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ABSTRACT

Network pruning is an effective method to reduce the computational expense
of over-parameterized neural networks for deployment on low-resource systems.
Recent state-of-the-art techniques for retraining pruned networks such as weight
rewinding and learning rate rewinding have been shown to outperform the tradi-
tional fine-tuning technique in recovering the lost accuracy (Renda et al., 2020), but
so far it is unclear what accounts for such performance. In this work, we conduct ex-
tensive experiments to verify and analyze the uncanny effectiveness of learning rate
rewinding. We find that the reason behind the success of learning rate rewinding is
the usage of a large learning rate. Similar phenomenon can be observed in other
learning rate schedules that involve large learning rates, e.g., the 1-cycle learning
rate schedule (Smith & Topin, 2019). By leveraging the right learning rate schedule
in retraining, we demonstrate a counter-intuitive phenomenon in that randomly
pruned networks could even achieve better performance than methodically pruned
networks (fine-tuned with the conventional approach). Our results emphasize the
cruciality of the learning rate schedule in pruned network retraining – a detail often
overlooked by practioners during the implementation of network pruning.

1 INTRODUCTION

Training neural networks is an everyday task in the era of deep learning and artificial intelligence.
Generally speaking, given data availability, large and cumbersome networks are often preferred
as they have more capacity to exhibit good data generalization. In the literature, large networks
are considered easier to train than small ones (Neyshabur et al., 2018; Arora et al., 2018; Novak
et al., 2018; Brutzkus & Globerson, 2019). Thus, many breakthroughs in deep learning are strongly
correlated to increasingly complex and over-parameterized networks.

However, the use of large networks exacerbate the gap between research and practice since real-world
applications usually require running neural networks in low-resource environments for numerous
purposes: reducing memory, latency, energy consumption, etc. To adopt those networks to resource-
constrained devices, network pruning (LeCun et al., 1990; Han et al., 2015; Li et al., 2016) is often
exploited to remove dispensable weights, filters and other structures from neural networks. The goal
of pruning is to reduce overall computational cost and memory footprint without inducing significant
drop in performance of the network.

A common approach to mitigating performance drop after pruning is retraining: we continue to train
the pruned models for some more epochs. In this paper, we are interested in approaches based on
learning rate schedules to control the retraining. A well-known practice is fine-tuning, which aims
to train the pruned model with a small fixed learning rate. More advanced learning rate schedules
exist, which we generally refer to as retraining. The retraining step is a critical part in implementing
network pruning, but it has been largely overlooked and tend to vary in each implementation including
differences in learning rate schedules, retraining budget, hyperparameter choices, etc.

Recently, Renda et al. (2020) proposed a state-of-the-art technique for retraining pruned networks
namely learning rate rewinding (LRW). Specifically, instead of fine-tuning the pruned networks with
a fixed learning rate, usually the last learning rate from the original training schedule (Han et al., 2015;
Liu et al., 2019), the authors suggested using the learning rate schedule from the previous t epochs (i.e.
rewinding). This seemingly subtle change in learning rate schedule led to an important result: LRW
was shown to achieve comparable performance to more complex and computationally expensive
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pruning algorithms while only utilizing simple norm-based pruning. Unfortunately, the authors did
not provide the analysis to justify the improvement. In general, it is intriguing to understand the
importance of a learning rate schedule and how it affects the final performance of a pruned model.

In this work, we study the behavior of pruned networks under different retraining settings. We found
that the efficacy from retraining with learning rate rewinding is rooted in the use of a large learning
rate, which helps pruned networks to converge faster after pruning. We demonstrate that the success
of learning rate rewinding over fine-tuning is not exclusive to the learning rate schedule coupling with
the original training process. Retraining with a large learning rate could outperform fine-tuning even
with some modest retraining, e.g., for a few epochs, and regardless of network compression ratio.

We argue that retraining is of paramount importance to regain the performance in network pruning
and should not be overlooked when comparing two pruning algorithms. This is evidenced by our
extensive experiments: (1) randomly pruned network can outperform methodically pruned network
with only (hyper-parameters free) modifications of the learning rate schedule in retraining, and (2)
a simple baseline such as norm-based pruning can perform as well as as other complex pruning
methods by using a large learning rate restarting retraining schedule.

The contributions of our work are as follows.

• We document a thorough experiment on learning rate schedule for the retraining step in network
pruning with different pruning configurations;

• We show that learning rate matters: pruned models retrained with a large learning rate consistently
outperform those trained by conventional fine-tuning regardless of specific learning rate schedules;

• We present a novel and counter-intuitive result achieved by solely applying large learning rate
retraining: a randomly pruned network and a simple norm-based pruned network can perform as
well as networks obtained from more sophisticated pruning algorithms.

