
Spatio-Spectral Graph Neural Networks

Simon Geisler†, Arthur Kosmala†, Daniel Herbst, and Stephan Günnemann
Department of Computer Science & Munich Data Science Institute

Technical University of Munich
{s.geisler, a.kosmala, d.herbst, s.guennemann}@tum.de

Abstract

Spatial Message Passing Graph Neural Networks (MPGNNs) are widely used for
learning on graph-structured data. However, key limitations of ℓ-step MPGNNs
are that their “receptive field” is typically limited to the ℓ-hop neighborhood of
a node and that information exchange between distant nodes is limited by over-
squashing. Motivated by these limitations, we propose Spatio-Spectral Graph
Neural Networks (S2GNNs) – a new modeling paradigm for Graph Neural Net-
works (GNNs) that synergistically combines spatially and spectrally parametrized
graph filters. Parameterizing filters partially in the frequency domain enables
global yet efficient information propagation. We show that S2GNNs vanquish
over-squashing and yield strictly tighter approximation-theoretic error bounds
than MPGNNs. Further, rethinking graph convolutions at a fundamental level
unlocks new design spaces. For example, S2GNNs allow for free positional en-
codings that make them strictly more expressive than the 1-Weisfeiler-Leman
(WL) test. Moreover, to obtain general-purpose S2GNNs, we propose spectrally
parametrized filters for directed graphs. S2GNNs outperform spatial MPGNNs,
graph transformers, and graph rewirings, e.g., on the peptide long-range bench-
mark tasks, and are competitive with state-of-the-art sequence modeling. On a
40 GB GPU, S2GNNs scale to millions of nodes.

1 Introduction

Figure 1: S2GNN principle.

Spatial Message-Passing Graph Neural Networks (MPGNNs) ush-
ered in various recent breakthroughs. For example, MPGNNs are
able to predict the weather with unprecedented precision (Lam et al.,
2023), can be composed as a foundation model for a rich set of tasks
on knowledge graphs (Galkin et al., 2023), and are a key component
in the discovery of millions of AI-generated crystal structures (Mer-
chant et al., 2023). Despite this success, MPGNNs produce node-
level signals solely considering limited-size neighborhoods, effec-
tively bounding their expressivity. Even with a large number of
message-passing steps, MPGNNs are limited in their capability of
propagating information to distant nodes due to over-squashing. As
evident by the success of global models like transformers (Vaswani
et al., 2017), modeling long-range interactions can be pivotal and an
important step towards foundation models that understand graphs.

We propose Spatio-Spectral Graph Neural Networks (S2GNNs),
a new modeling paradigm for tackling the aforementioned limita-
tions, that synergistically combine message passing with spectral filters, explicitly parametrized in
the spectral domain. Spectral filters are virtually ignored by prior work but go beyond stacks of
message-passing layers or polynomial parametrizations. Due to message passing’s finite number

38th Conference on Neural Information Processing Systems (NeurIPS 2024). † equal contribution.

of propagation steps, it comes with a distance cutoff pcut (# hops, see Fig. 1). Conversely, spectral
filters act globally (pmax), even on a truncated frequency spectrum λcut. Truncating the frequency
spectrum for spectral filters is required for efficiency, yet message passing has access to the entire
spectrum (right plots in Fig. 1). The combination of message passing and spectral filters provably
leverages the strengths of each parametrization. Utilizing this combination, S2GNNs generalize the
concept of “virtual nodes” and distill many important properties of hierarchical message-passing
schemes, graph-rewirings, and pooling into a single GNN (see Fig. 3). Outside of GNNs, a similar
composition is at the core of some State Space Models (SSM) models (Poli et al., 2023), that deliver
transformer-like properties with superior scalability on sequences – as do S2GNNs on graphs.

Our analysis of S2GNNs (§ 3.1) validates their capability for modeling long-range interactions.
We prove in § 3.1.1 that combining spectral and spatial filters alleviates the over-squashing phe-
nomenon (Alon & Yahav, 2020; Di Giovanni et al., 2023a,b), a necessity for effective information-
exchange among distant nodes. Our approximation-theoretic analysis goes one step further and
proves strictly tighter error bounds in terms of approximation of the target idealized GNN (§ 3.1.2).

Synergistic composition of
spectral filters & spatial message passing

Vanquishes over-squashing (§ 3.1.1)
Superior approximation capabilities (§ 3.1.2)

D
es

ig
n

Sp
ac

e
§

3.
2 Spatial message passing (see literature)

Spectral filter parametrization (§ 3.2.1)
Spectral-domain MLP (§ 3.2.2)
Spectral filter for directed graphs (§ 3.2.3)
Dual use of partial Eigendecomposition (EVD):

free-of-cost Positional Encodings (PE) (§ 3.2.4)

Figure 2: S2GNN framework with adjacency matrix A, node
features X , and Laplacian L (function of A).

Design space of S2GNNs (§ 3.2).
Except for initial works like
(Bruna et al., 2014) and in con-
trast to spatial MPGNNs, the de-
sign decisions for spectral filters
are virtually unexplored – and
so is their composition. The
novel aspects of S2GNN’s de-
sign space include the spectral
filter parametrization (§ 3.2.1).
We propose the first permutation-
equivariance-preserving neural network in the spectral domain (§ 3.2.2) and generalize spectral
filters to directed graphs (§ 3.2.3). The dual use of the partial eigendecomposition, required for spec-
tral filters, allows us to propose “free-of-cost” positional encodings (§ 3.2.4), that are permutation-
equivariant, stable, and increase expressivity strictly beyond the 1-Weisfeiler-Leman (WL) test.

S2GNNs are effective and practical. We empirically verify the shortcomings of MPGNNs and how
S2GNNs overcome them (§ 4). E.g., we set a new state-of-the-art on peptides-func (Dwivedi et al.,
2022) with ≈ 35% fewer parameters, outperforming MPGNNs and graph transformers. Although
sequences are just a subdomain of (directed) graphs, we also study how S2GNNs compare to spe-
cialized sequence models like transformers (Vaswani et al., 2017) or Hyena (Poli et al., 2023). We
find that S2GNNs are highly competitive even though they operate on a much more general domain
(un-/directed graphs). Last, the runtime and space complexity of S2GNNs is equivalent to MPGNNs
and, with vanilla full-graph training, S2GNNs can handle millions of nodes with a 40 GB GPU.

2 Background

We study graphs G(A,X) with adjacency matrix A ∈ {0, 1}n×n (or A ∈ Rn×n≥0 if weighted),
node features X ∈ Rn×d and edge count m. A is symmetric for undirected graphs and, thus, has
eigendecomposition λ,V = EVD(A) with eigenvalues λ ∈ Rn and eigenvectors V ∈ Rn×n: A =
V ΛV ⊤ using Λ = diag(λ). Instead of A, we decompose the Laplacian L := I −D−1/2AD−1/2,
with diagonal degree matrix D = diag(A1⃗), since its ordered eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤
λn ≤ 2 are similar to frequencies (e.g., low eigenvalues relate to low frequencies, see Fig. 4).
Likewise, one could use, e.g., L = I−D−1A or more general variants (Yang et al., 2023); however,
we focus our explanations on the most common choice L := I −D−1/2AD−1/2. We choose the
matrix of eigenvectors V ∈ Rn×n to be orthogonal V V ⊤ = I . We refer to V as the Fourier basis
of the graph, with Graph Fourier Transformation (GFT) X̂ = V ⊤X and its inverse X = V X̂ . To
provide an overview, Table 5 lists the symbols used in this work.

Spectral graph filters. Many GNNs implement a graph convolution, where node signal X ∈ Rn×d
is convolved g ∗G X for every d with a scalar filter g ∈ Rn. The graph convolution (Hammond
et al., 2011) is defined in the spectral domain as g ∗G X := V ([V ⊤g] ⊙ [V ⊤X]), with element-
wise product ⊙ and broadcast of V ⊤g to match shapes. Instead of spatial g, spectral graph filters
parametrize ĝ : [0, 2]→ R explicitly and yield V ⊤g := ĝ(λ) ∈ Rn as a function of the eigenvalues.

2

Figure 3: Message-passing inter-
pretation of V (ĝϑ(λ) ⊙ [V ⊤X])
(spectral filter): via the Fourier co-
efficients they may exchange infor-
mation globally and allow intra-
and inter-cluster message pass-
ing. Edge width/color denotes the
magnitude/sign of V .

Message Passing Graph Neural Networks (MPGNNs) cir-
cumvent the EVD via polynomial ĝ(λ)u =

∑p
j=0 γjλ

j
u since

V [
∑p
j=0 γj diag(λ)

j]V ⊤X =
∑p
j=0 γjL

jX . In practice,
many MPGNNs use p = 1: H(l) = (γ0I + γ1L)H(l−1)

with H(0) = X , and stack 1 ≤ l ≤ ℓ layers interleaved with
node-wise transformations and activations σ. We refer to Bal-
cilar et al. (2021b) for similar interpretations of MPGNNs like
GAT (Veličković et al., 2018) or GIN (Xu et al., 2019).

3 Method

S2GNNs symbiotically pair spatial Spatial(H(l−1);A)
MPGNNs and Spectral(H(l−1);V ,λ) filters, using a partial
eigendecomposition. Even though the spectral filter operates
on a truncated eigendecomposition (spectrally bounded), it
is spatially unbounded. Conversely, spatial MPGNNs are
spatially bounded yet spectrally unbounded (see Fig. 1).

A spectrally bounded filter is sensible for modeling global
pair-wise interactions, considering its message-passing in-
terpretation of Fig. 3. Conceptually, a spectral filter consists
of three steps: ① Gather: The multiplication of the node
signal with the eigenvectors v⊤

uX (GFT) is a weighted and
signed aggregation over all nodes; ② Apply: the “Fourier co-
efficients” are weighted; and ③ Scatter broadcasts the signal vuX̂ back to the nodes (inverse
GFT). The first eigenvector (here for L = D −A) acts like a “virtual node” (Gilmer et al., 2017)
(see also § E). That is, it calculates the average embedding and then distributes this information,
potentially interlayered with neural networks. Importantly, the other eigenvectors effectively allow
messages to be passed within or between clusters. As we show for exemplary graphs in Fig. 4, low
frequencies/eigenvalues capture coarse structures, while high(er) frequencies/eigenvalues capture
details. For example, the second eigenvector in Fig. 4b contrasts the inner with the outer rectangle,
while the third eigenspace models both symmetries up/down and left/right. In conclusion, S2GNNs

(a)

(b)

Figure 4: Exemplary (lowest) eigenspaces.

augment spatial message-passing with a graph-
adaptive hierarchy (spectral filter). Thus,
S2GNNs distill many important properties of
hierarchical message-passing schemes (Bod-
nar et al., 2021), graph-rewirings (Di Gio-
vanni et al., 2023a), pooling (Lee et al., 2019)
etc. See § J.1 for more examples.

S2GNN’s composition. We study (1) an additive combination for its simpler approximation-
theoretic interpretation (§ 3.1.2), or (2) an arbitrary sequence of filters due to its flexibility. In
both cases, residual connections may be desirable (see § J.2).

H(l) = Spectral(l)(H(l−1);V ,λ) + Spatial(l)(H(l−1);A) (1)

H(ℓ) = (h(ℓ) ◦ h(ℓ−1) ◦ · · · ◦ h(1))(H(0)) with h(j) ∈ {Spectral,Spatial} (2)

Spectral Filter. The building block that turns a spatial MPGNN into an S2GNN is the spectral filter:

Spectral(l)(H(l−1);V ,λ) = V
(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤f

(l)
θ (H(l−1))

])
(3)

with a point-wise transformation f (l)θ : Rn×d(l−1) → Rn×d(l) , a learnable spectral filter ĝ(l)ϑ (λ) ∈
Rk×d(l) parameterized element-wise as ĝ

(l)
ϑ (λ)u,v := ĝ

(l)
v (λu;ϑv) (see § 3.2.1), and truncated

V ∈ Rn×k,λ ∈ Rk. Due to the combination of message passing with spectral filters, S2GNNs’ hy-
pothesis class goes beyond (finite-order) polynomials of the Laplacian L (or stacks message passing
layers), unlocking a larger class of filters. In Algo. 1, we provide pseudo code for S2GNNs (Eq. 1).

Truncated spectrum. We omit extra notation for the truncated eigendecompositon EVD(L, k)
since it is equivalent to define ĝ(λj) = 0 for j > k. However, truncating after the k-th eigen-
vector requires care with the last eigenspance to maintain permutation equivariance. Due to the

3

ambiguity of eigenvectors in the presence of repeated eigenvalues, we must ensure that we only
include eigenspaces in their entirety. That is, we only include {λj | j ≤ k ∧ λj ̸= λk+1}. Thus,
Spectral(H(l−1); EVD(L, k)) is permutation equivariant nonetheless. We defer all proofs to § H.
Theorem 1. Spectral(H(l−1); EVD(L, k)) of Eq. 3 is equivariant to all n × n permutation
matrices P ∈ P: Spectral(PH(l−1); EVD(PLP⊤, k)) = P Spectral(H(l−1); EVD(L, k)).

Complementary high-resolution filters. Our Spectral filters are highly discriminative between the
frequencies and, e.g., can readily access a single eigenspace. Yet, for efficiency, we limit the spectral
filter to a specific frequency band. Due to the combination with message passing, this choice of band
does not decide on, say, low-pass behavior; it solely determines where to increase the spectral selec-
tivity. While S2GNNs with subsequent guarantees adapt to domain-specific choices for the spectral
filter’s frequency band, a sensible default is to focus on the low frequencies. The two main reasons
for this are (see § J.3 for an extensive list): (1) Low frequencies model the smoothest global signals
w.r.t. the graph structure (see Fig. 3 & 4). (2) Under a relative perturbation model (perturbation
budget proportional to degree), stability implies C-integral-Lipschitzness (∃C > 0: |λdĝ/dλ| ≤ C),
i.e., the filter can vary strongly around zero but must level out for large λ (see Gama et al. (2020)).

3.1 Theoretical Analysis

5 10 15
Source to target distance

0.0

0.5

1.0

Ac
cu

ra
cy

GCN
Spec.
Rand.

Figure 5: Spectral filters
do not exhibit over-
squashing on “Clique
Path” graphs (Di Gio-
vanni et al., 2023a).

We show that how S2GNNs alleviate oversquashing in § 3.1.1. Next,
§ 3.1.2 makes the approximation-theoretic advantages precise.

3.1.1 S2GNNs Vanquish Over-Squashing

Alon & Yahav (2020) pointed out that MPGNNs must pass informa-
tion through bottlenecks that connect different communities using fixed-
size embedding vectors. Topping et al. (2022) and Di Giovanni et al.
(2023a) formalize this via an L1-norm Jacobian sensitivity analysis:
∥∂h(ℓ)

v /∂h(0)
u ∥L1 models the output’s h

(ℓ)
v change if altering input h(0)

u .
MPGNNs’ Jacobian sensitivity typically decays O (exp (−r)) with node distance r if the number
of walks between the two nodes is small. See § F for results of Di Giovanni et al. (2023a).

S2GNNs are not prone to such an exponential sensitivity decay due to their global message scheme.
We formalize this in Theorem 2, refer to Fig. 4 for intuition and Fig. 5 for empirical verification. All
theoretical guarantees hold if a θ exists such that fθ = I .

Theorem 2. An ℓ-layer S2GNN can be parametrized s.t. output h
(ℓ)
v has a uniformly lower-

bounded Jacobian sensitivity on a connected graph: ∥∂h(ℓ)
v /∂h(0)

u ∥L1 ≥ Cϑd/m with rows h(0)
u , h(ℓ)

v

of H(0), H(ℓ) for nodes u, v ∈ G, a parameter-dependent Cϑ, network width d and edge count m.

In contrast to Di Giovanni et al. (2023a), we prove a lower bound for S2GNNs, guaranteeing a min-
imum “influence” for any u on v. This is true since S2GNNs contain a virtual node as a special case
with ĝ(l)ϑ (λ) = 1{0}, with 1S denoting the indicator function of a set S (see also § E). However, we
find that a virtual node is insufficient for some long-range tasks, including our long-range clustering
(LR-CLUSTER) of Fig. 10b. Hence, the exponential sensitivity decay of spatial MPGNNs only shows
their inadequacy in long-range settings. Proving its absence is not sufficient to quantify long-range
modeling capabilities, noting that the lower bound is not tight for S2GNNs on many graphs. We
close this gap with our subsequent analysis rooted in polynomial approximation theory.

3.1.2 Approximation Theory: Superior Error Bounds Despite Spectral Cutoff

To demonstrate how S2GNNs can express a more general hypothesis class than MPGNNs, we study
how well an “idealized” GNN (IGNN) can be approximated. Each IGNN layer l can express convo-
lution operators g(l) of any spectral form ĝ(l) : [0, 2]→ R. We approximate IGNNs with S2GNNs
from Eq. 1, with a spectral filter as in Eq. 3 and a spatial part parametrized by a polynomial. While
we assume here that the S2GNN spectral filter is bandlimited to and a universal approximator on the
interval [0, λmax], the findings generalize to, e.g., a high-pass interval. In the main body, we focus
on the key insights for architectures without nonlinear activations. Wang & Zhang (2022) prove that
even linear IGNNs can produce any one-dimensional output under certain regularity assumptions on
the graph and input signal. Thus, we solely need to consider a single layer. In § H.4, we cover the
generic setting including nonlinearities, where multiple layers are helpful.

4

0 1 2
Eigenvalue λ

0Fi
lte

r ĝ
(λ

)

0 10 20
Node u

0

Si
gn

al

Raw True Spa. (p= 6) Spec. (k= 6) S2 (p= 3, k= 3)

(a) Spectral domain (b) Spatial domain

Figure 6: S2 filter perfectly approximates true filter (a) with a
discontinuity at λ = 0, while polynomial (“Spa.”) and spectral
(“Spec.”) alone do not. (b) shows responses on a path graph.

Locality relates to spectral
smoothness. The locality of the
true/ideal filter g is related to the
smoothness of its Fourier transform
ĝ. For instance, if g is a low-order
polynomial of L, it is localized
to a few-hop neighborhood, and
ĝ is regularized to vary slowly
(Fig. 6a w/o discontinuity). The
other extreme is a discontinuous
spectral filter ĝ, such as the en-
tirely non-local virtual node filter,
ĝ = 1{0} (discontinuity in Fig. 6a,
details in § E). This viewpoint of
spectral smoothness illuminates the limitations of finite-hop message passing from an angle that
complements spatial analyses in the over-squashing picture. It informs a lower bound on the error,
which shows that spatial message passing, i.e, order-p polynomial graph filters gγp

with p + 1
coefficients γp ∈ Rp+1, can converge exceedingly slowly – slower than any inverse root (!) of p –
to a discontinuous ground truth in the Frobenius-induced operator norm:
Theorem 3. Let ĝ be a discontinuous spectral filter. For any approximating sequence

(
gγp

)
p∈N of

polynomial filters, an adversarial sequence (Gp)p∈N of input graphs exists such that

∄α ∈ R>0 : sup
0 ̸=X∈R|Gp|×d

∥(gγp
− g) ∗Gp

X∥F
∥X∥F

= O
(
p−α

)
Superior S2GNN error bound. A spatio-spectral convolution wins over a purely spatial filter when
the sharpest irregularities of the ground truth ĝ are within reach of its expressive spectral part. The
spatial part, which can “focus” on learning the remaining, smoother part outside of this window, now
needs much fewer hops to give a faithful approximation. We illustrate this principle in Fig. 6 where
we approximate an additive combination of an order-three polynomial filter with discontinuous low-
pass. Only the S2 filter is faithfully approximating this filter. Formally, we find:
Theorem 4. Assume ĝ

∣∣
[λcut,2]

is r-times continuously differentiable on [λcut, 2], and a bound

Kr(ĝ, λcut) ≥ 0 such that
∣∣ dr
dλr ĝ(λ)

∣∣ ≤ Kr(ĝ, λcut) ∀λ ∈ [λcut, 2]. An approximating S2GNN
sequence with parameters

(
ϑ∗p,γ

∗
p

)
p∈N exists such that, for arbitrary graph sequences (Gp)p∈N,

sup
0̸=X∈R|Gp|×d

∥(gγ∗
p
+ gϑ∗

p
− g) ∗Gp

X∥F
∥X∥F

= O
(
Kr(ĝ, λcut)p

−r)
with a scaling constant that depends only on r, not on ĝ or (Gp)p∈N.

The above bound extends to purely spatial convolutions in terms of Kr(ĝ, 0) if ĝ is r-times contin-
uously differentiable on the full interval [0, 2]. The S2GNN bound of Theorem 4 is then still strictly
tighter if Kr(ĝ, λcut) < Kr(ĝ, 0). In particular, taking the limit K1(ĝ, 0)→∞ towards discontinu-
ity makes the purely spatial upper bound arbitrarily loose, whereas a benign filter might still admit a
small K1(ĝ, λcut) for some λcut > 0. Theorem 3 suggests that this is not an artifact of a loose upper
bound but that there is an inherent difficulty in approximating unsmooth filters with polynomials.

We conclude the analysis by instantiating the bounds: assuming ĝ is C-integral-Lipschitz for stabil-
ity reasons (see Gama et al. (2020) and the paragraph before § 3.1.1) yields K1(ĝ, λcut) = C/λcut,
whereas for the electrostatics example ĝσ in § G, we find upper bounds Kr(ĝσ, λcut) = r!/λ(r+1)

cut . In
both cases, the pure spatial bound diverges as smoothness around 0 remains unconstrained.

3.2 Design Space

As shown in Fig. 2, we identify three major, yet unexplored, directions in S2GNNs’ design space. In
§ 3.2.1, we discuss how we parametrize the spectral filter. In § 3.2.2, we propose the first neural net-
work for the spectral domain. That is, we allow transformations and non-linearities in the “Fourier”
domain. In § 3.2.3, we are the first to instantiate spectral filters for directed graphs. Additionally,

5

due to the availability of the partial eigendecomposition, positional encodings may dual use them
to improve epxressivity at negligible cost. In § 3.2.4, we propose the first permutation equivariant,
stable and efficient positional encodings that provably admit an expressivity beyond 1-WL. § J pro-
vides further details and considerations, like some remarks on batching (§ J.7). For the (sub-) design
space of spatial message passing (You et al., 2020), we refer to its rich literature.

3.2.1 Parametrizing Spectral Filters

Figure 7: ĝϑ(λ) with
Smearing(λ) : [0, 2]k →
Rk×z , linear map W ∈ Rz×d
(ϑ = {W }), and fixed win-
dow function Window(λ).

For spectral filter function ĝϑ(λ) of Eq. 3, we learn a channel-
wise linear combination of translated Gaussian basis functions (see
"Gaussian smearing" used by Schütt et al. (2017)), as depicted in
Fig. 7. This choice (1) may represent any possible ĝϑ(λ) with suf-
ficient resolution (assumption in § 3.1.2); (2) avoids overfitting to-
wards numerical inaccuracies of the eigenvalue calculation; (3) lim-
its the discrimination of almost repeated eigenvalues and, in turn,
should yield stability (similar to § 3.2.4). Strategies to cope with a
variable λcut and k (e.g., using attention similar to SpecFormer (Bo
et al., 2023a)) did usually not yield superior experimental results.

