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ABSTRACT

Most existing studies on few-shot learning focus on unimodal settings, where
models are trained to generalize on unseen data using only a small number of
labeled examples from the same modality. However, real-world data are inherently
multi-modal, and unimodal approaches limit the practical applications of few-
shot learning. To address this gap, this paper introduces the Cross-modal Few-
Shot Learning (CFSL) task, which aims to recognize instances from multiple
modalities when only a few labeled examples are available. This task presents
additional challenges compared to classical few-shot learning due to the distinct
visual characteristics and structural properties unique to each modality.
To tackle these challenges, we propose a Generative Transfer Learning (GTL)
framework consisting of two stages: the first stage involves training on abun-
dant unimodal data, and the second stage focuses on transfer learning to adapt
to novel data. Our GTL framework jointly estimates the latent shared concept
across modalities and in-modality disturbance in both stages, while freezing the
generative module during the transfer phase to maintain the stability of the learned
representations and prevent overfitting to the limited multi-modal samples. Our
finds demonstrate that GTL has superior performance compared to state-of-the-
art methods across four distinct multi-modal datasets: SKETCHY, TU-BERLIN,
MASK1K, and SKSF-A. Additionally, the results suggest that the model can
estimate latent concepts from vast unimodal data and generalize these concepts to
unseen modalities using only a limited number of available samples, much like
human cognitive processes.

1 INTRODUCTION

Collecting large amounts of labeled data in real-world applications is often prohibitively expensive,
time-consuming, or simply impractical (Tharwat & Schenck, 2023; Sheng et al., 2024). Few-shot
learning (FSL) has emerged as a viable solution, enabling models to generalize effectively using
only a handful of labeled examples (Song et al., 2023; Chen et al., 2019; Luo et al., 2023; Ke et al.,
2024). However, existing few-shot methods face significant challenges in handling the increasing
prevalence of multi-modal data, such as multi-spectral images or multimedia content, which differs
significantly from the extensive RGB data typically used in research. Multi-modal data, collected
from multiple different types of sources and modalities such as different sensors or imaging protocols,
is becoming increasingly essential in applications like surveillance (Wu et al., 2024; Hu et al., 2022)
and medical image analysis (Jiang et al., 2023b; Mok et al., 2024). These challenges highlight the
need for more advanced FSL frameworks capable of leveraging the complementary information
inherent in multi-modal data (Luo et al., 2023; Jiang et al., 2023a).

Recent efforts have leveraged large pre-trained foundation models to extend their capabilities to novel
multi-modal tasks, including tabular data (Ye et al., 2024), audio (Lin et al., 2023b; Duan et al., 2024),
and video classification (Qing et al., 2023), moving beyond traditional unimodal tasks like image
classification (Conti et al., 2023). Despite these advancements, the transfer of visual knowledge
across different visual modalities remains relatively underexplored. Visual data, such as images and
videos, constitute the most commonly studied data types; however, other visual modalities, such
as infrared, depth, and sketches, exhibit both shared characteristics and distinct differences. These
modalities share structural and contextual similarities with RGB data but possess unique attributes
that make data collection and model adaptation more challenging.
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Figure 1: Comparison of recognition tasks. (a) Classical recognition requires extensive labeled data
within a single modality. (b) Few-shot recognition uses a few labeled samples in a single modality to
classify unseen samples. (c) Our proposed CFSL involves few labeled multi-modal samples and aims
to generalize well to recognizing unseen multi-modal samples from the same classes, leveraging both
seen and unseen data from different modalities. (d) Visual concept learning illustrates the ability to
generalize concepts like “Bull” across real images and sketches (Pablo Picasso. The Bull, 1945.).

To address these challenges, this paper introduces a new Cross-modal Few-Shot Learning (CFSL)
task, which aims to classify instances with multiple visual modalities using only a few labeled
samples per class. In this task, the multi-modal data are organized into a support set and a query set.
The support set contains a small number of labeled multi-modal examples per class, serving as the
basis for learning. The query set includes unlabeled instances from the same classes and modalities
that need to be classified. The ultimate goal is to train a model solely on the support set that can
accurately classify the query set, regardless of modality. As illustrated in Figures 1(a-c), unlike
classical supervised learning and FSL confined to a single modality, CFSL incorporates data from
multiple visual modalities. The primary challenge of CFSL arises from the inherent variability and
domain gaps between different visual modalities, which complicates feature extraction and alignment.
Additionally, the task requires models to identify and leverage shared underlying semantics across
modalities while adapting to the unique characteristics of each.

Previous studies have shown that compact visual representations are closely linked to real-world
images, emphasizing the importance of underlying concepts in enabling humans to identify target
objects (Vinker et al., 2022; 2023; Mukherjee et al., 2024). As illustrated in Figure 1d, these
fundamental concepts can be readily learned with only a few examples (Lake & Piantadosi, 2020),
thanks to the humans’ ability to generalize from limited data, regardless of visual modality. This
capability, referred to as “evocation”, is grounded in the vast reservoir of previously encountered
visual experiences that support recognition and generalization. Inspired by this observation, we
hypothesize that models can achieve similar evocative capabilities by learning latent concepts from
abundant unimodal data.

We propose a Generative Transfer Learning (GTL) framework to facilitate knowledge transfer between
unimodal and multi-modal data. In the GTL framework, we posit that the latent concepts underlying
target objects consist of two components: (1) an intrinsic concept that captures the core characteristic
shared across modalities, and (2) an in-modality disturbance that accounts for variations unique to
each modality. Our approach aims to estimate these latent components and encode the relationships
between the intrinsic concepts and visual content. By disentangling the intrinsic concepts from the
in-modality disturbances, the GTL framework enables adapting to multi-modal data while preserving
the transferable relationships learned from unimodal data, thereby improving both adaptability and
accuracy across various modalities.