Given the significant impact of learning rate schedule in network pruning, we advocate the following
practices: learning rate schedule should be considered as a critical part of retraining when designing
pruning algorithms. Rigorous ablation studies with different retraining settings should be made
for a fair comparison of pruning algorithms. To facilitate reproducibility, we would release our
implementation upon publication.

2 PRELIMINARY AND METHODOLOGY

Pruning is a common method to produce compact and high performance neural networks from
their original large and cumbersome counterparts.We can categorize pruning approaches into three
classes: Pruning after training - which consists of three steps: training the original network to
convergence, prune redundant weights based on some criteria, and retrain the pruned model to regain
the performance loss due to pruning (Li et al., 2016; Han et al., 2015; Luo et al., 2017; Ye et al., 2018;
Wen et al., 2016; He et al., 2017); Pruning during training - we update the “pruning mask” while
training the network from scratch, thus, allowing pruned neurons to be recovered (Zhu & Gupta,
2017; Kusupati et al., 2020; Wortsman et al., 2019; Lin et al., 2020b; He et al., 2019; 2018); Pruning
before training - Inspired by the Lottery Ticket Hypothesis (Frankle & Carbin, 2019), some recent
works try to find the sparsity mask at initialization and train the pruned network from scratch without
changing the mask (Lee et al., 2019; Tanaka et al., 2020; Wang et al., 2020).

In this work, we are mainly concerned with the first category i.e. pruning after training which has
the largest body of work to our knowledge. Traditionally, the last step is referred to as fine-tuning,
i.e., continue to train the pruned model with a small learning rate obtained from the last epoch of the
original model. This seemly subtle step is often overlooked when designing pruning algorithms.

Particularly, we found that the implementation of previous pruning algorithms have many notable
differences in their retraining step: some employed a small value of learning rate (e.g. 0.001 on
ImageNet) to fine-tune the network (Molchanov et al., 2016; Li et al., 2016; Han et al., 2015) for a
small number of epochs, e.g., 20 epochs in the work by Li et al. (2016); some used a larger value of
learning rate (0.01) with much longer retraining budgets, e.g., 60, 100 and 120 epochs respectively
on ImageNet (Zhuang et al., 2018; Gao et al., 2020; Li et al., 2020); You et al. (2019); Li et al. (2020)
respectively utilized 1-cycle (Smith & Topin, 2019) and cosine annealing learning rate schedule
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Figure 1: Learning rate with different schedules on CIFAR when retraining for 72 epochs. In (a),
the learning rate is fixed to the last learning rate of original training (i.e. 0.001). In (b), the learning
rate is ”rewound” to previous 72 epochs (which is 0.01), and is dropped to 0.001 after 32 epochs.
In (c), after warming up the learning rate, we drop its value by the factor of 10× at 50% and 75%
of remaining epochs. In (d), we warm up the learning rate from the lowest to the highest value (of
standard training) for the first few epochs, then decay the learning rate according to cosine function.

instead of conventional step-wise schedule. Despite such difference, the success of each pruning
algorithm is only attributed to the pruning algorithm itself. This motivates us to ask the question: do
details like learning rate schedule used for retraining matter?

In this section, we strive to understand the behavior of pruned models under different retraining
configurations and how they impact the final performance. Specifically, we conduct experiments with
different retraining schedules on simple baselines such as `1-norm filters pruning (Li et al., 2016) and
magnitude-based weights pruning (Han et al., 2015). We show that the efficacy of several pruning
algorithms can be boosted by simply modifying the learning rate schedule. More importantly, the
performance gain by retraining can be remarkable: the accuracy loss can drop to zero and in some
cases better accuracy than baseline models can be achieved.

To analyze the effect of retraining a pruned network, we based on learning rate rewinding (Renda
et al., 2020) and experiment with different retraining settings. Although in the previous work, Renda
et al. (2020) demonstrated the efficacy of learning rate rewinding across datasets and pruning criteria,
there is a lack of understanding of the actual reason behind the success of this technique. Here
we hypothesize that the initial pruned network is a suboptimal solution, staying in a local minima.
Learning rate rewinding succeeds because it uses a large learning rate to encourage the pruned
networks to converge to another, supposingly better, local minima. Our experiment setups are as
follows.

Retraining techniques. To verify this conjecture empirically, we conduct experiments with different
learning rate schedules including learning rate rewinding (Renda et al., 2020) while varying pruning
algorithms, network architectures and datasets. In this work, we consider the following retraining
techniques:

1. FINE-TUNING (FT) Fine-tuning is the most common retraining techniques (Han et al., 2015; Li
et al., 2016; Liu et al., 2019). In this approach, we continue train the pruned networks for t epochs
with the last (smallest) learning rate of original training.

2. LEARNING RATE REWINDING (LRW) Renda et al. (2020) propose to reuse the learning rate
schedule of the original training when retraining pruned networks. Specifically, when retraining
for t epochs, we reuse the learning rate schedule from the previous t epochs, i.e., rewinding.

