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Abstract

Foundation models are reshaping medical AI by enabling efficient transfer learning1

from large, pretrained representations. In this work, we evaluate Google Health’s2

Derm Foundation Model for skin lesion classification and fairness in dermatologic3

imaging. Using pre-encoded embeddings from PAD-UFES-20 and DERM12345,4

we trained lightweight classifiers for five major conditions: Actinic Keratosis, Basal5

Cell Carcinoma, Malignant Melanoma, Squamous Cell Carcinoma, and Seborrheic6

Keratosis. The model achieved high AUCs and consistent performance across sex,7

age, and lesion characteristics, demonstrating the strength of foundation-model8

representations for dermatology. However, fairness analysis revealed noticeable9

lower sensitivity for darker Fitzpatrick skin tones (4-6), indicating bias embedded10

within the pretrained feature space. Applying importance weighting and group-11

balanced resampling helped mitigate but did not fully eliminate these disparities.12

Our findings highlight the need for more diverse pretraining datasets and fairness-13

aware adaptation strategies to ensure equitable deployment of foundation models14

in clinical AI applications.15

1 Introduction16

Foundation models are large-scale pretrained AI models capable of performing diverse tasks, repre-17

senting a major breakthrough in artificial intelligence [1]. Rather than training specialized models18

from the ground up, developers can leverage these versatile models as powerful feature extractors.19

Using pretrained embeddings from a foundation model enables new medical AI applications to be20

built with far less labeled data and compute. This convenience has fueled increased interest in using21

foundation models for healthcare tasks, where acquiring extensive labeled data remains difficult.[2].22

Dermatology could benefit substantially from recent advances in artificial intelligence. Skin diseases23

are widespread globally, yet access to dermatologic care remains limited as over 3 billion people lack24

even basic services, particularly in underserved regions [3]. This shortage leads to delayed diagnoses25

and worse outcomes, underscoring the need for scalable solutions. Artificial intelligence has emerged26

as a promising tool to bridge this gap. Deep learning models can analyze skin lesion images and27

assist in diagnosis, in some cases achieving accuracy on par with expert dermatologists [4].28

However, there are pressing concerns about fairness and bias in AI in dermatology. If the training29

data of a model is not demographically representative, its performance can disproportionately favor30

certain groups of patients. Notably, many skin image classifiers have shown reduced accuracy on31

darker skin tones [5]. Similar biases could arise for other attributes such as demographics of the32

patient or presentation of the lesion [6, 7, 8]. Ensuring foundation models perform fairly across all33

patient groups is vital to prevent widening healthcare disparities. Evaluating their accuracy on diverse34

skin tones and demographics is a key step toward safe, equitable clinical use.35
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In this work, we leverage Google’s recently released Derm Foundation model to investigate both36

its effectiveness and fairness in skin lesion classification [9]. We use Derm Foundation model to37

extract image embeddings and then evaluate the performance of our best model in subgroups stratified38

by Fitzpatrick skin type, demographic factors, and clinical features of the injury. This analysis39

allows us to evaluate the general precision of the foundation model in a challenging multiclass40

dermatological task, while also examining potential biases in its predictions in different patient41

populations. The findings show how well the model may work in real-world dermatology and where42

fairness improvements are needed.43

2 Related Works44

In healthcare, foundation models have been proposed to integrate multiple data types (imaging,45

clinical notes) and support diverse applications such as diagnosis and treatment planning [10].46

Collectively, these works highlight the promise of foundation models for medical imaging, while also47

noting persistent challenges around bias and the need for domain-specific validation. For example,48

research has envisioned “generalist medical AI” built through self-supervised training on clinical data49

[11].50

Within dermatology, several recent works have developed specialty foundation models for skin51

image analysis. Yan et al. [4] Notably, PanDerm, is a multimodal dermatology foundation model52

pretrained on over 2 million real-world images. PanDerm achieved state-of-the-art performance on53

28 dermatology tasks, often outperforming task-specific baselines using only 10% of labeled data.54

Similarly, Xu et al. [12] introduced DermNIO, a model trained using hybrid semi- and self-supervised55

pretraining on appoximately 433,000 dermatology images. DermNIO consistently outperformed56

prior models across diverse tasks, including malignancy classification and segmentation, and showed57

robustness across diverse skin types and sexes. In parallel, Google’s Derm Foundation model offers58

pretrained skin image embeddings, allowing researchers to develop accurate dermatology classifiers59

using limited data and compute [9].60

Despite these performance gains, bias and fairness remain critical challenges in dermatology AI.61

Notably, Daneshjou et al. [13] curated the Diverse Dermatology Images (DDI) dataset and found62

that state-of-the-art skin lesion classifiers exhibited substantial performance drops (27–36% lower63

ROC-AUC) on images of dark skin tones and uncommon diseases compared to standard test results.64

Their analysis revealed that all evaluated models underperformed on darker skin tones. Likewise,65

Benčević et al. [5] demonstrated that lesion segmentation networks systematically under-segment66

lesions on darker skin, indicating a pronounced association between skin tone and model accuracy.67

Conventional bias-mitigation strategies achieved only marginal improvements, highlighting the68

persistent disparities among higher Fitzpatrick skin types resulting from imbalanced training data.69

More generally, evaluations of large pretrained medical imaging models have exposed subgroup70

performance disparities. For instance, Khan et al. [14] conducted a systematic fairness audit of six71

medical imaging foundation models and observed that models pretrained on medical images, as72

opposed to general images, achieved higher overall accuracy but worse subgroup fairness, dispropor-73

tionately favoring majority racial groups (White, Asian) and underperforming on female patients.74

This highlghts that scaling with large datasets alone cannot ensure equity. According to Queiroz et al.75

[15], achieving fairness in foundation models necessaitates systematic interventions throguhout the76

development pipeline, encompassing data collection, training and deployment.77

3 Methods78

3.1 Derm Foundation Model79

We leverage the Derm Foundation model developed by Google Health to extract domain-specific80

image embeddings for our dermatologic analysis. The model is built upon a BiT ResNet101x381

architecture and trained using a two-stage process that combines large-scale contrastive pretraining82

on paired image–text data with supervised fine-tuning on clinical teledermatology datasets [16]. This83

approach enables the model to encode high-level visual representations of dermatologic features such84

as lesion morphology. The resulting embeddings serve as feature vectors that facilitate data-efficient85

training of downstream classifiers for disease categorization.86
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3.2 Datasets87

We utilized two publicly available dermatology datasets, PAD-UFES-20 and DERM12345, for our88

classification and bias experiments. The PAD-UFES-20 dataset consists of 2,298 clinical images of89

skin lesions collected from 1,373 patients and includes six main diagnostic classes [17]. Each image90

is accompanied by detailed clinical metadata such as Fitzpatrick skin tone, patient demographics, and91

presentation characteristics including bleeding and lesion size. The DERM12345 dataset contains92

