
Graph Bernoulli Pooling

Paper Id: 3310

Abstract

Graph pooling is crucial for enlarging receptive field and reducing computational1

cost in deep graph representation learning. In this work, we propose a simple2

but effective non-deterministic graph pooling method, called graph Bernoulli3

pooling (BernPool), to facilitate graph feature learning. In contrast to most graph4

pooling methods with deterministic modes, we design a probabilistic Bernoulli5

sampling to reach an expected sampling rate through deducing a variational bound6

as the constraint. To further mine more useful info, a learnable reference set is7

introduced to encode nodes into a latent expressive probability space. Hereby8

the resultant Bernoulli sampling would endeavor to capture salient substructures9

of the graph while possessing much diversity on sampled nodes due to its non-10

deterministic manner. Considering the complementarity of node dropping and11

node clustering, further, we propose a hybrid graph pooling paradigm to combine12

a compact subgraph (via dropping) and a coarsening graph (via clustering), in13

order to retain both representative substructures and input graph info. Extensive14

experiments on multiple public graph classification datasets demonstrate that our15

BernPool is superior to various graph pooling methods, and achieves state-of-16

the-art performance. The code is publicly available in an anonymous format at17

https:/github/BernPool.18

1 Introduction19

Graph Neural Networks (GNNs) [13, 36] have been widely used to learn expressive representation20

from ubiquitous graph-structured data such as social networks [31], chemical molecules [15] and21

biological networks [24]. To improve representation ability, multiple GNN variants, e.g., graph22

convolutional networks (GCNs) [16] and graph attention networks (GATs) [25], have been developed23

to facilitate various graph-related tasks including node classification[16], link prediction[19, 35], and24

graph classification[36]. Specifically, for graph-related learning tasks, graph pooling has become25

an essential component in various GNN architectures. Aiming to learn compact representation for26

graphs, graph pooling facilitates graph topology modeling by enlarging receptive fields as well as27

scaling down the graph size which effectively reduces computational costs.28

The existing graph pooling techniques generally fall into two main categories, i.e., the global graph29

pooling [5, 27, 14, 33, 26, 36] and hierarchical graph pooling. The former directly compresses a set30

of nodes into a compact graph-level representation. This operation results in a flat feature as a whole31

graph embedding. In contrast, the hierarchical pooling coarsens graphs gradually and outputs the32

corresponding pooled graphs of smaller sizes. For this purpose, two different types of coarsening,33

named node dropping [17, 10, 20, 37, 18, 11] and node clustering [33, 1, 34], are often employed.34

The node dropping picks up a subset of nodes to construct the coarsened graph, while the node35

clustering learns an assignment matrix to aggregate those nodes in the original graph into new clusters.36

In this work, our proposed BernPool falls in the category of the latter.37

Even though considerable progress has been made, most pooling methods select a part of nodes or38

cluster nodes in a deterministic manner according to the importance scores of nodes, which degrades39

the sampling diversity. For this issue, some previous works [21, 7] propose stochastic node dropping40

independent from the data, i.e., randomly dropping. However, they do not consider the intrinsic41

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://anonymous.4open.science/r/BernPool

structural characteristics of data while enriching the sampling diversity. Thus the current bottleneck42

is how to adaptively extract expressive substructures and meanwhile keeping rich sampling diversity43

in graph pooling, with the precondition of high-efficient and effective graph representation learning.44

To address the above problem, in this work, we propose a graph Bernoulli pooling method called45

BernPool to facilitate graph representation learning. Different from the existing graph pooling46

methods, we design a probabilistic Bernoulli sampling by estimating the sampling probabilities of47

graph nodes. To restrict the sampling process, we formulate a variational Bernoulli learning constraint48

by deriving an upper bound between an expected distribution and a learned distribution. To better49

capture expressive info, a learnable reference set is further introduced to encode nodes into a latent50

expressive probability space. Thus the advantage of the resultant Bernoulli sampling is two-fold: i)51

capture representative substructures of graph; and ii) preserve certain diversity (like random dropping)52

due to its non-deterministic manner. Considering the complementary characteristics between node53

dropping and node clustering, we propose a hybrid graph pooling paradigm to fuse a compact54

subgraph after node dropping and a coarsening graph after node clustering. The node clustering55

in our framework is also Bernoulli-induced without high-computation cost because it adopts the56

sampled nodes as clustering centers. The hybrid graph pooling can jointly learn representative57

substructures and preserve the input graph topology. We conduct extensive experiments on 8 public58

graph classification datasets to test our BernPool, and the experimental results validate that our59

BernPool achieves better performance than those existing pooling methods and keep high efficiency60

on par with those node-dropping methods.61

The contributions of this work are summarized as: i) propose a probabilistic Bernoulli sampling62

method to not only learn effective sampling but also preserve high efficiency; ii) propose a hybrid63

graph pooling way to retain both those sampled substructures and the remaining info; iii) verify the64

effectiveness and high-efficiency of our BernPool, and report the state-of-the-art performance.65

2 Related Work66

In this section, we first review the previous methods of Graph Neural Networks (GNNs), then67

introduce the related Hierarchical pooling methods.68

Graph Neural Network. GNNs were introduced as a form of recurrent neural network by Gori69

et.al. [12] and Scarselli et al. [23]. Subsequently, Duvenaud et al.[6] introduced a convolution-70

like propagation rule on graphs to extract node representations for graph-level classification. To71

enhance the graph representation ability, several convolution operations were proposed (e.g. Graph72