Window. We multiply the learned combinations of Gaussians by an envelope function (we choose
a Tukey window) that decays smoothly to zero around cutoff λcut. This counteracts the so-called
“Gibbs phenomenon” (aka “ringing”): as visualized for a path graph/sequence of 100 nodes in
Fig. 8, trying to approximate a spatially-discontinuous target signal using an ideal low-pass range of
frequency components results in an overshooting oscillatory behavior near the spatial discontinuity.
Dampening the frequencies near λcut by a smooth envelope/window function alleviates this behavior.
We note that the learned filter may, in principle, overrule the windowing at the cost of a higher weight
decay penalty. See Algo. 2 for ĝϑ(λ)’s algorithmic description.

0 50 100
Node u

0.0

0.5

1.0

Si
gn

al
x

Window
w/
w/o

Figure 8: Ringing of ideal low
pass filter on path graph.

Depth-wise separable convolution (Sifre, 2014; Howard et al.,
2017): Applying different filters for each dimension is computa-
tionally convenient for spectral filters. While “full” convolutions
are also possible, we find that such a construction is more prone to
over-fitting. In practice, we even use parameter sharing and apply
fewer filters than dimensions to counteract over-fitting. We argue
that sharing filters among dimensions is similar to the heads in a
transformer (Vaswani et al., 2017).

Feature transformations f (l)θ . As sketched in Fig. 3 & 4, all nodes
participate in the global data transfer. While this global message-passing scheme is graph-adaptive,
it does not adjust to the inputs. For adaptivity, we typically consider non-linear feature transforma-
tions f (l−1)

θ (H(l−1)), like gating mechanism f
(l−1)
θ (H(l−1)) = H(l−1)⊙σ′(H(l−1)W

(l)
G +1⃗b⊤))

with element-wise multiplication ⊙, SiLU function σ′, learnable weight W , and bias b. A linear
transformation f (l)θ (H(l−1)) = H(l−1)W (l) is another interesting case since we may first apply the
GFT and then the transformation: (V ⊤H(l−1))W (l). Next, we extend this linear transformation to
a neural network in the spectral domain by adding multiple transformations and nonlinearities.

3.2.2 Neural Network for the Spectral Domain

Applying a neural network sζ in the spectral domain is highly desirable due to its negligible com-
putational cost if k ≪ n. Moreover, sζ allows the spectral filter to become data-dependent and may
mix between channels. Data-dependent filtering is one of the properties that is hypothesized to make
transformers powerful Fu et al. (2023). We propose the first neural network for the spectral domain
of graph filters s(l)ζ : Rk×d(l) → Rk×d(l) that is designed to preserve permutation equivariance.

H(l) = Spectral(l)(H(l−1);V ,λ) = V s
(l)
ζ

(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤f

(l)
θ (H(l−1))

])
(4)

We achieve permutation equivariance via sign equivariance sζ(S ⊙ X) = S ⊙ sζ(X) , ∀S ∈
{−1, 1}k×d(l) , combined with a permutation equivariance sζ(PX) = P sζ(X) , P ∈ Pk,
where Pk is the set of all k × k permutation matrices. Specifically, we stack linear mappings
Ws ∈ Rd(l)×d(l) (without bias) with a gated nonlinearity ϕ(Ĥ) = Ĥ ⊙ σ(⃗1 [m⊤Wa + b⊤a]) with
sigmoid σ, column-wise norm mj = ∥Ĥ:,j∥, and learnable Wa ∈ Rd(l)×d(l) as well as ba ∈ Rd(l) .

6

3.2.3 Directed Graphs

Directed graphs are an important topic that did not discuss so far. For S2GNNs to generalize the
capabilities of non-local sequence models like transformers (Vaswani et al., 2017) or SSMs (Poli
et al., 2023; Gu & Dao, 2023) it is vital to support direction, e.g., for distinguishing source/beginning
and sink/end. However, all discussion before assumed the existence of the eigenvalue decomposition
of L. This was the case for symmetric L; however, for directed graphs, L may be asymmetric.

To guarantee L is diagonalizable with real eigenvalues, we use the Magnetic Laplacian (Forman,
1993; Shubin, 1994; De Verdière, 2013) which is Hermitian and models direction in the complex
domain: Lq = I − (D

−1/2
s AsD

−1/2
s)⊙ exp[i2πq(A−A⊤)] with symmetrized adjacency/degrees

As/Ds, potential q ∈ [0, 2π], element-wise exponential exp, and imaginary unit i2 = −1. While
other parametrizations of a Hermitian matrix are also possible, with A ∈ {0, 1}n×n and appropriate
choice of q, Lq : {0, 1}n×n → Cn×n is injective. In other words, every possible asymmetric
A maps to exactly one Lq and, thus, this representation is lossless. Moreover, for sufficiently
small potential q, the order of eigenvalues is well-behaved (Furutani et al., 2020). In contrast to
Koke & Cremers (2024), a Hermitian parametrization of spectral filters does not require a dedicated
propagation for forward and backward information flow. For simplicity we choose q < 1/nmax with
maximal number of nodes nmax (with binary A). This choice ensures that the first eigenvector
suffices to obtain, e.g., the topological sorts of a Directed Acyclic Graph (DAG). Due to the real
eigenvalues of a Hermitian matrix, the presented content generalizes with minor adjustments. Most
notably, we use a feature transformation f (l)θ : Rn×d(l−1) → Cn×d(l) and map back into the real
domain after the spectral convolution. We give more implementation details in § J.6 and provide
additional background on directed graphs in § C.

3.2.4 Efficient Yet Stable and Expressive Positional Encodings (a)

(b)

(c)

(d)

(e)

Figure 9: PE
discriminates
the depicted
degree-regular
graphs, except
for (a) vs. (c).

The availability of the partial eigendecomposition allows for their dual use for posi-
tional encodings at negligible cost. Motivated by this, we propose the first efficient
(O(km)) and (fully) permutation equivariant spectral Positional Encodings PE that
provably increase the expressivity strictly beyond the 1-Weisfeiler-Leman (1-WL)
test (Xu et al., 2019; Morris et al., 2019). In contrast to the Laplacian encodings of
Dwivedi & Bresson (2021), our PE do not require augmenting eigenvectors w.r.t.
their sign and maintain permutation equivariance also in the presence of repeated
eigenvalues. In comparison to Huang et al. (2024), our PE come with drastically
lower computational cost and have no learnable parameters. Due to the absence of
learnable parameters, we need to calculate our PE only once.

We construct our k-dimensional positional encodings PE(V ,λ) ∈ Rn×k as

PE(V ,λ) = ||kj=1[(V ĥj(λ)V
⊤)⊙A] · 1⃗ (5)

with concatenation || and binary adjacency A ∈ {0, 1}n×n. We use a Radial
Basis Function (RBF) filter with normalization around each eigenvalue ĥj(λ) =
softmax((λj−λ)⊙(λj−λ)/σ2) with small width σ ∈ R>0. This parametrization is
not only permutation equivariant but also stable according to the subsequent def-
inition via the Hölder continuity. Note that C depends on the eigengap between
1/(λk+1−λk) at the frequency cutoff (for exact constant C see proof in § H.5).

Definition 1 (Stable PE). (Huang et al., 2024) A PE method PE : Rn×k×Rk →
Rn×k is called stable, if there exist constants c, C > 0, such that for any Laplacian
L,L′, and P∗ = argminP ∥L− PL′P⊤∥F

∥PE(EVD(L))− P∗ PE (EVD(L′))∥F ≤ C ·
∥∥L− P∗L

′P⊤
∗
∥∥c
F
. (6)

Theorem 5. The Positional Encodings PE in Eq. 5 are stable according to Definition 1.

Next to their stability, our PE can discriminate certain degree-regular graphs (e.g., Fig. 9). Since
degree-regular graphs cannot be distinguished by 1-WL, our PE makes the equipped GNN (as ex-
pressive as 1-WL) strictly more expressive than 1-WL. See § I for continued expressivity analyses.

Theorem 6. S2GNNs are strictly more expressive than 1-WL with the PE of Eq. 5.

7

4 Empirical Results

With state-of-the-art performance on the peptides-func task of the long-range benchmark (Dwivedi
et al., 2022), plus strong results on further benchmarks, we demonstrate that S2GCN, a GCN paired
with spectral filters, is highly capable of modeling long-range interactions (§ 4.1). We assess
S2GNNs’ long sequence performance (§ 4.2) (mechanistic in-context learning) and show that
S2GCN, a graph machine learning method, can achieve competitive results to state-of-the-art se-
quence models, including H3, Hyena, and transformers. We exemplify S2GNNs’ practicality and
competitiveness at scale on large-scale benchmarks (§ 4.3) like TPUGraphs (Phothilimthana et al.,
2023), PCQM4Mv2 (Hu et al., 2021), and Open Graph Benchmark (OGB) Products (Hu et al.,
2020). Further, in § M.8, we report state-of-the-art performance on the heterophilic arXiv-year (Lim
et al., 2021) and,in § M.4, we study combinations of spatial and spectral filters beyond Eq. 1 & 2.

Setup. We pair different MPGNNs with spectral filters and name the composition S2<base>. For
example, a S2GNN with GAT as base will be called S2GAT. We typically perform 3 to 10 random
reruns and report the mean ± standard deviation. The experiments of § 4.1 require <11 GB (e.g.
Nvidia GTX 1080Ti); for the experiments in § 4.2 & 4.3 we use a 40 GB A100. We usually optimize
weights with AdamW (Loshchilov & Hutter, 2019) and cosine annealing scheduler (Loshchilov &
Hutter, 2017). We use early stopping based on the validation loss/score. See § M for more details
and https://www.cs.cit.tum.de/daml/s2gnn for code as well as supplementary material.

4.1 Long-Range Interactions

Finding (I): S2GCN outperforms state-of-the-art graph transformers, MPGNNs, and graph
rewirings on the peptides-func long-range benchmarks (Dwivedi et al., 2022) by a substantial mar-
gin. Simultaneously, we remain approximately 35% below the 500k parameter threshold and. On
peptides-struct we are only outperformed by NBA-GIN (Park et al., 2023). We extend the best con-
figuration for a GCN of Tönshoff et al. (2023) (see GCN in Table 1), lower the number of message
passing steps from six to three, and interleave spatial and spectral filters (Eq. 2) with λcut = 0.7.

Table 1: Long-range benchmark. Our S2GNN uses
≈ 35% fewer parameters than the other models. AP is
Peptides-func’s and MAE peptides-struct’s target met-
ric. The best/second best is bold/underlined.

Model peptides-func (↑) peptides-struct (↓)

Tr
an

sf
or

m
er TIGT (Choi et al., 2024) 0.6679± 0.0074 0.2485± 0.0015

MGT+WPE (Ngo et al., 2023) 0.6817± 0.0064 0.2453± 0.0025
G.MLPMixer (He et al., 2023) 0.6921± 0.0054 0.2475± 0.0015
Graph ViT (He et al., 2023) 0.6942± 0.0075 0.2449± 0.0016
GRIT (Ma et al., 2023) 0.6988± 0.0082 0.2460± 0.0012
GPS+HDSE (Luo et al., 2024) 0.7156± 0.0058 0.2457± 0.0013

Rewiring: DRew-GCN
(Gutteridge et al., 2023) 0.7150± 0.0044 0.2536± 0.0015

State Space Models: Graph Mamba
(Behrouz & Hashemi, 2024) 0.7071± 0.0083 0.2473± 0.0025

GRED (Behrouz & Hashemi, 2024) 0.7133± 0.0011 0.2455± 0.0013

G
N

N

PathNN (Michel et al., 2023) 0.6816± 0.0026 0.2545± 0.0032
CIN++ (Giusti et al., 2023) 0.6569± 0.0117 0.2523± 0.0013
NBA-GIN (Park et al., 2023) 0.7071± 0.0067 0.2424± 0.0010
GCN (Tönshoff et al., 2023) 0.6860± 0.0050 0.2460± 0.0007
S2GCN (ours) 0.7275± 0.0066 0.2467± 0.0019

+ PE (ours) 0.7311± 0.0066 0.2447± 0.0032

Dataset contribution: Clustering, given
a single seed node per cluster, measures
the ability (1) to spread information within
the cluster and (2) to discriminate between
the clusters. We complement the semi-
supervised task CLUSTER from Dwivedi
et al. (2023) with (our) LR-CLUSTER
dataset, a scaled-up version with long-
range interactions (1). We closely follow
Dwivedi et al. (2023), but instead of us-
ing graphs sampled from Stochastic Block
Models (SBMs), we sample coordinates
from a Gaussian Mixture Model (GMM)
and then connect nearby nodes. CLUSTER
has 117 nodes on average, while ours has
896. LR-CLUSTER has an average diame-
ter of ≈ 33 and often contain hub nodes
that cause over-squashing. For full details on the dataset construction, see § M.6.

Dataset contribution: Distance regression is a task with long-range interactions used in prior work
(Geisler et al., 2023; Lim et al., 2023). Here, the regression targets are the shortest path distances
to the only root node (in-degree 0). We generate random trees/DAGs with ≈750 # of nodes on
average (details are in § M.7). The target distances often exceed 30 hops. We evaluate on similarly
sized graphs as in the training data, i.e., in-distribution (ID) samples, and out-of-distribution (OOD)
samples that consist of slightly larger graphs. Details on the dataset construction are in § M.7.

Finding (II): spatial MPGNNs are less effective as S2GNNs, for long-range interactions. This is
evident for peptides Table 1, clustering Fig. 10, distance regression Fig. 11, and over-squashing
Fig. 12. Specifically, if the task requires long-range interactions beyond the receptive field of
MPGNNs, they return crude estimates. E.g., in Fig. 11, the MPGNN predicts (approx.) constantly
20 for all distances beyond its receptive field – roughly the mean in the training data. Moreover,

8

https://www.cs.cit.tum.de/daml/s2gnn

0 1 2 4 6 8 10
eigenvectors k

0.6

0.8

Ac
cu

ra
cy

← ←

 M
PG

NN

 V
irt

ua
l n

od
e

(a) 4+1 layer MP + Spec.

2 3 4 5 6 7 8 9 10
spatial MP layers

0.25

0.50

0.75

Ac
cu

ra
cy

(b) w/ one vs. w/o Spec.
Figure 10: Results on LR-CLUSTER. Solid lines
are w/, dashed lines are w/o our PE (§ 3.2.4).

0 20 40
Ground truth distance

0

20

40

Pr
ed

ict
io

n DirGCN
S2DirGCN

Figure 11: 90%
pred. intervals on
OOD DAGs.

0 50 100
Number of nodes n

0.0

0.5

1.0

Ac
cu

ra
cy

GatedGCN
S2GatedGCN

Figure 12: Over-sq.:
25-layer GatedGCN vs.
1-layer spec. ID is grey.

A Vdiag(ĝϑ(λ) : , 1)V
> Vdiag(ĝϑ(λ) : , 2)V

> Vdiag(ĝϑ(λ) : , 3)V
> Vdiag(ĝϑ(λ) : , 4)V

>

Figure 13: 4 filters on LR-CLUSTER. Large/small entries are yellow/blue, white lines mark clusters.

S2GNNs may converge faster (see Fig. 25 in § M.6.2) and are more parameter-efficient, as we show
on PCQM4Mv2 (Hu et al., 2021) in § M.9.

Finding (III): virtual nodes are insufficient. We frequently find that including more than a single
eigenvector (k > 1) yields substantial gains. We make this explicit in Fig. 10a, where we append a
single spectral layer and sweep over the number of eigenvectors k. We complement these findings
with an ablation for the frequency cutoff λcut on peptides-func in § M.5.

Finding (IV): our Positional Encodings PE consistently help, when concatenated to the node
features. While this finding is true throughout our evaluation, the differences are more pronounced
in certain situations. For example, on LR-CLUSTER in Fig. 10, the PE help with spectral filter and a
small k or without spectral filter and many message passing steps.

Table 2: 30k token asso-
ciative recall.

Model Accuracy (↑)
Transformer
(Vaswani et al., 2017) OOM

w/ FlashAttention
(Dao et al., 2022) 0.324

H3 (Fu et al., 2023) 0.084
Hyena
(Poli et al., 2023) 1.000

S2GCN (ours) 0.97± 0.05

0 500 1000
Number of nodes n

0.0

0.5

1.0

Ac
cu

ra
cy

Dir.
Undir.

Figure 14: S2GCN solves
associative recall for se-
quences varying in size
by two orders of magni-
tude. Grey area marks ID.

Finding (V): spectral filters align with clusters, as we illustrate in
Fig. 13 for four arbitrary spectral filters learned on LR-CLUSTER. We
observe that (a) the spectral filters reflect the true clustering structure,
(b) some filters are smooth while others contain details, and (c) they
model coarser or finer cluster structures (e.g., first vs. third filter).

4.2 Sequence Modelling: Mechanistic In-Context Learning

Following the evaluation of Hyena (Poli et al., 2023) and H3 (Fu et al.,
2023), we benchmark S2GCN with sequence models on the associa-
tive recall in-context learning task, stemming from mechanistic inter-
pretability (Elhage et al., 2021; Power et al., 2022; Zhang et al., 2023;
Olsson et al., 2022). In associative recall, the model is asked to retrieve
the value for a key given in a sequence. For example, in the sequence
a,0,e,b,z,9,h,2,=>,z, the target is the value for key z, which is 9
since it follows z in its prior occurrences. We create a sequence/path
graph with a node for each “token” (separated by “,” in the example
above) and label the target node with its value. We assess the perfor-
mance of S2GCN on graphs that vary in size by almost two orders of
magnitude and follow Poli et al. (2023) with a vocabulary of 30 tokens.
Moreover, we finetune our S2GCN on up to 30k nodes.

Finding (VI): our spectral filter for directed are effective and may improve generalization, as we
find in Fig. 14 (and Table 13 of § M.7).

Finding (VII): S2GCN a state-of-the-art sequence model, as it performs on par with Hyena and,
here, outperforms transformers (Table 2).

9

4.3 Large-Scale Benchmarks

Finding (VIII): S2GNNs is practical and scalable. We demonstrate this on the OGB Products
graph (2.5 mio. nodes, Table 3) and the (directed) 10 million graphs dataset TPUGraphs (average
number of nodes ≈10,000, Table 4). In both cases, we find full-graph training (without segment
training (Cao et al., 2023)) using 3 (Dir-) GCN layers interlayered with spectral filters, a reasonable
configuration on a 40 GB A100. However, for OGB Products, we find that batching is superior,
presumably because the training nodes are drawn from a “small” region of the graph (see § K).

Table 3: OGB Products.

Split Model Accuracy (↑) F1 (↑)

Train GAT 0.866±0.001 0.381±0.001
S2GAT 0.902±0.000 0.472±0.006

Val GAT 0.907±0.001 0.508±0.002
S2GAT 0.913±0.002 0.582±0.014

Test GAT 0.798±0.003 0.347±0.004
S2GAT 0.811±0.007 0.381±0.009

Table 4: Graph rank-
ing on TPUGraphs
“layout”.

Model Kendall tau (↑)
GCN 60.25
S2GCN 63.62

The cost of partial EVD for each
dataset (excluding TPUGraphs and
distance regression) is between 1 to
30 minutes on CPUs. We report the
detailed costs of EVD and experi-
ments in § M.3.

5 Related Work

Combining spatial and spectral filters has recently attracted attention outside of the graph domain
in models like Hyena (Poli et al., 2023), Spectral State Space Models (Agarwal et al., 2024), etc.
with different flavors of parametrizing the global/FFT convolution. Nevertheless, the properties of
spatial and spectral filter parametrization (e.g., local vs. global) are well-established in classical
signal processing. A combination of spectral and spatial filters was applied to (periodic) molecular
point clouds (Kosmala et al., 2023). For GNNs, Stachenfeld et al. (2020) compose a spatial and
spectral message passing but do not handle the ambiguity of the eigendecomposition and, thus, do
not maintain permutation equivariance. Moreover, Beaini et al. (2021) use the EVD for localized
anisotropic graph filters; Liao et al. (2019) propose an approach that combines spatial and spectral
convolution via the Lanczos algorithm; and Huang et al. (2022) augment message passing with
power iterations. Behrouz & Hashemi (2024) apply a Mamba-like state space model to graphs via
arbitrarily ordering the nodes and, thus, sacrifice permutation equivariance.

Long-range interactions on graphs. Works that model long-range interactions can be categorized
into: (a) MPGNNs on rewired graphs (Gasteiger et al., 2019a,b; Gutteridge et al., 2023); (b) higher-
order GNNs (Fey et al., 2020; Wollschläger et al., 2024) that, e.g., may pass information to distant
nodes through hierarchical message passing schemes; and (c) message passing adaptations to facil-
itate long-range interactions. For example, Park et al. (2023) propose “non-backtracking” message
passing, Errica et al. (2024) adaptively choose the numbers of message passing steps, and Ding et al.
(2024) use linear RNNs to aggregate over each node’s neighborhoods. While approaches (a-c) can
increase the receptive field of GNNs, they are typically still spatially bounded. In contrast, (d) al-
ternative architectures, like graph transformers (Ma et al., 2023; Dwivedi & Bresson, 2021; Kreuzer
et al., 2021; Rampášek et al., 2022; Geisler et al., 2023; Deng et al., 2024) with global attention, may
model all possible n×n interactions. We provide notes on the limitations of graph transformers with
absolute positional encodings in § D, which highlights the importance of capturing the relative rela-
tionships between nodes, as S2GNNs do. Moreover, in a recent/contemporary non-attention model
for all pair-wise interactions, Batatia et al. (2024) use a resolvent parametrization of matrix functions
relying on the LDL factorization of a matrix, but do not characterize their approximation-theoretic
properties, over-squashing, expressivity on graphs, nor how to deal with directed graphs.

In § B, we discuss additional related work w.r.t. expressivity and directed graphs.

6 Discussion

We propose S2GNNs, adept at efficiently modeling complex long-range interactions via the syner-
gistic composition of spatially and spectrally parametrized filters (§ 3). We show that S2GNNs share
many properties with graph rewirings, pooling, and hierarchical message passing schemes (Fig. 3
& 4). S2GNNs outperform the aforementioned techniques with a substantial margin on the peptides
long-range benchmark (§ 4.1), and we show that S2GNNs are also strong sequence models, per-
forming on par or outperforming state-of-the-art like Hyena or H3 in our evaluation (§ 4.2). Even
though we find global graph models, like S2GNNs, more prone to overfitting (see § K/L for further
limitations/impact), moving to global models aligns with the trend for other deep learning domains.

10

Acknowledgments and Disclosure of Funding

We want to express our gratitude to Nicholas Gao for his feedback and the discussions about mod-
eling choices. Moreover, we thank Leo Schwinn and Tim Beyer for their helpful and on-point
feedback and suggestions.

This research was supported by the Helmholtz Association under the joint research school “Munich
School for Data Science - MUDS“, as well as by the Munich Data Science Institute (MDSI) via the
Linde/MDSI Doctoral Fellowship program and the MDSI Seed Fund.

References
Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral State Space Models, arXiv,

2024.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implica-
tions. In International Conference on Learning Representations, ICLR, 2020.

Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the Limits of Message Passing Graph Neural Networks. In International
Conference on Machine Learning, ICML, 2021a.

Muhammet Balcilar, Guillaume Renton, and Pierre Heroux. Analyzing the Expressive Power of
Graph Neural Networks in a Spectral Perspective. In International Conference on Learning Rep-
resentations, ICLR, 2021b.

Ilyes Batatia, Lars L Schaaf, Gabor Csanyi, Christoph Ortner, and Felix A Faber. Equivariant Matrix
Function Neural Networks. In International Conference on Learning Representations, ICLR,
2024.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks, arXiv, 2018.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
Pietro Liò. Directional Graph Networks. In International Conference on Machine Learning,
ICML, 2021.