12,345 dermatological images sourced from multiple clinical centers and annotated within a structured93

hierarchy of five superclasses, fifteen main classes, and forty subclasses of skin lesions [18]. The94

pre-encoded embeddings for both datasets are publicly available. For this study, we filter both datasets95

to include only overlapping diagnostic categories.96

3.3 Classification Experiments97

We conducted multi-class classification experiments for Actinic Keratosis (ACK), Basal Cell Car-98

cinoma (BCC), Malignant Melanoma (MEL), Squamous Cell Carcinoma (SCC), and Seborrheic99

Keratosis (SEK). Multiple machine learning classifiers were evaluated on the pre-encoded Derm100

Foundation embeddings, including both linear and non-linear models. To prevent data leakage, we101

performed a patient-level split, allocating 70% of the data for training, 15% for validation, and 15%102

for testing. Model performance was assessed using the macro-average Area Under the ROC Curve103

(AUC) as well as per-disease AUC values, each reported with 95% confidence intervals estimated104

through bootstrapping. We report Macro AUC of our models and per-disease AUC of our top per-105

forming model. We trained and tested models on PAD-UFES-20, DERM12345 individually, and106

their combined dataset to evaluate domain-specific performance and cross-domain generalization.107

3.4 Bias Experiments108

To assess model bias, we evaluated fairness for our top performing model across several predefined109

demographic and clinical subgroups provided within PAD-UFES-20’s metadata. The same 70/15/15110

patient-level split was applied; however, the test set was drawn exclusively from the PAD-UFES-20111

dataset, as it is the only one that includes detailed metadata. Model performance was stratified by112

Fitzpatrick skin tone rating, demographic variables and clinical presentation. Based on the distribution113

of available samples, we defined four groups: Type 1 Type 2, Type 3, and an aggregated Type 4-6114

group, since darker skin tones were underrepresented in the dataset. Demographic stratification115

included patient age (< 55, 55-64, 65-74, and 75+) and sex (male and female).116

Finally, we analyzed clinical presentation variables using PAD-UFES-20 metadata fields describing117

lesion characteristics. The attributes were hurt, bleed, elevation, and lesion size. Lesion area was118

estimated from the recorded horizontal and vertical diameters, and each sample was assigned to119

one of three groups: small (<40 mm2), medium (40–110 mm2), or large (> 110 mm2). These120

variables were selected because they can directly affect how lesions appear in images and therefore121

may influence model behavior. For instance, bleeding can obscure lesion boundaries, elevated lesions122

can affect lighting and shadowing, and larger lesions may exhibit greater internal variability that can123

challenge model consistency.124

3.5 Fairness Metrics125

To assess fairness, we used the Fairlearn framework with custom bootstrap resampling for confidence126

estimation. We report three main fairness metrics. The True Positive Rate (TPR) Disparity quantifies127

differences in sensitivity across subgroups. The Equalized Odds (EO) gap measures disparity across128

Fitzpatrick skin tone groups by capturing the largest difference in true and false positive rates between129

any two groups for each disease, summarizing the overall balance of prediction errors. Finally, the130

Underdiagnosis Rate measures how often the model fails to predict any condition among patients131

who truly have a positive diagnosis; to summarize this disparity, we compute the max–min gap,132

representing the largest observed difference in these rates between any two groups for each disease133

class. For all three metrics, we calculate 95% confidence intervals using bootstrap resampling.134

To ensure consistent evaluation across diseases, we use disease-specific thresholds optimized to135

maximize the F1 score on the validation set, treating precision and recall equally. This procedure136
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aligns with prior fairness studies in medical AI [19, 20], ensuring balanced decision boundaries that137

fairly reflect both false negatives and false positives in downstream fairness analysis.138

3.6 Bias Mitigation Strategies139

The Fitzpatrick skin tone analysis revealed the largest per- formance disparities, whereas demographic140

and clinical variables showed minimal or inconsistent effects. Accordingly, subsequent bias mitigation141

efforts focused on skin tone, the primary source of in- equity in model predictions.142

The first mitigation strategy importance weighting, assigned each training sample a weight inversely143

proportional to the joint frequency of its Fitzpatrick group and disease label. This weighting increased144

the influence of underrepresented group disease combinations, allowing darker skin tones and less145

common diagnoses to contribute more effectively during optimization. The importance weighting146

scheme was integrated into our best-performing model by incorporating sample-specific weights147

during training, enabling balanced learning across the full dataset wile compensating for group148

imbalance.149

The second strategy, group-balanced resampling, aimed to equalize the distribution of training150

examples across Fitzpatrick groups. Minority group–disease pairs were oversampled until an ap-151

proximately balanced representation was achieved, while perserving proportionality among disease152

classes. Unlike importance weighting, which adjusts each sample’s contributiong, resampling153

modifies the training data composition to increase model exposure to underrepredented skin tones.154

Fairness outcomes were assessed using the same performance and equity metrics described earlier.155

To quanify the effect of each intervention, we reported changes in these fairness metrics relative to156

the unmitigated baseline model.157

Collectively these experiments, sought to identify which mitigation strategy most effectively reduced158

disparities in diagnostic sensitivity and underdiagnosis across skin tone groups, while maintaining159

overall model performance.160

4 Results161

4.1 Disease classification performance using Derm Foundation embeddings162

As shown in Figure 4, the random forest classifier achieved the highest overall performance, with a163

macro-averaged AUC of 0.94 (95% CI 0.91–0.96). As reported in Table 1, models trained on the164

aggregrated dataset outperformed those trained on individual sources across most disease classes, in-165

dicating that dataset integration enhanced generalization and mitigated dataset-specific bias. Notably,166

SEK maintained near perfect classification accuracy under all configurations, whereas classes such167

as SCC and BCC showed substantial gains from data aggregation. These findings suggest that the168

Derm Foundation embeddings encode transferable visual representations that generalize well across169

datasets, supporting robust and consistent skin lesion classification.170

Table 1: Classification performance of our best model measured by ROC–AUC (95% CI). Highest
per-disease AUC and best Macro AUC are highlighted in light green.

Disease PAD-UFES-20 DERM12345 Aggregated

ACK 0.93 (0.89–0.97) 0.93 (0.85–0.99) 0.95 (0.92–0.97)
BCC 0.90 (0.84–0.94) 0.96 (0.91–0.99) 0.91 (0.87–0.95)
SEK 0.99 (0.98–1.00) 0.99 (0.96–1.00) 0.99 (0.98–1.00)
SCC 0.86 (0.77–0.93) 0.86 (0.70–0.97) 0.90 (0.83–0.95)
MEL 0.92 (0.81–1.00) 0.84 (0.68–0.99) 0.94 (0.88–0.99)

Macro AUC 0.92 (0.89–0.95) 0.92 (0.85–0.97) 0.94 (0.91–0.96)

4.2 Fairness Evaluation across Fitzpatrick Skin Tone Groups171

Across Fitzpatrick groups, we observed pronounced performance variations for specific lesion types.172

In particular, darker skin tones (Groups 4–6) exhibited the largest declines in true positive rate (TPR)173
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for ACK, SEK, and SCC, indicating reduced sensitivity for these conditions (Table 9). In contrast,174

lighter skin groups generally showed more consistent performance across diseases, suggesting that175

the model’s learned feature representations may be biased toward lighter skin distributions present in176

the training data.177

Figure 1: Per-disease TPR disparities across Fitzpatrick skin tone groups (1–6) on the PAD-UFES-20
test set. Each point represents the mean TPR disparity for a disease, with 95% confidence intervals
indicated by vertical bars. Positive TPR disparities indicate more favorable sensitivity for that group,
while negative disparities indicate reduced sensitivity. Darker skin tones (Groups 4–6) show generally
lower TPRs for ACK, SEK, and SCC, suggesting that model sensitivity decreases for these lesion
types in darker skin.