Convolution Network(GCN[16]), Graph Attention Network(GAT[25]), GraphSAGE[13], GIN[30])73

to extract expressive node representations by aggregating neighbor node features and have achieved74

promising performance in various graph-related tasks in recent years. In particular, GCN[16] utilizes75

a first-order approximation of spectral convolution via Chebyshev polynomial iteration to improve76

efficiency. However, it suffers from the issue of fixed and equal weighting for neighbor nodes during77

aggregation, which may not be optimal for all nodes and can lead to information loss. To address this78

problem, GAT[25] introduced an attention mechanism to assign different weights to neighbor nodes79

during message passing. Furthermore, GrapSAGE[13] learned node embeddings by aggregating80

feature information from the neighborhood in an inductive manner. Despite the considerable progress81

made by GNNs, they are limited in their ability to generate hierarchical graph representations due to82

the lack of pooling operations.83

Hierarchical Graph Pooling. Graph pooling is a critical operation to obtain robust representations84

and scale down the size of graphs, which can be classified into two categories: global pooling85

and hierarchical pooling. The former [5, 27, 14, 33, 26, 36] aggregates node-level features to86

generate a graph-level representation. For instance, SortPool[36] ranks and groups the nodes into87

clusters according to their features, then aggregates the resulting clusters to generate the graph-88

level representation. However, the global pooling suffers from the issue of discarding structure89

information in generating graph-level representation. On the other hand, the hierarchical pooling90

methods could progressively compress the graph into a smaller one and capture the hierarchical91

structure. They can be further divided into node clustering pooling methods [33, 1, 34], node drop92

pooling methods [17, 10, 20, 37, 18, 11] and other pooling methods[28, 3]. Among them, the93

node drop pooling methods deleted the unimportant nodes based on certain criteria. For instance,94

SAGPool [17] computed the node attention scores using graph convolution to preserve the most95

2

important nodes. But the node drop pooling methods may not preserve the original structure well96

during the graph compression process. To alleviate this problem, Pang et.al [20] applied contrastive97

learning to maximize the mutual information between the input graph and the pooled graphs to98

preserve the graph-level dependencies in the pooling layers. Gao et.al [11] proposed a criterion to99

assess each node’s information among its neighbors to retain informative features. Our BernPool100

introduces probabilistic deduced Bernoulli sampling based on reference set to progressively compress101

the original graph by preserving important nodes, rather than selecting nodes in a deterministic102

way. This probabilistic manner can lead to more diverse sampling situations and capture the data of103

intrinsic characteristics, promoting graph discriminative representation learning. Furthermore, we104

propose a hybrid graph pooling module to alleviate the node drop pooling method’s issue of cannot105

preserve structure well.106

3 Preliminaries107

Notations For an arbitrary graph G = (V, E ,X) with n = |V| nodes and |E| edges. X ∈ Rn×d′108

represents the node feature matrix, where d′ is the dimension of node attributes, and A ∈ Rn×n109

denotes the adjacency matrix describing its edge connection information. The graph G has a one-hot110

vector yi w.r.t its label. A pooled graph of the original graph G is denoted by G̃ = (Ṽ, Ẽ , X̃) with111

adjacency matrix as Ã ∈ Rñ×ñ, where ñ denotes the number of pooled nodes.112

Graph Convolution In this work, we employ the classic graph convolution network (GCN) as the113

backbone to extract features, where the l-th convolutional layer is formulated as:114

H(l+1) = σ(D̂− 1
2 ÂD̂

1
2H(l)W(l)), (1)

where σ(·) is a non-linear activation function, H(l) is the hidden-layer feature, Â is the added115

self-loop adjacent matrix, D̂ denotes the degree matrix of Â, and W(l) represents a learnable weight116

matrix at the l-th layer. The initial node features are used at the first convolution, i.e., H(0) = X.117

4 The Proposed BernPool118

4.1 Overview119

Graph

Conv

Graph

Conv

Graph

Conv
BernPool BernPool BernPool Readout

Readout
Readout

MLP

Reference Set

R
e
p

a
r
a
m

et
ri

za
ti

o
n

Bernoulli Sampling Factor learning

Predicted

Label

Importance score
Pooled graph

Hybrid Graph Poolingdropping

clustering

Figure 1: The architecture of the proposed BernPool framework. Please see Overview in Section 4.1.