Within the GTL framework, our methodology consists of a two-stage training process. In the first
stage, the generative learning stage, the model learns latent concepts label-free, relying solely on
pre-trained visual representations. This stage focuses on capturing the intrinsic concept and the
variations in visual content across modalities, ensuring that the learned relationship between the latent
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concept and visual content is robust and transferable. In the second stage, the recognition stage, the
backbone network is frozen, and a separate classifier is trained on top of the learned latent intrinsic
concepts to perform label prediction. This two-stage framework enables the model to disentangle
intrinsic visual concepts from in-modality disturbances, facilitating effective recognition across visual
modalities.

Our contributions are summarised as follows: (i) We introduce a new cross-modal few-shot learning
task, which focuses on the connection and distinction between visual modalities, requiring models
to perform recognition on multi-modal data with minimal labeled samples. This task better reflects
real-world scenarios, where multi-modal data is scarce and diverse. (ii) We propose the generative
transfer learning framework, designed to disentangle intrinsic concepts from in-modality disturbances,
enabling efficient knowledge adaption across modalities. (iii) We demonstrate the effectiveness of our
method through extensive experiments on multiple cross-modal datasets, including SKETCHY (Sangk-
loy et al., 2016), TU-BERLIN (Eitz et al., 2012), the fine-grained biometric dataset MASK1K (Lin
et al., 2023a) and SKSF-A (Yun et al., 2024).

2 TASK SETTINGS

In this section, we formally define the proposed CFSL task and highlight its differences from
the previous FSL task. Additionally, we provide an overview of the CFSL task, emphasizing the
challenges posed by handling multiple visual modalities with limited labeled data.

Dataset Setup For the proposed CFSL task, the dataset D = {(xi
m, yi), yi ∈ Y } comprises a

base unimodal dataset Dbase = {(xi
m, yi), yi ∈ Ybase,m = 1} and a novel multimodal dataset

Dnovel = {(xi
m, yi),m ∈ {m1,m2, . . . ,md}, yi ∈ Ynovel}. Here, xi

m denotes the feature vector of
the i-th sample in modality m, yi is the corresponding class label. Ybase and Ynovel represent the set of
class labels for the base and novel datasets, respectively. Notably, the class labels between the base
and novel datasets are disjoint, aka, Ybase ∩ Ynovel = ∅, such that Ybase ∪ Ynovel = Y .

In classical FSL tasks, the goal is to train a model on Dbase with labels Ybase and transfer this
knowledge to improve the recognition performance on novel classes Ynovel with the same modality,
using only a few labeled examples for each class. In contrast, our CFSL task introduces the added
challenge of handling multi-modal data in the novel dataset Dnovel while the base dataset Dbase
contains only unimodal data (e.g., RGB images). As shown in Figure 2a, there is a clear boundary
among the multi-modal data. This setting reflects real-world scenarios where models are typically
trained on unimodal data but are expected to generalize effectively to multi-modal data.

The novel dataset Dnovel is further divided into:

• A support set Dsupport = {(xi
m, yi)|m ∈ {m1,m2, . . . ,md}, yi ∈ Ynovel}, containing a

limited number of labeled samples per class from multiple modalities. Typically, this
consists of K labeled samples for each of N classes.

• A query set Dquery = {xj
m|m ∈ {m1,m2, . . . ,md}}, containing a larger number of unla-

beled samples from the same classes as Dsupport, but potentially from the different modalities.

The fundamental challenge in this task is the limited labeled data in Dsupport, combined with the
multi-modal nature of the data in Dnovel. The scarcity of labeled data per class, along with the need to
generalize across different modalities, makes this task significantly more challenging.

Task Overview To classify the samples in Dquery, the proposed CFSL involves a feature extraction
function eΦ, which is initially pre-trained on the large and fully labeled base dataset Dbase. The goal
is to adapt eΦ to eΦ′ , allowing it to extract discriminative features from all modalities in Dnovel for
classification. The adapted feature extractor eΦ′ should ensure that samples from the same class yi
are mapped close to each other in the feature space, enabling accurate classification regardless of the
modality m. This adaptation process should help the classifier cϕ, parameterized by ϕ, in predicting
the correct class labels for samples in Dquery using features produced by eΦ′ . The adaptation allows
the model to generalize across the novel modalities and classes, even with very few labeled examples
in the support set.

3
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(a) t-SNE of feature distribution of different modalities.
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(b) The data generating model for CFSL.

Figure 2: The observation of the severe modality differences and the details of the proposed gener-
ative model. (a) Illustration of the modality difference by the t-SNE clustering of the pre-trained
CLIP (Radford et al., 2021) features of different modalities from Mask1K dataset (Lin et al., 2023a).
(b) The proposed generative process for the representation learning stage, the green symbols are
assumed to be parameters that enable the models to adapt from base to novel data.

3 METHODOLOGY

This section formulates the problem, discusses network design, and introduces the learning objectives.

3.1 PROBLEM FORMULATION

We assume that each observation x is generated from a nonlinear function g:

x = g(z) = g(zm, zc),

where z = (zm, zc), zm contains in-modality disturbance, and zc encapsulates latent intrinsic concept.