Table 2: Equalized Odds (EO) gaps across Fitzpatrick groups on the PAD-UFES-20 test set. Highest
gap is highlighted in light red.

Disease EO gap (95% CI)

ACK 0.50 (0.17–0.84)
BCC 0.10 (0.05–0.23)
MEL 0.17 (0.00–0.33)
SCC 0.25 (0.07–0.80)
SEK 0.18 (0.06–0.35)

Equalized Odds gaps (Table 2) show clear variation in fairness across skin tones. The largest EO gaps178

occurred for ACK (0.50 [0.17–0.84]) and SCC (0.25 [0.07–0.80]), indicating uneven error balance179

between lighter and darker groups for these lesion types. In contrast, BCC and MEL showed smaller180

EO gaps, suggesting more consistent behavior across skin tones.181

Table 3: Underdiagnosis rates across Fitzpatrick groups on the PAD-UFES-20 test set. Highest rates
are highlighted in light red.

Group Underdiagnosis rate (95% CI)

1 0.00 (0.00–0.00)
2 0.02 (0.01–0.03)
3 0.01 (0.00–0.02)
4–6 0.17 (0.07–0.29)

Max–min gap 0.17 (0.07–0.29)

As shown in the underdiagnosis results (Table 3), darker skin tones (Groups 4–6) exhibited a higher182

underdiagnosis rate (0.17 [0.07–0.29]) whereas lighter tones were near zero. This pattern indicates183

that although the overall accuracy remained high, the model underperformed in identifying positive184

5



cases among darker skin tones. Such disparties likely stem from the under representation of these185

groups in the training data, resulting in limited feature diversity and reduce generalization. Addresing186

this imbalance through targeting data augmentation or domain adaptation may enhance recognition187

performance and mitigate diagnostic bias in future iterations of the models.188

4.3 Fairness Evaluation across Demographics and Clinical Presentation of Lesions189

4.3.1 Fairness Evaluation across Demographics190

Across demographic groups (Table 10), age exhibited the strongest influence on model performance.191

Participants aged 55–64 showed the largest disparities in trur positive rate (TPR), particularly for192

SCC and MEL, while older adults (65–74 and 75+) demonstrated more stable results. Equalized193

Odds (EO) gaps (Table 4) were likewise most pronounced across age, especially for SEK (0.27 [0.07194

to 0.60]) and MEL (0.20 [0.00 to 0.60]), suggesting less consistent model behavior across age ranges.195

In contrast, gender differences were minimal, with EO gaps generally below 0.07. Underdiagnosis196

rates (Table 5) followed a similar pattern, as variation across age (max to min gap 0.030 [0.015 to197

0.057]) exceeded that observed for sex or clinical variables, confirming that age exerted the most198

prominent effect on fairness outcomes.199

4.3.2 Fairness Evaluation across Clinical Presentation200

Across clinical presentation features (Tables 4, 5 and 10), SEK showed the strongest disparities.201

TPR differences were greatest for bleeding lesions and medium-sized lesions, suggesting that SEK202

performance was particularly sensitive to variations in clinical appearance. Equalized Odds (EO)203

gaps showed a similar pattern, with the largest disparities for SEK across bleeding (0.28 [0.01–0.70]),204

hurt (0.14 [0.02–0.55]), and size-based groups (0.20 [0.01–0.60]).205

This suggests that SEK predictions were most affected by lesion presentation compared to other206

diseases. Underdiagnosis rates showed smaller variation overall, though the greatest max–min gap207

occurred for painful lesions (0.019) and for non-elevated ones (0.031), indicating slightly higher208

missed-diagnosis risk in those subgroups.209

Table 4: Equalized Odds (EO) gaps across demographic (age, sex) and clinical presentation (bleed,
elevation, hurt, size) groups on PAD-UFES-20. Highest EO gap per attribute is highlighted in red.

Disease Age Sex Bleed Elevation Hurt Size

ACK 0.08 (0.04–0.15) 0.02 (0.01–0.08) 0.03 (0.02–0.07) 0.01 (0.00–0.07) 0.03 (0.01–0.14) 0.02 (0.02–0.11)
BCC 0.07 (0.05–0.13) 0.03 (0.01–0.09) 0.08 (0.03–0.14) 0.02 (0.01–0.06) 0.12 (0.03–0.21) 0.04 (0.02–0.12)
MEL 0.20 (0.00–0.60) 0.03 (0.00–0.25) 0.09 (0.00–0.22) 0.07 (0.00–0.33) 0.12 (0.00–0.24) 0.20 (0.07–0.44)
SCC 0.17 (0.08–0.35) 0.05 (0.01–0.21) 0.04 (0.02–0.20) 0.03 (0.01–0.16) 0.01 (0.01–0.16) 0.13 (0.04–0.30)
SEK 0.27 (0.07–0.60) 0.07 (0.00–0.18) 0.28 (0.01–0.70) 0.02 (0.00–0.13) 0.14 (0.02–0.55) 0.20 (0.01–0.60)

Table 5: Underdiagnosis rate by demographics & clinical presentation. Groups with the highest
underdiagnosis rate within each block are highlighted in red.
Group Rate (95% CI) Group Rate (95% CI) Group Rate (95% CI)

<55 0.029 (0.013–0.050) Female 0.021 (0.008–0.033) Small 0.014 (0.003–0.029)
55–64 0.034 (0.015–0.057) Male 0.007 (0.002–0.015) Medium 0.003 (0.000–0.009)
65–74 0.032 (0.014–0.053) Max–min gap 0.013 (0.001–0.027) Large 0.015 (0.003–0.029)
75+ 0.004 (0.000–0.012) Max–min gap 0.012 (0.003–0.029)
Max–min gap 0.030 (0.019–0.057)

Elevation 0 0.031 (0.014–0.051) Hurt 0 0.024 (0.015–0.035) Bleed 0 0.020 (0.010–0.032)
Elevation 1 0.013 (0.006–0.022) Hurt 1 0.005 (0.000–0.014) Bleed 1 0.015 (0.003–0.030)
Max–min gap 0.018 (0.002–0.038) Max–min gap 0.019 (0.005–0.033) Max–min gap 0.005 (0.000–0.021)
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Figure 2: Max–min underdiagnosis disparity (95% CI) by attribute; Fitzpatrick skin tone exhibits the
largest gap.