The whole framework is illustrated in Fig. 1, where the convolution and our proposed BernPool are120

stacked alternately. The proposed BernPool could be seamlessly engaged with any type of graph121

convolution to facilitate graph representation. In BernPool, there contains two main modules: graph122

Bernoulli sampling (GBS) and hybrid graph pooling (HGP). To boost graph Bernoulli sampling,123

we specifically design a reference set S to encode the importance of each graph node, and the124

reference set is configured as the optimizable parameters. The reference set is further conditioned on125

the orthogonal space so as to reduce redundancy. After transforming via the reference set, we can126

3

estimate the sampling probabilities p of graph nodes. In particular, the probabilities of nodes are127

totally restricted with an expected/predefined distribution, which is formulated to maximize the upper128

bound of KL-divergence (please see Section 4.2). Just due to the restriction, we can probabilistically129

sample a specified proportion of graph nodes. The detail of GBS can be found in Section 4.3. In the130

stage of hybrid graph pooling, on the one hand, we prune those unsampled nodes and the associated131

edges to generate a compact subgraph; on the other hand, to preserve graph topological structure,132

we perform neighbor nodes clustering to form a coarsening graph. Both the compact subgraph133

and coarsening graph are fused to form the final pooled graph. The detail of HGP can be found in134

Section 4.4. The BernPool attempts to learn the reference set and a few linear transformations. The135

whole framework can be optimized in an end-to-end mode through back-propagation.136

4.2 Bernoulli Sampling Optimization Objective137

To sample a certain proportion of graph nodes in a probabilistic manner, we derive a KL-divergence138

constraint, which makes node probabilities tend to be a predefined distribution. To this end, we again139

dissect mutual information between the learned subgraph embeddings and their corresponding labels.140

Formally, we aim to maximize the mutual information function:141

ζMI =MI(y, fψ,ϕ(G,S)), (2)

where ϕ denotes the parameters of the BernPool, ψ is the parameters of other modules (e.g., convolu-142

tion, classifier), and fψ,ϕ(·) represents the graph embedding process.143

Suppose the sampling factor z in graph pooling, we resort to the relationship between mutual144

information and expectation, and rewrite Eqn. (2) as:145

Ey|G,S [log

∫
pψ(y|G,S, z)pϕ(z|G,S)dz]

= Ey|G,S [log

∫
qϕ(z|G,S)pψ(y|G,S, z)

pϕ(z|G,S)
qϕ(z|G,S)

dz], (3)

where pψ(y|G,S, z) is the conditional probability of label y, and pϕ(z|G,S) denotes the conditional146

probability of the factor z that is usually intractable. After a series of derivation from Eqn. (3), we147

can deduce a bound with KL-divergence between expected Bernoulli distribution qϕ and learned148

distribution pϕ:149

Ey|G,S [log

∫
pψ(y|G,S, z)pϕ(z|G,S)dz]

≥ Ey|G,S [log pψ(y|G,S, z)]−DKL(qϕ(z|G,S)||pϕ(z|G,S)) (4)

= −ζCE −DKL(qϕ(z|G,S)||pϕ(z|G,S)), (5)

where pψ(y|G,S) represents the predicted probability of label based on the input graph and reference150

set, ζCE is the cross entropy loss function. Please see the detailed derivation in the supplementary151

file. As the expected Bernoulli distribution qϕ(z|G,S) is independent from the input graph and152

reference set, qϕ(z|G,S) can be denoted as q(z). After adding the soft-orthogonal constraint on the153

reference set, therefore, the final optimization objective can be converted to minimize:154

ζ = ζCE +DKL(q(z)||pϕ(z|G,S)) + β||SS⊺ − cI||F , (6)

where the second term forces the sampling factor to follow an expected distribution q, the matrix S155

stacks the vectors of reference set S in the third term, I denotes the identity matrix, β is a trade-off156

hyper-parameter, and c is a learnable scalar. Thus, the learning of the sampling factor could be157

integrated into the objective function as a joint training process. In addition, we can easily extend the158

above single-layer BernPool into multi-layer networks by deploying independent sampling factors in159

sequential graph pooling.160

4.3 Bernoulli Sampling Factor Learning161

To extract an expressive sub-graph G̃ from the original or former-layer graph G, we estimate a162

probabilistic factor z = (z1, · · · , zn)⊺ ∈ {0, 1}n that conforms to Bernoulli distribution, instead163

of a deterministic way such as top-k. In contrast to the deterministic way, our BernPool possesses164

4

a more diverse sampling in mining substructures and graph topological variation of input data.165

However, as mentioned above in Eqn. (3), it’s rather non-trivial to infer z through Bayes rule:166

p(z|G,S) = p(z)p(G,S|z)/p(G,S). A reason is that the prior p(G,S|z) is intractable. We resort167

to the variational inference to approximate the intractable true posterior p(z|G,S) with q(z) by168

constraining the KL-divergence DKL(qϕ(z)||pϕ(z|G,S)).169

To make the gradient computable, we employ the reparameterization trick to derive p(z|G,S) = B(p),170

where B(·) denotes the Bernoulli distribution based on the probability vector. Concretely, we take171

the graph convolution feature H and the matrix S of reference set as input, to learn the sampling172

probability p. A simple formulation with a fully-connected operation is given as follows:173

p = sigmoid(MLP(cos(H,S))), (7)

where cos(H,S) computes the pairwise similarities (across all graph nodes and all reference points)174

through the cosine measurement, and sigmoid(·) is the sigmoid function.175

4.4 Bernoulli Hybrid Graph Pooling176

Based on the above inferred sampling factor z, we propose a hybrid graph pooling to learn expressive177

substructures while endeavoring to reserve graph information. The hybrid graph pooling contains178

two components: Bernoulli node dropping and Bernoulli node clustering. The former prunes those179

unsampled nodes and associated edges to generate a compact graph; the latter clusters neighbor nodes180

to form a coarsening graph.181

Bernoulli Node Dropping. Let idx ∈ Rñ denotes the indices of the preserved nodes according to the182

sampling factor z, thus a projection matrix P ∈ {0, 1}ñ×n can be defined formally:183