Ali Behrouz and Farnoosh Hashemi. Graph Mamba: Towards Learning on Graphs with State Space
Models, arXiv, 2024.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral Graph Neural Networks
Meet Transformers. In International Conference on Learning Representations, ICLR, 2023a.

Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A Survey on Spectral Graph
Neural Networks, arXiv, 2023b.

Cristian Bodnar, Cătălina Cangea, and Pietro Liò. Deep Graph Mapper: Seeing Graphs Through the
Neural Lens. Frontiers in Big Data, 4:38, 2021.

Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets, arXiv, 2018.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges. arXiv, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
Connected Networks on Graphs, arXiv, 2014.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the Connection Between MPNN and Graph
Transformer. In International Conference on Machine Learning, ICML. arXiv, 2023.

11

Shaofei Cai, Liang Li, Xinzhe Han, Jiebo Luo, Zheng-Jun Zha, and Qingming Huang. Automatic
Relation-Aware Graph Network Proliferation. In Conference on Computer Vision and Pattern
Recognition, CVPR, 2022.

Kaidi Cao, Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Dustin Zelle, Yanqi Zhou,
Charith Mendis, Jure Leskovec, and Bryan Perozzi. Learning Large Graph Property Prediction
via Graph Segment Training. In Neural Information Processing Systems, NeruIPS. arXiv, 2023.

Zhe Chen, Hao Tan, Tao Wang, Tianrun Shen, Tong Lu, Qiuying Peng, Cheng Cheng, and Yue
Qi. Graph Propagation Transformer for Graph Representation Learning. In International Joint
Conference on Artificial Intelligence, IJCAI, 2023.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive Universal Generalized PageRank
Graph Neural Network. In International Conference on Learning Representations, {ICLR}, 2021.

Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-Informed Graph Trans-
former, arXiv, 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
Memory-Efficient Exact Attention with IO-Awareness. In Neural Information Processing Sys-
tems, NeruIPS. arXiv, 2022.

Yves Colin De Verdière. Magnetic interpretation of the nodal defect on graphs. Analysis & PDE, 6
(5):1235–1242, 2013.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. In Neural Information Processing Systems,
NeurIPS, 2017.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-Expressive Graph Trans-
former in Linear Time. In International Conference on Learning Representations, ICLR, 2024.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael
Bronstein. On Over-Squashing in Message Passing Neural Networks: The Impact of Width,
Depth, and Topology. In International Conference on Machine Learning, ICML. arXiv, 2023a.

Francesco Di Giovanni, T. Konstantin Rusch, Michael M. Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of GNNs?,
arXiv, 2023b.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent Distance Filtering for
Graph Representation Learning. In International Conference on Machine Learning, ICML, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations, ICLR, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to Graphs.
Deep Learning on Graphs at AAAI Conference on Artificial Intelligence, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long Range Graph Benchmark. In Neural Information Processing Sys-
tems, NeruIPS. arXiv, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking Graph Neural Networks. Journal of Machine Learning Research,
JMLR, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, and et al. A math-
ematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive Message Passing: A General Framework to Mitigate Oversmooth-
ing, Oversquashing, and Underreaching, arXiv, 2024.

12

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric,
arXiv, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical Inter-Message Passing for Learning
on Molecular Graphs. In Graph Representation Learning and Beyond (GRL+) Workhop at ICML
2020. arXiv, 2020.

Robin Forman. Determinants of Laplacians on graphs. Topology, 32(1):35–46, 1993.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hun-
gry Hungry Hippos: Towards Language Modeling with State Space Models. In International
Conference on Learning Representations, ICLR, 2023.

Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida. Graph Sig-
nal Processing for Directed Graphs Based on the Hermitian Laplacian. In European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML
PKDD, 2020.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards Foundation
Models for Knowledge Graph Reasoning, arXiv, 2023.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability Properties of Graph Neural Networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized PageRank. International Conference on Learning Rep-
resentations, ICLR, 2019a.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. Neural Information Processing Systems, NeurIPS, 2019b.

Floris Geerts. On the Expressive Power of Linear Algebra on Graphs. Theory Comput. Syst., 65(1):
179–239, 2021.

Simon Geisler, Yujia Li, Daniel Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cos-
min Paduraru. Transformers Meet Directed Graphs. In International Conference on Machine
Learning, ICML, 2023.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neu-
ral message passing for quantum chemistry. In International Conference on Machine Learning,
ICML, 2017.

Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. CIN++: En-
hancing Topological Message Passing, arXiv, 2023.

Martin Grohe, Kristian Kersting, Martin Mladenov, and Pascal Schweitzer. Color Refinement and
Its Applications. In Guy Van Den Broeck, Kristian Kersting, Sriraam Natarajan, and David Poole
(eds.), An Introduction to Lifted Probabilistic Inference, pp. 349–372. The MIT Press, 2021.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces,
arXiv, 2023.

Yuhe Guo and Zhewei Wei. Graph Neural Networks with Learnable and Optimal Polynomial Bases.
In International Conference on Machine Learning, ICML. arXiv, 2023.

Benjamin Gutteridge, Xiaowen Dong, Michael Bronstein, and Francesco Di Giovanni. DRew: Dy-
namically Rewired Message Passing with Delay. In International Conference on Learning Rep-
resentations, ICLR, 2023.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. BernNet: Learning Arbitrary
Graph Spectral Filters via Bernstein Approximation. In Neural Information Processing Systems,
NeruIPS, 2021.

13

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional Neural Networks on Graphs with
Chebyshev Approximation, Revisited. In Neural Information Processing Systems, NeurIPS, 2022.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
Generalization of ViT/MLP-Mixer to Graphs. In International Conference on Machine Learning,
ICML, 2023.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415, 2016.

Sepp Hochreiter and J Urgen Schmidhuber. Long Short-term Memory. Neural Computation, 9(8):
17351780–17351780, 1997.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications, arXiv, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Neural
Information Processing Systems, NeurIPS, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A Large-Scale Challenge for Machine Learning on Graphs, arXiv, 2021.

Ningyuan Huang, Soledad Villar, Carey E. Priebe, Da Zheng, Chengyue Huang, Lin Yang, and
Vladimir Braverman. From Local to Global: Spectral-Inspired Graph Neural Networks. In New
Frontiers in Graph Learning at NeurIPS. arXiv, 2022.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li.
On the Stability of Expressive Positional Encodings for Graph Neural Networks. In International
Conference on Learning Representations, ICLR, 2024.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global Self-Attention
as a Replacement for Graph Convolution. In International Conference on Knowledge Discovery
and Data Mining, KDD, pp. 655–665, 2022.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Triplet Interaction
Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Trans-
formers, arXiv, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, ICLR, 2017.

Christian Koke and Daniel Cremers. HoloNets: Spectral Convolutions do extend to Directed Graphs.
In International Conference on Learning Representations, ICLR, 2024.

Arthur Kosmala, Johannes Gasteiger, Nicholas Gao, and Stephan Günnemann. Ewald-based Long-
Range Message Passing for Molecular Graphs. In International Conference on Machine Learning,
ICML, 2023.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking Graph Transformers with Spectral Attention. In Neural Information Pro-
cessing Systems, NeurIPS, 2021.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416–1421, 2023.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4):541–
551, 1989.

14

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, ICML, 2019.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial and Ap-
plied Mathematics, 1998.

Pan Li and Jure Leskovec. The Expressive Power of Graph Neural Networks. In Lingfei Wu,
Peng Cui, Jian Pei, and Liang Zhao (eds.), Graph Neural Networks: Foundations, Frontiers, and
Applications, pp. 63–98. Springer Nature Singapore, Singapore, 2022.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance Encoding: Design Provably
More Powerful Neural Networks for Graph Representation Learning. In Neural Information
Processing Systems, NeurIPS, 2020.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S. Zemel. LanczosNet: Multi-Scale Deep
Graph Convolutional Networks. In International Conference on Learning Representations, ICLR.
arXiv, 2019.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong
Simple Methods. In Advances in Neural Information Processing Systems, 2021.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and Basis Invariant Networks for Spectral Graph Representation Learning. In
International Conference on Learning Representations, ICLR, 2023.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, ICLR, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. International Confer-
ence on Learning Representations, ICLR, 2019.

Yuankai Luo, Hongkang Li, Lei Shi, and Xiao-Ming Wu. Enhancing Graph Transformers with
Hierarchical Distance Structural Encoding, arXiv, 2024.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph Inductive Biases in Transformers without Message Passing.
In International Conference on Machine Learning, ICML, 2023.

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85,
2023.

Gaspard Michel, Giannis Nikolentzos, Johannes Lutzeyer, and Michalis Vazirgiannis. Path Neural
Networks: Expressive and Accurate Graph Neural Networks. In International Conference on
Machine Learning, ICML, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks. AAAI Conference on Artificial Intelligence, 33:4602–4609, 2019.

I. P. Natanson. Constructive function theory. Vol. I: Uniform approximation. Translated by Alexis
N. Obolensky. New York: Frederick Ungar Publishing Co. IX, 232 p. (1964)., 1964.

Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution Graph Transformers and
Wavelet Positional Encoding for Learning Hierarchical Structures. The Journal of Chemical
Physics, 159(3):034109, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context Learning and Induction Heads, arXiv, 2022.

15

Seonghyun Park, Narae Ryu, Gahee Kim, Dongyeop Woo, Se-Young Yun, and Sungsoo Ahn. Non-
backtracking Graph Neural Networks, arXiv, 2023.

Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Charith Mendis,
and Bryan Perozzi. TpuGraphs: A Performance Prediction Dataset on Large Tensor Computa-
tional Graphs. In Neural Information Processing Systems, NeruIPS, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena Hierarchy: Towards Larger Convolutional
Language Models. In International Conference on Machine Learning, ICML. arXiv, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization Beyond Overfitting on Small Algorithmic Datasets, arXiv, 2022.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In Neural Infor-
mation Processing Systems, NeurIPS, 2022.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günne-
mann, and Michael Bronstein. Edge Directionality Improves Learning on Heterophilic Graphs.
In Learning on Graphs Conference, LoG, 2023.

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural net-
work for modeling quantum interactions. In Neural Information Processing Systems, NeruIPS.
arXiv, 2017.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse Transformers for Graphs. In International Conference on Machine
Learning, ICML, 2023.

M. A. Shubin. Discrete Magnetic Laplacian. Communications in Mathematical Physics, 164(2):
259–275, 1994.

Laurent Sifre. Rigid-Motion Scattering For Image Classification. PhD thesis, Ecole Polytechnique,
CMAP, 2014.

Kimberly Stachenfeld, Jonathan Godwin, and Peter Battaglia. Graph Networks with Spectral Mes-
sage Passing, arXiv, 2020.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S. Rosenblum, and Andrew Lim. Directed
Graph Convolutional Network, arXiv, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations, ICLR, 2022.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where Did the Gap Go? Re-
assessing the Long-Range Graph Benchmark. In Learning on Graphs Conference, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, NeurIPS, 2017.

Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana Romero, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
ICLR, 2018.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and Stable Positional Encoding
for More Powerful Graph Neural Networks. In International Conference on Learning Represen-
tations, ICLR, 2022.

16

Xiyuan Wang and Muhan Zhang. How Powerful are Spectral Graph Neural Networks. In Interna-
tional Conference on Machine Learning, ICML. arXiv, 2022.

Tom Wollschläger, Niklas Kemper, Leon Hetzel, Johanna Sommer, and Stephan Günnemann. Ex-
pressivity and Generalization: Fragment Biases for Molecular GNNs, arXiv, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken Ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, ICML, 2018.

Keyulu Xu, Stefanie Jegelka, Weihua Hu, and Jure Leskovec. How powerful are graph neural
networks? In International Conference on Learning Representations, ICLR, 2019.

Mingqi Yang, Wenjie Feng, Yanming Shen, and Bryan Hooi. Towards Better Graph Representa-
tion Learning with Parameterized Decomposition & Filtering. In International Conference on
Machine Learning, ICML, 2023.

Jiaxuan You, Rex Ying, and Jure Leskovec. Design Space for Graph Neural Networks. pp. 13,
2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander J. Smola. Deep sets. In Neural Information Processing Systems, NeruIPS, 2017.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. MagNet: A
Neural Network for Directed Graphs. In Neural Information Processing Systems, NeurIPS, 2021.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling Transformers with LEGO: a synthetic reasoning task, arXiv, 2023.

17

Appendix

A Notation 19

B Related Work for Expressivity and Directed Graphs 19

C Background for Directed Graphs 20

D Limitations of Graph Transformers Using Absolute Positional Encodings 21

E S2GNN Generalizes a Virtual Node 21

F Existing Results on Over-Squashing 21

G Construction of an explicit ground truth filter 22

H Proofs 24
H.1 Proof of Theorem 1 . 24
H.2 Proof of Theorem 2 . 26
H.3 Proof of Theorem 3 . 26
H.4 Proof of Theorem 4 . 28
H.5 Proof of Theorem 5 . 31
H.6 Proof of Theorem 6 . 33

I Expressivity of Spectral Filters and Spectrally Designed Spatial Filters 34

J Further Remarks on S2GNNs 35
J.1 Visualization of Spectral Filters . 36
J.2 Composition of Filters . 37
J.3 Exhaustive Reasons Why Low Frequencies Are Sensible 37
J.4 Scaling to Graphs of Different Magnitude . 37
J.5 Spectral Normalization . 37
J.6 Adjusting S2GNNs to Directed Graphs . 38
J.7 Computational Remarks . 38

K Limitations 38

L Broader Impact 39

M Experimental Results 39
M.1 Experimental Details . 39
M.2 Qualitative Experiments . 41
M.3 Computational Cost . 41
M.4 S2GNN Aggregation Ablation . 42
M.5 Number of Eigenvectors Ablation on Peptides-Func 43
M.6 Clustering Tasks . 43
M.7 Distance Regression . 47
M.8 Heterophilic arXiv-year (Lim et al., 2021) . 49
M.9 Large-Scale PCQM4Mv2 (Hu et al., 2021) . 50
M.10 TPUGraphs Graph Construction . 50

18

A Notation

Table 5: List of most important symbols used in this work (with the most general domain).

b Scalar
b (column) Vector
B Matrix
B Set
B⊤ Transpose of matrix B
BH Conjugate transpose of matrix B
i, i2 = −1 Complex number
⊙ Element-wise multiplication
◦ Function composition, i.e., f2 ◦ f1 = f1(f2(·))
∥·∥F Frobenius norm
O “Big O” notation for asymptotic growth of function
P ∈ P Permutation matrix
∗G Graph convolution (see § 2)
(Gp)p∈N Graph sequence (cf. Theorem 3)
G(A,X) Graph
A ∈ Rn×n≥0 Adjacency matrix
X ∈ Rn×d Node features
n Number of nodes
m Number of edges
d Number of attributes
Lq ∈ Cn×n Graph/combinatorial/random walk (Magnetic) Laplacian
q ∈ R≥0 Potential (see Eq. 7)
Lq=0 = L ∈ Rn×n Real-valued Laplacian (q = 0)
λ,V = EVD(L) Eigendecomposion s.t. L = V diag(λ)LH

λ,V = EVD(L, k) Partial eigendecomposion containing λ1 ≤ λ2 ≤ · · · ≤ λk (≤ λk+1)
k Number of eigenvectors
p Polynomial order
pcut Receptive field size (number hops) of polynomial filter
pmax Maximal diameter of graph
λcut Eigenvalue threshold considered in spectral filter
λmax Maximal eigenvalue of graph
ℓ Number of layers
Kr(ĝ, λcut) Bound on r-th derivative of spectral filter on interval [λcut, 2]

Spectral(l)(H(l−1);V ,λ) Spectral(ly parametrized) filter
Spatial(l)(H(l−1);A) Spatial message passing
g Filter in graph convolution
gγp

Order-p polynomial filter in graph convolution, with coefficients γp
ĝ Filter in graph convolution, in spectral domain
ĝ(λ) as function evaluated at eigenvalues
ĝϑ(λ) as parametrized function evaluated at eigenvalues
ĝ
(l)
ϑ (λ) as parametrized function at layer l, evaluated at eigenvalues
PE(V ,λ) Positional encodings
fθ Feature transformation in spatial domain
sζ Feature transformation in spectral domain

B Related Work for Expressivity and Directed Graphs

Expressivity. Laplacian eigenvectors have been used previously to construct positional encodings
that improve the expressivity of GNNs or Transformers (Lim et al., 2023; Wang et al., 2022; Geisler
et al., 2023; Huang et al., 2024). Our positional encodings are similar to the preprocessing of Balcilar
et al. (2021a), where the authors design an edge-level encoding/mask to surpass 1-WL. The hierar-
chy of Weisfeiler-Leman (WL) tests is a common way to categorize the expressivity of GNNs (Grohe

19

et al., 2021). Xu et al. (2019) showed that most MPGNNs are bound by or as strong as the 1-WL
test. Lim et al. (2023) point out that spectral GNNs suffer from similar limitations as MPGNNs w.r.t.
their expressivity. Generally, the development of expressive GNNs is an active research direction,
and we refer to Li & Leskovec (2022) for a broad overview.

Directed graphs. Rossi et al. (2023) also extend the WL test to directed graphs and propose an
MPGNN for directed graphs. How to model direction in graphs is also still an open question and
various approaches were proposed (Battaglia et al., 2018; Tong et al., 2020; Zhang et al., 2021; Rossi
et al., 2023; Koke & Cremers, 2024). We utilize a Hermitian Laplacian for direction awareness,
namely the Magnetic Laplacian, which was also used by Zhang et al. (2021) for an MPGNN and
Geisler et al. (2023) for positional encodings.

C Background for Directed Graphs

Undirected vs. directed graphs. For spatial filtering, it is straightforward to plausibly extend the
message passing (e.g. Battaglia et al. (2018); Rossi et al. (2023)). However, the spectral motivation
and spectral filter on directed graphs require more care. The eigendecomposition is guaranteed to
exist for real symmetric matrices. Real symmetric matrices are always diagonalizable, and the eigen-
vectors will then span a complete orthogonal basis to represent all possible signals X ∈ Rn×d. Note
that some non-symmetric square matrices are also diagonalizable and, thus, also have an eigende-
composition, albeit the eigenvectors may not be orthogonal. Thus, further consideration is required
to generalize the graph Laplacian to general directed graphs.

Magnetic Laplacian. For the spectral filter on directed graphs, we build upon a direction-aware
generalization, called Magnetic Laplacian (Forman, 1993; Shubin, 1994; De Verdière, 2013; Furu-
tani et al., 2020; Geisler et al., 2023)

Lq = I − (D−1/2
s AsD

−1/2
s)⊙ exp[i2πq(A−A⊤)] (7)

where As = A ∨ A⊤ is the symmetrized graph with diagonal degree matrix Ds. ⊙ denotes the
element-wise product, exp the element-wise exponential, i =

√
−1 an imaginary number, and q the

potential (hyperparameter). By construction Lq is a Hermitian matrix Lq = LH
q where the conjugate

transpose is equal to Lq itself. Importantly, Hermitian matrices naturally generalize real symmetric
matrices and have a well-defined eigendecomposition Lq = V ΛV H with real eigenvalues Λ and
unitary eigenvectors V V H = I . For appropriate choices of the potential q, the order of eigenvalues
is well-behaved (Furutani et al., 2020). Recently Geisler et al. (2023) demonstrated the efficacy
of these eigenvectors for positional encodings for transformers. Moreover, the Magnetic Laplacian
was used for a spectrally designed spatial MPGNN (Zhang et al., 2021), extending Defferrard et al.
(2017). Due to the real eigenvalues, one could, in principle, also apply a monomial basis (Chien
et al., 2021), or different polynomial bases stemming from approximation theory (He et al., 2021;
Wang & Zhang, 2022; He et al., 2022; Guo & Wei, 2023).

To see why Eq. 7 describes an injection for appropriate choices of q, consider that the sparsity
pattern of Lq matches A up to the main diagonal. If A contains a self-loop the main diagonal will
have a 0 instead of 1 entry at the self-loop location. A − A⊤ can be directly inferred from the
phase exp[i2πq(A −A⊤)], assuming that q < 1/(2maxu,v Au,v). Thus, it is solely left to obtain As

from I −D
−1/2
s AsD

−1/2
s , which is trivial for a binary adjacency but more involved for real-valued

weights. Determining if and when Lq is injective for real-valued A is left for future work.

Properties of the eigendecomposition. The eigendecomposition is not unique, and thus, one should
consider the result of the eigensolver arbitrary in that regard. One ambiguity becomes apparent from
the definition of an eigenvalue itself Lv = λv since one can multiply both sides of the equation
with a scalar c ∈ C \ {0}: L(cv) = λ(cv). We already implicitly normalized the magnitude of
the eigenvectors V by choosing them to be orthogonal (V V ⊤ = I) or unitary (V V H = I). Thus,
after this normalization, c only represents an arbitrary sign for real-valued eigenvectors or a rotation
on the unit circle in the complex case. Another reason for ambiguity occurs in the case of repeated /
multiple eigenvalues (e.g., λu = λv for u ̸= v). In this case, the eigensolver may return an arbitrary
set of orthogonal eigenvectors chosen from the corresponding eigenspace.

20

D Limitations of Graph Transformers Using Absolute Positional Encodings

Here, we consider a vanilla graph transformer f(X) that solely becomes structure-aware due to
the addition (or concatenation) of positional encodings: f(X + PE(A)). The main point we
are going to demonstrate is that a vanilla transformer with such absolute positional encodings
PE(A) ∈ Rn×d will be limited in its expressivity if the positional encodings are permutation equiv-
ariant P PE(A) = PE(PAP⊤) w.r.t. any n× n permutation matrix P ∈ P .

The limitation particularly arises in the presence of automorphisms PaAP⊤
a = A with specifi-

cally chosen permutation Pa. To be more specific, assume that nodes u and v are automorphic to
each other. That is, there exists a Pa that will swap the order of u and v (among other nodes) s.t.
PaAP⊤

a = A. By permutation equivariance, we know Pa PE(A) = PE(PaAP⊤
a) = PE(A)

and, hence, PE(A)u = PE(A)v .

We have just shown that automorphic nodes will have the same positional encodings PE if the po-
sitional encodings are permutation equivariant. This implies that permutation equivariant positional
encodings PE are not even able to capture simple neighboring relationships. For example, consider
an undirected sequence/path graph o-o-o-o-o with five nodes. Here, the two end nodes, which we
also all first and last node, are automorphic. So are the second and second-last nodes. Assuming the
second and second last nodes have different node features (e.g., A-B-C-D-A), that breaks the sym-
metry, it is still not possible for a transformer with absolute positional encodings to tell the first and
last node apart. In other words, in the example, the transformer cannot tell apart the end node with
neighboring feature B from the end node with neighboring feature D. This shows a severe limitation
of architectures without additional components capturing the relative distances (e.g., as S2GNNs
can). This concern is not as critical for architectures where the positional encodings are not entirely
permutation equivariant (Dwivedi & Bresson, 2021; Kreuzer et al., 2021), with relative positional
encodings (Ma et al., 2023), and might also be of lesser concern for directed graphs (Geisler et al.,
2023).