Figure 2b illustrates our data generating process. We formalize the probabilistic joint distribution of
our data generating process by:

p(x, z,u, y) = pδ(zm|u1,u2, . . . ,ud)pγ(zc|y)pθ(x|zm, zc)p(u)p(y). (1)

We use a VAE to model the generator pθ(x|zm, zc), where θ are the parameters, and (zm, zc) are
obtained by encoding x with parameters α via the posterior estimator qα(z|x). The δ and γ are the
parameters for modeling the distributions of zm (via pδ(zm|u1,u2, . . . ,ud)) and zc (via pγ(zc|y)),
respectively. To learn domain variable u and predict the correct label y , we also introduce two
additional modules: a disturbance encoder qη(u|x) with parameters η, and a classifier qϕ(ŷ|zc) with
parameters ϕ. In what following, we will introduce each component in detail.

First, we introduce a posterior estimator parameterized by α as the encoder to learn the visual latent
representation z = {zc, zm} as:

z ∼ qα(z|x). (2)

Second, since we lack supervision for learning the in-modality disturbance, we assume that this infor-
mation can be estimated from the observed data x. Therefore, a disturbance estimator, parameterized
by η, is introduced to estimate the modality-relevant latent variable u as:

u ∼ qη(u|x), (3)

where the multi-perspective domain variables u1,u2, . . . ,ud are generated from u, capturing different
perspectives of the modality.

Third, the modality-specific latent variable zm is derived from the multi-perspective latent variables
u1,u2, . . . ,ud, governed by the learnable parameter δ:

zm ∼ pδ(zm|u1,u2, . . . ,ud) (4)

Fourth, the latent intrinsic concept variable zc, which captures class-specific concept information,
depends only on class label y and is governed by the parameter γ:

zc ∼ pγ(zc|y) (5)

4
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Figure 3: The proposed GTL framework. During the training on base data, all modules are trained
(as in the blue dashed box), but when adapting to novel data, the generator is frozen, and all other
parts are tunable (as in the red dashed box). The classifier for recognition is separately initialized on
base and novel training since there are non-overlap classes between them.

Finally, the generator conceptualizes each observation x as being derived from a non-linear smooth
mixing transformation, parameterized by θ, involving latent variables z ⊆ Z ∈ Rn, which are
decomposed into two components zc ∈ Rnc and zm ∈ Rnm , and

x ∼ pθ(x|zm, zc) (6)

In the context of CFSL, the differing distributions of modality-relevant information u and class label
y between base and novel datasets necessitate adapting model parameters, including the encoder
qα(z|x), the disturbance estimator qη(u|x), and the parameters responsible for generating the latent
variables zm and zc. However, the non-linear transformation, parameterized by θ, remains invariant
during the transfer learning stage, as it is assumed to capture the stable relationship between the latent
concept and visual content. This invariance ensures that the model can adapt to novel data while
preserving key generalizable components.

3.2 NETWORK DESIGN

In this section, we introduce the key components of our network, each playing a distinct role in
modeling the cross-modal few-shot classification task.

Encoder We denote the encoder that performs posterior estimation as qα(ẑ|x), where ẑ represents
the estimated latent variables. We assume that the two components zm (modality-specific) and zc
(class-relevant) are conditionally independent given the observation x, allowing us to factorize the
posterior distribution as:

qα(z|x) = qα(zm|x)qα(zc|x) (7)
Accordingly, we approximate the joint posterior distribution by assuming an isotropic Gaussian,
characterized by a mean µ and covariance σ2, as follows:

qα(zc, zm|x) ∼ N (µ, σ2) (8)

To learn this posterior distribution, we employ 1-layer MLPs with ReLU activation, a batch normal-
ization layer, and a dropout layer as the estimator.

Disturbance Encoder The in-modality disturbance latent variable zm is assumed to be transferable
when adapting from the base to novel data. Since there is a lack of direct supervision regarding
which representation corresponds to modality-specific information, we employ a flexible estimator to
approximate the unobservable prior p(zm). Inspired by the latent domain learning method (Deecke
et al., 2022), we use a set of learnable gating functions g(x) that assign each observation x to multiple
latent domains, capturing different perspectives.

The estimated modality-relevant variable û is used to guide the modality-specific variable ẑm, and
the estimation is given by:

ẑ
′

m = hδ,û∼qη (û, ẑm) and qη(û|x) =
D∑

d=1

gd(x)Vd(x), (9)
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where d is a hyperparameter that determines the number of latent domains, and each Vd(x) is
parameterized through a linear transformation. The function h(u, zm) represents a linear aggregation
of the domain variable u and the latent variables zm, with trainable parameter δ.

Reconstruction The reconstruction module is responsible for generating an estimate of the obser-
vation x̂ based on the estimated latent variables ẑc (class-relevant information) and ẑ

′

m (modality-
relevant information). We adopt a generator with a structure similar to, but reverse of, the posterior
estimator. While the posterior estimator encodes the latent variables, the generator decodes them
back into the observed data.

The conditional distribution pθ(x|zc, z
′

m) is modeled by the generator, which consists of a 1-layer
MLP with a ReLU activation function, a batch normalization layer, and a dropout layer. The
reconstruction process is formulated as:

x̂ = Dropout (ReLU (MLP(ẑ′))) where ẑ′ = {ẑc, ẑ
′

m} (10)

Classification The classifier pϕ(y|zc), parameterized by ϕ, can be implemented using a simple
linear classifier. This involves a weight matrix W ∈ Rd×c, where d is the dimension of the latent
variable ẑc, and c denotes the number of output classes. The classifier is trained using a standard
cross-entropy loss function. The linear classifier computes the logits directly by linearly combining
the latent variable ẑc with the weight matrix W, followed by a softmax function to output class
probabilities. The logits are computed as:

ŷ = softmax(W⊤ẑc), (11)

where ŷ represents the predicted class probabilities.