P = diag(z)[idx, :], (8)

where diag(·) is the vector diagonalization operation, and X[idx, :] extracts those rows of X w.r.t the184

indices idx. Accordingly, the compact subgraph G̃ = (H̃, Ã) can then be computed by:185

H̃ = PH, Ã = PAP⊺, (9)

where H̃ ∈ Rñ×d is the feature matrix of the compact graph, and Ã ∈ Rñ×ñ is the subgraph186

adjacency matrix. Intuitively, the dropping directly removes those unselected nodes and connective187

edges from the input graph.188

Bernoulli Node Clustering. After Bernoulli sampling, we can obtain those reserved nodes, which189

could be used as the clustering centers. Hereby, we only need to transmit those unselected nodes’190

messages to cluster centers, which would preserve more information of the whole input graph.191

Compared with previous graph clustering methods, Bernoulli clustering is more efficient because the192

learning of the assignment matrix is bypassed, while increasing the diversity of graph perception. To193

be specific, our assignment matrix P′ ∈ Rñ×n is from the original adjacency matrix A, and we can194

get the coarsening graph as:195

P′ = (diag(z)[idx, :])×A, H̃′ = P′H, (10)

where H̃′ ∈ Rñ×d denotes the diffusion features based on input graph, the coarsening graph has the196

same adjacency matrix Ãi as in Eqn. (9).197

Hybrid Graph. Based on the aforementioned operations, we can obtain the compact subgraph198

G̃ = (H̃, Ã) and the coarsening graph G̃′ = (H̃′, Ã), which reflect different aspects of information in199

the original graph. To fully exploit the extracted informative node representations and expressive sub-200

structures, the two subgraphs are fused to form the final pooled graph by the following formulation:201

Ĥ = σ((H̃+ H̃′)Wh), (11)

where σ denotes a non-linear activation function and Wh ∈ Rd×d is a learnable weight, and202

Ĥ ∈ Rñ×d is the aggregated node embeddings of the pooled graph.203

5

4.5 Readout Function204

The proposed framework repeats the graph convolution and BernPool operations three times. To205

obtain a fixed-size graph-level representation, we apply the concatenation of max-pooling and mean-206

pooling in each subgraph following the previous works [37, 29, 22]. Finally, those graph-level207

representations can be summarized to form the final embeddings:208

r =
∑
l=1,···

r(l), and r(l) = σ(
1

n
(l)
i

n
(l)
i∑
i=1

Ĥ
(l)
i ||

n
(l)
i

max
i=1

Ĥ
(l)
i), (12)

where Ĥ
(l)
i denotes the i-th node feature at the l-th pooling, σ is the same non-linear activation209

function, and || denotes the feature concatenation operation. The resulting embeddings would finally210

be fed into a multi-layer perceptron to predict graph labels.211

4.6 Computational Complexity212

The computational complexity of one-layer BernPool can be expressed as O(N ×K×d+N ′×N ×213

d+N ′ × d× d), where N denotes the number of nodes, K is the number of reference points, d is214

the dimensionality of nodes features, N ′ represents the number of preserved nodes. Specifically, the215

complexity of probability score computation is O(N ×K × d), and the complexity of the Bernoulli216

hybrid graph pooling module is O(N ′ ×N × d+N ′ × d× d).217

5 Experiments218

5.1 Experimental Setup219

Datasets. To comprehensively evaluate our proposed model, we conduct extensive experiments220

on eight widely used datasets in the graph classification task, including three social network221

datasets (IMDB-BINARY, IMDB-MULTI [31] and COLLAB[32]) and five Bioinformatics datasets222

(PROTEINS[8], DD[4], NCI1[24], Mutagenicity[15] and ENZYMES[2]). The detailed information223

and statistics of these datasets are summarized in Table. 1.224

Baselines. We compare our proposed method with several state-of-the-art graph pooling methods,225

including three backbones (GCN, GAT, GraphSAGE), eight node drop graph pooling methods226

(TopkPool[10], SAGPool[17], ASAP[22], VIPool[18], iPool[11], CGIPool[20], SEP-G [29] and227

MVPool [37]), three clustering pooling methods (Diffpool[33], MincutPool[1], and StructPool[34]),228

three global pooling methods (Set2Set[26], SortPool[36], DropGIN[21]) and one other pooling229

method (EdgePool[3]).230

Implementation Details. We employ the 10-fold cross-validation protocol following the settings of231

[29, 22] and report the average classification accuracies and standard deviation. For all used datasets,232

we set the expected pooling ratio as 0.8, the node embedding dimension d as 128, the number of233

reference points as 32, and the hyper-parameter β in Eqn. 6 as 5. We adopt the Adam optimizer to234

train our model with 1000 epochs, where the learning rate and weight decay are set as 1e-3 and 1e-4,235

respectively. Our proposed BernPool is implemented with PyTorch and Pytorch Geometric [9].236

5.2 Comparison with the state-of-the-art Methods237

The graph classification results of BernPool and other state-of-the-art methods are presented in Table 1.238