4.4 Evaluation of Bias Mitigation Methods on Fitzpatrick Skin Tones210

Table 6: Equalized Odds (EO) gaps across fitzpatrick groups after after two bias-mitigation strategies
on the PAD-UFES-20 test set. Green = improved, red = worse, no color = unchanged.

Disease Importance Weighting Group-Balanced Resampling

EO gap (95% CI) ∆ EO gap (95% CI) ∆

BCC 0.50 (0.17–0.84) 0.00 0.27 (0.08–0.67) −0.23
ACK 0.07 (0.04–0.18) −0.04 0.09 (0.08–0.34) −0.02
SEK 0.17 (0.00–0.33) 0.00 0.22 (0.06–0.44) +0.06
SCC 0.23 (0.06–0.80) −0.02 0.42 (0.11–0.91) +0.17
MEL 0.20 (0.02–0.60) +0.02 0.20 (0.04–0.60) +0.02

Table 7: Underdiagnosis rates across fitzpatrick groups after two bias-mitigation strategies on the
PAD-UFES-20 test set. ∆ values indicate the change relative to the baseline model (Table 3). Green
= improved, red = worse, no color = unchanged.

Group Importance weighting Group-balanced resampling

Underdiagnosis Rate (95% CI) ∆ Underdiagnosis Rate (95% CI) ∆

1 0.01 (0.00–0.02) +0.01 0.01 (0.00–0.04) +0.01
2 0.02 (0.01–0.03) 0.00 0.02 (0.01–0.03) 0.00
3 0.01 (0.00–0.02) 0.00 0.04 (0.02–0.06) +0.03
4–6 0.07 (0.00–0.17) −0.10 0.12 (0.02–0.24) −0.05

Max–min gap 0.06 (0.02–0.17) −0.10 0.11 (0.03–0.22) −0.06

4.4.1 Importance Weighting (IW)211

Importance weighting substantially reduced underdiagnosis for Fitzpatrick 4–6, decreasing rates212

from 0.17 at baseline to 0.07 (Table 7; ∆−0.10), marking the largest reduction among all mitigation213

methods (max–min gap from 0.17 to 0.06; ∆−0.10). Sensitivity (TPR) improvements were targeted214

and specific. The strongest gain occured for SEK in Groups 4-6 (Table 11; ∆+0.02), while other215

disease classes remained largely stable Equalized Odds (EO) gaps shifted only marginally under216

importance weighting (Table 6), indicating that the improvement for darker skin tones was primarily217

driven by fewer missed detections rather than increased false positives.218
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4.4.2 Group-balanced resampling (RS): moderate improvement with trade-offs219

Resampling also lowered underdiagnosis for Fitzpatrick 4–6 from 0.17 to 0.12 (Table 7; ∆−0.05),220

reducing the max–min gap from 0.17 to 0.11 (∆−0.06). TPR values improved for several classes,221

most notably ACK (∆+0.17) and SEK (∆+0.14) (Table 11), but there are also regressions like222

SCC (∆−0.20). Equalized Odds (EO) gaps exhibited a mixed pattern of gains and degradations223

(Table 6), suggesting that resampling improved sensitivity for some diseases at the expense of fairness224

consistency across others.225

4.4.3 Comparative summary226

Across both strategies, importance weighting most effectively meets the clinical fairness objective227

for darker tones, achieving the greatest reduction in underdiagnosis and the largest shrinkage of228

inter-group gaps while maintaining stable performance across other disease classes (Figure 3). Group-229

balanced resampling provided moderate imporvements but with less consistency, enhancing sensitivity230

for certain classes in Groups 4–6 while degrading others (notably SCC).231

Figure 3: Comparison of underdiagnosis rates for Fitzpatrick group 4–6 across the baseline and bias
mitigation strategies. Importance Weighting (IW) led to a noticeable reduction in underdiagnosis rate
but did not completely eliminate it comapred to Group-balanced resampling (RS).

5 Discussion232

Our results show that embeddings extracted from Google’s Derm Foundation Model enable highly233

accurate classification of skin lesions, achieving a strong macro average AUC of 0.94 (95% CI234

0.91–0.96) on the aggregated dataset. Combining data from multiple sources improved model235

performance across most disease categories, suggesting that greater diversity in training examples236

supports stronger generalization. The best results were achieved for Seborrheic Keratosis, indicating237

that the embeddings capture the distinctive color and texture characteristics of this lesion particularly238

well.239

An important advantage of leveraging pre-encoded embeddings is their efficiency as it allows240

classifiers to be trained quickly and effectively, avoiding the need for large end-to-end models. This241

makes it much easier to deploy such systems in real clinical environments, where computational242

resources and time are limited. A model that performs this well could potentially assist dermatologists243

in diagnosis. Furthermore, it could serve as a valuable screening aid in underserved communities244

where access to dermatologists is limited.245

Concurrently, fairness evaluations revealed that disparities persist across skin tones. The highest246

underdiagnosis rate was observed for Fitzpatrick Types 4-6, with a value of 0.17, while performance247

across age, sex, and clinical presentation features such as lesion size, bleeding, elevation, or pain248

showed only small differences (Figure 2). These findings suggest that although the embeddings are249
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powerful, they still do not generalize equally across the full range of skin tones. This likely reflects250

bias in the data used to pretrain the foundation model rather than limitations in the downstream251

classifiers themselves.252

Among the bias mitigation methods tested, importance weighting achieved the greatest improvement,253

reducing the underdiagnosis rate for darker skin tones by 0.10, decreasing it to 0.07 (Figure 3). The254

resulting trade offs for lighter tones were minimal, with a slight increase of 0.01 for Type one. While255

these results show that importance weighting can improve fairness, they also highlight that adjusting256

downstream classifiers alone is insufficient to eliminate representation bias present in the embeddings.257

Overall, our findings support two main conclusions. First, foundation model embeddings offer a258

promising and scalable pproach for dermatology image classification, combining high diagnostic259

accuracy with low computational cost. Second, model fairness remains constrained by the limited260

diversity of available data. Improving representation across darker skin tones and developing261

training objectives that encourage skin tone invariant feature learning are essential steps toward262

building dermatology AI systems that are equitable, generalizable, and clinically ready for real-world263

deployment.264

6 Limitations & Future Directions265

A major limitation of this study is the lack of dermatology datasets that include Fitzpatrick skin266

tone labels, which limited our ability to analyze bias using only a small amount of available public267

data. The underrepresentation of darker skin tones remains a persistent challenge in dermatology268