For detailed network architecture, please refer to Appendix C.

3.3 LEARNING OBJECTIVES

Representation learning Based on the above generative learning structure, the training objectives
in the representation learning phase are formulated by the evidence lower bound (ELBO) as follows:

LELBO = Eq
ẑc,ẑ

′
m|x

[
ln pθ(x|ẑc, ẑ

′

m)
]

︸ ︷︷ ︸
Reconstruction Loss

−λEẑc,ẑ
′
m∼qα,qη,hδ

[
log q(ẑc, ẑ

′

m|x)− log p(z)
]

︸ ︷︷ ︸
KL Divergence

, (12)

where the reconstruction term ensures that the model accurately reconstructs the input data from
the latent variables zc and zm, while the KL divergence term regularizes the latent space to ensure
the learned features align with the underlying data distribution. The hyperparameter λ controls the
trade-off between reconstruction accuracy and regularization strength.

Classification learning In this phase, the cross-entropy loss measures the discrepancy between the
predicted and actual class labels.

LCE = −Eŷ(y log ŷ). (13)

3.4 TRAINING AND INFERENCE

The operational framework of GTL is depicted in Figure 3, details the training and adaptation process
for CFSL scenarios. This section outlines the workflow, from initial training on the base dataset to
subsequent adaptation for novel data, clarifying the methodologies employed in each phase.

Phase 1: Training on Base Data The initial training phase is fundamental as it establishes the
distinction between transferable and non-transferable components within the model. During this
phase, all modules are trained using the base dataset Dbase. Specifically, the posterior estimator (α),
the disturbance estimator and aggregator (η and δ), and the generator (θ) are jointly trained using
Eq. 12. Afterward, the classifier (ϕ) is trained using Eq. 13. The primary goal is to robustly encode
domain-specific variations and content-specific features into separate latent spaces.
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Phase 2: Transfer Learning for Adapting to Novel Data In this phase, the model is exposed
to a novel data support set Dsupport. Given our assumption that the relationship between latent
representations and visual content remains consistent across both base and novel datasets, we freeze
the generator (θ) in its trained state. This decision ensures that the foundational decoding process,
which reconstructs visual content from latent representations, remains stable and unaffected by
new data variability. We first fine-tune the posterior estimator (α), the disturbance estimator, and
aggregator (η and δ) using Eq. 12, and then update the classifier (ϕ) with a few labeled examples
using Eq. 13.

Inference with Novel Data Query Set In the inference phase, samples from the novel data query
set Dquery are first processed by our posterior estimator (α), which generates latent intrinsic concepts
based on the learned model. These representations are then used by the trained classifier (ϕ) to make
predictions. We select the prediction ŷ with the maximum value, which corresponds to the highest
predicted probability across all possible classes, to determine the most likely class label.

4 EXPERIMENTS

The experiments section consists of Experimental Setup and Benchmark Results. The setup covers
datasets, split strategy, evaluation protocol, and implementation details. The results include a summary
of outcomes, an ablation study, and a discussion to verify our hypotheses.

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on multiple cross-modal datasets, including two object multi-
modal datasets and two biometric multi-modal datasets. Given that sketch is the most common and ac-
cessible visual modality beyond RGB, we use multi-modal datasets consisting of both RGB and sketch
data to verify the proposed method. For the object multi-modal datasets, SKETCHY (Sangkloy et al.,
2016) contains 75,471 sketches and 73,002 images across 125 categories, while TU-BERLIN (Eitz
et al., 2012; Zhang et al., 2016) includes 20,000 sketches and 204,489 images spanning 250 categories.
For the more challenging biometric multi-modal datasets which exhibit less inter-class variance,
MARKET-SKETCH-1K (MASK1K) (Lin et al., 2023a) contains over 4,700 sketches representing 996
identities in 6 styles, paired with 20,480 matching photographs from MARKET1501 (Zheng et al.,
2015). Additionally, we use SKSF-A (Yun et al., 2024), consists of 938 face-sketch pairs of 134
identities across 7 distinct styles.

Dataset Split For experiments on SKETCHY, we follow the dataset splitting scheme used by Bhunia
et al. (2022), which contains 64 base classes, while the remaining 61 classes are used as the novel set
to make the task more challenging. For TU-BERLIN, we split into 125 base and 125 novel classes
following Bandyopadhyay et al. (2024). For the smaller biometric multi-modal dataset, all data in
MASK1K and SKSF-A are considered novel; we use commonly adopted person and face datasets
MSMT17 (Wei et al., 2018) and CelebA-HQ (Karras et al., 2018) as base sets for person and face
recognition, respectively. Each base set is further divided into training, validation, and testing subsets
(60%:20%:20%) following Bhunia et al. (2022).

Evaluation Protocol We report the results under two settings: all-way-k-shot (Ju et al., 2022; Li
et al., 2024b) and standard 5-way-k-shot (Luo et al., 2023). In the all-way-k-shot setting, all classes
are presented to the model, with k examples randomly sampled per class to form the support set S,
while the remaining examples constitute the query set Q. In the 5-way-k-shot setting, 5 classes are
randomly selected per episode, and for each of these 5 classes, k examples are sampled to form the
support set S, with the remaining examples used for the query set Q.