In general, most hierarchical pooling approaches including our proposed BernPool can perform better239

than those global pooling ones in the graph classification task. This may be because global pooling240

methods ignore the hierarchical graph structures in generating graph-level representation. In particular,241

our BernPool achieves state-of-the-art performance on all datasets, which demonstrates the robustness242

of our framework against graph structure data variation. In contrast, previous methods cannot perform243

well on all eight datasets, while the second highest performances on different datasets are obtained244

by five different methods. Compared with those methods, Our BernPool outperforms respectively245

by 1.09%, 3.16%, 13.6%, 2.7%, and 1.86% on the PROTEINS, Mutagenicity, ENZYMES, IMDB-246

BINARY and COLLAB datasets.247

6

Table 1: The statistics of eight datasets and graph classification accuracies comparison of
different methods. We have highlighted the best results in black and marked the second-highest
accuracies with the symbol †.

Bioinformatics Social Network

PROTEINS DD NCI1 Mutagenicity ENZYMES IMDB-B IMDB-M COLLAB

#Graphs(Classes) 1113 (2) 1178 (2) 4110 (2) 4337 (2) 600 (6) 1000 (2) 1500 (3) 5000 (3)

Avg # Nodes 39.1 284.3 29.8 30.3 32.6 19.8 13.0 74.5

Avg # Edges 72.8 715.7 32.3 30.8 62.1 96.5 65.9 2457.8

GCN[16] 74.84±2.82 78.12±4.33 76.3±1.8 79.8±1.6 50.00±5.87 72.67±6.42 50.40±3.02 71.92±3.24

GAT[25] 74.07±4.53 75.56±3.72 74.9±1.7 78.8±1.2 51.00±5.23 74.07±4.53 49.67±4.30 75.80±1.60

GraphSAGE[13] 73.75±2.97 77.27±4.06 74.7±1.3 78.9±2.1 53.33±3.42 72.17±5.29 48.53±5.43 79.70±1.70

Set2Set[26] 73.27±0.85 71.94±0.56 68.55±1.92 71.35±2.1 - 72.90±0.75 50.19±0.39 79.55±0.39

SortPool[36] 73.27±0.85 75.58±0.72 73.82±1.96 70.66±1.51 49.67±4.27 72.12±1.12 48.18±0.83 77.87±0.47

DropGIN[21] 76.3±6.1 - - - - 75.7±4.2 51.4±2.8 -

EdgePool[3] 72.50±3.2 75.85±0.58 - - - 72.46±0.74 50.79±0.59 67.10±2.7

DiffPool[33] 73.03±1.00 77.56±0.41 62.32±1.90 77.60±2.70 61.83±5.3 73.14±0.70 51.31±0.72 78.68±0.43

StructPool[34] 80.36 84.19 - - 63.83 74.70 52.47 74.22

MinCutPool[1] 76.5±2.6 80.8±2.3 74.25±0.86 79.9±2.1 - 72.65±0.75 51.04±0.70 83.4±1.7†

TopKPool[10] 70.48±1.01 73.63±0.55 67.02±2.25 79.14±0.76 50.33±6.3 71.58±0.95 48.59±0.72 77.58±0.85

SAGPool[17] 71.86±0.97 76.45±0.97 67.45±1.11 72.40±2.40 52.67±5.8 72.55±1.28 50.23±0.44 78.03±0.31

ASAP[22] 74.19±0.79 76.87±0.70 71.48±0.42 80.12±0.88 - 72.81±0.50 50.78±0.75 78.64±0.50

VIPool[18] 79.91±4.1 82.68±4.1† - 80.19±1.02 57.50±6.1 78.60±2.3† 55.20±2.5† 78.82±1.4

iPool[11] 76.46±3.22 78.76±3.45 80.46±1.66† - 56.00±7.72 72.90±3.08 50.73±3.68 76.86±1.67

SEP-G[29] 76.42±0.39 77.98±0.57 78.35±0.33 - - 74.12±0.56 51.53±0.65 81.28±0.15

CGIPool[20] 74.10±2.31 - 78.62±1.04 80.65±0.79† - 72.40±0.87 51.45±0.65 80.30±0.69

MVPool[37] 82.2±1.2† 78.4±1.5 77.5±1.3 80.2±0.8 62.4±2.5† - 48.6±1.0 -

BernPool(Ours) 83.29± 3.69 83.27± 2.95 81.44± 1.09 83.81± 1.43 76.00± 3.78 81.30± 3.50 55.93± 3.8 85.26± 1.35

Moreover, the proposed BernPool significantly surpasses GNNs (GCN, GAT, GraphSAGE) without248

adding the pooling operation, which verifies our BernPool can effectively learn representative249

substructures and preserve graph topological information. SEP-G [29] gains better performance250

compared with other node drop pooling methods, which utilizes the structural entropy to assess the251

importance of each graph node. However, our BernPool exhibits an average 5% relative improvement252

over SEP-G. This can be attributed to our method of learning sampling factors in a probabilistic253

manner, which possesses more diversity in mining expressive sub-structures compared with the254

deterministic way. Compared to DiffPool [33], our BernPool outperforms it on all used datasets,255

verifying the effectiveness of our proposed hybrid graph pooling module, which jointly leverages the256

advantages of both node drop and clustering methods. Particularly, DropGIN [21] randomly drops257

nodes in the training process, which is also a probabilistic manner. Our BernPool outperforms it by258