AI, impacting both model training and fairness evaluation. We were also limited in the scope of269

our classification task to only five overlapping diagnostic categories between the two datasets. This270

restriction was necessary because PAD-UFES-20 is the only dataset among those we used that271

provides detailed metadata, including Fitzpatrick skin tone, demographics and clinical presentation272

information.273

For future work, we plan to extend our analysis to include the DDI dataset, which contains skin274

lesion images annotated with Fitzpatrick skin tone ratings [13]. The DDI dataset was not included275

in the present study because it provides only Fitzpatrick skin tone ratings without accompanying276

metadata for demographics or lesion characteristics. After completing this broader bias analysis that277

incorporates demographic and clinical presentation variables, a follow-up study focused specifically278

on skin tone fairness using DDI will allow for a more targeted evaluation of skin tone representation.279

We also plan to conduct another study using the SCIN dataset [21], which, like DDI, includes280

Fitzpatrick skin tone ratings but covers dermatologic conditions that are not represented in PAD-281

UFES-20 or DERM12345. In addition, we hope to collaborate with private clinicians to collect more282

examples from individuals with darker skin tones. Building more diverse datasets is essential to283

ensuring that AI models in dermatology deliver equitable care across all patient populations. Future284

research should also focus on refining or retraining foundation models to improve generalization285

across the full spectrum of skin tones and disease types.286

7 Conclusion287

Overall, embeddings extracted from Google’s Derm Foundation Model demonstrate strong perfor-288

mance for skin lesion classification tasks and generally has consistent results across age, sex, and289

clinical presentation groups, with only minor variations (≈3% underdiagnosis gap in the most affected290

group). However, our fairness analyses reveal that these embeddings do not generalize equally across291

skin tones particularly for darker skin tone (Fitzpatrick group 4-6). This suggests that the underlying292

representation space itself encodes skin tone dependent differences, likely reflecting the limited293

diversity of the pretraining data. To address this, future work should prioritize expanding on training294

data to include individuals with darker skin tones and developing methods that pronote learning of295

skin tone invariant features, thereby ensuring more accurate and equitable performance across all296

groups.297
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A Technical Appendices and Supplementary Material377

Figure 4: ROC curves of our best performing models on the aggregated dataset, showing Macro-AUC
performance.

Table 8: Hyperparameter settings for all classifiers used in the training and evaluation pipeline.
Model Hyperparameters

Logistic Regression max_iter=1000, class_weight="balanced",
multi_class="multinomial", random_state=42

Random Forest n_estimators=300, class_weight="balanced",
random_state=42

K-Nearest Neighbors (KNN) n_neighbors=15, weights="distance",
features standardized with StandardScaler()

Multilayer Perceptron (MLP) hidden_layer_sizes=(128, 64), max_iter=500,
random_state=42, early_stopping=True,
features standardized with StandardScaler()

XGBoost objective="multi:softprob", eval_metric="mlogloss",
random_state=42

B Fairness Metrics378

B.1 TPR Disparities379

Table 9: TPR disparities across fitzpatrick skin tone (fst) groups for each disease with 95% confidence
intervals (CI). The group with the largest disparity for each disease class is highlighted in light red.
Group BCC ACK SEK SCC MEL

FST 1 0.01 (0.01–0.01) 0.08 (0.08–0.08) 0.02 (0.02–0.02) 0.01 (-0.26–0.20) 0.00 (0.00–0.00)
FST 2 -0.01 (-0.03–0.01) -0.02 (-0.08–0.03) -0.02 (-0.11–0.02) 0.05 (-0.03–0.11) -0.17 (-0.33–0.00)
FST 3 -0.03 (-0.07–0.00) 0.02 (-0.04–0.07) 0.02 (0.02–0.02) -0.01 (-0.18–0.15) 0.00 (0.00–0.00)
FST 4–6 0.01 (0.01–0.01) -0.42 (-0.75—0.08) -0.15 (-0.33–0.02) -0.21 (-0.61—0.20) 0.00 (0.00–0.00)
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Table 10: TPR disparities across demographic and clinical groups with 95% confidence intervals (CI).
Greatest disparities (point estimates) are highlighted in light red.
Group BCC ACK SEK SCC MEL

Age disparities

<55 -0.02 (-0.08–0.02) 0.02 (-0.01–0.05) -0.16 (-0.47–0.16) 0.05 (0.00–0.10) 0.10 (0.00–0.20)
55–64 -0.01 (-0.05–0.03) -0.03 (-0.10–0.03) -0.01 (-0.10–0.08) -0.12 (-0.30–0.05) -0.10 (-0.30–0.10)
65–74 0.01 (-0.03–0.05) -0.02 (-0.09–0.04) 0.04 (0.00–0.08) 0.03 (-0.03–0.08) 0.00 (0.00–0.00)
75+ 0.01 (-0.02–0.05) 0.05 (0.02–0.09) 0.01 (-0.04–0.06) -0.03 (-0.11–0.06) 0.00 (0.00–0.00)

Gender disparities

Female -0.01 (-0.03–0.00) -0.01 (-0.04–0.02) -0.04 (-0.09–0.00) -0.03 (-0.10–0.04) 0.02 (-0.06–0.13)
Male 0.01 (-0.00–0.03) 0.01 (-0.02–0.04) 0.04 (0.00–0.09) 0.03 (-0.04–0.10) -0.02 (-0.13–0.06)

Bleed disparities

Bleed 0 -0.02 (-0.04–0.00) -0.01 (-0.04–0.01) 0.14 (-0.01–0.29) 0.02 (-0.05–0.10) -0.04 (-0.11–0.00)
Bleed 1 0.02 (-0.00–0.04) 0.01 (-0.01–0.04) -0.14 (-0.29–0.01) -0.02 (-0.10–0.05) 0.04 (0.00–0.11)

Elevation disparities

Elevation 0 0.00 (-0.01–0.02) 0.01 (-0.02–0.03) -0.01 (-0.07–0.03) -0.01 (-0.08–0.05) -0.03 (-0.17–0.11)
Elevation 1 -0.00 (-0.02–0.01) -0.01 (-0.03–0.02) 0.01 (-0.03–0.07) 0.01 (-0.05–0.08) 0.03 (-0.11–0.17)

Hurt disparities

Hurt 0 -0.01 (-0.02–0.01) 0.02 (-0.03–0.07) 0.00 (0.00–0.00) -0.00 (-0.07–0.08) 0.00 (0.00–0.00)
Hurt 1 0.01 (-0.01–0.02) -0.02 (-0.07–0.03) 0.00 (0.00–0.00) 0.00 (-0.08–0.07) 0.00 (0.00–0.00)

Size disparities

Small -0.02 (-0.05–0.01) -0.01 (-0.07–0.03) 0.07 (0.00–0.21) 0.13 (0.00–0.22) 0.11 (0.00–0.22)
Medium 0.00 (-0.02–0.02) 0.01 (-0.04–0.06) 0.00 (0.00–0.00) 0.00 (-0.16–0.00) 0.00 (-0.27–0.00)
Large 0.01 (-0.01–0.03) 0.00 (-0.06–0.05) -0.07 (-0.21–0.00) -0.01 (-0.15–0.01) -0.02 (-0.27–0.00)