In both settings, k denotes the number of labeled samples per class in the support set S. After splitting
the data into a base set and a novel set comprising S ∪Q, k determines how many samples per class
are included in S, with the remaining samples forming Q.

Evaluation metric We compare model performance using Top-1 Accuracy over the novel query set,
referred to as Acc@avg, which measures the proportion of instances where the model’s top predicted
label matches the true label across mixed modalities. Additionally, we report the average Top-1
accuracy within each modality.
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Table 1: Quantitative results of ours and other sota competitors on SKETCHY dataset. The best
results are marked as BOLD. The A(B/C) metrics under the Acc@avg stands for the average Top-1
accuracy for the A: mixed-modality, B: sketch, and C: RGB data.

Methods
all-way-1-shot all-way-5-shot 5-way-1-shot 5-way-5-shot

Acc@avg Acc@avg Acc@avg Acc@avg

ICML23 27.6 (29.9 / 25.1) 33.8 (18.1 / 50.6) 28.8 (24.9 / 33.1) 33.7 (16.8 / 52.4)
C2-Net 40.2 (24.7 / 56.7) 42.0 (26.5 / 58.6) 44.2 (40.8 / 48.0) 57.8 (50.1 / 66.3)
AGW 21.1 (23.9 / 18.2) 46.0 (50.4 / 41.4) 45.2 (47.0 / 43.2) 71.7 (82.8 / 59.1)
TransReID 46.0 (23.4 / 70.2) 64.3 (59.9 / 67.0) 78.6 (64.6 / 94.0) 89.6 (83.4 / 96.4)
CLIP-ReID 60.7 (56.2 / 65.4) 81.4 (77.9 / 85.0) 83.2 (76.9 / 90.1) 94.0 (95.3 / 92.5)

Ours 63.8 (58.8 / 69.1) 82.9 (79.8 / 86.3) 84.5 (81.3 / 87.9) 94.1 (95.4 / 92.9)

Table 2: Quantitative results of ours and other sota competitors on TU-BERLIN dataset.

Methods
all-way-1-shot all-way-5-shot 5-way-1-shot 5-way-5-shot

Acc@avg Acc@avg Acc@avg Acc@avg

ICML23 22.9 (34.3 / 21.8) 48.8 (31.5 / 50.4) 35.5 (47.4 / 34.2) 50.9 (48.0 / 51.2)
C2-Net 39.1 (28.8 / 40.1) 50.1 (46.9 / 50.4) 60.1 (60.9 / 70.0) 65.3 (74.9 / 74.3)
AGW 14.7 (32.0 / 13.0) 40.1 (64.2 / 37.9) 69.8 (79.5 / 68.8) 75.9 (89.6 / 74.5)
TransReID 38.0 (29.9 / 38.8) 61.1 (68.9 / 60.3) 83.5 (63.3 / 85.7) 93.3 (92.8 / 93.4)
CLIP-ReID 46.6 (44.2 / 46.8) 74.7 (75.8 / 74.6) 91.5 (79.7 / 92.8) 97.1 (94.9 / 97.3)

Ours 47.1 (46.3 / 47.3) 74.8 (76.1 / 74.7) 92.2 (85.1 / 93.0) 98.0 (98.1 / 98.0)

Implementation Details We implement our framework in PyTorch and run experiments on an
NVIDIA RTX 2080Ti GPU. ViT-B/16 (Dosovitskiy et al., 2021), pre-trained on the base data
with CLIP (Radford et al., 2021) for backbone initialization as the visual encoder to extract the
visual representation x. The hyperparameter d is set to 128, and λ is set to 1. We use the Adam
optimizer Kingma & Ba (2015) for 60 epochs with an initial learning rate of 1e−3 during the
representation learning stage and 1e−4 during the classification stage. The learning rate decreases to
10% of the original value after 30 epochs, and weight decay is fixed at 1e−4 for all settings.

4.2 BENCHMARK RESULTS

We benchmark our method against several few-shot learning methods, including C2-Net (Ma et al.,
2024) and ICML23 (Luo et al., 2023), as well as fine-grained retrieval models AGW (Ye et al., 2021),
TransReID (He et al., 2021), and CLIP-ReID (Li et al., 2023b).

Comparison on multi-modal category datasets Sketchy: Table 1 presents the quantitative results
on the SKETCHY dataset. Our method consistently outperforms all five leading benchmarks, with
the highest improvement reaching 4.4% in accuracy across different settings. Notably, in the all-
way-1-shot setting, our approach achieves a 3.1% improvement in overall accuracy compared to
the best-performing method. Additionally, our model shows gains in both individual modality
classification metrics (sketch and RGB) across all settings.

TU-Berlin: The TU-BERLIN dataset, which incorporates more abstract representations of data and
has a larger scale than SKETCHY, but contains fewer sketches. As shown in Table 2, despite the
increased difficulty due to the larger number of classes and more challenging multi-modal samples,
the proposed GTL method consistently achieves the best performance across all accuracy metrics.
Notably, in the 5-way-k-shot setting, our approach delivers a 5.4% improvement in sketch modality
accuracy, further demonstrating its robustness in handling cross-modal few-shot recognition tasks.

Comparison on biometric multi-modal datasets Given the limited modality data per class (8
samples for both MASK1K and SKSF-A), we decrease the k to 1 and 2 and evaluate the models only
under the all-way settings.

Mask1K: Figures 4a and 4b present the experimental results on the MASK1K dataset. The increased
number of classes and the scarcity of training samples pose significant challenges for existing methods.
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Figure 4: Experimental results of different shots on testing performance on (a) and (b) MASK1K, and
(c) SKSF-A datasets.

