self-distillation Epochs k-NN Linear
DINO ViT-S × 100 – –
SimDINO ViT-S × 100 58.57 68.03
SimDINO ViT-S ✓ 100 70.22 73.66

Table 4: Performance on ImageNet-1K without self-distillation.
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