E S2GNN Generalizes a Virtual Node

Adding a fully connected virtual node (Gilmer et al., 2017) is among the simplest ways to add the
ability for long-range information exchange. An equivalent method was proposed as a simple over-
squashing remedy in the seminal work by Alon & Yahav (2020). A single Spectral layer amounts
to a type of virtual nodes in the special case of fθ = I and

ĝ(l)(λ) =

{
1 for λ = 0,

0 for λ > 0,
(8)

Assuming a simply-connected graph G, the unique normalized zero-eigenvector v of the
symmetrically-normalized graph Laplacian L = I −D−1/2AD−1/2 has components vu =

√
du
2|E| ,

where du denotes the degree of node u ∈ G, and |E| the number of edges in the graph. At node
u ∈ G, we therefore find

Spectral(l)u (H(l−1);V ,λ) =

√
du

2|E|
∑
v∈G

√
dvh

(l−1)
v (9)

with h
(l−1)
v denoting the row of H(l−1) corresponding to node v ∈ G. In other words, filtering out

the zero-frequency component of the signal means scattering a global, degree-weighted embedding
average to all nodes of the graph. For the unnormalized graph Laplacian, Eq. 9 instead becomes
an unweighted average, which is consistent with the usual definition of a virtual node. We refer to
Fig. 3 & 4 for additional intuition.

F Existing Results on Over-Squashing

We restate two key results from Di Giovanni et al. (2023a) using our notation. They imply the exis-
tance of a regime in which 1-hop MPNN architectures suffer from exponentially decaying Jacobian
sensitivity. Meanwhile, S2GNNs can easily learn a signal of constantly lower-bounded sensitivity,
as shown by invoking its trivial subcase of a virtual node in Theorem 2.

21

Theorem 7 (Adapted from Di Giovanni et al. (2023a)). In an ℓ-layer spatial MPGNN with message-
passing matrix S = crI + caA (cr, ca ∈ R+) and a Lipschitz nonlinearity σ,

H(l) = Spatial(l)(H(l−1);A) = σ
(
SH(l−1)W (l−1)

)
, 1 ≤ l ≤ ℓ (10)

the Jacobian sensitivity satisfies the following upper bound:∥∥∥∥∥∂h(ℓ)
v

∂h
(0)
u

∥∥∥∥∥
L1

≤ (cσwd)
ℓ
(
Sℓ
)
vu
, (11)

with h
(0)
u , h(ℓ)

v denoting the rows of H(0), H(ℓ) corresponding to the nodes v, u ∈ G, cσ the
Lipschitz constant of the nonlinearity, w the maximum entry value over all weight matrices W (l),
and d the network width.

The dependence of the upper bound on the matrix power
(
Sℓ
)
vu

– not generally present for S2GNN
by Theorem 2 – leads to a topology-dependence which becomes explicit in the following theorem.
It concerns the typical shallow-diameter regime, in which the number ℓ of MPGNN layers is com-
parable to the graph diameter.
Theorem 8 (Adapted from Di Giovanni et al. (2023a)). Given an MPNN as in Eq. 10, with ca ≤ 1,
let v, u ∈ G be at distance r. Let cσ be the Lipschitz constant of σ,w the maximal entry-value
overall weight matrices, dmin the minimal degree of G, and γℓ(v, u) the number of walks from v to
u of maximal length ℓ. For any 0 ≤ k < r, there exists Ck > 0 independent of r and of the graph,
such that ∥∥∥∥∥∂h(r+k)

v

∂h
(0)
u

∥∥∥∥∥
L1

≤ Ckγr+k(v, u)
(
2cσwd

dmin

)r
.

For 1-hop MPGNNs with 2cσwd < dmin, we therefore identify an exponential decay of sen-
sitivity with node distance r in the weak-connectivity limit for which γr+k(v, u) increases sub-
exponentially with r. As Di Giovanni et al. (2023a) point out, sharper bounds can be derived under
graph-specific information about (Sr)vu.

G Construction of an explicit ground truth filter

We express the electric potential along a periodic sequence of screened 1D charges as a convolution
of a corresponding graph signal with a consistently defined graph filter. This closed-form example
underscores our default use of a low-pass window for the spectral part of S2GNNs by showing how a
continuous problem with a convolutional structure and quickly flattening spectral response (typical
for pair interactions in physics and chemistry) discretizes into a graph problem with similar features.

The approach exploits the surjective mapping of Fourier modes on [0, n] onto the Laplacian eigen-
vectors of a cycle graph Cn. We consider two corresponding representations of the same problem:

ρ(x) =

n−1∑
l=0

ql∆n (x− l) , ∆m(x) =
∑
m∈Z

δ(x−mn), V (x) = (ϕσ ∗R ρ)(x), (12)

ϕσ(x) =

(
xerf

(
x√
2σ

)
+ σ

√
2

π
exp

(
− x2

2σ2

))
− |x|, σ > 0

[
V (l) = (ϕσ ∗R ρ)(l)

!
= (gσ ∗G q)l, 0 ≤ k ≤ n− 1, ∀q ∈ Rn

] ~www� (13)

G = Cn, q = (q1, . . . , qn)
⊤ (14)

• A continuous representation (Eq. 12) in terms of a 1D distribution ρ of n point charges
q1, . . . , qn and their periodically repeating image charges, written as a sum of Dirac combs
at equidistant offsets l with 0 ≤ l ≤ n− 1, interacting via the potential profile ϕσ obtained
from solving in Gauss’ law of electrostatics for a 1D point charge screened by a Gaussian
cloud of opposite background charge with standard deviation σ. The screening ensures

22

convergence to a finite potential and its exact form is insignificant (we choose the Gaussian-
type screening due to its analytical tractability). Note that ϕσ(x) ≃ const.− |x| for x→ 0
(the unscreened 1D potential in the direction normal to an infinitely wide capacitor plate),
while the screening guarantees an exponential dropoff to zero as x→∞,

• A graph representation (Eq. 14) by placing the n charges q1, . . . , qn onto a cycle graph Cn.

We derive the graph filter gσ from a consistency condition (Eq. 13) between both representations:
the graph convolution (gσ ∗G q) has to yield the electric potential V sampled at the charge loci if we
want gσ to act like the continuous convolution kernel ϕσ in the discrete graph picture.

The Fourier transform of ϕσ (in the convention without integral prefactor and with a 2π frequency
prefactor) reads ϕ̂σ(κ) = 1

πκ2

(
1− exp

(
− 1

2σ
2κ2
))

. For the density, the Poisson sum formula
gives ρ̂(κ) =

∑n−1
k=0

1√
n
q̂k∆1(κ − k

n) with q̂k = 1√
n

∑n−1
j=0 qi exp

(
−i2π knj

)
. The coefficients q̂k

are precisely the components of the graph Fourier transform of q (physically, they amount for the
structure factor). By the convolution theorem, V̂ (κ) = ϕ̂σ(κ)ρ̂(κ). By noting that all integer-shifted
frequencies in the Dirac combs ∆1

(
· − k

n

)
(or all Brillouin zones, in physics terminology) yield

the same phase exp
(
i2π kn l

)
if we only sample V (x) at the charge loci x = l, 0 ≤ l ≤ n − 1, we

can write V (l) = 1
2π

∑n−1
k=0 q̂k

(∑
m∈Z ϕ̂σ

(
k
n +m

))
1√
n
exp

(
i2π kn l

)
. Through pattern-matching

with the consistency condition of Eq. 13, we can therefore identify that the graph filter is a sum
over Brillouin zones, (ĝσ)(λk) = 1

2π

∑
m∈Z ϕ̂σ

(
k
n +m

)
, where λk denotes the eigenvalues of the

normalized Cn graph Laplacian, λk = 1− cos
(
2πk
n

)
. To fulfill this relation for all n, k we set

ĝσ(λ) =
1

2π

∑
m∈Z

ϕ̂σ

(
1

2π
arccos(1− λ) +m

)

We claim now (and prove in a later paragraph) that for λ > λ0 > 0 and a sufficiently large choice
σ > σ(r, λ0), the absolute r-th derivative satisfies the upper bound | d

r

dλr ĝσ(λ)| ≤ | d
r

dλr ĝ∞(λ)|,
where we can think of ĝ∞ as the limit of taking σ →∞ (i.e., a constant background charge):

ĝ∞(λ) =
1

2π

∑
m∈Z

ϕ̂∞

(
1

2π
arccos(1− λ) +m

)
, ϕ̂∞(κ) =

1

πκ2

The merit of this is that unlike the screened ĝσ(λ), ĝ∞(λ) can be solved analytically to find closed-
form bounds on the absolute derivatives | d

r

dλr ĝσ(λ0)|. By invoking the sum expansion form of the
trigamma function Ψ1(z) =

∑∞
m=0

1
(z+m)2 , the reflection identity ψ1(1 − z) + ψ1(z) = π2

sin2 πz
,

and the half-angle formula sin2
(
x
2

)
= 1−cos(x)

2 , we find

ĝ∞(λ) =
1

2π2

(
Ψ1

(
1

2π
arccos(1− λ)

)
+Ψ1

(
1− 1

2π
arccos(1− λ)

))
=

1

2 sin2
(
1
2 arccos(1− λ)

) =
1

λ
,

a remarkably simple result. We can now readily evaluate | d
r

dλr ĝ∞(λ)| = r!
λr+1 , but it remains to

prove that this upper-bounds | d
r

dλr ĝσ(λ)| for any λ > λ0 > 0 and sufficiently large σ > σ(r, λ0).
For compactness, define the expressions z(λ) := 1

2π arccos(1 − λ) ∈
[
0, 12

]
(strictly increasing in

23

λ), yσ(z) := exp
(
− 1

2σ
2z2
)
, and z̃ = 1− z ≥ z. Consider the series of “term-by-term” derivatives

d

dz
ĝσ(λ(z)) = −

1

π2

∞∑
m=0

(
1

(z + n)3
(1− yσ(z +m))− 1

(z̃ + n)3
(1− yσ(z̃ +m))

)

+

∞∑
m=0

O (yσ(m))

d2

dz2
ĝσ(λ(z)) =

3

π2

∞∑
m=0

(
1

(z + n)4
(1− yσ(z +m)) +

1

(z̃ + n)4
(1− yσ(z̃ +m))

)

+

∞∑
m=0

O (yσ(m))

...

They converge uniformly on
[
0, 12

]
as they clearly are Cauchy sequences under uniform bound

(moreover, well-definedness in z = 0 follows by applying l’Hospital’s rule – physically, this is the
merit provided by including Gaussian screening in our model). Therefore, they indeed converge
to the respective derivatives dr

dzr ĝσ(λ(z)) (justifying the above notation). The same holds for the
corresponding series for dr

dzr ĝ∞(λ(z)): they are not defined in z = 0, but otherwise still converge
as they match the known series expansion of the polygamma function. Given λ0 > 0 and thus
z(λ0) > 0, taking σ larger than some σ(r, λ0) guarantees that dr

dzr ĝσ(λ(z)) and dr

dzr ĝ∞(λ(z)) are
of the same sign for λ > λ0 (z(λ) > z(λ0)). This holds for all orders r ∈ N since we see by
induction that the product rule always yields one term analogous to the first respective terms above,
and otherwise only terms of O (yσ(m))). Then, observing that 0 ≤ 1 − yσ(x) < 1 ∀ x ≥ 0 and
z̃ ≥ z implies | d

r

dzr ĝσ(λ0(z0))| ≤ |
dr

dzr ĝ∞(λ0(z0))|. The same must hold for the λ-derivatives by
the chain rule.

One interesting question is whether ĝσ is also C-integral-Lipschitz for some constant C > 0. We
discuss this stability-informed criterion (Gama et al., 2020) in the main body as a domain-agnostic
prior assumption about the “ideal” graph filter if no other ground truth knowledge informing ad-
ditional smoothness bounds (such as here) is available. While the above bound is too loose to
certify this directly (| ddλ ĝσ(λ)| ≤ Cλ−1 would be needed), integral-Lipschitzness under some con-
stant follows from the fact that | ddλ ĝσ(λ)| is bounded on [0, 2]: by the uniform convergence of the
term-by-term derivative series, it is continuous. Well-definedness of the product d

dz ĝσ
dz
dλ has to be

checked in λ = 0, where it follows by continuous extension using l’Hospital’s rule. As a continuous
function defined on a compact interval, | ddλ ĝσ| assumes a maximum.

H Proofs

H.1 Proof of Theorem 1

We next prove the permutation equivariance of the spectral filter in Eq. 3:

Theorem 1. Spectral(H(l−1); EVD(L, k)) of Eq. 3 is equivariant to all n × n permutation
matrices P ∈ P: Spectral(PH(l−1); EVD(PLP⊤, k)) = P Spectral(H(l−1); EVD(L, k)).

for the general case of parametrizing a Hermitian “Laplacian” L ∈ Cn×n,LH = L. Note that this
proof does not rely in any means on the specifics of L, solely that the eigendecomposition exists
L = V ΛV H with unitary eigenvectors V V H = I . For practical reasons, it is suitable to define
L(A) as a function of A. A similar proof for real-valued eigenvectors is given by (Lim et al., 2023).
The specific spectral filter we consider is

Spectral(H(l−1);V ,λ) = h
[
V
(
ĝ(λ)⊙

[
V Hf(H(l−1))

])]
(15)

with arbitrary f : Cd1 → Cd2 , applied row-wise to H(l−1) ∈ Cn×d1 . Analogously, h : Cd2 → Cd3
is applied row-wise. We choose complex functions to emphasize generality, although we restrict

24

Spectral to real in- and outputs in all experiments. The graph filter is defined as element-wise func-
tion ĝu,v(λ) := ĝv(λu, {λ1, λ2, . . . , λk}) that depends on the specific eigenvalue λ and potentially
the set of eigenvalues {λ1, λ2, . . . , λk} (or its vector representation λ) of the partial eigendecompo-
sition.

We need to make sure that the partial decomposition includes all eigenvalues of the same magnitude,
i.e., λu ̸= λu′ ,∀u ∈ {1, 2, . . . , k}, u′ ∈ {k + 1, k + 2, . . . , n}. In practice, this is achieved by
choosing large enough k to accommodate all eigenvalues λcut < λk+1, or by dropping trailing
eigenvalues where λj = λk+1 for j ∈ {1, 2, . . . , k}. Generally, it is also not important that we
consider the k smallest eigenvalues in the spectral filter. We only need to ensure that the spectral
filter is either calculated on all or no eigenvalues/-vectors of an eigenspace.

Proof. Assuming functions ϕ(X) and ψ(X) are permutation equivariant, then ϕ(ψ(X)) is permu-
tation equivariant ϕ(ψ(PX)) = ϕ(Pψ(X)) = Pϕ(ψ(X)) for any n × n permutation P ∈ P .
Thus, it sufficies to prove permutation equivariance for h, f,V (ĝ(λ) ⊙ [V HX]) independently,
where X ∈ Cn×d2 .

Regardless of the complex image and domain of h and f , they are permuation equivariant since they
are applied row-wise

f(X) = [f(X1) f(X2) . . . f(Xn)]
H

and reordering the rows in X ∈ Cn×d1 also reorders the outputs: f(PX) = P f(X).

For finalizing the proof of permutation equivariance, we first rearrange Y = V (ĝ(λ)⊙ [V HX]) =∑k
u=1 vu(ĝu,:(λu)⊙ [vH

uX]) and Y:,v =
∑k
u=1 ĝu,v(λu)vuv

H
uX:,v .

This construction (a) is invariant to the ambiguity that every eigenvector vu can be arbitrarily rotated
cuvu by {cu ∈ C | |cu| = 1}. That is, (cuvu)(cuvu)H = cuc̄uvuv

H
u = vuv

H
u .

Moreover, (b) in the case of j repeated eigenvalues {s+1, s+2, . . . , s+ j} where λs+1 = λs+2 =
· · · = λs+j , we can choose a set of orthogonal eigenvectors arbitrarily rotated/reflected from the
j-dimensional eigenspace (basis symmetry). The given set of eigenvectors can be arbitrarily trans-
formed V:,s+1:s+jΓj by a matrix chosen from the unitary group Γj ∈ U(j). Since

s+j∑
u=s

ĝu,v(λu)vuv
H
uX:,v = ĝs,v(λs)

[
s+j∑
u=s

vuv
H
u

]
X:,v = ĝs,v(λs)

[
V:,s+1:s+jV

H
:,s+1:s+j

]
X:,v

we simply need to show that the expression is invariant to a transformation by Γj :

V:,s+1:s+jΓj(V:,s+1:s+jΓj)
H = V:,s+1:s+jΓjΓ

H
j V

H
:,s+1:s+j = V:,s+1:s+jV

H
:,s+1:s+j

To see why Γj ∈ U(j) is a sufficient choice in the light of repeated/multiple eigenvalues, consider
the defintion of eigenvalues/vectors

LV:,s+1:s+j = L

[| | |
vs+1 vs+2 . . . vs+j
| | |

]

=

[| | |
vs+1 vs+2 . . . vs+j
| | |

]
λs+1 0 . . . 0
0 λs+2 . . . 0
...

...
. . .

...
0 0 . . . λs+j

= λs+1

[| | |
vs+1 vs+2 . . . vs+j
| | |

]
= λs+1V:,s+1:s+j

we can now multiply both sides from the right with an arbitrary matrix B ∈ Cj×j . To preserve the
unitary property V:,s+1:s+jV

H
:,s+1:s+j = I , we require (V:,s+1:s+jB)(V:,s+1:s+jB)H = I . Thus,

the eigenvectors can be arbitrarily transformed by Γj ∈ U(j) instead of B ∈ Cj×j .
This concludes the proof.

25

H.2 Proof of Theorem 2

We restate Theorem 2 in more detail and also considering graphs that contain multiple connected
components. The unchanged bottom line is that S2GNNs can express signals lower-bounded by
a constant that is unaffected by local properties of the graph topology, instead of suffering from
exponential sensitivity decay like spatial MPGNNs.

Theorem (Theorem 2, formal). Consider an ℓ-layer S2GNN of the form Eq. 1. Let (ϑ̃, ϑ, θ) be
parameters of the spatial GNN, spectral filters ĝ(l)ϑ , and feature transformation fθ. Assume the
existence of parameters ϑ̃ such that Spatial(l)(H(l−1);A, ϑ̃) = 0 ∀1 ≤ l ≤ ℓ and θ such that
fθ = I . Then, a filter choice ϑ exists such that the ℓ-layer S2GNN of the additive form Eq. 1 can
express a signal h(ℓ)

v (H(0); ϑ̃, ϑ, θ) with uniformly lower-bounded Jacobian sensitivity,∥∥∥∥∥∂h(ℓ)
v (H(0); ϑ̃, ϑ, θ)

∂h
(0)
u

∥∥∥∥∥
L1

≥

{
dKℓ

ϑ

2|EC| if u, v connected,
0 otherwise,

(16)

with h
(0)
u , h(ℓ)

v denoting the rows of H(0), H(ℓ) corresponding to the nodes u ̸= v ∈ G, connected
component C ⊂ G containing |EC | edges, network width d and parameter-dependent constant Kϑ.

Proof. Choose ϑ̃ such that Spatial(l)(H(l−1);A) = 0 ∀1 ≤ l ≤ ℓ (typically by setting all weights
and biases to zero), θ such that fθ = I , and set ϑ such that

ĝ
(l)
k (λ;ϑ) = Kϑ

{
1 for λ = 0,

0 for λ > 0,
∀1 ≤ l ≤ ℓ, 1 ≤ k ≤ d (17)

for some Kϑ > 0. This choice of filter parameters ϑ lets Spectral act like a type of virtual node
across all hidden dimensions k: In the standard orthonormal basis of the 0-eigenspace given by(

v(C)
)
u
=

√
du

2|EC |

{
1 for u ∈ C,
0 else,

(18)

where C enumerates all connected components, and du denotes the degree of node u, we find

h(ℓ)
v (H(0); ϑ̃, ϑ, θ) =

(
Spectral(ℓ) ◦ · · · ◦ Spectral(0)

)
v
(H(0);V ,λ)

=
Kℓ
ϑ

√
dv

2|EC(v) |
∑
u∈C(v)

√
duh

(0)
u ,

(19)

with C(v) denoting the connected component containing v. Particularly, note that applying the spec-
tral layer more than once does not affect the result since the projector onto an eigenvector is idem-
potent (up to Kϑ). The result must also hold in any other orthonormal basis of the 0-eigenspace
due to the invariance of Spectral under orthogonal eigenbasis transformations. Differentiating with
respect to h

(0)
u , taking the L1 norm and using

√
dudv ≥ 1 shows the statement.

H.3 Proof of Theorem 3

Theorem 3. Let ĝ be a discontinuous spectral filter. For any approximating sequence
(
gγp

)
p∈N of

polynomial filters, an adversarial sequence (Gp)p∈N of input graphs exists such that

∄α ∈ R>0 : sup
0̸=X∈R|Gp|×d

∥(gγp − g) ∗Gp X∥F
∥X∥F

= O
(
p−α

)
The proof makes use of a result by S. Bernstein (Natanson, 1964):
Theorem 9 (Bernstein). Let f : [0, 2π] → C be a 2π-periodic function. Then f is α-Hölder con-
tinuous for some α ∈ (0, 1) if, for every p ∈ N, there exists a degree-p trigonometric polynomial
Tp(x) = a0 +

∑p
j=1 aj cos(jx) +

∑p
j=1 bj sin(jx) with coefficients aj , bj ∈ C, such that

sup
0≤x≤2π

|f(x)− Tp(x)| ≤
C(f)

pα

where C(f) is a positive number depending on f .

26

Proof. Given a discontinuous filter ĝ : [0, 2] → R, construct the function f : [0, 2π] → C fulfill-
ing the prerequisites of Theorem 9 by pre-composing f := ĝ ◦ (cos(·) + 1). We proceed via
contradiction. Suppose that there is an α ∈ (0, 1) and a sequence of degree-p polynomial filters,
ĝγp

(λ) =
∑p
j=0 γjλ

j , γ = (γ0, . . . , γp)
⊤ ∈ Rp+1, such that ∥ĝγp

− ĝ∥∞ = O(p−α). Then, the
sequence of trigonometric polynomials Tp := ĝγp

◦ (cos(·)+ 1) fulfills the condition of Theorem 9.
This would imply that f = ĝ ◦ (cos(·) + 1) is α-Hölder continuous, meaning that a constant K > 0
exists such that

|ĝ(cos(x) + 1)− ĝ(cos(y) + 1)| ≤ K|x− y|α ∀x, y ∈ [0, 2π]

Considering λ0 ∈ [0, 2], λ → λ0 and x = arccos(λ0 − 1), y = arccos(λ − 1) (using the arccos
branch in which both λ0, λ eventually end up) shows a contradiction to the assumed discontinuity
of ĝ. Therefore, no polynomial filter sequence

(
ĝγp

)
p∈N together with an α ∈ (0, 1) exist such that

∥ĝγp − ĝ∥∞ = O(p−α). In particular, for any sequence
(
ĝγp

)
p∈N, a sequence of adversarial values

(λp)p∈N, λp ∈ [0, 2] exists such that

∄α ∈ (0, 1) : |ĝγp
(λp)− ĝ(λp)| = O(p−α)

The proof is finished if we can find a sequence of graphs (Gp) such that the symmetrically-
normalized graph Laplacian Lp of Gp contains λp as an eigenvalue. In this case, we can construct
adversarial input signals Xp on the graphs Gp by setting the first embedding channel to an eigen-
vector corresponding to λp, and the remaining channels to zero, such that

(
gγp
− g
)
∗Gp

Xp =
|ĝγp

(λp)− ĝ(λp)|Xp. In particular, it then holds that

∄α ∈ R+ : sup
0̸=X∈R|Gp|×d

∥(gγp
− g) ∗Gp

X∥F
∥X∥F

= O
(
p−α

)
If we assume only simple graphs, such a construction is unfortunately not possible since the set
of all simple graphs and therefore the set of all realizable eigenvalues is countable, whereas the
adversarial values λp could lie anywhere in the uncountable set [0, 2]. We can, however realize
arbitrary eigenvalues by using weighted graphs with three nodes. Consider a cyclic graph structure
and tune the weight of edge (1, 2) to sin2(θp) and the weight of edges (2, 3) and (3, 1) to cos2(θp)
with θp ∈

[
0, π2

]
. The symmetrically-normalized graph Laplacian,

Lp =

 1 − cos2(θp) − sin2(θp)
− cos2(θp) 1 − sin2(θp)
− sin2(θp) − sin2(θp) 1

 ,

has eigenvalues λ(1)p = 1, λ
(2)
p = sin2(θp), λ

(3)
p = 2 − sin2(θp). λ

(2)
p can assume all values

λp ∈ [0, 1], whereas λ(3)p can assume all values λp ∈ [1, 2]. This finishes the proof.