As shown in the figures, despite the biometric differences being harder to capture, our proposed GTL
method achieved notable accuracy improvements of 2.2% and 5.4% for k = 1 and k = 2, respectively.
Significant improvements were also observed in individual modality classification metrics.

SKSF-A: Figure 4c illustrates the performance on the SKSF-A dataset. In this experiment, we report
only the average accuracy for the sketch modality, as there is only one RGB image per class available
for fine-tuning. The results demonstrate that, regardless of k = 1 or k = 2, all methods achieved
relatively high accuracy, indicating clear inter-class separability in the dataset. Notably, our method
showed an improvement of 11.5% for k = 1, highlighting its ability to adapt effectively to limited
data while maintaining strong performance.

4.3 ABLATION STUDIES

To verify the effectiveness of each module in GTL
framework, Table 3 presents the the ablation study re-
sults. The first two rows show the results of removing
components: “w/o z” excludes all latent variables,
using only the classifier (ϕ) for label prediction; ”w/o
zm” removes only the disturbance latent variable zm.
The lower rows compare training strategies. GTLT

trains all modules from scratch, while GTLFT fine-
tunes the generator during adaptation instead of keep-
ing it fixed. The last row represents our complete
GTL framework, achieving the best results in both
settings, as indicated by the bolded accuracy scores.

Table 3: Ablation studies of each component in
GTL on SKETCHY dataset.

all-way-1-shot all-way-5-shot

Acc@avg Acc@avg

w/o z 48.7 (40.0 / 58.0) 67.8 (59.2 / 76.9)
w/o zm 53.9 (41.7 / 67.0) 73.8 (63.9 / 84.3)
GTL 63.8 (58.8 / 69.1) 82.9 (79.8 / 86.3)

GTLT 44.2 (40.7 / 48.0) 69.9 (65.9 / 74.0)
GTLFT 61.5 (56.6 / 66.8) 81.1 (78.1 / 84.4)
GTL 63.8 (58.8 / 69.1) 82.9 (79.8 / 86.3)

Comparing the results in Table 3, incorporating latent concept learning significantly improves
performance. Including zm (third row) increases RGB accuracy by 18.8% and sketch accuracy
by 11.1% over the baseline (first row). Excluding modality-specific variables (”w/o zm”, second
row) improves RGB accuracy by 9% and sketch accuracy by 1.7%. Fixing the generator after
pre-training (final row) results in the highest average accuracy of 19.6%, outperforming the variant
where the generator is fine-tuned. Additional information regarding selecting the hyperparameter of
the learnable latent domain number d is provided in Appendix B.

4.4 DISCUSSIONS

Beyond the ablation studies, this section examines our hypothesis from data distribution perspectives.

Assumption validation: Concept transfer To validate the invariance of the relationship between
latent concepts and visual content and the estimability of in-modality disturbance, we analyzed data
distributions. We trained models on base unimodal data, novel multimodal mixed data, RGB data,
and sketch data. As shown in Figure 5, pair plots of the generator’s outputs depict the relationship
between latent variables ẑ and visual representations x. Significant overlap between base data and
novel data distributions supports our assumption. Notably, the overlap with sketch data is greater
than with RGB data from the novel set, likely due to differences in underlying data distributions and
content diversity. Sketches capture fundamental structures common to the base data, leading to closer
alignment in the latent space.
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Novel (mix)Base Novel (RGB)

Novel (Sketch)

Novel (mix)Base Novel (RGB)

Novel (Sketch)

Figure 5: Visualizations of the pair plot of the learned latent representation and the visual representa-
tion on SKETCHY (left) and MASK1K (right) datasets. Blue stands for model trained on based data,
and red denotes the model trained the novel data. The dashed circle with the corresponding color
denotes the approximate scope of distributions. The (mix) denotes the trained data are multi-modal,
and (RGB) and (Sketch) denote the unimodal data are used for training.

RGB

Sketch

RGB

Sketch

GTL with Uw/o U

RGB

Sketch

RGB

Sketch

GTL with Uw/o U

Figure 6: The t-SNE of the estimated in-modality disturbance representation on SKETCHY (left) and
MASK1K (right) datasets.

Assumption validation: Estimating in-modality disturbance To further assess our assumption
about estimating in-modality disturbances, we performed t-SNE clustering of the latent representations
û from models trained with and without the disturbance estimator. As shown in Figures 6, without
the disturbance estimator, latent representations from different modalities—such as RGB images and
sketches—are intermixed in the latent space, indicating the model struggles to differentiate modality-
specific features. In contrast, when the disturbance estimator is included, t-SNE visualizations
reveal distinct clusters for each modality. This demonstrates that the estimator effectively separates
modality-specific disturbances and preserves unique characteristics within the latent space.

5 CONCLUSIONS

In this work, we tackled the limitations of unimodal few-shot learning by introducing the cross-modal
few-shot learning task, which addresses real-world scenarios involving multiple visual modalities
with only a few labeled examples. Unlike classical few-shot learning, our task presents additional
challenges due to the inherent variability in visual characteristics, structural properties, and domain
gaps between modalities.

To overcome these challenges, we proposed the generative transfer learning framework, designed
to enable efficient knowledge transfer from abundant unimodal data to data-scarce multi-modal
scenarios. By estimating shared latent concepts from unimodal data and generalizing them to
unseen modalities, the GTL framework effectively disentangles modality-independent representations
from in-modality disturbances. Our experimental results demonstrated that our GTL framework
significantly outperforms state-of-the-art methods on four multi-modal datasets: Sketchy, TU-Berlin,
Mask1K, and SKSF-A.