Table 11: TPR disparities across Fitzpatrick groups for each disease after bias-mitigation strategies.
Green = improved (more positive), Red = worse (more negative), no color = unchanged, compared to
Table 9. 95% confidence intervals (CI) are shown in parentheses.
Group BCC ACK SEK SCC MEL

Importance Weighting (IW)

FST 1 -0.00 (-0.04–0.02) 0.08 (0.08–0.08) 0.02 (0.02–0.02) 0.01 (-0.26–0.20) 0.00 (0.00–0.00)
FST 2 0.00 (-0.01–0.02) -0.02 (-0.08–0.03) -0.02 (-0.11–0.02) 0.03 (-0.06–0.10) -0.17 (-0.33–0.00)
FST 3 -0.03 (-0.06–0.00) 0.02 (-0.04–0.07) -0.18 (-0.58–0.02) -0.01 (-0.18–0.15) 0.00 (0.00–0.00)
FST 4–6 0.02 (0.02–0.02) -0.42 (-0.75—0.08) 0.02 (0.02–0.02) -0.21 (-0.61–0.20) 0.00 (0.00–0.00)

Group-Balanced Resampling (RS)

FST 1 0.03 (-0.02–0.07) 0.01 (-0.09–0.09) 0.05 (0.05–0.05) 0.01 (-0.26–0.20) 0.00 (0.00–0.00)
FST 2 0.05 (0.03–0.07) -0.01 (-0.07–0.04) 0.01 (-0.08–0.05) 0.02 (-0.07–0.09) -0.22 (-0.44—0.06)
FST 3 -0.03 (-0.08–0.02) 0.03 (-0.03–0.07) -0.15 (-0.55–0.05) -0.01 (-0.18–0.15) 0.00 (0.00–0.00)
FST 4–6 -0.04 (-0.29–0.09) -0.25 (-0.58–0.09) -0.01 (-0.12–0.05) -0.41 (-0.81—0.01) 0.00 (0.00–0.00)
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C Dataset Distribution380

Table 12: Distribution of images per disease class across the DERM12345 and PAD-UFES-20
datasets.

Disease Class DERM12345 PAD-UFES-20 Total

Actinic Keratosis (ACK) 58 730 788
Basal Cell Carcinoma (BCC) 423 845 1268
Malignant Melanoma (MEL) 52 400 452
Squamous Cell Carcinoma (SCC) 266 192 458
Seborrheic Keratosis (SEK) 607 235 842

Total Images 1406 2402 3808
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NeurIPS Paper Checklist381

The checklist is designed to encourage best practices for responsible machine learning research,382

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove383

the checklist: The papers not including the checklist will be desk rejected. The checklist should384

follow the references and follow the (optional) supplemental material. The checklist does NOT count385

towards the page limit.386

Please read the checklist guidelines carefully for information on how to answer these questions. For387

each question in the checklist:388

• You should answer [Yes] , [No] , or [NA] .389

• [NA] means either that the question is Not Applicable for that particular paper or the390

relevant information is Not Available.391

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).392

The checklist answers are an integral part of your paper submission. They are visible to the393

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it394

(after eventual revisions) with the final version of your paper, and its final version will be published395

with the paper.396

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.397

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a398

proper justification is given (e.g., "error bars are not reported because it would be too computationally399

expensive" or "we were unable to find the license for the dataset we used"). In general, answering400

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we401

acknowledge that the true answer is often more nuanced, so please just use your best judgment and402

write a justification to elaborate. All supporting evidence can appear either in the main paper or the403

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification404

please point to the section(s) where related material for the question can be found.405

IMPORTANT, please:406

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",407

• Keep the checklist subsection headings, questions/answers and guidelines below.408

• Do not modify the questions and only use the provided macros for your answers.409

1. Claims410

Question: Do the main claims made in the abstract and introduction accurately reflect the411

paper’s contributions and scope?412

Answer: [Yes]413

Justification: The abstract and introduction clearly present the goals, methods, and findings414

of the paper which focus on evaluating Derm Foundation embeddings for accuracy and415

fairness, and these claims are consistently supported by the experiments and discussion,416

accurately reflecting the study’s scope and contributions.417

Guidelines:418

• The answer NA means that the abstract and introduction do not include the claims419

made in the paper.420

• The abstract and/or introduction should clearly state the claims made, including the421

contributions made in the paper and important assumptions and limitations. A No or422

NA answer to this question will not be perceived well by the reviewers.423

• The claims made should match theoretical and experimental results, and reflect how424

much the results can be expected to generalize to other settings.425

• It is fine to include aspirational goals as motivation as long as it is clear that these goals426

are not attained by the paper.427

2. Limitations428

Question: Does the paper discuss the limitations of the work performed by the authors?429
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Answer: [Yes]430

Justification: The paper includes a dedicated “Limitations & Future Directions” section that431

clearly discusses constraints such as limited availability of diverse dermatology datasets,432

underrepresentation of darker skin tones, and restricted diagnostic categories, outlining how433

these factors affect fairness analysis and future research directions.434

Guidelines:435

• The answer NA means that the paper has no limitation while the answer No means that436

the paper has limitations, but those are not discussed in the paper.437

• The authors are encouraged to create a separate "Limitations" section in their paper.438

• The paper should point out any strong assumptions and how robust the results are to439

violations of these assumptions (e.g., independence assumptions, noiseless settings,440

model well-specification, asymptotic approximations only holding locally). The authors441

should reflect on how these assumptions might be violated in practice and what the442

implications would be.443

• The authors should reflect on the scope of the claims made, e.g., if the approach was444

only tested on a few datasets or with a few runs. In general, empirical results often445

depend on implicit assumptions, which should be articulated.446

• The authors should reflect on the factors that influence the performance of the approach.447

For example, a facial recognition algorithm may perform poorly when image resolution448

is low or images are taken in low lighting. Or a speech-to-text system might not be449

used reliably to provide closed captions for online lectures because it fails to handle450

technical jargon.451

• The authors should discuss the computational efficiency of the proposed algorithms452

and how they scale with dataset size.453

• If applicable, the authors should discuss possible limitations of their approach to454

address problems of privacy and fairness.455

• While the authors might fear that complete honesty about limitations might be used by456

reviewers as grounds for rejection, a worse outcome might be that reviewers discover457

limitations that aren’t acknowledged in the paper. The authors should use their best458

judgment and recognize that individual actions in favor of transparency play an impor-459

tant role in developing norms that preserve the integrity of the community. Reviewers460

will be specifically instructed to not penalize honesty concerning limitations.461

3. Theory assumptions and proofs462

Question: For each theoretical result, does the paper provide the full set of assumptions and463

a complete (and correct) proof?464

Answer: [NA]465

Justification: The paper does not include theoretical results or formal proofs, as it is primarily466

an empirical study focused on experimental evaluation of model performance and fairness.467