Remark. If one wishes to restrict the set of possible adversarial graph sequences (Gp)p∈N to include
only simple graphs, a version of Theorem 3 still holds where we restrict the assumption to filters
ĝ which are piecewise-continuous with discontinuities on a finite set of points D ⊂ S, where S ⊂
[0, 2] denotes the countable set of eigenvalues realizable by simple graphs. This still covers a large
class of filters to which order-p polynomial filters can provably converge slower than any inverse root
of p in the operator norm, and includes the virtual node filter (discontinuous only in λ = 0) presented
as an example in the main body. The proof is fully analogous up to the point of constructing λp.
If λp ∈ D, we can find a graph that realizes it exactly. Now assume λp /∈ D. We note that
the set S is dense in [0, 2] (clear from considering, e.g., the cyclic graphs Cn with symmetrically-
normalized Laplacian eigenvalues λk = 1− cos

(
2πk
n

)
). Since we assume that ĝ and therefore also

|ĝγp − ĝ| is piecewise-continuous anywhere but on D ⊂ S and D is finite, we can find an open
neighborhood N (λp) for any λp /∈ D on which ĝ is continuous. Using that S is dense in [0, 2], we

find a graph sequence
(
G̃(l)p

)
l∈N

with eigenvalues λ̃(l)p ∈ N (λp) ∀l ∈ N,
(
λ̃
(l)
p

)
l∈N
→ λp for which

∥ĝγp
(λ̃

(l)
p) − ĝ(λ̃(l)p)∥ → ∥ĝγp

(λp) − ĝ(λp)∥. Therefore, by the same reasoning as in the proof of

Theorem 3, we find that there can be no α ∈ (0, 1) for which sup0̸=X∈R|Gp|×d

∥(gγp−g)∗GpX∥F

∥X∥F
is of

O (p−α).

27

H.4 Proof of Theorem 4

We first introduce the setting and notation to state Theorem 4 in its general version. We study how
well S2GNNs can approximate “idealized” GNNs (IGNNs) containing L graph convolution layers
1 ≤ l ≤ L, each of which can express a convolution operator g with any spectral representation
ĝ(l) : [0, 2]→ Rd(l) . An IGNN layer therefore has the structure

H(l) = σ
(
g(l) ∗G [H(l−1)W (l)]

)
= σ

(
V ĝ(l)(λ)⊙ [V ⊤H(l−1)W (l)]

)
(20)

with H(l) ∈ Rn×D(l)

, W (l) ∈ RD(l)×D(l−1)

and V ∈ Rn×n.

We compare this to S2GNNs with ℓ = (m+ 1)L layers for m ≥ 1, in the additive form of Eq. 1,

H(l) = Spectral(l)(H(l−1);V ,λ) + Spatial(l)(H(l−1);A) (21)
Each layer 1 ≤ l ≤ ℓ parametrizes a spatio-spectral convolution. The spectral part satisfies Eq. 3,

Spectral(l)(H(l−1);V ,λ) = V
(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤H(l−1)W (l)

spec

])
(22)

with embeddings H(l) ∈ Rn×d(l) , linear feature transforms f (l)θ := W
(l)
spec ∈ Rd(l)×d(l−1)

and a
spectral filter ĝ(l)ϑ : [0, 2]→ R that is fully supported and a universal approximator on [0, λcut]. Note
we assume here that in every layer, there is only one spectral filter which gets reshaped as to act
on every hidden component, whereas in practice, we relax this assumption to different filters per
component, which can only be more expressive. The spatial part is a polynomial filter of the form

Spatial(l)(H(l−1);A) = σ

 p∑
j=0

γ
(l)
j Lj

H(l−1)W
(l)
spat

= σ

(
V
(
ĝ(l)γ (λ)⊙

[
V ⊤H(l−1)W

(l)
spat
]))

with W
(l)
spat ∈ Rd(l)×d(l−1)

, polynomial order p (fixed across layers), and a spectral representation

ĝ
(l)
γ (λ) =

∑p
j=0 γ

(l)
j λj with coefficients γ(l) = (γ

(l)
0 , . . . , γ

(l)
p)⊤ ∈ Rp+1. We note that theorem 4

extends immediately to the case of directed graphs if the spatial part is instead a polynomial of the
magnetic Laplacian (see section 3.2.3) over complex-valued embeddings like in Zhang et al. (2021).

Note that the layer-wise hidden dimensions D(l) vs. d(l) of the IGNN vs. S2GNN do not have
to agree except at the input layer, d(0) = D(0) (of course, both networks receive the same input
H(0) = H(0) = X), and at the output layer, d(ℓ) = D(L). We now state the general version of
Theorem 4.
Theorem (Theorem 4, general). Assume an L-layer IGNN with filters ĝ(l) such that ĝ(l)

∣∣
[λcut,2]

∈

Cr[λcut, 2] and
∥∥∥ dr

dλr ĝ
(l)
∣∣
[λcut,2]

∥∥∥
∞
≤ Kmax

r (λcut) for all 1 ≤ l ≤ L. Let ∥ĝ(l)∥∞ ≤ ∥ĝ∥max
∞ and

∥W (l)∥2 ≤ ∥W ∥max
2 for all 1 ≤ l ≤ L. Assume that σ = [·]≥ is the ReLu function. Then,

(1) For a fixed polynomial order p ≥ 2, an approximating sequence
(
S2GNNm

)
m∈N of [(m+ 1)L]-

layer S2GNNs exists such that, for arbitrary graph sequences (Gm)m∈N,

sup
0̸=X∈R|Gp|×d

∥
[
(S2GNNm)Gm − (IGNN)Gm

]
(X)∥F

∥X∥F

=O
(
CL(∥ĝ∥max

∞ , ∥W ∥max
2) Kmax

r (λcut) (pm)−r
)
,

CL(∥ĝ∥max
∞ , ∥W ∥max

2) = ∥W ∥max
2

L−1∏
l=1

[
∥ĝ∥max

∞ ∥W ∥max
2 + (∥ĝ∥max

∞ ∥W ∥max
2)l

]
with a leading-order scaling constant that depends only on r. Here, (·)Gm denotes the instantiation
of all model filters on the eigenvalues of an input graph Gm, which maps both models onto a Gm-
dependent function RD(0) → RD(L)

.

(2) For fixed m ≥ 1, an approximating sequence
(
S2GNNp

)
p∈N of [(m + 1)L]-layer S2GNNs with

increasing layer-wise polynomial order p exists such that, for all (Gp)p∈N, the same bound holds.

28

Proof. We first prove the following lemma, narrowing down the previous theorem to a single layer.

Lemma 1. Let IGNN(l) denote a single IGNN layer as in Eq. 20, with a filter ĝ(l) such that
ĝ(l)
∣∣
[λcut,2]

is r-times continuously differentiable on [λcut, 2] and satisfies a boundKr

(
ĝ(l), λcut

)
≥ 0,∣∣ dr

dλr ĝ
(l)(λ)

∣∣ ≤ Kr

(
ĝ(l), λcut

)
∀λ ∈ [λcut, 2]. Let σ = [·]≥ be the ReLu function, and let ∥W (l)∥2

denote the spectral norm of W (l). Then,

(1) For fixed polynomial order p ≥ 2, an approximating sequence
(

S2GNN(l)
m

)
m∈N

of (m+1)-layer

S2GNNs exists such that, for arbitrary graph sequences (Gm)m∈N,

sup
0̸=X∈R|Gp|×d

∥∥∥[(S2GNN(l)
m)Gm

− (IGNN(l))Gm

]
(X)

∥∥∥
F

∥X∥F
= O

(
[∥W (l)∥2Kr(ĝ, λcut)](pm)−r

)
with a scaling constant that depends only on r. Here, (·)Gm denotes the instantiation of all model
filters on the eigenvalues of an input graph Gm, which maps both models onto a Gm-dependent
function RD(l−1) → RD(l)

.

(2) For fixed m ≥ 1, an approximating sequence
(

S2GNN(l)
p

)
p∈N

of (m + 1)-layer S2GNNs with

increasing layer-wise polynomial order p exists such that, for all (Gp)p∈N, the same bound holds.

Remark. The proof of the simplified Theorem 4 used in the main body is analogous to the proof of
Lemma 1 just without the nonlinearity, which has the following consequences:

• The final layerm+1 which we only need to apply one last nonlinearity to the output (since
the spectral part of all layers, including the previous layer m, has none) becomes obsolete,
so the final layer instead becomes m,

• The two limits (1) and (2) are equivalent by the reduction to an mp-order polynomial filter,

• We do not need the dimension-doubling “trick” outlined below to get rid of the nonlinearity
in the proof and instead set all feature transform matrices in layers 1 through m− 1 to the
identity and the final ones to W

∗(m)
spec = W (l), W ∗(m)

spat = W (l).

Proof of Lemma 1. We first note that m S2GNN spatial parts, each of order p, would act like an
(mp)-order polynomial filter (factorized into m order-p polynomials), were it not for the nonlinear-
ities in between. However, using the fact that σ is the ReLu function, we can choose intermediate
hidden dimensions twice the size of the input dimension and then use the linear transforms to store
a positive and a negative copy of the embeddings, add them back together after applying each ReLu,
just to split the result back into a positive and negative copy for the next layer. This essentially gets
us rid of σ. Throughout the proof, we use a star superscript to denote the specific parameters that
will ultimately satisfy our bound, whereas we put no star above parameters that are yet to be fixed
in a later part of the proof.

For m ≥ 2, the trick discussed above works if we set

W ∗(1)
spec =

1

2
(I −I) ∈ RD

(l−1)×2D(l−1)

,

W ∗(2)
spec , . . . ,W

∗(m−1)
spec =

1

2

(
I
−I

)
(I −I) ∈ R2D(l−1)×2D(l−1)

,

W ∗(m+1)
spec = W (l)

(
I
−I

)
∈ R2D(l−1)×D(l)

,

W
∗(1)
spat = (I −I) ∈ R2D(l−1)×D(l−1)

,

W
∗(2)
spat , . . . ,W

∗(m−1)
spat =

(
I
−I

)
(I −I) ∈ R2D(l−1)×2D(l−1)

,

W
∗(m+1)
spat = W (l)

(
I
−I

)
∈ R2D(l−1)×D(l)

.

29

In the case m = 1, pick the matrices W
∗(1)
spec ,W

∗(1)
spat from above for the first, and the matrices

W
∗(m+1)
spec ,W

∗(m+1)
spat from above for the second layer.

Set ĝ∗(m+1)
γ (λ) = 1 and ĝ∗(m+1)

ϑ (λ) = 0. Given these choices and a graph G with eigenvalues λ,

(S2GNN
(l)
)G(X) = σ

(
V
(
ĝspsp(λ)⊙

[
V ⊤H(l−1)W (l)

]))
, ĝspsp =

m∏
j=1

(
ĝ
(j)
ϑ + ĝ(j)γ

)
We see that ĝspsp

∣∣
[λmax,2]

=
∏m
j=1 ĝ

(j)
γ since ĝ(j)ϑ

∣∣
[λmax,2]

= 0 for 1 ≤ j ≤ m. This can express any
polynomial up to order mp on [λmax, 2], since we assumed a layer-wise p ≥ 2 and any polynomial
with real coefficients factorizes into real-coefficient polynomials of degree less or equal to 2 by the
fundamental theorem of algebra. On the interval [0, λmax], on the other hand, the filter ĝspsp

∣∣
[0,λmax]

can express any IGNN filter ĝ(l)
∣∣
[0,λmax]

. For m = 1, this is immediately clear. Else, set ĝ(j)ϑ to

constants Cj ∈ R≥, 1 ≤ j ≤ m − 1 large enough that none of the polynomials
(
Cj + ĝ

(j)
γ

)
,

1 ≤ j ≤ m − 1, has a zero in [0, λmax]. Defining ĝ(m)
ϑ =

ĝ(l)
∣∣
[0,λmax]∏m

j=1

(
Cj+ĝ

(j)
γ

) − ĝ(m)
γ

∣∣
[0,λmax]

gives the

desired function.

We proceed by making use of a result by D. Jackson (Natanson, 1964), which is essentially a con-
verse to Theorem 9 which we used to prove Theorem 3:

Theorem (Jackson’s theorem on an interval). Let a < b ∈ R, k, r ∈ N with k ≥ r − 1 ≥ 0,
f ∈ Cr[a, b]. Then, a polynomial pk of degree less or equal to k exists such that

∥pk − f∥∞ ≤
b− a
2

(π
2

)r 1

(k + 1)k . . . (k − r + 2)

∥∥∥∥ drdxr f
∥∥∥∥
∞

Since ĝspsp can express any polynomial up to order mp on [λmax, 2] and, for any such polynomial,
find parameters for the spectral parts that match the ideal filter ĝ(l)

∣∣
[0,λmax]

exactly (not contributing

to the supremum error), we can directly transfer this theorem to our case. Define S2GNN(l)
m from

the lemma by setting the linear feature transforms and final-layer filters as above. For the filters in
layers 1 throughm, define γ∗(1), . . . , γ∗(m) such that

∏m
j=1 ĝ

∗(j)
γ factorizes into into the polynomial

from Jackson’s theorem on [λmax, 2], and ϑ∗(1), . . . , ϑ∗(m) to match ĝ(l) on [0, λmax]. This defines a
filter ĝ(l)spsp. We then find, for mp ≥ r − 1 ≥ 0,

∥ĝ(l)spsp − ĝ(l)∥∞ ≤
2− λmax

2

(π
2

)r 1

(mp+ 1)mp . . . (mp− r + 2)

∥∥∥∥ drdλr ĝ(l)∣∣[0,λmax]

∥∥∥∥
∞

Therefore, ∥ĝ(l)spsp − ĝ(l)∥∞ is of O (Kr(ĝ, λcut)(mp)
−r) and we can find a scaling constant that

depends only on r. Since the Lipschitz constant of σ is 1, we find for any graph G with eigenvalues
λ and any graph signal 0 ̸= X ∈ R|G|,∥∥∥[(S2GNN(l)

m)G − (IGNN(l))G

]
(X)

∥∥∥
F

∥X∥F
≤

∥∥∥V (ĝ(l)spsp − ĝ(l)
)
(λ)⊙

[
V ⊤XW (l)

]∥∥∥
F

∥X∥F

≤
∥ĝ(l)spsp − ĝ(l)∥∞

∥∥(V V ⊤)XW (l)
∥∥
F

∥X∥F
≤ ∥ĝ(l)spsp − ĝ(l)∥∞∥W (l)∥2

=O
(
[∥W (l)∥2Kr(ĝ, λcut)](mp)

−r
)

with a scaling constant that depends only on r. Exactly the same procedure and bounds hold if we
instead keep m fixed and increase p. This finishes the proof of Lemma 1.

We can now prove the main theorem by induction. Lemma 1 gives the initial step. Now,
assume the theorem holds for L IGNN layers. We can then choose

(
S2GNNm

)
m∈N =

30

(
S2GNN(L+1)

m ◦ S2GNN(L◦···◦1)
m

)
m∈N

, where S2GNN(L+1)
m are the approximating models fulfill-

ing Lemma 1, while S2GNN(L◦···◦1)
m fulfill the induction assumption. We assume fixed p and in-

creasing m, but the proof is fully analogous in the other case. Applying the same decomposition to
(IGNNm)m∈N lets us express the error on a graph sequence (Gm)m∈N as∥∥[(S2GNNm)Gm

− (IGNN)Gm

]
(X)

∥∥
F

∥X∥F

=

∥∥∥[(S2GNN(L+1)
m ◦ S2GNN(L◦···◦1)

m)Gm − (IGNN(L+1)
m ◦ IGNN(L◦···◦1)

m)Gm

]
(X)

∥∥∥
F

∥X∥F
≤ (∥X∥F)−1

∥∥∥[(S2GNN
(L+1)

m ◦ S2GNN
(L◦···◦1)
m)Gm − (S2GNN

(L+1)

m ◦ IGNN(L◦···◦1)
m)Gm

]
(X)

∥∥∥
F

+(∥X∥F)−1
∥∥∥[(S2GNN

(L+1)

m ◦ IGNN(L◦···◦1)
m)Gm − (IGNN(L+1)

m ◦ IGNN(L◦···◦1)
m)Gm

]
(X)

∥∥∥
F

≤
[
∥ĝ∥max

∞ ∥W ∥max
2 +O(Kmax

r (λcut) (pm)−r)
]
O
(
CL(∥ĝ∥max

∞ , ∥W ∥max
2) Kmax

r (λcut) (pm)−r
)

+O(Kmax
r (λcut) (pm)−r)(∥ĝ∥max

∞ ∥W ∥max
2)L

=O
(
CL+1(∥ĝ∥max

∞ , ∥W ∥max
2) Kmax

r (λcut) (pm)−r
)
.

We first used the triangle inequality in line 3 to split the difference into two terms. Next,
we bound the first term using the induction assumption, as well as the Lipschitz constant of
S2GNN(L+1)

m , which in turn, by Lemma 1, is the Lipschitz constant of IGNN(L+1)
m up to a term

of O(Kmax
r (λcut) (pm)−r). We moreover bound the second term using the Lipschitz constant of

IGNN(L◦···◦1)
m , as well as Lemma 1 to arrive at the final result.

H.5 Proof of Theorem 5

We next prove the stability of our positional encodings:
Theorem 5. The Positional Encodings PE in Eq. 5 are stable according to Definition 1.

Recall the definition of stability via Hölder continuity:
Definition 1 (Stable PE). (Huang et al., 2024) A PE method PE : Rn×k × Rk → Rn×k is
called stable, if there exist constants c, C > 0, such that for any Laplacian L,L′, and P∗ =
argminP ∥L− PL′P⊤∥F

∥PE(EVD(L))− P∗ PE (EVD(L′))∥F ≤ C ·
∥∥L− P∗L

′P⊤
∗
∥∥c
F
. (6)

For this proof, we build on the work of Huang et al. (2024) where the authors show that under the
assumptions of Definition 2, and some minor adjustments, a positional encoding of the following
form Eq. 23 is stable (Theorem 10).

SPE(V ,λ) = ρ
(
V diag (ϕ1(λ))V

⊤,V diag (ϕ2(λ))V
⊤, . . . ,V diag (ϕk(λ))V

⊤) (23)

Definition 2. The key assumptions for SPE are as follows:

• ϕℓ and ρ are permutation equivariant.

• ϕℓ is Kℓ-Lipschitz continuous: for any λ,λ′ ∈ Rk, ∥ϕℓ(λ)− ϕℓ (λ′)∥F ≤ Kℓ ∥λ− λ′∥.

• ρ is J-Lipschitz continuous: for any [B1,B2, . . . ,Bk] ∈ Rn×n×k and [B′
1,B

′
2, . . . ,B

′
k] ∈

Rn×n×k, ∥ρ (B1,B2, . . . ,Bk)− ρ (B′
1,B

′
2, . . . ,B

′
k)∥F ≤ J

∑k
l=1 ∥Bℓ −B′

ℓ∥F.

Theorem 10 (Stability of Eq. 23 by Huang et al. (2024)). Under Definition 2, SPE (Eq. 23) is
stable with respect to the input Laplacian: for Laplacians L,L′,

∥SPE(EVD(L))− P∗ SPE (EVD (L′))∥F ≤ (α1 + α2) k
5/4
√
∥L− P∗LP⊤

∗ ∥F

+

(
α2
k

γ
+ α3

)∥∥L− P∗LP⊤
∗
∥∥
F
,

(24)

31

where the constants are α1 = 2J
∑k
l=1Kℓ, α2 = 4

√
2J
∑k
l=1Mℓ, and α3 = J

∑k
l=1Kℓ. Here

Mℓ = supλ∈[0,2]k ∥ϕℓ(λ)∥ and again P∗ = argminP∈Π(n)

∥∥L− P∗LP⊤
∗
∥∥
F

. The eigengap γ =

λk+1 − λk is the difference between the (k + 1)-th and k-th smallest eigenvalues, and γ = +∞ if
k = n.

We prove a similar bound for general weighted adjacency matrices A ∈ Rn×n≥0 (note that such a
stability result would be trivial if we restrict A ∈ {0, 1}n×n, since any function on a finite set is
Lipschitz continuous). To achieve this, we need a technical assumption in order to ensure that the
function values do not blow up and degree normalization is indeed a Lipschitz continuous function:
We assume that the domain of A is restricted to (symmetric) matrices whose degrees are uniformly
bounded by some constants 0 < D̃min < D̃max:

du :=
∑
v

Au,v ∈ [D̃min, D̃max] ∀u ∈ {1, . . . , n}. (25)

To decompose the proof into smaller pieces we commonly use the well-known fact that the composi-
tion of Lipschitz continuous functions f1◦f2, with constantsC1 andC2, is also Lipschitz continuous
∥f1(f2(y))− f1(f2(x))∥ ≤ C1C2 ∥y − x∥ with constant C1C2.

Proof. Our proposed encoding (Eq. 5) matches roughly Eq. 23. Specifically, ϕℓ(λ) =
softmax((λj−λ)⊙(λj−λ)/σ2) with σ ∈ R>0. However, ρℓ(B1,B2, . . . ,Bk) does not directly match
||kj=1[Bj ⊙A] · 1⃗, since it is also a function of the adjacency A. Nevertheless, we show that ϕℓ is
Kℓ-Lipschitz continuous and ρ is J-Lipschitz continuous, where we also bound the change of A.

We will start with ϕℓ(λ) = softmax((λj−λ)⊙(λj−λ)/σ2). The softmax is well-known to be of
Lipschitz constant 1 w.r.t. the L2 vector norm/Frobenius norm. −x/σ has a Lipschitz constant of
1/σ. This leaves us with the quadratic term ψu(λ) = (λu − λ) ⊙ (λu − λ) where we bound the
norm of the Jacobian

Jψu
=

−2(λu − λ1) 0 . . . 0 . . . 0
0 −2(λu − λ2) . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . −2(λu − λk)

(26)

that is zero everywhere except for the diagonal entries, excluding its u-th entry. Thus, ∥Jψu
∥F ≤

2kmaxv∈{1,2,...,k}(λv − λu) ≤ 2k(λk − λ1) ≤ 4k, as 0 = λ1 ≤ λk ≤ 2. We can therefore use
Kℓ := 4k/σ.