Limitations: While our approach demonstrates strong performance, the lack of diverse visual
multi-modal datasets for visual recognition remains a significant challenge. Most existing datasets
focus on a limited number of visual modalities (e.g., RGB and sketch), restricting the evaluation
of models designed to handle more complex visual data. Future work will require more extensive
and varied multi-modal datasets to fully explore and validate the potential of cross-modal few-shot
learning in a broader range of visual contexts.
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A RELATED WORK

A.1 RELATION TO UNIMODAL FEW-SHOT LEARNING

In general, unimodal learning tasks can be broadly categorized into three types based on the availabil-
ity and quantity of labeled data: (i) Supervised Learning, where a large amount of labeled data is
available for training, allowing models to learn features and perform accurate recognition (Yan et al.,
2023a; Han et al., 2023; Li et al., 2023a); (ii) Few-shot Learning, where only a limited number of
labeled samples are provided for each class, challenging the model to generalize effectively from
minimal data (Chen et al., 2019; Luo et al., 2023); and (iii) Zero-shot Learning, where no labeled
examples are available for certain classes (Wei et al., 2023; Li et al., 2024a; Mirza et al., 2024).

Specifically, Few-shot learning (FSL) encompasses a training phase where a model is trained on
a relatively large dataset and an adaptation phase in which the trained model is adjusted to previ-
ously unseen tasks with limited labeled samples. Most existing FSL tasks utilize unimodal datasets
for training and testing, including popular benchmarks such as ImageNet (Deng et al., 2009), CI-
FAR (Oreshkin et al., 2018), CUB-200-2021 (Wah et al., 2011), and Stanford Dogs (Khosla et al.,
2011). FSL typically involves three main approaches: (i) Meta learning (Sun et al., 2019; Ma et al.,
2024), or learning to learn, which optimizes model parameters across diverse learning tasks to enable
rapid adaptation to new challenges; (ii) Data-centric learning (Li et al., 2020; Meng et al., 2023;
Ma et al., 2024), which focuses on metric learning to compare distances between samples or expand
synthetic data facing with data-scarce scenarios; (iii) Transfer learning (Tian et al., 2020; Luo et al.,
2023; Zhang et al., 2024) where models pre-trained on large-scale datasets are fine-tuned on few-shot
tasks to improve performance to improve performance by leveraging learned representations for more
efficient adaptation.

The adaption-based methods (Sun et al., 2019; Ma et al., 2024) are densely connected to the model
design, which attempts to directly establish a mapping function between input and prediction. By
rapidly updating parameters on new tasks with a small number of samples, these methods facilitate
the transfer of knowledge from previously learned tasks, making them highly effective in few-shot
learning scenarios.

The data-centric methods utilize synthetic data (Meng et al., 2023) or metric learning (Ma et al.,
2024) to adapt data-insufficient scenarios. The former involves generation methods like Generative
Adversarial Networks (GAN) (Li et al., 2020) and auto-encoders (Yan et al., 2023b). These approaches
generate additional training data to enhance the model’s performance, mitigating the scarcity of
labeled examples and improving generalization to new tasks. The latter, metric learning, tries to
build data connections with the thoughts of nearby neighbors, focusing on learning a distance metric
that clusters similar examples together and separates dissimilar ones. These data-centric methods
emphasize the properties of the data to enhance the model’s ability to generalize from a few examples.

The fine-tuning-based methods (Tian et al., 2020; Luo et al., 2023; Zhang et al., 2024) involve using
pre-trained models on large datasets and fine-tuning them on the target task with a small number of
examples. This approach leverages the knowledge gained from the pre-training phase and transfers it
to the specific requirements of the new task. However, with the increasing amount of raw data on
the Internet, it’s challenging for pre-trained models, including Vision-Language Pretraining Models
(VLM) (Zhu et al., 2024), to generalize to specific novel data, especially when the data is in different
modalities.

Recent works on cross-domain learning (Wang et al., 2020; Li et al., 2022; Xu et al., 2023) also focus
exclusively on learning from unimodal data. However, their limitations become apparent in complex
real-world applications that often require understanding multiple modalities simultaneously. In this
work, we extend its applicability of few-shot learning to real-world scenarios where data come from
diverse visual modalities.

A.2 RELATION TO MULTI-MODAL FEW-SHOT LEARNING

Existing multi-modal few-shot learning methods aim to leverage information from multiple modalities,
such as combining visual data with textual (Xing et al., 2019; Tsimpoukelli et al., 2021; Alayrac et al.,
2022; Lin et al., 2023c; Shao et al., 2024), audio (Meshry et al., 2021; Majumder et al., 2022; Kong
et al., 2024), or tabular data Liu et al. (2022); Ye et al. (2024); Han et al. (2024). These approaches
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Figure 7: Hyperparameter analysis of the selection of the latent domain number d on the SKETCHY
dataset. The Blue line denotes the average accuracy of mixed modality data; the Green line stands for
the average accuracy of RGB data; the RED line represents the average accuracy of sketch data.

focus on enriching the feature space by integrating heterogeneous data sources, thereby improving
the generalization capabilities of few-shot models in scenarios where additional modality information
is available. However, most of these methods concentrate on leveraging modalities that are inherently
different from visual data, like text or audio, to provide semantic context or supplementary cues. They
often assume access to richly annotated data in these auxiliary modalities, which may not always
be feasible in practical applications. These methods enhance recognition by supplementing visual
features with external information but do not address the challenges that arise when dealing with
multiple visual modalities.