Guidelines:468

• The answer NA means that the paper does not include theoretical results.469

• All the theorems, formulas, and proofs in the paper should be numbered and cross-470

referenced.471

• All assumptions should be clearly stated or referenced in the statement of any theorems.472

• The proofs can either appear in the main paper or the supplemental material, but if473

they appear in the supplemental material, the authors are encouraged to provide a short474

proof sketch to provide intuition.475

• Inversely, any informal proof provided in the core of the paper should be complemented476

by formal proofs provided in appendix or supplemental material.477

• Theorems and Lemmas that the proof relies upon should be properly referenced.478

4. Experimental result reproducibility479

Question: Does the paper fully disclose all the information needed to reproduce the main ex-480

perimental results of the paper to the extent that it affects the main claims and/or conclusions481

of the paper (regardless of whether the code and data are provided or not)?482
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Answer: [Yes]483

Justification: The paper provides detailed descriptions of datasets, data splits, classifiers,484

hyperparameters, evaluation metrics, and experimental procedures, ensuring that the main485

results can be reproduced even without direct access to the original code.486

Guidelines:487

• The answer NA means that the paper does not include experiments.488

• If the paper includes experiments, a No answer to this question will not be perceived489

well by the reviewers: Making the paper reproducible is important, regardless of490

whether the code and data are provided or not.491

• If the contribution is a dataset and/or model, the authors should describe the steps taken492

to make their results reproducible or verifiable.493

• Depending on the contribution, reproducibility can be accomplished in various ways.494

For example, if the contribution is a novel architecture, describing the architecture fully495

might suffice, or if the contribution is a specific model and empirical evaluation, it may496

be necessary to either make it possible for others to replicate the model with the same497

dataset, or provide access to the model. In general. releasing code and data is often498

one good way to accomplish this, but reproducibility can also be provided via detailed499

instructions for how to replicate the results, access to a hosted model (e.g., in the case500

of a large language model), releasing of a model checkpoint, or other means that are501

appropriate to the research performed.502

• While NeurIPS does not require releasing code, the conference does require all submis-503

sions to provide some reasonable avenue for reproducibility, which may depend on the504

nature of the contribution. For example505

(a) If the contribution is primarily a new algorithm, the paper should make it clear how506

to reproduce that algorithm.507

(b) If the contribution is primarily a new model architecture, the paper should describe508

the architecture clearly and fully.509

(c) If the contribution is a new model (e.g., a large language model), then there should510

either be a way to access this model for reproducing the results or a way to reproduce511

the model (e.g., with an open-source dataset or instructions for how to construct512

the dataset).513

(d) We recognize that reproducibility may be tricky in some cases, in which case514

authors are welcome to describe the particular way they provide for reproducibility.515

In the case of closed-source models, it may be that access to the model is limited in516

some way (e.g., to registered users), but it should be possible for other researchers517

to have some path to reproducing or verifying the results.518

5. Open access to data and code519

Question: Does the paper provide open access to the data and code, with sufficient instruc-520

tions to faithfully reproduce the main experimental results, as described in supplemental521

material?522

Answer: [No]523

Justification: The paper does not provide open access to the code or replication scripts,524

though it uses publicly available datasets and describes experimental settings in sufficient525

detail to allow independent reproduction.526

Guidelines:527

• The answer NA means that paper does not include experiments requiring code.528

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/529

public/guides/CodeSubmissionPolicy) for more details.530

• While we encourage the release of code and data, we understand that this might not be531

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not532

including code, unless this is central to the contribution (e.g., for a new open-source533

benchmark).534

• The instructions should contain the exact command and environment needed to run to535

reproduce the results. See the NeurIPS code and data submission guidelines (https:536

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.537
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• The authors should provide instructions on data access and preparation, including how538

to access the raw data, preprocessed data, intermediate data, and generated data, etc.539

• The authors should provide scripts to reproduce all experimental results for the new540

proposed method and baselines. If only a subset of experiments are reproducible, they541

should state which ones are omitted from the script and why.542

• At submission time, to preserve anonymity, the authors should release anonymized543

versions (if applicable).544

• Providing as much information as possible in supplemental material (appended to the545

paper) is recommended, but including URLs to data and code is permitted.546

6. Experimental setting/details547

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-548

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the549

results?550

Answer: [Yes]551

Justification: The paper clearly specifies all training and testing details, including dataset552

splits, classifier types, hyperparameter settings, and evaluation procedures, allowing readers553

to fully understand how the results were obtained.554

Guidelines:555

• The answer NA means that the paper does not include experiments.556

• The experimental setting should be presented in the core of the paper to a level of detail557

that is necessary to appreciate the results and make sense of them.558

• The full details can be provided either with the code, in appendix, or as supplemental559

material.560

7. Experiment statistical significance561

Question: Does the paper report error bars suitably and correctly defined or other appropriate562

information about the statistical significance of the experiments?563

Answer: [Yes]564

Justification: The paper reports 95% confidence intervals for all major performance and565

fairness metrics using bootstrap resampling, providing appropriate measures of variability566

and statistical significance for the experimental results.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• The authors should answer "Yes" if the results are accompanied by error bars, confi-570

dence intervals, or statistical significance tests, at least for the experiments that support571

the main claims of the paper.572

• The factors of variability that the error bars are capturing should be clearly stated (for573

example, train/test split, initialization, random drawing of some parameter, or overall574

run with given experimental conditions).575

• The method for calculating the error bars should be explained (closed form formula,576

call to a library function, bootstrap, etc.)577

• The assumptions made should be given (e.g., Normally distributed errors).578

• It should be clear whether the error bar is the standard deviation or the standard error579

of the mean.580

• It is OK to report 1-sigma error bars, but one should state it. The authors should581

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis582

of Normality of errors is not verified.583

• For asymmetric distributions, the authors should be careful not to show in tables or584

figures symmetric error bars that would yield results that are out of range (e.g. negative585

error rates).586

• If error bars are reported in tables or plots, The authors should explain in the text how587

they were calculated and reference the corresponding figures or tables in the text.588

8. Experiments compute resources589
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Question: For each experiment, does the paper provide sufficient information on the com-590

puter resources (type of compute workers, memory, time of execution) needed to reproduce591

the experiments?592

Answer: [No]593

Justification: The paper does not specify details about computational resources such as594

hardware type, memory, or runtime, although the experiments are lightweight and based on595

pre-encoded embeddings that can be reproduced on standard hardware.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,599

or cloud provider, including relevant memory and storage.600

• The paper should provide the amount of compute required for each of the individual601

experimental runs as well as estimate the total compute.602

• The paper should disclose whether the full research project required more compute603

than the experiments reported in the paper (e.g., preliminary or failed experiments that604

didn’t make it into the paper).605

9. Code of ethics606

Question: Does the research conducted in the paper conform, in every respect, with the607