6.99%, 5.6%, and 4.53% on the PROTEINS, IMDB-BINARY, and IMDB-MULTI datasets. This is259

because our BernPool considers the characteristics of data and can adaptively handle the topology260

variations.261

6 Ablation Study262

Effectiveness of the proposed BernPool using GCN variants. To evaluate the performance of263

our method by employing different convolution layers, we integrate three widely used ones (i.e.,264

GCN[16], GAT[25] and GraphSAGE[13]) into our BernPool framework. The results on eight datasets265

are shown in Table 2. It can be observed that all three variants (BernPool-GCN, BernPool-GAT,266

BernPool-GraphSAGE) outperform their corresponding backbones, significantly improving the graph267

classification performances. This observation validates the effectiveness of the proposed BernPool.268

Effectiveness of Bernoulli hybrid graph pooling. To verify the effectiveness of our proposed269

Bernoulli hybrid graph pooling, we further conduct experiments on eight datasets. As the hybrid graph270

pooling consists of node dropping and clustering. We separately remove one of the channels and keep271

the other parts the same. We name the BernPool without dropping and clustering as "BernPool w/o272

Dropping" and "BernPool w/o Clustering", respectively. The detailed results are reported in Table 3.273

7

Table 2: Graph classification accuracies of BernPool using different backbones. The default
backbone is GCN.

Variants
Bioinformatics Social Network

PROTEINS DD NCI1 Mutagenicity ENZYMES IMDB-B IMDB-M COLLAB

#Graphs(Classes) 1113 (2) 1178 (2) 4110 (2) 4337 (2) 600 (6) 1000 (2) 1500 (3) 5000 (3)

GCN 74.84±2.82 78.12±4.33 76.3±1.8 79.8±1.6 50.00±5.87 72.67±6.42 50.40±3.02 71.92±3.24

BernPool-GCN 83.29±3.69 ↑ 83.27±2.95 ↑ 81.44±1.09 ↑ 83.81±1.43 ↑ 76.00±3.78 ↑ 81.30±3.5 ↑ 55.93±3.8 ↑ 85.26±1.35 ↑
GAT 74.07±4.53 75.56±3.72 74.9±1.7 78.8±1.2 51.00±5.23 74.07±4.53 49.67±4.30 75.80±1.60

BernPool-GAT 81.49±3.81 ↑ 83.44±3.57 ↑ 81.29±1.77 ↑ 84.34±1.58 ↑ 69.50±5.45 ↑ 81.20±3.39 ↑ 55.00±4.47 ↑ 83.86±1.57 ↑
GraphSAGE 73.75±2.97 77.27±4.06 74.7±1.3 78.9±2.1 53.33±3.42 72.17±5.29 48.53±5.43 79.70±1.70

BernPool-GraphSAGE 83.20±4.21 ↑ 82.25±3.49 ↑ 82.34±1.61 ↑ 84.67±1.26 ↑ 75.67±3.78 ↑ 81.60±3.60 ↑ 55.47±3.87 ↑ 84.56±1.02 ↑

Table 3: Performance Comparison between BernPool and its variants.

Variants
Bioinformatics Social Network

PROTEINS DD NCI1 Mutagenicity ENZYMES IMDB-B IMDB-M COLLAB

#Graphs(Classes) 1113 (2) 1178 (2) 4110 (2) 4337 (2) 600 (6) 1000 (2) 1500 (3) 5000 (3)

BernPool w/o Clustering 81.94±4.27 81.66±2.82 78.22±7.69 82.57±1.44 73.00±3.67 80.60±3.13 55.80±4.11 84.52±1.14

BernPool w/o Dropping 82.40±4.02 82.08±3.98 76.20±10.24 82.75±1.44 72.50±4.25 81.30±3.23 55.60±4.16 85.06±1.18

BernPool 83.29±3.69 83.27± 2.95 81.44± 1.09 83.81± 1.43 76.00± 3.78 81.30± 3.5 55.93± 3.8 85.26± 1.35

Table 4: Performance comparison between deterministic and probabilistic manner.

Variants
Bioinformatics Social Network

PROTEINS DD NCI1 Mutagenicity ENZYMES IMDB-B IMDB-M COLLAB

#Graphs(Classes) 1113 (2) 1178 (2) 4110 (2) 4337 (2) 600 (6) 1000 (2) 1500 (3) 5000 (3)

BernPool-TopK 81.77±3.53 82.09±3.25 81.09±1.77 83.26±1.08 68.17±3.72 80.20±3.74 55.47±3.51 84.50±1.40

BernPool 83.29±3.69 83.27± 2.95 81.44± 1.09 83.81± 1.43 76.00± 3.78 81.30± 3.5 55.93± 3.8 85.26± 1.35

Notably, our BernPool employs just one channel can achieve good results, which demonstrates the274

effectiveness of BernPool leveraging a probabilistic manner to infer sampling factors. We can observe275

that the "BernPool w/o Dropping" outperforms "BernPool w/o Clustering" by 0.46%, 0.42%, 0.70%,276

and 0.54% on PROTEINS, DD, IMDB-BINARY, and COLLAB datasets, respectively. Furthermore,277

jointly using both channels can outperform either "BernPool w/o Dropping" or "BernPool w/o278