Now we continue with ρ̃ℓ(A,B1,B2, . . . ,Bk). For f(A,B) = (B⊙A)·1⃗ with a general weighted
adjacency A ∈ Rn×n, we consider

∥(B ⊙A) · 1⃗− (B′ ⊙A′) · 1⃗∥F ≤
(A)
∥⃗1∥2∥B ⊙A−B′ ⊙A′∥F

=
√
n∥B ⊙A−B′ ⊙A′∥F

=
√
n∥B ⊙A−B′ ⊙A+B′ ⊙A−B′ ⊙A′∥F

≤
(B)

√
n∥B ⊙A−B′ ⊙A∥F +

√
n∥B′ ⊙A−B′ ⊙A′∥F

=
√
n∥(B −B′)⊙A∥F +

√
n∥B′ ⊙ (A−A′)∥F

≤
(C)

√
nmax

u,v
Au,v︸ ︷︷ ︸

≤
(D)

D̃max

∥B −B′∥F +max
u,v

B′
u,v︸ ︷︷ ︸

≤
(E)

1

√
n ∥A−A′∥F︸ ︷︷ ︸

(F)

.

(27)
(A) holds by Cauchy-Schwarz, (B) by triangle inequality, (C) by Cauchy-Schwarz, (D) follows
from the domain of A, and (E) is true since the largest eigenvalue of B = V ϕℓ(λ)V

⊤ is 1 because
ϕℓ(λ)j ≤ 1,∀1 ≤ j ≤ k.

32

To further bound (F), i.e. ∥A − A′∥F, note that ∥L − L′∥F = ∥D−1/2AD−1/2 −
D′−1/2A′D′−1/2∥F. For g(A) := D1/2AD1/2, our initial assumption from Eq. 25 yields the
existence of a Lipschitz constant CD̃min,D̃max

for g, which can be verified by computing the partial
derivatives of g. Thus, we can bound

∥A−A′∥F = ∥g(D−1/2AD−1/2)− g(D′−1/2A′D′−1/2)∥F
≤ C D̃min

D̃max
, D̃max
D̃min

∥D−1/2AD−1/2 −D′−1/2A′D′−1/2∥F

= C D̃min
D̃max

, D̃max
D̃min

∥L−L′∥F =: α4∥L−L′∥F.
(28)

As concatenation of k vectors ||kj=1x has a Lipschitz constant of 1, we have J =
√
nD̃max. More-

over, we have an additional term for the RHS of Eq. 24 with constant α4
√
nk, coming from (F) and

Eq. 28.

To finalize the proof, we restate the beginning of the proof of Huang et al. (2024) and incorporate
the additional A-dependency of ρ̃ℓ(A,B1,B2, . . . ,Bk) with Bj = V diag (ϕj(λ))V

⊤ for 1 ≤
j ≤ k.

∥SPE(EVD(L),L)− P∗ SPE (EVD(L′) ,L)∥F
= ∥ρ̃ℓ(A,B1,B2, . . . ,Bk)− P∗ρ̃ℓ(A

′,B′
1,B

′
2, . . . ,B

′
k)∥F

=
∥∥ρ̃ℓ(A,B1,B2, . . . ,Bk)− ρ̃ℓ(P∗A

′P⊤
∗ ,P∗B

′
1P

⊤
∗ ,P∗B

′
2P

⊤
∗ , . . . ,P∗B

′
kP

⊤
∗)
∥∥
F

≤

[
J

k∑
l=1

∥∥Bl − P∗B
′
lP

⊤
∗
∥∥
F

]
︸ ︷︷ ︸

subject of Huang et al. (2024)

+α4

√
nk
∥∥L− P∗L

′
lP

⊤
∗
∥∥
F
.

(29)

Including the extra term stemming from our A-dependent ρ̃ℓ(A,B1,B2, . . . ,Bk), the stability
guarantee reads

∥SPE(EVD(L),L)− P∗ SPE (EVD (L′) ,L)∥F ≤ (α1 + α2) k
5/4
√
∥L− P∗LP⊤

∗ ∥F

+

(
α2
k

γ
+ α3 + α4

√
nk

)∥∥L− P∗LP⊤
∗
∥∥
F

(30)
with the newly introduced α4 arising as Lipschitz constant of (inverse) degree normalization. The
proof is complete.

Windowing for “eigengap” independent bounds. Note that C depends on the eigengap between
1/λk+1−λk at the frequency cutoff. One should be able to improve upon this bound with windowing
(see Fig. 7)), effectively lowering the Lipschitz constant of ĥj(λ) around λk. We leave a formal
treatment of this insight to future work.

H.6 Proof of Theorem 6

We next prove the expressivity of a GNN/S2GNN in combination with our positional encodings:
Theorem 6. S2GNNs are strictly more expressive than 1-WL with the PE of Eq. 5.

For this, we assume that the positional encodings are the only node attributes, subsuming a constant
feature or that there is a linear transformation on the raw features. We require that the choice of
spatial MPGNN / spectral filter is at least as expressive as the 1-WL test, which is the case, e.g., for
GIN. Moreover, we assume that the node-level embeddings are aggregated to the graph level using
summation.

Proof. To show that GNN(PE(V , λ)) is strictly more expressive as 1-WL. For all graphs that 1-
WL can distinguish, the GNN may learn to ignore the PE. Thus, we only need to prove that the
positional encodings/node features of PE(V , λ) suffice to distinguish some graphs that 1-WL could

33

Figure 15: Our positional encodings PE Eq. 5 illustrated in the node colors and sizes. We plot all
5 (rows) 3-regular graphs with 8 nodes and all possible dimensions of the encoding (columns). We
use σ = 0.001. Color denotes the sign, and size encodes the absolute value. We hypothesize that
the visual “smoothness” between graphs and dimensions is due to our PE’s stability (Theorem 5).

not distinguish. For all graphs that 1-WL can distinguish we know, by assumption, that the GNN
can distinguish the graphs.

As Li et al. (2020) point out, 1-WL (and MPGNN that are as capable as 1-WL) cannot distinguish
degree-regular graphs with the same number of nodes and degrees. A degree regular graph is a graph
where each node has the same degree. This is closely related to Theorem 11.

We next show that our PE alone distinguishes certain degree-regular graphs. In this construction,
we consider all 3-regular graphs with n = 8 nodes for this (see Fig. 15). The encodings 1⃗ PE result
in the following values with σ = 0.001 and rounded to max 2 decimal places:

1⃗⊤ PE(EVD(L1)) = [3 1.73 1 0.41 −1 −1 −1.73 −2.41]
1⃗⊤ PE(EVD(L2)) = [3 1.56 0.62 0.62 0 −1.62 −1.62 −2.41]
1⃗⊤ PE(EVD(L3)) = [3 1.73 1 0.41 −1 −1 −1.73 −2.41]
1⃗⊤ PE(EVD(L4)) = [3 1 1 0.41 0.41 −1 −2.41 −2.41]
1⃗⊤ PE(EVD(L5)) = [3 1 1 1 −1 −1 −1 −3]

(31)

By constructing examples, this shows that our PE can distinguish 4 out of the 5 3-regular graphs
with 8 nodes. Thus, our PE may distinguish at least some graphs that 1-WL cannot. This concludes
the proof.

I Expressivity of Spectral Filters and Spectrally Designed Spatial Filters

While it is well-known that common spatial MPGNNs are at most as expressive as 1-WL and that
spectrally designed GNNs can be more expressive than 1-WL (Theorem 2 of Balcilar et al. (2021a)),
we show that spectral GNNs are not able to distinguish degree-regular graphs. This upper bound was

34

not known/formalized prior to our work (Bo et al., 2023b). Fortunately, our PE largely mitigates the
limitation. The improved expressivity of our positional encodings, along with their efficiency, stems
from the element-wise product with A (see also Geerts (2021)).

Theorem 11. Spectral filters V diag(ĝ(λ))V ⊤1⃗ are strictly less expressive than 3-WL with Lapla-
cian L = D −A, L = I −D−1A, or L = I −D−1/2AD−1/2.

Proof. The proof relies on properties of the eigenvectors for the different choices Lu = D − A,
Lrw = I −D−1A, or Ls = I −D−1/2AD−1/2. For Lu1⃗ = λ01⃗ = 0 and Lrw1⃗ = λ01⃗ = 0 the
first eigenvector is constant. The first eigenvector of Ls is D1/21⃗ (ignoring normalization). Thus,
for degree-regular graphs, the first eigenvector of Ls is also constant.

By the orthogonality of eigenvectors, vu ⊥ vv if u ̸= v, we know that all other eigenvectors are
orthogonal to constant node features. Consequently, the “Fourier transformed” node features are
V ⊤1⃗ =

[√
n 0 . . . 0

]
for all three choices Lu, Lrw, and Ls. Since this is true for all degree-

regular graphs, spectral GNNs cannot distinguish degree-regular graphs with the same number of
nodes.

Since the 3-WL test can distinguish some degree-regular graphs, 3-WL is strictly more expressive
than a spectral GNN.

Corollary 1. “Spectrally designed” MPGNNs that use a polynomial parametrization of filter
diag(ĝ(λ)) are strictly less expressive than 3-WL with the same choices for L.

Proof. With a polynomial parametrization of the spectral filter ĝ(λ), we know V (ĝ(λ)⊙ [V ⊤x]) =
V diag(ĝ(λ))V ⊤x = ĝ(L)x =

∑p
j=0 γjL

jx (see § 2). Due to this equivalence between a spectral
and spatial filter and the constant node features x = 1⃗, any polynomial filter

∑p
j=0 γjL

j 1⃗ cannot
distinguish degree-regular graphs. This argument also holds if the polynomial filter is normalized
by the maximum eigenvalue as done by ChebNet (Defferrard et al., 2017).

J Further Remarks on S2GNNs

We next provide insights, details, and remarks on the details and variants of S2GNNs, accompanying
the main section § 3. The structure roughly follows the main body.

Next to the overview in Fig. 2 and the method description of the main part, we provide pseudo-
code in Algo. 1 for a Spatio-Spectral Graph Neural Network on a graph with node attributes, and in
Algo. 2 for a spectral filter.

Algorithm 1 Spatio-Spectral Graph Neural Network (S2GNN), implementing Eq. 1

1: Input: Adjacency A ∈ Rn×n
≥0 , , node attributes X ∈ Rn×d(0) , number of eigenvectors k

2: V ,λ← EVD(L(A), k)

3: H(0) ←X + PE(V ,λ)
4: for l ∈ {1, 2, . . . , ℓ} do
5: H(l) ← Spectral(l)(H(l−1);V ,λ) + Spatial(l)(H(l−1);A)

6: Return H(ℓ)

Algorithm 2 Real-valued spectral filter of Eq. 4

1: Input: Node embeddings H(l−1) ∈ Rn×d(l−1)

, eigenvalues λ ∈ [0, 2]k, eigenvectors V ∈ Rn×k

2: ĝ
(l)
ϑ (λ)← Smearing(λ)W ⊙Window(λ)

3: Ĥ(l−1) ← V ⊤H(l−1)

4: Ĥ(l) ← s
(l)
ζ (ĝ

(l)
ϑ (λ)⊙ Ĥ(l−1))

5: H(l) ← V Ĥ(l)

6: Return H(l)

35

(a)

(b)

(c)

(d)

(e)

Figure 16: Sketch of intra- and inter-cluster message passing capabilities V (ĝϑ(λ) ⊙ [V ⊤X] =

[
∑k
j=1 ĝϑ(λj)vjv

⊤
j]X . The “star” node reflects the global Fourier coefficient and colors/widths

illustrate its signed and weighted message passing. We show the first four eigenvectors, order nodes
left to right in vj , and sum repeated eigenvalues.

J.1 Visualization of Spectral Filters

In Fig. 16, we provide further examples of hierarchies/eigenspaces spectral filters have access
to, complementing Fig. 3 & 4. Here and in the main part, we use the main diagonal of∑
j s.t. λj=λu

vjv
⊤
j for deciding on the edge weights of the graph structures, potentially summing

over multiple eigenvectors with identical values λj = λu. We take the product
∏
j s.t. λj=λu

sign(vj)

for visualizing the sign of the n edges for the global aggregation.

For all graphs, the first eigenvector denotes the constant signal (for L = D − A). For (a-d), we
observe that the second eigenspace roughly describes a half oscillation, i.e., the left vs. right part of
the graph. The third eigenspace separates the middle parts. For (a), the fourth eigenspace models
the interactions between the extremal nodes. For (b-d), the frequency increments again, effectively
clustering the graph in four roughly equal pieces. For (e), the eigenspaces model the interplay
between (automorphic) inner and outer structures, as well as the vertical and horizontal symmetry.

36

J.2 Composition of Filters

Composing a residual connection with a graph filter G = diag(ĝ(λ)) ∈ Rn×n yields Y =
V GV ⊤H + H = V (G + I)V ⊤H , chaining multiple filters (without nonlinearities) re-
sults in V G2V

⊤V G1V
⊤H = V G2G1V

⊤H . Chaining and residual connections resolve to
V (G2G1+G2+G1+I)V ⊤H . Hence, an arbitrary sequence of graph filters (Eq. 2) can be more
flexible due to the interactions between filters. Note that this composition is only true in the absence
of nonlinearities. Nevertheless, the main intuition about how filters interact remains approximately
the same also in the light of nonlinearities.

J.3 Exhaustive Reasons Why Low Frequencies Are Sensible

A sensible default is to focus on the low frequencies. We specifically identify the following six
reasons: (1) Low frequencies model the smoothest global signals w.r.t. the high-level graph struc-
ture (see Fig. 3 & 4). (2) Gama et al. (2020) find that, under a relative perturbation model (per-
turbation budget proportional to connectivity), stability implies C-integral-Lipschitzness (∃C >
0: |λdĝ/dλ| ≤ C), i.e., the filter can vary arbitrarily around zero but must level out towards larger λ.
Stability to graph perturbations is a strong domain-agnostic prior. (3) Many physical long-range in-
teractions are power laws with a flattening frequency response. For example, we construct an explicit
graph filter modeling the electric potential of charges in a 1D “ion crystal” (§ G) and find that a low-
pass window is optimal. (4) Sequence models like Hyena (Poli et al., 2023) apply global low-pass
filters through their exponential windows. (5) Cai et al. (2023) prove that an MPGNN plus virtual
node (see § E) can emulate DeepSets (Zaheer et al., 2017) and, thus, approximate self-attention to
any precision. Nonetheless, we find that a virtual node alone does not necessarily yield good gener-
alization (§ 3.1.1 & 4.1). (6) Nonlinearities “spill” features between frequency bands (Gama et al.,
2020). This includes spillage from higher frequencies to the band of the spectral filter. Gama et al.
(2020) argue that this spillage makes it possible to learn stable yet expressive graph filters and is
also a feature of stable message passing models.

J.4 Scaling to Graphs of Different Magnitude

For scaling a single to graphs of different orders of magnitude, it can be beneficial to rescale the
eigenvalues before learning the filter ĝϑ(λ). That is, we use ĝ(l)ϑ (λ̃) with rescaled λ̃.

For example, the eigenvalues for a path/sequence are λj ≈ (1− cos(πj/n)). Thus, the resolution is
poor, especially for the eigenvalues close to zero since cos approaches slope 0. For this reason, we
consider rescaling the eigenvalues with

λ̃j = 1/π cos−1(1− λj) (32)

or
λ̃j = n/π cos−1(1− λj) (33)

The latter is, e.g., convenient for identifying the second lowest eigenvalue regardless of n. Due to the
poor numerical properties of these relations, we evaluate cos−1(1 − λj) = tan−1(

√
2λj−λ2

j/1−λj)
instead.

J.5 Spectral Normalization

While the GFT and its inverse preserve the norm of the input (e.g., ∥x̂∥2 = ∥V ⊤x∥2 = ∥x∥2), this
is not true if operating on a truncated frequency spectrum or if the filter ĝϑ(λ) suppresses certain
frequencies. For example, in the example of a virtual node (for simplicity here with L = D−A), a
signal x that is zero at every node but one at a single node, then the signal will be equally scattered
to every frequency. Then, suppressing all frequencies but λ = 0, yields ∥V 1{0}V

⊤x∥2 = 1/
√
n.

Motivated by this unfortunate scaling, we also consider normalization in the spectral domain.
Specifically, we normalize Ĥ = ĝϑ(λ)⊙

[
V ⊤fθ(H)

]
∈ Rk×d s.t. Ĥj ← (1−aj)Ĥj+ajĤj/∥Ĥj∥2

with learnable a ∈ [0, 1]d. This allows, e.g., broadcasting a signal from one node without impacting
its scale. However, we empirically find that this normalization only helps only marginally in the
over-smoothing experiment (Di Giovanni et al., 2023a) and otherwise can destabilize training. We
also consider variants where the norm in the spectral domain is scaled with the norm of the signal

37

in the spatial domain with more or less identical results. We hypothesize that such normalization
is counter-productive for, e.g., a bandpass filter if the signal does not contain the corresponding
frequencies.

J.6 Adjusting S2GNNs to Directed Graphs

For the spectral filter of Eq. 3, we use f
(l)
θ (Ĥ(l)) = H(l) ⊙ [σ(H(l)W

(l)
G,ℜ) + i ·

σ(H(l)W
(l)
G,ℑ)] and subsequently map the result of Spectral back the real domain, e.g., using

w
(l)
ℜ ℜ(Spectral

(l)(H(l−1))) + w
(l)
ℑ ℑ(Spectral

(l)(H(l−1))), with learnable weights w
(l)
ℜ ,w

(l)
ℑ ∈

Rd and real ℜ(·) as well as imaginary component ℑ(·). For the positional encodings PE(V ,λ)
of § 3.2.4, we use As in Eq. 5 and concatenate real as well as imaginary components. The neural
network for the spectral domain sζ of § 3.2.2 generalizes without adjustment. Similar to Koke &
Cremers (2024), one could also employ complex weights; however, we do not.

J.7 Computational Remarks

We use readily available eigensolvers (scipy) and, thus, use a fixed number of eigenvectors (typi-
cally k ≪ n) instead of determining k based on λcut. The partial eigendecomposition is of complex-
ity O(km) for m edges, while the spectral filter has complexity O(kdn). On a different remark, we
batch multiple graphs using block diagonal matrices (Fig. 17).

A1

A2
. . .

Ab

0

0

∑
i ni

∑ i
n
i

V1

V2
. . .

Vb

0

0

∑
i ki

∑ i
n
i

Figure 17: Block diagonal batch-
ing for spatial and spectral filters.

Spectral graph-level readouts. The key insight is that fre-
quencies are a global concept, and hence, the GFT can be used
for global readouts in graph-level tasks. With k ≪ n, such a
readout is practically free in the presence of intermediate spec-
tral layers and of O(kn) otherwise. Thus, there is the oppor-
tunity for a computationally convenient aggregation of global
information, including a sort of graph-level “jumping knowl-
edge” (Xu et al., 2018). The only caveat is that the Fourier
coefficients are not unique due to the ambiguity in the eigende-
composition. To maintain permutation equivariance, we take
the absolute value and aggregate over dimension k in Eq. 4 instead of the multiplication with V .
We observe that such intermediate readout can improve performance slightly, e.g., on TPUGraphs.
However, we leave a systematic evaluation of its benefits for future work.

Linear bottle necks. To circumvent overfitting, we commonly replace the linear transformations
WX in f (l)θ (Ĥ(l)) and ĝϑ(λ) with low-rank bottlenecks W2W1X , s.t. W ∈ Rd×d, W2 ∈ Rd×d′ ,
W1 ∈ Rd′×d, and d′ < d.

K Limitations

We expect that many common graph benchmarks do not have or only insignificant long-range inter-
actions. We observe that MPGNNs are less likely to overfit, perhaps since locality is a good inductive
bias in many circumstances (Bronstein et al., 2021). Moreover, we observe that the spectral filter
(§ 3.2.1) may converge slowly and get stuck in local optima. We find that a sufficient amount of
randomly initialized filters mitigates this issue to a large extent. Further, one can introduce inductive
biases via windowing functions (Fig. 7), like the exponential window used by Hyena (Poli et al.,
2023).

Even if the true causal model generating the target consists of long-range interactions, it might be
sufficient to model the training data solely using (potentially spurious) local interactions. This might
be especially true if the training nodes are samples from a “small” vicinity of the graph (e.g., OGB
Products (Hu et al., 2020)).

Closely related to the previous point is the amount of available training data. We hypothesize that
S2GNNs are more data-hungry than their purely spatial counterpart. That is, to reliably detect (non-
spurious) long-range interactions in the training data, a sufficient amount of data is required. Similar
findings have been made, e.g., in the image domain (Dosovitskiy et al., 2021).

38

Except for heterophilic graphs, direction plays a small role in graph machine learning even though
many benchmark tasks actually consist of directed graphs (Rossi et al., 2023). Moreover, there
is a lack of benchmarks involving directed graphs, which require long-range interactions. Note
that most of the theoretical findings generalize to directed graphs under appropriate modeling deci-
sions/assumptions. However, we do not make this discussion explicit since MPGNNs for directed
graphs are still actively researched.

Since a lot of the previous points hover around the insufficiency of the available benchmarks, we
propose two new tasks § 4.1 and derive further datasets, e.g., for associative recall.

While we demonstrate the practicality of S2GNNs in § 4.3 on large-scale benchmarks, the partial
eigendecomposition EVD starts to become costly on the largest graphs we use for evaluation. Even
though we did not experiment with lowering the requested precision, etc., we expect that for scaling
further, naïve approaches might not be sufficient. One direction could be to utilize GPUs instead of
CPUs or to adapt concepts, e.g., from spectral clustering (von Luxburg, 2007).

Even though there are many important reasons why we should utilize a spectral filter on the low end
of the spectrum, there might be tasks for which this choice is suboptimal. One way to estimate the
frequency band to which one should apply a spectral filter is via a polynomial regression and then de-
termine where the derivative is maximal. Note that it is efficient to calculate the eigenvectors around
an arbitrary location of the spectrum, e.g., with the “shift-invert mode” of scipy/ARPACK (Lehoucq
et al., 1998).

Due to the many possible design decisions of spectrally parametrized filters, the neglect of spectral
filters in prior work, and the lack of appropriate benchmarks, it was not possible to ablate all the
details. We expect that future work will discuss the specific building blocks in greater detail.

L Broader Impact

We expect that S2GNNs will have similar societal implications as other model developments like
Convolutional Neural Networks (CNNs) (LeCun et al., 1989), LSTMs (Hochreiter & Urgen Schmid-
huber, 1997), transformers (Vaswani et al., 2017), or modern Graph Neural Networks (Gilmer et al.,
2017). Since such models may be used as building blocks in architectures for predictive tasks, gen-
erative modeling, etc., they have a wide range of positive and negative implications. Nevertheless,
we expect that S2GNNs will not have more negative implications than other machine learning model
innovations.

M Experimental Results

This section provides further details on the experimental setup (§ M.1), the computational cost
(§ M.3), and graph constructions with additional experimental results for the clustering tasks
(§ M.6); likewise we provide details for the distance regression (§ M.7), arXiv-year (§ M.8), and pro-
vide nodes on the graph construction in TPUGraphs (§ M.10). Note that the sections on clustering
(§ M.6) and distance regression (§ M.7) also contain ablations and further insights.

M.1 Experimental Details

Implementation. The code base is derived from Cao et al. (2023), which on the other hand derive
the code of Rampášek et al. (2022). The implementation heavily relies on PyTorch geometric (Fey
& Lenssen, 2019).

Datasets. We collect the main statistics, including licenses, for the datasets in Table 6. The provided
code will download all datasets along with the experiment execution, except for TPUGraphs, where
one should follow the official instructions. Due to the high variation in results, we merge all “layout”
datasets and present the results on this joint dataset. We use the fixed public splits for all experiments
and proceed accordingly for our datasets (see § M.6 and § M.7).