Few methods address the challenges of visual multi-modal scenarios where multiple visual modalities
of the same object exist, such as RGB images, sketches, infrared images, or depth maps. Visual
modalities often exhibit unique characteristics and structural properties, leading to significant domain
gaps that complicate direct knowledge transfer between them. Some approaches Bhunia et al. (2022)
utilize additional visual modalities to enhance recognition performance on a primary modality;
however, they typically treat the additional visual modality as auxiliary information to support
unimodal recognition rather than fully integrating multiple visual modalities into a unified learning
framework.

In contrast, our work specifically targets the problem of Cross-modal Few-Shot Learning (CFSL)
within the domain of visual data. We focus on recognizing instances across different visual modalities
when only a few labeled examples are available. Our approach acknowledges that in real-world
scenarios, models must often adapt to new visual modalities with limited annotated data, without
the luxury of abundant multi-modal annotations. Unlike existing methods that leverage auxiliary
modalities to aid a primary modality, we aim to develop a model capable of understanding and
generalizing across diverse visual modalities in a few-shot setting.

In summary, while existing multi-modal FSL methods aim to enhance performance by integrating
different data types, our work addresses the unique challenges of cross-modal recognition within
visual data. We emphasize the importance of transferring knowledge from abundant unimodal data to
novel visual modalities in a few-shot context, without relying on auxiliary modalities for support.
Our approach better reflects real-world challenges and contributes a novel perspective to FSL.

B ADDITIONAL EXPERIMENTS

We conducted a hyperparameter analysis to examine the impact of the number of latent domains d
on our model’s performance using the Sketchy dataset under the All-way 1-shot and 5-shot settings.
Figure 7 illustrates how varying d influences the accuracy across different modalities: mixed modality
data, RGB data, and sketch data, with results averaged over multiple trials.

For mixed modality data (blue line), the accuracy remains relatively stable as d increases, with
slight improvements observed up to d = 128. Beyond this point, performance plateaus, indicating
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Table 4: The details of the proposed GTL framework architectures. BS is short for batchsize, BN is
short for BatchNorm1d. d determines the number of latent domains.

Module Description Dimenssions

Encoder
Input: visual representation x BS × 1280

Dense 256 neurons, with
BN, ReLU, Dropout BS × 256

Dense (µ) mean of posterior
(Nc+Nm) neurons BS × (Nc+Nm)

Dense (σ) variance of posterior
(Nc+Nm) neurons BS × (Nc+Nm)

Reparameterization Sampling ẑc (Nc) + ẑm (Nm)

Disturbance encoder
Input: visual representation x BS × 256
Gate Learnable gating function BS × d
Dense d * Nm neurons BS × d × Nm

Combination Element-wise weighted sum BS × Nm

Additional Aggregator Input: latent ẑm BS × Nm

Dense Aggregation, Nm neurons ẑ
′

m(Nm)

Decoder Input: Concat ( ẑc, ẑ
′

m) BS × (Nc+Nm)

Dense 256 neurons, with
BN, ReLU, Dropout BS × 256

Dense 1280 neurons BS × 1280

Classifier
Input: latent intrinsic concept ẑc BS × Nc

Dense 1280 neurons BS × 1280
Dense Classification output BS × Class Number

diminishing returns from increasing the number of latent domains further. The RGB data (green
line) shows consistently high accuracy in the 1-shot setting, with minor improvements up to d = 64
in the 5-shot setting, after which performance stabilizes. The sketch data (red line) exhibits more
variability, especially in the 5-shot setting, where accuracy decreases at intermediate values of d
but recovers and improves as d approaches 128. This suggests that the model’s ability to capture
sketch-specific features is sensitive to the number of latent domains, particularly when fewer domains
are considered.

We selected d = 128 as the optimal number of latent domains for several reasons. First, at d = 128,
the performance across all modalities is near its peak, which is crucial for our CFSL task, which
relies on effectively handling multiple modalities. Second, the larger domain size helps stabilize the
variability observed in sketch data, especially in the 5-shot setting, leading to more robust performance
across both 1-shot and 5-shot scenarios. Lastly, while larger values of d (e.g., d = 256) do not
offer significant performance gains, they introduce additional computational overhead without clear
benefits. Thus, d = 128 strikes a balance between performance and efficiency, enabling the model to
effectively capture latent shared concepts across modalities.

Notably, the effect of increasing d is less pronounced in low k-shot settings, particularly for smaller
values of k. This diminished effect may be due to the limited number of latent domains being
insufficient to capture the complex variations in the data when only a few examples per class are
available. With small k, the model has less data to inform the latent space, making it challenging to
effectively utilize a larger number of latent domains. Conversely, too many latent domains relative
to the limited data can lead to overfitting or poor generalization. This highlights the importance of
carefully selecting the number of latent domains in relation to the available data and the specific
characteristics of each modality to optimize performance in few-shot learning scenarios.
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C NETWORK ARCHITECTURES

Table 4 provides a comprehensive overview of our GTL framework’s architecture. We empirically set
the intrinsic concept dimensionality Nc as 128 and the modality-specific disturbance dimensionality
Nm as 64 based on preliminary experiments that balanced model expressiveness and computational
efficiency. The number of latent domains d is set to 128, aligning with our hyperparameter analysis,
indicating optimal performance at this value.

Random Seed. To ensure the reproducibility of our experiments, we set the random seed to 0 for all
runs.
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