Clustering", which verifies the effectiveness of our proposed hybrid graph pooling.279

Comparison between the probabilistic and deterministic manner. To make clear the benefit280

of our proposed probabilistic sampling method, we conduct experiments by replacing Bernoulli281

sampling with Topk pooling which is in a deterministic manner. In the TopK experiments, we still282

employ reference set to assess the importance of nodes and the hybrid graph pooling module to jointly283

learn representative sub-structures and preserve graph topological information. The comparison284

between "BernPool-TopK" and "BernPool" is presented in Table 4. It can be observed that BernPool285

outperforms BernPool-TopK on all used eight datasets, especially 7.83% accuracy gains in the286

ENZYMES dataset, verifying the effectiveness of our designed Bernoulli-deduced sampling strategy.287

Benefit of the orthogonality for reference set. To evaluate the benefit of orthogonality for the288

reference set, we conduct experiments that remove the orthogonal constraint from BernPool (referred289

to as "BernPool w/o orthogonal" in Fig. 2(a)). The results demonstrate that employing the orthogonal290

reference set can improve average accuracy by more than 0.6% on three datasets. This verifies the291

effectiveness of the orthogonal constraint for the reference set.292

Model parameter quantity comparison. We compare the test accuracy and parameter quantity293

(only the pooling layer) of BernPool with other pooling methods in the PROTEINS dataset, where294

the hidden layer dimension is set to 128. BernPool achieves superior performance while using295

fewer parameters. Specifically, BernPool owns 97% fewer parameters than CGIPool and 76% fewer296

parameters than ASAP. In terms of accuracy, BernPool performs the best, achieving 9.19% higher297

than CGIPool and 9.10% higher accuracy than ASAP.298

8

IMDB-B PROTEINS COLLAB
60

65

70

75

80

85

Ac
cu

ra
cy

81.0 82.22
84.7

81.3
83.29

85.26

BernPool w/o orthogonality BernPool

(a) Benefit of orthogonality for ref-
erence set

0 100 200 300 400 500
70

72

74

76

78

80

82

Ac
cu

ra
cy

BernPool
TopkPool
ASAP
EdgePool
SAGPool
CGIPool

(b) Parameter quantity (KB)
0.0 0.2 0.4 0.6 0.8

70

72

74

76

78

80

82

Ac
cu

ra
cy

BernPool
TopkPool
ASAP
EdgePool
SAGPool
CGIPool

(c) Inference time (seconds)

Figure 2: The benefit of orthogonality reference set and comparison of parameter quantity and
inference time.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
50
55
60
65
70
75
80
85

Ac
cu

ra
cy

PROTEINS
NCI1

(a) Pooling ratio
1 2 3 4

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

PROTEINS
NCI1

(b) Model layers
32 64 128 256

50
55
60
65
70
75
80
85

Ac
cu

ra
cy

PROTEINS
NCI1

(c) Hidden layer dimension

Figure 3: The performance of different hyper-parameters on PROTEINS and NCI1 datasets.

Inference time comparison. The computation complexity of our BernPool is described in Section 4.6.299

Moreover, the inference time also plays a crucial role in evaluating the efficiency of pooling methods.300

Thus we conduct experiments on the PROTEINS dataset containing about 20,000 nodes and 70,000301

edges to compare the inference time (single-layer). As shown in Fig. 2(c), BernPool costs less302

inference time than EdgePool and ASAP while maintaining superior performance. Notably, SAGPool303

has a similar inference time as our method, but our method outperforms it in terms of classification304

accuracy. The comparison results verify the high efficiency of our BernPool.305

Sensitivity of Hyper-parameters. To evaluate the sensitivity of hyper-parameters, including the306

pooling ratio, layer number, and hidden layer dimension, we additionally conduct experiments on307

PROTEINS and NCI1 datasets. Specifically, we vary the pooling ratio from 0.2 to 0.8 with a step308

length of 0.2, the number of layers from one to four, and the hidden layer dimensions range from 16309

to 128. The results are presented in Fig. 3. We can observe that BernPool overall exhibits robustness310

to variations of parameters. However, performance fluctuations can be observed on the NCI1 dataset311

when we evaluate the effect of different pooling ratios for BernPool. This may be attributed to the312

relatively less average number of nodes resulting in less information being retained after performing313

three pooling layers consecutively. The results shown in Fig. 3(b) indicate that setting the layer314

number to three achieves the best performance on the PROTEINS and NCI1 datasets. However,315

increasing the number of layers will require more computation resources and longer training time. As316

shown in Fig. 3(c), the highest accuracy is achieved when the dimension size is set as 128. With the317

dimension increasing, the accuracy presents a slight increase trend, which suggests that increasing318

the dimension size can enhance the model’s capacity to capture more complex representations of the319

input graph. However, larger dimension sizes increase computation burdens. Thus we set the pooling320

ratio as 0.8, the layer number as 3, and the dimension as 128 in our framework.321

7 Conclusion322

In this paper, we proposed a simple and effective graph pooling method, called Graph Bernoulli323