Hyperparameters. While we provide full parameters for all experiments and models in our code,
we gather an overview of the used S2GNNs variants here. The parameters were determined through
cascades of random search throughout the development of the method. We list the most important
parameters in Table 7.

39

Table 6: Dataset statistics and licenses.

Name # of graphs Average # of nodes Average # of edges Task License

Peptides func (Dwivedi et al., 2022) 15,535 150.9 307.3 graph multi-label
classification CC BY-NC 4.0

Peptides struct (Dwivedi et al., 2022) 15,535 150.9 307.3 graph regression CC BY-NC 4.0
CLUSTER (Dwivedi et al., 2023) 12,000 117.2 4,301.7 node classification CC-BY 4.0
LR-CLUSTER (ours) 12,000 896.9 6,195.1 node classification CC-BY 4.0
Tree Distance regression (ours) 55,000 749.2 748.2 node regression CC-BY 4.0
DAG Distance regression (ours) 55,000 748.6 821.8 node regression CC-BY 4.0
Oversquashing extended

(derived from (Di Giovanni et al., 2023a)) 730 43.8 231.9 node classification CC-BY 4.0

Associative recall small
(derived from (Poli et al., 2023)) 26,000 524.7 523.7 node classification CC-BY 4.0

Associative recall 30k
(derived from (Poli et al., 2023)) 11,000 30,003.8 30,002.8 node classification CC-BY 4.0

OGB arXiv (Hu et al., 2020) 1 169,343 1,166,243 node classification MIT
OGB Products (Hu et al., 2020) 1 2,449,029 61,859,140 node classification MIT
TPUGraphs (Phothilimthana et al., 2023) ≈31,000,000 ≈6,100 NA graph ranking Apache License

Usage of external results. The performance of baselines is commonly taken from leaderboards and
the respective accompanying papers. This specifically includes the results in Table 1, Table 2, and
Table 11.

Setup. For clustering (§ M.6), distance regression (§ M.7), and arXiv-year (§ M.8) we report the
detailed setup in the respective sections. For the other tasks, the relevant details are:

• Peptides: We follow the setup and implementation of Rampášek et al. (2022). That is, we
train for 250 epochs with a batch size of 200. We rerun experiments on 10 random seeds.

• Over-squashing: We derive the setup from Di Giovanni et al. (2023a). In the main part
(Fig. 5), for the GCN, we report the numbers of their Figure 3 for a GCN on “Clique Path”
graphs. For the spectral filter, we actually consider the more challenging setting where
we do not train one model per graph size. Instead, we train one model for all sequence
lengths. The task is to retrieve the correct of five possible classes on the other end of the
graph. In the extended experiment of Fig. 12, we compose the dataset of “Clique Path” and
“Ring” graphs (see Di Giovanni et al. (2023a)). To avoid m = O(n2), we limit the fully
connected clique to 15 nodes. For training and validation, we enumerate all graphs with
even n ∈ {4, 6, . . . , 50} and train for 500 epochs. For test, we enumerate the graphs with
even n ∈ {52, 54, . . . , 100}. We rerun experiments on 10 random seeds.

• Associative recall: We construct one dataset consisting of key-value sequences of length
20 to 999. As Poli et al. (2023), we use a vocabulary of 30. We sample 25,000/500 ran-
dom graphs for train/validation. For the test set, we randomly generate 500 graphs for the
sequence lengths of 1,000 to 1,199. We train for 200 epochs. In the experiment with val-
idation/test sequence length 30k (Table 2), we generate 10,000 training graphs of length
29,500 to 30,499 and finetune S2GNNsGCN from the smaller setup. We rerun experiments
on 10 random seeds.

Table 7: Important S2GNNs specific hyperparameters and runtimes. The times for the EVD cover
the respective dataset entirely.

Dataset # MP
layers

spec.
layers Dim. d # spec. filters

per layer
eigenvectors k /
frequency cutoff λcut

Spectral
NN

Train
time EVD time GPU Notes

Peptides-Func 3 3 224 128 λcut = 0.7 ✗ 1 h 2 min 1080Ti
Peptides-Struct 3 1 260 260 λcut = 0.7 ✗ 1 h 2 min 1080Ti
CLUSTER 18 17 64 32 λcut = 1.3 ✗ 1.2 h 4 min 1080Ti
LR-CLUSTER (ours) 4 1 128 128 k = 10, λcut = 0.05 ✗ 20 min 4 min 1080Ti
Distance regression
(ours) 5 4 236 236 k = 50, λcut = 0.1 ✗ 3 h 1.5 h A100 1080Ti possible with

smaller batch size
Oversquashing
extended 0 1 16 16 k = 20, λcut = 0.05 ✗ 3 min 3 s 1080Ti

Associative recall 3 3 224 224 k = 10, λ̃cut = 10 ✓ 3 h closed form 1080Ti
eigenvalue transform

(Eq. 33) &
exponential window

arXiv-year 4 2 256 256 k = 100, λcut = 0.05 ✓ 1 h 5 min 1080Ti
Open Graph
Benchmark Products 6 2 256 164 k = 100→ λcut ≈ 0.056 ✓ 11 h 26 min A100 eigenvalue transform

(Eq. 32)
TPU Graphs 3 1 128 64 k = 100, λcut = 0.05 ✓ 40 h 4 h A100 transformer-based ĝ

40

• OGB Products: Even though full-graph training with 3 layers GCN plus one spectral
layer fits into a 40 GB A100 GPU, we find that batched training works better. We randomly
divide the graph during training into 16 parts and train a 6-layer S2GAT with spectral layers
after the second and last message passing step. Inference is performed on the entire graph
at once. We rerun experiments on 5 random seeds.

• TPUGraphs: This is the only dataset where we use a transformer to model ĝ instead of
the procedure detailed in § 3.2.1. We fix the number of eigenvectors to k = 100 and do
not apply any windowing. Due to the large variation of results, we merge all “layout”
tasks into a single dataset. Since the default graph construction is not able to express all
relevant information, we adapt it as detailed in § M.10, however, the empirical impact was
small. TPUGraphs “layout” consists of a few hundred distinct graph structures with a large
variation on the node-level configuration/features. We sample 10,000 configurations for
each graph structure of each “layout” sub-split. Here, we introduce two batch dimensions:
(1) batching over multiple graphs and (2) batching over the configurations. In each training
step of the 1,000 epochs, we sample a small subset of configurations per graph structure
and apply a pairwise hinge loss to rank the configurations. We do not perform random
reruns due to the computational cost.

M.2 Qualitative Experiments

In Fig. 6 and Fig. 8, we provide qualitative insights about the approximation of filters and ringing.

In Fig. 6, we construct a true filter by adding a discontinuous filter at λ = 0 and a polynomial filter
of order 3. For the spectral part, we use the true filter values and fit a Chebyshev polynomial on the
remaining part. We then plot the response of the true filter and its approximations on a path graph
with 21 nodes and L = I −D−1A.

Similarly, in Fig. 8, we use a path graph with 100 nodes and L = I −D−1A. We then construct a
perfect low pass (k = 25) and approximate a rectangular wave.

M.3 Computational Cost

We report the computational cost for the experiments in Table 7 for a single random seed. On top
of the pure cost of reproducing our numbers, we conducted hyperparameter searches using random
search. Partially, we required 100s of runs to determine good parameter ranges. A generally well-
working approach was first to reproduce the results of the best available MPGNN in prior work.
Thereafter, we needed to assess how likely additional capacity would lead to overfitting. Usually, we
reduced the number of message-passing steps, added the spectral filter, and determined appropriate
values for the number of eigenvectors k. In the light of overfitting, it is a good idea to lower the
number of Gaussians in the smearing of the filter parametrization (§ 3.2.1), introduce bottle-neck
layers (§ J), and use fewer spectral filters than hidden dimensions.

Runtime with precalculated eigenvectors. In Fig. 18, we contrast the runtime cost of a spectral
convolution with spatial messages passing on ogb-arXiv (170k nodes) of Hu et al. (2020), using an
Nvidia GTX 1080Ti. This essentially compares a sparse matrix multiplication (adjacency matrix)

10 1000 2000 3000 4000 5000
Number of eigenvectors k

100

200

Ru
nt

im
e /

 m
s

2 4 6
Number message passing steps

GCN
Spec.

Figure 18: Runtime comparison on arXiv (w/o EVD) using k = 2, 500 for the spectral filter.

41

with matrix multiplications on dense "tall and skinny" matrices (GFT). we find that one GCN-layer
here is as costly as a spectral filter with approx. k = 2, 500 eigenvectors.

Large-scale benchmarks. On the large-scale datasets OGB Products and TPUGraphs, we perform
full-graph training (without, e.g., segment training (Cao et al., 2023)) using 3 DirGCN layers inter-
layered with spectral filters targeting a pair-wise hinge loss. The spectral GNN uses the Magnetic
Laplacian to incorporate direction. The spatial MPGNN closely resembles the model of Rossi et al.
(2023), except that we half the dimension for the forward and backward message passing and con-
catenate the result. We shrink the dimensions to model the direction at a very low cost. We conclude
that S2GNNs can be very practical even if applied at scale and can effectively model long-range
interactions also on large graphs.

Dense Sparse

0 2000
Number of nodes n

10 2
10 1
100
101

Ti
m

e c
os

t /
 s

(a) scipy (CPU)

0 10000
Number of nodes n

10 2
10 1
100
101

Ti
m

e c
os

t /
 s

(b) PyTorch (GPU)

Figure 19: Runtime of partial eigendecomposition k = 25 of Erdős Rényi graph with average degree
5. Dashed mark directed/Hermitian Laplacian.

Eigendecompositon. We show the computational cost for the eigendecomposition of a random
Erdős Rényi graph (every edge has equal likelihood to be drawn). We use scipy (CPU) and
PyTorch (GPU) with default arguments. For the sparse decomposition with PyTorch, we use the
svd_lowrank method. Note that the default parameters for PyTorch are usually leading to large
numerical errors. Fig. 19 demonstrates that the cost of the eigendecomposition is manageable. For
large graphs like ogbn-products (2.5 mio. nodes), the EVD takes around 30 minutes with k = 100
on 6 CPU cores of an AMD EPYC 7542. Note that the default parameters of the eigensolver allow
for 1000s of iterations or until the error in the 32-bit float representation achieves machine precision.

M.4 S2GNN Aggregation Ablation

In the main body we present two ways to combine a spatial and spectral filter: An additive combi-
nation (Eq. 1) and an arbitrary sequence of filters (Eq. 2). In this section, we perform an ablation
analysis on the peptides-func benchmark and report the results in Table 8.

Instead of summation of the spatial and spectral parts, concatenation is another possible op-
tion. Getting input features H(l−1) ∈ Rn×d(l−1)

, we design Spectral(l) and Spatial(l) to map
to Rn×d(l)/2 and update the embeddings as

H(l) = Spectral(l)(H(l−1);V ,λ) || Spatial(l)(H(l−1);A). (34)

Additionally, we consider normalization of the addends at the end of each embedding update,
dividing by 1/

√
2 (concatenation w/ residual) and 1/

√
3 (summation w/ residual) as an attempt to

keep the variance constant.

Inspired by recent advancements in state space models like Mamba (Gu & Dao, 2023), we also
consider modeling an update step in a similar way, identifying the convolutional part with Spatial(l)

and the SSM part with Spectral(l).

The following table shows results for the different design choices to combine the spatial and spectral
parts, with all hyperparameters being precisely the ones reported in Table 7 for peptides-func.

42

Table 8: Ablation of different aggregation functions on the peptides-func benchmark, with our PE.

Aggregation Normalization # params Test AP (↑)

Concat ✗ 322k 0.6827± 0.0055
✓ 322k 0.6783± 0.0023

Sum ✗ 323k 0.7235± 0.0059
✓ 323k 0.7171± 0.0070

Mamba-like N/A 474k 0.7073± 0.0081

Sequential N/A 323k 0.7311± 0.0066

M.5 Number of Eigenvectors Ablation on Peptides-Func

In Fig. 20, we ablate the number of eigenvectors on the real-world dataset peptides-func. Since we
here limit the number of eigenvalues by cut-off frequency λcut, we report the average number of
eigenvectors.

0.00 0.25 0.50 0.75
Cutoff frequency λcut

0.66

0.68

0.70

0.72

0.74

Av
er

ag
e P

re
cis

io
n

(A
P)

test
val

40 60 80
Average number of eigenvectors k

0.66

0.68

0.70

0.72

0.74

Av
er

ag
e P

re
cis

io
n

(A
P)

test
val

Figure 20: Average precision vs. number of used eigenvalues on the peptides-func long-range bench-
mark task via frequency cutoff λcut.

M.6 Clustering Tasks

We use a clustering task LR-CLUSTER based on Gaussian Mixture Models (GMMs), which requires
long-range interactions to measure the ability of S2GNN to spread information within clusters and
consider the original CLUSTER task from Dwivedi et al. (2023) based on Stochastic Block Models
(SBMs) in order to measure the ability to discriminate between the clusters. The differences are
apparent from an illustration of some exemplary graphs in Fig. 21 & 22. While LR-CLUSTER has
long-range interactions, the challenge of CLUSTER is to discriminate between the clusters. Without
the arrangement of nodes, colors, and different edge weights, for CLUSTER, it is virtually impossible
to discriminate the clusters by visual inspection.

(a) (b) (c)

Figure 21: Examples of generated graphs for the LR-CLUSTER task (GMM). Labeled nodes are
marked red.

43

(a) (b) (c)

Figure 22: Examples of generated graphs for the CLUSTER task (SBM). Labeled nodes are marked
red. Edges within clusters are highlighted.

Nevertheless, we find that the spectral filter is well aligned with the cluster structure in these tasks.
We plot this some exemplary filter in Fig. 23. The findings match the explanations of § 4.1 also for
CLUSTER.

(a)

A Vdiag(ĝϑ(λ) : , 1)V
> Vdiag(ĝϑ(λ) : , 2)V

> Vdiag(ĝϑ(λ) : , 3)V
> Vdiag(ĝϑ(λ) : , 4)V

>

(b)

A Vdiag(ĝϑ(λ) : , 1)V
> Vdiag(ĝϑ(λ) : , 2)V

> Vdiag(ĝϑ(λ) : , 3)V
> Vdiag(ĝϑ(λ) : , 4)V

>

Figure 23: SBM-based (a), visualized in Fig. 21a, and our GMM-based (b), visualized in Fig. 22a,
graphs along with four learned filters. Large entries are yellow, small are blue, and white lines
denote clusters.

In the remainder of the section, we provide full details of the experiment setups. Moreover, we
provide additional results not presented in the main text, including ablations.

M.6.1 GMM Clustering LR-CLUSTER

Setup. To sample an input graph, we start by generating C = 6 p-dimensional cluster centers
µc ∼ U [0, 10]p for c ∈ {0, . . . , C − 1} (we use p = 2). Next, we draw nc ∈ {100, . . . , 199} points
xic ∼ N (µc, 4Ip) which will represent the nodes of the graph. Subsequently, we update the class
memberships such that every point is in its most likely class according to the underlying probabilistic
model. Finally, we connect each node v to its ev ∼ U({1, . . . , 10}) closest neighbors by Euclidean
distance ∥ · ∥2. This whole procedure is repeated until the generated graph is connected. We then
discard the location information and only keep the graph structure. In this way, we generate graphs
of an average diameter of ≈ 33. See Fig. 21 for depictions of example graphs.

Apart from the graph generation procedure, we adhere closely to Dwivedi et al. (2023): We introduce
input features in {0, 1, 2, . . . , C}, where a feature value of c = 1, . . . , C corresponds to the node

44

Table 9: Accuracy on the GMM clustering task for varying number of eigenvectors
k, using 4 GCN layers and one spectral layer in the end.

k 0 (MPGNN) 1 (Virtual Node) 2 3 4

S2GCN 0.4546± 0.0002 0.4646± 0.0001 0.6786± 0.0010 0.7429± 0.0026 0.7971± 0.0008
S2GCN (+PE) 0.4546± 0.0002 0.4642± 0.0007 0.7221± 0.0008 0.7860± 0.0005 0.8202± 0.0011

5 6 7 8 9 10

0.8322± 0.0004 0.8511± 0.0008 0.8510± 0.0008 0.8519± 0.0005 0.8517± 0.0006 0.8513± 0.0018
0.8440± 0.0006 0.8538± 0.0012 0.8548± 0.0011 0.8546± 0.0002 0.8545± 0.0005 0.8554± 0.0005

Table 10: Accuracy on the GMM clustering task for varying number of MP layers,
while comparing a purely spatial GCN model to S2GCN with one spectral layer
added in the end.

2 3 4 5

GCN 0.2700± 0.0002 0.3557± 0.0000 0.4544± 0.0003 0.5521± 0.0001
GCN (+PE) 0.2684± 0.0005 0.3552± 0.0015 0.4550± 0.0004 0.5526± 0.0006

S2GCN 0.8517± 0.0003 0.8520± 0.0008 0.8518± 0.0005 0.8512± 0.0002
S2GCN (+PE) 0.8547± 0.0007 0.8550± 0.0010 0.8552± 0.0015 0.8539± 0.0010

6 7 8 9 10

0.6367± 0.0001 0.7013± 0.0001 0.7448± 0.0003 0.7708± 0.0007 0.7860± 0.0004
0.6387± 0.0012 0.7104± 0.0011 0.7609± 0.0009 0.7931± 0.0005 0.8135± 0.0007

0.8512± 0.0008 0.8509± 0.0008 0.8511± 0.0003 0.8504± 0.0009 0.8509± 0.0006
0.8552± 0.0008 0.8542± 0.0004 0.8545± 0.0008 0.8536± 0.0013 0.8542± 0.0008

being in class c− 1 and a feature value of 0 means that the class is unknown and has to be inferred
by the model. Only one node vc per class is randomly chosen to be labeled and all remaining node
features are set to 0. The output labels are defined as the class labels. We use weighted cross entropy
loss for training and class-size-weighted accuracy as a target metric. We generate 10,000 training
and 1,000 val/test graphs each and report the average ± standard deviation over 3 random reruns.

Models. As an underlying spatial model baseline, we use a vanilla GCN (Kipf & Welling, 2017).
We compare this to S2GCN, only applying one spectral convolution immediately before the last
spatial layer. We investigate the influence of the number k ∈ {0, 1, . . . , 10} of eigenvectors to be
taken into account with 4 spatial layers, with k = 0 indicating the absence of a spectral layer (see
Fig. 10a, and Table 9 for the underlying data). We also vary the number of spatial MP layers from 2
to 10 and compare the performance of a purely spatial GCN to the corresponding S2GCN with one
spectral convolution (see Fig. 10b, and Table 10 for the underlying data).

Throughout all evaluations, we maintain a consistent hyperparameter configuration: Specifically,
we use an inner dimension of 128, GELU (Hendrycks & Gimpel, 2016) as an activation function,
no dropout, and residual connections for all spatial and spectral layers. For the spectral layer, we
implement the gating mechanism f

(l)
θ , but abstain from a neural network in the spectral domain

(§ 3.2.2), bottlenecks, or parameter sharing. We train for 50 epochs with a batch size of 50, using
the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning rate of 0.003, a weight
decay of 0.0001, a cosine scheduler and 5 warmup epochs.

Further discussion. The clustering task comes naturally to S2GCN, as a spectral layer can simulate
certain variations of spectral clustering (von Luxburg, 2007): Suppose H(l−1) ∈ Rn×C is a one-hot
encoding of the cluster labels, i.e. H

(l−1)
v,c = δv,vc , with c ∈ {1, . . . , C} and vc being the unique

labeled node per class. In its simplest form, taking ĝ(l)ϑ (λ) ≡ 1 and f (l)θ ≡ id, the spectral layer
Spectral(l) from Eq. 3 turns into H(l) = V V ⊤H(l−1). Hence, H(l)

v,c = V ⊤
v,:Vvc,: encodes a notion

of similarity between a node v and each labeled node vc. This relates to the Euclidean distance

∥Vv,: − Vvc,:∥2 =
√
∥Vv,:∥22 + ∥Vvc,:∥22 − 2V ⊤

v,:Vvc,: which is more typically used for spectral
clustering.

45

M.6.2 SBM Clustering CLUSTER (Dwivedi et al., 2023)

Setup. We conduct an ablation study on the original CLUSTER task (Dwivedi et al., 2023), which
uses a similar setup to our GMM clustering task, however drawing from a SBM instead: For each
cluster, nc ∈ {5, . . . , 35} nodes are sampled. Nodes in the same community are connected with a
probability of p = 0.55, while nodes in different communities are connected with a probability of
q = 0.25. While there is no need for long-range interactions in this task, considering that the average
diameter of the graphs is just ≈ 2.17, separating the clusters is much harder than in the GMM
clustering task (see Fig. 23 for example adjacency matrices from the SBM and GMM models). We
use weighted cross entropy loss for training and class-size-weighted accuracy as a target metric. We
report the average ± standard deviation over 3 random reruns.

Models. In our ablation study, we consider GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), and GatedGCN (Bresson & Laurent, 2018) as MPGNN baselines, following a setup similar
to Dwivedi et al. (2023). We consider models with 4 layers (roughly 100k parameters) and 16 lay-
ers (roughly 500k parameters), while keeping most hyperparameters the same as in the benchmark,
including inner dimension, dropout, and the number of heads for GAT. However, our reported base-
line results and parameter counts differ slightly as we are using a different post-MP head, where
we maintain a constant dimension until the last layer, in contrast to Dwivedi et al. (2023) who pro-
gressively shrink the inner dimension. We construct the corresponding S2GNNs by modifying each
baseline model, replacing the 3rd and the 5th/15th layers with spectral layers, ensuring a roughly
equivalent parameter count. Additionally, each model is optionally supplemented by our positional
encodings PE (§ 3.2.4).

We further conduct a hyperparameter search on the most promising base MPGNN candidate, Gat-
edGCN, which leads to an optimized version of S2GNN. This optimized model has 18 spatial
MPGNN layers, spectral layers between all spatial layers, and additional RWSE encodings. The
inner dimension is adjusted to keep the model well below a parameter budget of 500k. Finally, we
also evaluate S2GCN and S2GAT using these hyperparameter settings.

4 layers 16 layers

0.5

0.6

0.7

0.8

Te
st

ac
cu

ra
cy

GCN

4 layers 16 layers

0.5

0.6

0.7

0.8

Te
st

ac
cu

ra
cy

GAT

4 layers 16 layers

0.5

0.6

0.7

0.8
Te

st
ac

cu
ra

cy
GatedGCN

Base MPGNN S2GNN Base MPGNN (+PE) S2GNN (+PE)

Figure 24: Effects of the spectral part on SBM clustering performance
for different base architectures.

Throughout all evaluations,
we use GELU (Hendrycks
& Gimpel, 2016) as an ac-
tivation function, residual
connections for all spatial
and spectral layers, and im-
plement the gating mecha-
nism f

(l)
θ without employ-

ing a neural network in the
spectral domain. We use a
batch size of 128 for train-
ing the 4-layer models and
64 for all other models. For
the spectral layer, we use the partial eigendecomposition corresponding to the lowest k = 50 eigen-
values (k = 100 for the optimized S2GNN versions), spectral normalization, and λcut = 1.3. For the
optimized models, we employ parameter sharing with 128 heads, and a bottleneck of 0.25 in feature
gating. We use 8 attention heads for all GAT versions in accordance with Dwivedi et al. (2023) (in-

Table 11: Results on the CLUSTER task (Dwivedi et al., 2023). Transformer models that outperform
our S2GatedGCN are underlined.