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?608

Answer: [Yes]609

Justification: The research adheres to the NeurIPS Code of Ethics, as it uses publicly610

available datasets, maintains participant anonymity, and focuses on fairness and equity in611

medical AI without involving any harmful or unethical data collection or practices.612

Guidelines:613

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.614

• If the authors answer No, they should explain the special circumstances that require a615

deviation from the Code of Ethics.616

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-617

eration due to laws or regulations in their jurisdiction).618

10. Broader impacts619

Question: Does the paper discuss both potential positive societal impacts and negative620

societal impacts of the work performed?621

Answer: [Yes]622

Justification: The paper discusses the positive societal impact of improving accessibility623

and fairness in dermatologic AI while acknowledging potential risks of bias and unequal624

performance across skin tones, emphasizing the importance of equitable deployment in625

clinical settings.626

Guidelines:627

• The answer NA means that there is no societal impact of the work performed.628

• If the authors answer NA or No, they should explain why their work has no societal629

impact or why the paper does not address societal impact.630

• Examples of negative societal impacts include potential malicious or unintended uses631

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations632

(e.g., deployment of technologies that could make decisions that unfairly impact specific633

groups), privacy considerations, and security considerations.634

• The conference expects that many papers will be foundational research and not tied635

to particular applications, let alone deployments. However, if there is a direct path to636

any negative applications, the authors should point it out. For example, it is legitimate637

to point out that an improvement in the quality of generative models could be used to638

generate deepfakes for disinformation. On the other hand, it is not needed to point out639

that a generic algorithm for optimizing neural networks could enable people to train640

models that generate Deepfakes faster.641
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• The authors should consider possible harms that could arise when the technology is642

being used as intended and functioning correctly, harms that could arise when the643

technology is being used as intended but gives incorrect results, and harms following644

from (intentional or unintentional) misuse of the technology.645

• If there are negative societal impacts, the authors could also discuss possible mitigation646

strategies (e.g., gated release of models, providing defenses in addition to attacks,647

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from648

feedback over time, improving the efficiency and accessibility of ML).649

11. Safeguards650

Question: Does the paper describe safeguards that have been put in place for responsible651

release of data or models that have a high risk for misuse (e.g., pretrained language models,652

image generators, or scraped datasets)?653

Answer: [NA]654

Justification: The paper does not release any new models or datasets with potential misuse655

risks, and all experiments are conducted using publicly available, ethically sourced datasets,656

so additional safeguards were not required.657

Guidelines:658

• The answer NA means that the paper poses no such risks.659

• Released models that have a high risk for misuse or dual-use should be released with660

necessary safeguards to allow for controlled use of the model, for example by requiring661

that users adhere to usage guidelines or restrictions to access the model or implementing662

safety filters.663

• Datasets that have been scraped from the Internet could pose safety risks. The authors664

should describe how they avoided releasing unsafe images.665

• We recognize that providing effective safeguards is challenging, and many papers do666

not require this, but we encourage authors to take this into account and make a best667

faith effort.668

12. Licenses for existing assets669

Question: Are the creators or original owners of assets (e.g., code, data, models), used in670

the paper, properly credited and are the license and terms of use explicitly mentioned and671

properly respected?672

Answer: [Yes]673

Justification: The paper properly credits all original creators of datasets and models, includ-674

ing PAD-UFES-20, DERM12345, and Google’s Derm Foundation Model, with appropriate675

citations and respect for their licenses and terms of use.676

Guidelines:677

• The answer NA means that the paper does not use existing assets.678

• The authors should cite the original paper that produced the code package or dataset.679

• The authors should state which version of the asset is used and, if possible, include a680

URL.681

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.682

• For scraped data from a particular source (e.g., website), the copyright and terms of683

service of that source should be provided.684

• If assets are released, the license, copyright information, and terms of use in the685

package should be provided. For popular datasets, paperswithcode.com/datasets686

has curated licenses for some datasets. Their licensing guide can help determine the687

license of a dataset.688

• For existing datasets that are re-packaged, both the original license and the license of689

the derived asset (if it has changed) should be provided.690

• If this information is not available online, the authors are encouraged to reach out to691

the asset’s creators.692

13. New assets693

20

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation694

provided alongside the assets?695

Answer: [NA]696

Justification: The paper does not introduce any new datasets, models, or code assets, as it697

relies entirely on publicly available resources for all experiments and analyses.698

Guidelines:699

• The answer NA means that the paper does not release new assets.700

• Researchers should communicate the details of the dataset/code/model as part of their701

submissions via structured templates. This includes details about training, license,702

limitations, etc.703

• The paper should discuss whether and how consent was obtained from people whose704

asset is used.705

• At submission time, remember to anonymize your assets (if applicable). You can either706

create an anonymized URL or include an anonymized zip file.707

14. Crowdsourcing and research with human subjects708

Question: For crowdsourcing experiments and research with human subjects, does the paper709

include the full text of instructions given to participants and screenshots, if applicable, as710

well as details about compensation (if any)?711

Answer: [NA]712

Justification: The paper does not involve any crowdsourcing or direct research with human713

subjects, as all analyses are performed on existing, publicly available dermatology datasets.714

• The answer NA means that the paper does not involve crowdsourcing nor research with715

human subjects.716

• Including this information in the supplemental material is fine, but if the main contribu-717

tion of the paper involves human subjects, then as much detail as possible should be718

included in the main paper.719

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,720

or other labor should be paid at least the minimum wage in the country of the data721

collector.722

15. Institutional review board (IRB) approvals or equivalent for research with human723

subjects724

Question: Does the paper describe potential risks incurred by study participants, whether725

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)726

approvals (or an equivalent approval/review based on the requirements of your country or727

institution) were obtained?728

Answer: [NA]729

Justification: The paper does not involve direct interaction with human subjects, and all730

datasets used are publicly available and de-identified; therefore, IRB approval was not731

required.732

Guidelines:733

• The answer NA means that the paper does not involve crowdsourcing nor research with734

human subjects.735

• Depending on the country in which research is conducted, IRB approval (or equivalent)736

may be required for any human subjects research. If you obtained IRB approval, you737

should clearly state this in the paper.738

• We recognize that the procedures for this may vary significantly between institutions739

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the740

guidelines for their institution.741

• For initial submissions, do not include any information that would break anonymity (if742

applicable), such as the institution conducting the review.743

16. Declaration of LLM usage744
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Question: Does the paper describe the usage of LLMs if it is an important, original, or745

non-standard component of the core methods in this research? Note that if the LLM is used746

only for writing, editing, or formatting purposes and does not impact the core methodology,747

scientific rigorousness, or originality of the research, declaration is not required.748

Answer: [NA]749

Justification: The paper does not use large language models as part of its core methodology;750

any AI tools were used solely for writing or formatting assistance and did not influence the751

scientific content or analysis.752

Guidelines:753

• The answer NA means that the core method development in this research does not754

involve LLMs as any important, original, or non-standard components.755

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)756

for what should or should not be described.757
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