Pooling (BernPool) to promote the graph classification task. Specifically, a probabilistic Bernoulli324

sampling was designed to estimate the sampling probabilities of graph nodes, and to further extract325

more useful information, we introduced a learnable reference set to encode nodes into a latent326

expressive probability space. Compared with the deterministic way, BernPool possessed more327

diversity to capture salient substructures. Then, to jointly learn representative substructures and328

preserve graph topology information, we proposed a hybrid graph pooling paradigm that fuses two329

pooling manners. We evaluate BernPool on multiple widely used datasets and dissected the framework330

with ablation analysis. The experimental results show that BernPool outperforms state-of-the-art331

methods and demonstrates the effectiveness of our proposed modules.332

9

References333

[1] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph334

neural networks for graph pooling. In International conference on machine learning, pages335

874–883. PMLR, 2020.336

[2] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J337

Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics,338

21(suppl_1):i47–i56, 2005.339

[3] Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint340

arXiv:1905.10990, 2019.341

[4] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes342

without alignments. Journal of molecular biology, 330(4):771–783, 2003.343

[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,344

Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning345

molecular fingerprints. Advances in neural information processing systems, 28, 2015.346

[6] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,347

Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning348

molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,349

editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates,350

Inc., 2015.351

[7] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,352

Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning353

on graphs. Advances in neural information processing systems, 33:22092–22103, 2020.354

[8] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt.355

Scalable kernels for graphs with continuous attributes. Advances in neural information process-356

ing systems, 26, 2013.357

[9] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.358

arXiv preprint arXiv:1903.02428, 2019.359

[10] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,360

pages 2083–2092. PMLR, 2019.361

[11] Xing Gao, Wenrui Dai, Chenglin Li, Hongkai Xiong, and Pascal Frossard. ipool—information-362

based pooling in hierarchical graph neural networks. IEEE Transactions on Neural Networks363

and Learning Systems, 33(9):5032–5044, 2021.364

[12] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In365

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,366

pages 729–734 vol. 2, 2005.367

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large368

graphs. Advances in neural information processing systems, 30, 2017.369

[14] Takeshi D Itoh, Takatomi Kubo, and Kazushi Ikeda. Multi-level attention pooling for graph370

neural networks: Unifying graph representations with multiple localities. Neural Networks,371

145:356–373, 2022.372

[15] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for373

mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005.374

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional375

networks. arXiv preprint arXiv:1609.02907, 2016.376

[17] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International377

conference on machine learning, pages 3734–3743. PMLR, 2019.378

10

[18] Maosen Li, Siheng Chen, Ya Zhang, and Ivor Tsang. Graph cross networks with vertex infomax379

pooling. Advances in Neural Information Processing Systems, 33:14093–14105, 2020.380

[19] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In381

Proceedings of the twelfth international conference on Information and knowledge management,382

pages 556–559, 2003.383

[20] Yunsheng Pang, Yunxiang Zhao, and Dongsheng Li. Graph pooling via coarsened graph384

infomax. In Proceedings of the 44th International ACM SIGIR Conference on Research and385

Development in Information Retrieval, pages 2177–2181, 2021.386

[21] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random387

dropouts increase the expressiveness of graph neural networks. Advances in Neural Information388

Processing Systems, 34:21997–22009, 2021.389

[22] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling390

for learning hierarchical graph representations. In Proceedings of the AAAI Conference on391

Artificial Intelligence, volume 34, pages 5470–5477, 2020.392

[23] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.393

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.394

[24] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M395

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),396

2011.397

[25] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua398

Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.399

[26] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for400

sets. arXiv preprint arXiv:1511.06391, 2015.401

[27] Zhengyang Wang and Shuiwang Ji. Second-order pooling for graph neural networks. IEEE402

Transactions on Pattern Analysis and Machine Intelligence, 2020.403

[28] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for404

graph classification. In Proceedings of the 30th ACM International Conference on Information405

& Knowledge Management, pages 2091–2100, 2021.406

[29] Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchi-407

cal pooling. In International Conference on Machine Learning, pages 24017–24030. PMLR,408

2022.409

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural410

networks? arXiv preprint arXiv:1810.00826, 2018.411

[31] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM412

SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,413

2015.414

[32] Pinar Yanardag and SVN Vishwanathan. A structural smoothing framework for robust graph415

comparison. Advances in neural information processing systems, 28, 2015.416

[33] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.417

Hierarchical graph representation learning with differentiable pooling. Advances in neural418

information processing systems, 31, 2018.419

[34] Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields.420

In Proceedings of the 8th International Conference on Learning Representations, 2020.421

[35] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in422

neural information processing systems, 31, 2018.423

11

[36] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning424

architecture for graph classification. In Proceedings of the AAAI conference on artificial425

intelligence, volume 32, 2018.426

[37] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Zhao Li, Chengwei Yao, Huifen Dai,427

Zhi Yu, and Can Wang. Hierarchical multi-view graph pooling with structure learning. IEEE428

Transactions on Knowledge and Data Engineering, 35(1):545–559, 2021.429

12

	Introduction
	Related Work
	Preliminaries
	The Proposed BernPool
	Overview
	Bernoulli Sampling Optimization Objective
	Bernoulli Sampling Factor Learning
	Bernoulli Hybrid Graph Pooling
	Readout Function
	Computational Complexity

	Experiments
	Experimental Setup
	Comparison with the state-of-the-art Methods

	Ablation Study
	Conclusion