Model Accuracy (↑)

Tr
an

sf
or

m
er

ARGNP Cai et al. (2022) 0.7735± 0.0005
GPS Rampášek et al. (2022) 0.7802± 0.0018
TIGT Choi et al. (2024) 0.7803± 0.0022
GPTrans-Nano Chen et al. (2023) 0.7807± 0.0015
Exphormer (Shirzad et al., 2023) 0.7807± 0.0004
EGT (Hussain et al., 2022) 0.7923± 0.0035
GRIT (Ma et al., 2023) 0.8003± 0.0028

G
N

N GatedGCN 0.7608± 0.0020
S2GatedGCN (ours) 0.7808± 0.0005

46

Table 12: Ablation results on the SBM clustering task (Dwivedi et al., 2023). The best mean test
accuracy is bold, second is underlined.

MPGNN # total Inner Spec. Pos. Dropout # params Train accuracy (↑) Test accuracy (↑)
base layers dim. filters enc.

G
C

N

4 146

✗ ✗ 0.0 109k 0.5059± 0.0018 0.5037± 0.0023
✗ ✓ 0.0 117k 0.5053± 0.0010 0.5026± 0.0006
1 ✗ 0.1 117k 0.6492± 0.0009 0.6545± 0.0013
1 ✓ 0.1 125k 0.6663± 0.0020 0.6640± 0.0021

16 172

✗ ✗ 0.0 508k 0.7354± 0.0009 0.7190± 0.0010
✗ ✓ 0.0 517k 0.7378± 0.0017 0.7194± 0.0010
2 ✗ 0.1 527k 0.7535± 0.0011 0.7359± 0.0017
2 ✓ 0.1 536k 0.7526± 0.0021 0.7269± 0.0011

18 124 17 PE+RWSE 0.2 491k 0.8022± 0.0147 0.7711± 0.0020

G
AT

4 152

✗ ✗ 0.0 120k 0.6705± 0.0008 0.6525± 0.0010
✗ ✓ 0.0 128k 0.7167± 0.0001 0.6680± 0.0020
1 ✗ 0.1 128k 0.7093± 0.0007 0.6960± 0.0010
1 ✓ 0.1 136k 0.7398± 0.0006 0.7065± 0.0007

16 176

✗ ✗ 0.0 541k 0.8537± 0.0025 0.7126± 0.0014
✗ ✓ 0.0 549k 0.8740± 0.0014 0.7139± 0.0022
2 ✗ 0.1 558k 0.8723± 0.0013 0.7277± 0.0005
2 ✓ 0.1 567k 0.8836± 0.0005 0.7232± 0.0010

18 120 17 PE+RWSE 0.1 469k 0.8071± 0.0262 0.7681± 0.0003

G
at

ed
G

C
N

4 70

✗ ✗ 0.0 106k 0.6181± 0.0020 0.6039± 0.0019
✗ ✓ 0.0 110k 0.7292± 0.0031 0.6889± 0.0027
1 ✗ 0.1 90k 0.6933± 0.0003 0.7050± 0.0001
1 ✓ 0.1 94k 0.7245± 0.0002 0.7217± 0.0018

16 78

✗ ✗ 0.0 505k 0.8667± 0.0019 0.7369± 0.0011
✗ ✓ 0.0 509k 0.8753± 0.0257 0.7314± 0.0058
2 ✗ 0.1 464k 0.8086± 0.0016 0.7627± 0.0010
2 ✓ 0.1 468k 0.8302± 0.0011 0.7659± 0.0003

18 64 17 PE+RWSE 0.2 460k 0.8202± 0.0024 0.7808± 0.0005

ner dimension is not expanded but split up), except for the optimized version, which uses 4 heads.
For the purely spatial models, we use p = 0.0 as dropout (similar to Dwivedi et al. (2023)). We
observe this to lead to overfitting for models with spectral layers, for which we set p ∈ {0.1, 0.2}.
Hyperparameters differing between the compared models are listed in Table 12. We train for 100
epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning rate of 0.001,
no weight decay, and a cosine scheduler with 5 warmup epochs.

Results. Results for the CLUSTER task are presented in Table 12, Table 11 and Fig. 24. Introducing a
spectral layer significantly enhances performance on the 4-layer architectures, both with and without
positional encodings. The effect is most pronounced on GCN, where replacing just a single GCN
layer by a spectral layer boosts accuracy from 0.504 to 0.655. Notably, introducing two spectral
layers still has a consistent positive effect on all 16-layer architectures.

M.7 Distance Regression

Setup. We generate directed random trees with one source by sampling trees with n ∈
{500, . . . , 999} nodes, picking one node at random to declare as a source and introducing edge
directions accordingly. To construct random DAGs with long distances, we start from such directed
random trees and proceed by adding ⌊n/10⌋ edges at random, choosing each edge direction such
that the resulting graph is still a DAG. Additionally, we mark the source node with a node fea-
ture. Besides evaluating all models in an in-distribution regime, we also assess the generalization
power of the methods by drawing out-of-distribution val/test splits from slightly larger graphs of
n ∈ {1000, . . . , 1099} and n ∈ {1100, . . . , 1199} nodes each. We use L2 loss for training and R2

as a target metric. We sample 50,000 training and 2,500 val/test graphs each and report the average
± standard deviation over 3 random reruns.

47

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

4
lay

er
s

4
lay

er
s

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GCN

16
 la

ye
rs

GCN

16
 la

ye
rs

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GATGAT

0 50 100
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GatedGCNGatedGCN

Figure 25: Test accuracy curves for the SBM clustering task. Curves are shown for
the models from Table 12 with PE, with the MPGNN baseline and the respective
S2GNN.

Table 13: Results on the distance task, with DirGCN as base. The best mean score is bold, second
is underlined.

+Spec. PE in-distribution out-of-distribution
filter MAE (↓) RMSE (↓) R2 (↑) MAE (↓) RMSE (↓) R2 (↑)

D
A

G
s

✗ ✗ 7.0263± 0.0033 9.0950± 0.0005 0.1915± 0.0001 8.1381± 0.0368 10.7735± 0.0402 0.1214± 0.0066
✗ ✓ 6.8252± 0.0008 8.8636± 0.0024 0.2322± 0.0004 8.0018± 0.0018 10.4432± 0.0017 0.1745± 0.0003

undir. ✗ 1.9248± 0.0116 3.2687± 0.0100 0.8956± 0.0006 3.0471± 0.0192 4.9467± 0.0263 0.8148± 0.0020
undir. ✓ 1.7384± 0.0039 2.9934± 0.0046 0.9124± 0.0003 2.7950± 0.0041 4.5834± 0.0117 0.8410± 0.0008
direc. ✗ 1.2401± 0.0173 2.1600± 0.0340 0.9544± 0.0014 2.1824± 0.0787 3.7694± 0.0710 0.8924± 0.0040
direc. ✓ 1.1676± 0.0032 2.0428± 0.0066 0.9592± 0.0003 2.0565± 0.0326 3.5887± 0.0434 0.9025± 0.0024

Tr
ee

s

✗ ✗ 13.7472± 0.0478 17.3902± 0.0277 0.0958± 0.0029 16.8554± 0.0559 21.6454± 0.1394 0.0144± 0.0127
✗ ✓ 11.6316± 0.0370 15.0123± 0.0249 0.3262± 0.0022 14.9837± 0.0501 19.3659± 0.0610 0.2110± 0.0050

undir. ✗ 1.0236± 0.0408 1.7991± 0.1956 0.9902± 0.0020 1.5981± 0.2221 2.7377± 0.4786 0.9839± 0.0053
undir. ✓ 1.2887± 0.1195 2.0095± 0.2638 0.9878± 0.0031 1.7184± 0.3288 2.5791± 0.5372 0.9856± 0.0055
direc. ✗ 0.8166± 0.5012 1.2224± 0.7600 0.9944± 0.0060 1.5280± 0.4539 2.2942± 0.7592 0.9881± 0.0069
direc. ✓ 0.7767± 0.3306 1.1512± 0.5839 0.9954± 0.0041 0.9911± 0.6911 1.5064± 1.0206 0.9938± 0.0077

Models. As a MPGNN baseline, we use a five-layer directed version of GCN, DirGCN (Rossi
et al., 2023), with three post-message-passing layers, and concatenating instead of averaging over
the source-to-target and target-to-source parts. We compare these baselines to S2DirGCN of the
form Eq. 2 with four spectral layers, alternating spatial and spectral convolutions and employing
residual connections. We benchmark versions of S2DirGCN that ignore edge direction in the spec-
tral convolution against directed versions in which we set q = 0.001. In all cases, we use the partial
eigendecomposition corresponding to the k = 50 lowest eigenvalues. All models are optionally en-
riched by the positional encodings from § 3.2.4. Throughout all evaluations, we use an inner dimen-
sion of 236, GELU (Hendrycks & Gimpel, 2016) as an activation function, and dropout p = 0.05.
For the spectral layers, we utilize the gating mechanism f

(l)
θ , not employing a neural network in the

spectral domain, we use spectral normalization, λcut = 0.1, and a bottleneck of 0.03 in the spectral
layer. We train for 50 epochs, using a batch size of 36 and the AdamW optimizer (Loshchilov &
Hutter, 2019) with a base learning rate of 0.001, a weight decay of 0.008, and a cosine scheduler
with 5 warmup epochs.

Results. In Table 13, we show the performance of the different models on DAGs and trees.
We observe that the simple MPGNNs are notably surpassed by all versions of S2DirGCN. While
S2DirGCN achieves nearly perfect predictions on the tree tasks in both the directed and undirected
case, the undirected version is outperformed by the directed version on the DAG tasks. Here, per-
formance also reduces slightly in the out-of-distribution regime. The great performance on the tree

48

0 20 40
Ground truth

0

5

10

15
RM

SE

0 20 40
Ground truth

0

5

10

15

RM
SE

0 50
Ground truth

0

10

20

30

RM
SE

0 50
Ground truth

0

10

20

30

RM
SE

0 20 40
Ground truth

0

20

40

Pr
ed

ict
io

n

DAGs (in-sample)

0 20 40
Ground truth

0

20

40
Pr

ed
ict

io
n

DAGs (out of sample)

0 50
Ground truth

0

20

40

60

Pr
ed

ict
io

n

Trees (in-sample)

0 50
Ground truth

0

20

40

60

Pr
ed

ict
io

n

Trees (out of sample)

DirGCN DirGCN (+PE) S2DirGCN (+PE, undir.) S2DirGCN (+PE, direc.)

Figure 26: RMSE and 90% prediction intervals for distance predictions by ground truth.

task is due to the fact that trees are collision-free graphs (Geisler et al., 2023), where the phase of
each eigenvector is exp(i2πq(dv + c)) for each node v, with dv representing the distance to the
source node and c ∈ R being an arbitrary constant (due to phase invariance of the eigenvector). It is
noteworthy that a simple MPGNN with positional encodings, despite having the distances (shifted
by c) readily available, fails the task, as the information about the phase of the source node can-
not be effectively shared among all nodes. In Fig. 26, we compare the distance predictions by the
different models. While the prediction of all models is close to perfect below a distance of 5, the
spatial MPGNNs are almost unable to distinguish higher distances. By contrast, S2DirGCN predicts
reasonable distances regardless of the ground truth, with the absolute error only increasing slowly.

M.8 Heterophilic arXiv-year (Lim et al., 2021)

Setup. We evaluate S2GNN on a large-scale heterophilic dataset, namely arXiv-year. arXiv-year is
based on OGB arXiv (Hu et al., 2020), but instead of paper subject areas, the year of publication
(divided into 5 classes) is the prediction target. While there are no long-range interactions in this
dataset, preliminary experiments indicated that the phase of the Magnetic Laplacian eigenvectors
on its own can also be predictive of the class label. We report average ± standard deviation over 5
reruns with the splits from Lim et al. (2021), using a different random seed for each run.

Models. We use DirGCN (Rossi et al., 2023) as a baseline and largely follow the original setup.
However, we observe that using 4 layers (instead of 6) and introducing a dropout of p = 0.5 im-
proves baseline performance. Furthermore, we drop the jumping knowledge used by Rossi et al.
(2023). We compare this baseline to S2DirGCN with two spectral layers (after the second and third
spatial layers) and apply residual connections only for the spectral layers. For the spectral layers,
we set q = 0.0001 and use the partial eigendecomposition with k = 100, a NN in the spectral
domain § 3.2.2, no feature gating, and a bottleneck of 0.05. All other parameters are kept similar
to the DirGCN base of Rossi et al. (2023). We train for 2000 epochs using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a base learing rate of 0.005, no weight decay, and a cosine
scheduler with 50 warmup epochs.

Results. We report the results in Table 14. Notably, our S2DirGCN outperforms both our baseline
DirGCN as well as the recent FaberNet (Koke & Cremers, 2024), albeit by a very tight margin.
However, we found hyperparameter optimizations to be quite noisy, and as such, the resulting per-
formance metrics should be interpreted cautiously. A more comprehensive evaluation of S2GNN’s
power on heterophilic datasets, potentially with long-range interactions, is left for future work.

49

Table 14: Results on arXiv-year. Best mean test accuracy is bold, second is underlined.

Model Accuracy (↑)
DirGCN (Rossi et al., 2023) 0.6408± 0.0026
FaberNet (Koke & Cremers, 2024) 0.6462± 0.0101

DirGCN (tuned) 0.6450± 0.0025
S2DirGCN (ours) 0.6472± 0.0024

M.9 Large-Scale PCQM4Mv2 (Hu et al., 2021)

We show that S2GNNs are very parameter efficient. Even though we only conduct a very rudimen-
tary hyperparameter search, S2GNNs keep up with state of the art approaches. Specifically, we adapt
the hyperparameters from peptides-func and achieve comparable performance to the state of the art
(excluding external data) with about 3-20% of the number of parameters.

Table 15: Results on PCQM4Mv2 (Hu et al., 2021) (validation).

Method MAE (↓) # Parameters Notes
EGT (Hussain et al., 2022) 0.0857 89.3 mio. 16 layers
GRIT (Ma et al., 2023) 0.0859 16.6 mio. 16 layers
GPS (Rampášek et al., 2022) 0.0852 13.8 mio. 16 layers

TGT-At Hussain et al. (2024) 0.0671 203.9 mio. 32 layers, pretraining on
3D coordinates (RDKit)

our S2GNN 0.0870 2.8 mio. 5 layers, hyperparameters
adapted from peptides-func

M.10 TPUGraphs Graph Construction

The “XLA” collections of TPUGraphs contain many constructs that are most certainly suboptimal
for a machine-learning-based runtime prediction. However, in our preliminary experiments, we
could not show that our graph construction yielded better results in a statistically significant manner.
Nevertheless, we include this discussion since it might be insightful.

To understand the challenges with the default graph construction, note that in the TPUGraphs dataset
each node represents an operation in the compuational graph of Accelerated Linear Algebra (XLA).
Its incoming edges are the respective operands, and the outgoing edges signal where the operation’s
result is used. Thus, the graph describes how the tensors are being transformed. An (perhaps
unnecessary) challenge for machine learning models arises from using tuple, which represents
a sequence of tensors of arbitrary shapes. In this case, the model needs to reason how the tuple is
constructed, converted, and unpacked again. Moreover, directly adjacent tensors/operations can be
very far away in the graphs of TPUGraphs.

We identified and manually “fixed” three cases to eliminate this problem largely in the TPUGraphs
dataset: Tuple-GetTupleElement, While, and Conditional. Since we could not access the config-
urations in the HLO protobuf files and C++ XLA extraction code, we decided to perform these
optimizations ourselves. However, it might be a better strategy to utilize the existing XLA compiler
etc.

Additionally, to the subsequently described graph structure changes, we extract the order of operands
from the HLO protobud files. Outgoing edges are assumed to be unordered except for the Get-
TupleElement operation, where the tuple index is used as order. Moreover, we extracted all features
masked in the C++ code and then excluded constant features.

M.10.1 Tuple-GetTupleElement

The dataset contains aggregations via the XLA Tuple operation that are often directly followed by
a GetTupleElement operation. To a large extent, these constructs are required for the subsequently
discussed While and Conditional operations. Importantly, the model could not extract the relation-
ships through a tuple aggregation since the tuple_index was not included in the default features.
Moreover, the resulting tuple hub nodes severely impact the Fourier basis of the graphs (see § 2).
We illustrate the graph simplification in Fig. 27 and denote the edge order of incoming edges from
top to bottom. The edge order represents the order of operands.

50

We propose dropping immediate Tuple-GetTupleElement constructs and directly connecting prede-
cessors and successors. For this, we generate a graph solely consisting of direct connections and
then resolve multiple consecutive Tuple-GetTupleElement constructs via a graph traversal (depth-
first search).

Figure 27: Tuple-GetTupleElement simplification: the Tuple aggregates the output of multiple pre-
decessors/operations and then the GetTupleElement extracts the tensor according to its index (num-
ber in respective nodes). We propose dropping immediate Tuple-GetTupleElement constructs and
connecting predecessors and successors.

We perform the Tuple-GetTupleElement simplification after dealing with While and Conditionals.
However, for the sake of simplicity, we will avoid using tuples in the subsequent explanations for
While and Conditional. In other words, the subsequent explanations extend to functions with multi-
ple arguments via the use of tuples.

M.10.2 While Operation

The While operation has the signature While(condition, body, init) where condition is a
function given the init or output of the body function. Note that in the TPUGraph construction,
body as well as condition only represent the outputs of the respective function and their operands
need to be extracted from HLO.

To avoid hub nodes and to retain the dataflow between operations (important for decisions about
the layout), operands and outputs are connected directly. Technically, we am modeling a do-while
construct because the condition is not connected to the inputs. Since the successors of the while
are of type GetTupleElement, they relabeled to a new node type, signaling the end of a while loop.
To support nested while loops, each node in the body is assigned a new node feature signaling the
number of while body statements it is part of.

Figure 28: Instead of aggregating everything into a hub node, we propose to connect respective
inputs and outputs.

51

M.10.3 Conditional Operation

Conditional(branch_index, branch_computations, branch_operands) is the most com-
mon signature of the Conditional operation, where the integer-valued branch_index selects which
branch_computations is executed with the respective input in branch_operands. Similarly to
the While operation, we introduce new node types for the inputs of computations and the successors
(they are GetTupleElement operations).

Figure 29: Instead of aggregating everything into a hub node, we propose to connect respective
inputs and outputs. Here as an example with two conditional computations.

52

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss the shortcomings of prior MPGNNs and that our new framework
S2GNN takes a new approach to overcome the limitations. We detail our theoretical analy-
sis/justification, outline the yet largely unexplored design space of S2GNN, and summarize
the experimental evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide approximation-theoretic error bound in § 3.1.2 that also gives
light on the limitations. Moreover, we discuss important considerations of S2GNNs
throughout the method section § 3. Additionally, we elaborately list and summarize the
limitations in § K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

53

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical analysis of § 3, § 3.1.1, § 3.1.2, § 3.2.4, and § I state im-
portant assumptions in the main text. All theorems, definitions, formulas, and proofs are
numerated. Due to the page limit, we do not provide proof sketches in the main body. Nev-
ertheless, we provide accompanying sketches and illustrations to convey the main intuition.
The proofs, full assumptions, and details are given in § H (& § I).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our S2GNNs in length in § 3 and detail the experimental setup
in § 4. Additional relevant details are provided in § M.1. We provide code, including
configuration, at https://www.cs.cit.tum.de/daml/s2gnn.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

54

https://www.cs.cit.tum.de/daml/s2gnn

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open source fully automized scripts for all datasets that download
and preprocess the data prior to the execution of the configured experiment (except TPU-
Graphs (Phothilimthana et al., 2023) due to its dedicated access). This includes our own
datasets on clustering, distance prediction, and associative recall. We provide code at
https://www.cs.cit.tum.de/daml/s2gnn. Moreover, we provide reasonable details
for reproduction in § M.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the setup and details to a reasonable detail in § 4 and
§ M.1. For additional details, we refer to the provided code, including configuration, at
https://www.cs.cit.tum.de/daml/s2gnn.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

55

https://www.cs.cit.tum.de/daml/s2gnn
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://www.cs.cit.tum.de/daml/s2gnn

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean, standard deviation, and details on randomization for all rele-
vant results on benchmark datasets. For qualitative insights and the large-scale TPUGraphs
dataset, we solely provide mean estimates. The collective experimental results underline
the claims and are strong evidence against the statistical insignificance of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a reasonable summary of used resources in § M.1 and specifically
Table 7. Here, we list the hardware accelerator used and the runtime of the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [Yes]

56

https://neurips.cc/public/EthicsGuidelines

Guidelines: The proposed framework S2GNN does not pose an unusual risk on top of the
common risks for research on machine learning architectures. Our evaluation does not
include human subjects, participants, or data. We discuss the broader impact in § L. Thus,
in summary, we conform to the ethics guidelines in every aspect.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact in § L. It should be noted that the proposed
framework S2GNN does not pose an unusual risk on top of the common risks for research
on machine learning architectures. We discuss the broader impact in § L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed framework S2GNN does not pose an unusual risk on top of
the common risks for research on machine learning architectures. Our evaluation does not
include human subjects, participants, or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

57

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all origins of the datasets, even if we derive the benchmark from
someone else. We provide an overview of the datasets, including the licenses in Table 6. We
provide code, including configuration, at https://www.cs.cit.tum.de/daml/s2gnn.
It also contains an (anonymized) license for its usage and discloses the provenance of the
project setup.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The code and configuration for the dataset on GMM clustering, distance re-
gression, and associative recall will be provided. The generation of all resources takes
around one hour and uses solely CPUs. We provide code, including configuration, at
https://www.cs.cit.tum.de/daml/s2gnn. The datasets are described in § M, § M.6,
and § M.7.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

58

https://www.cs.cit.tum.de/daml/s2gnn
paperswithcode.com/datasets
https://www.cs.cit.tum.de/daml/s2gnn

Answer: [NA]
Justification: Our work neither involves crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work neither involves crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper neither involves crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

59

	Introduction
	Background
	Method
	Theoretical Analysis
	S2GNNs Vanquish Over-Squashing
	Approximation Theory: Superior Error Bounds Despite Spectral Cutoff

	Design Space
	Parametrizing Spectral Filters
	Neural Network for the Spectral Domain
	Directed Graphs
	Efficient Yet Stable and Expressive Positional Encodings

	Empirical Results
	Long-Range Interactions
	Sequence Modelling: Mechanistic In-Context Learning
	Large-Scale Benchmarks

	Related Work
	Discussion
	Notation
	Related Work for Expressivity and Directed Graphs
	Background for Directed Graphs
	Limitations of Graph Transformers Using Absolute Positional Encodings
	S2GNN Generalizes a Virtual Node
	Existing Results on Over-Squashing
	Construction of an explicit ground truth filter
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	Expressivity of Spectral Filters and Spectrally Designed Spatial Filters
	Further Remarks on S2GNNs
	Visualization of Spectral Filters
	Composition of Filters
	Exhaustive Reasons Why Low Frequencies Are Sensible
	Scaling to Graphs of Different Magnitude
	Spectral Normalization
	Adjusting S2GNNs to Directed Graphs
	Computational Remarks

	Limitations
	Broader Impact
	Experimental Results
	Experimental Details
	Qualitative Experiments
	Computational Cost
	S2GNN Aggregation Ablation
	Number of Eigenvectors Ablation on Peptides-Func
	Clustering Tasks
	Distance Regression
	Heterophilic arXiv-year limlarge2021
	Large-Scale PCQM4Mv2 huogb-lsc2021
	TPUGraphs Graph Construction