3. SCALED LEARNING RATE RESTARTING (SLR): In this approach, we employ the learning rate
schedule that is proportionally identical to the standard training. For example, the learning rate
is dropped by a factor of 10× at 50% and 75% of retraining epochs on CIFAR, which is akin to
original training learning rate adjustment. The original learning rate schedule can be found in
Appendix A.

4. CYCLIC LEARNING RATE RESTARTING (CLR): Instead of using stepwise learning rate schedule
as scaled learning rate restarting, we leverage the 1-cycle (Smith & Topin, 2019), which is shown
to give faster convergence speed than conventional approaches.
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Figure 2: One-shot structured pruning on CIFAR-10 dataset using `1-norm filters pruning (Li et al.,
2016) while varying retraining budgets. As can be seen, learning rate schedule matters. Schedules
that employ large learning rates (LRW, SLR, CLR) are significantly better than fine-tuning. Among
them, CLR performs best in most cases.
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Figure 3: One-shot unstructured pruning on CIFAR-10 dataset using MWP (Han et al., 2015) ((a)
and (b)) and structured pruning on ImageNet with `1-norm filters pruning (Li et al., 2016) (c).

Note that for the last two strategies (SLR and CLR), we warmup the learning rate for 10% of total
retraining budget. For simplicity, we always use the largest learning rate of the original training for
learning rate restarting. Specifically, the learning rate is increased from the smallest learning rate of
original training to the largest one according to cosine function. The detailed learning rate schedule
of each technique is depicted in Figure 1. See also Appendix F for the choice of warmup epochs.

Pruning algorithms We consider the following dimensions in our experiments. For pruning methods,
we use `1-norm filters pruning (PFEC) (Li et al., 2016) and (global) magnitude-based weights pruning
(MWP) (Han et al., 2015) and evaluate them on the CIFAR-10, CIFAR-100 and ImageNet dataset. We
examine both variations of pruning namely one-shot pruning and iterative pruning when comparing
the proposed retraining techniques. Furthermore, we also experiment the CLR schedule on HRank
(Lin et al., 2020a), Taylor Pruning (TP) (Molchanov et al., 2019) and Soft Filter Pruning (SFP) (He
et al., 2018).

Our implementation and hyperparameters of `1-norm filters pruning and magnitude weight pruning
are based on the public implementation of Liu et al. (2019), which is shown to obtain comparable
results with the original works. For remaining algorithms, we use official implementations with
hyperparameters specified according to their papers. The detailed configurations of training and
fine-tuning is provided in the Appendix B for interested readers.

Evaluation. For CIFAR-10 and CIFAR-100, we run each experiment three times and report “mean±
std”. For ImageNet, we run each experiment once. These settings are kept consistently across
architectures, pruning algorithms, retraining techniques, and ablation studies unless otherwise stated.

3 A CASE STUDY ON RETRAINING IN NETWORK PRUNING

3.1 RETRAINING COST AND PERFORMANCE TRADE-OFF

We first investigate the performance of retraining techniques while varying the retraining budget.
Figure 2 illustrates the results of `1-norm filters pruning (PFEC) (Li et al., 2016) with different
retraining techniques on CIFAR-10. We can observe that, larger values of learning rate always attain
higher performance than fine-tuning regardless of number of retraining epochs. Furthermore, with
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Figure 4: Iterative pruning on CIFAR-10 dataset using `1-norm filters pruning Li et al. (2016) ((a)
and (b)) and on ImageNet using magnitude-based weights pruning (Han et al., 2015) ((c)).

some additional retraining budgets, e.g., 80 to 120 epochs compare to 40 epochs in original works, we
can attain much higher compression ratio with almost no accuracy drop (see Figure 5 in Appendix).

Figure 3 reports the accuracy of ResNet-56 pruned with magnitude-based weights pruning (Han
et al., 2015) in a one-shot manner. We study the impact of different retraining schedules on low and
high sparsity i.e. 50% and 90% respectively. It can be observed that under both setting learning rate
restarting consistently outperforms fine-tuning across number of retraining epochs.

To verify the effectiveness of CLR on large-scale datasets, we conduct experiment using `1-norm
filters pruning with ResNet-34 on ImageNet in Figure 3(c). We find that CLR achieve lower
performance than fine-tuning for low epochs. This is expected phenomenon since (Huang et al., 2017)
also found that learning rate restarting on ImageNet usually requires training for 45 epochs while it
only needs 40 epochs on CIFAR-10. When retraining with number of epochs higher than 45, CLR
can reach higher accuracy than fine-tuning.

Thus, the value of LRW can be a good heuristic to choose the learning rate for retraining after pruning.
A concrete example is that we achieve significant gains with Taylor pruning when retraining for only
25 epochs as shown in Table 8.

3.2 MODEL SIZE AND PERFORMANCE TRADE-OFF

In this section, we investigate the trade-off of between model size and performance of compact
models under a fixed retraining budgets. Renda et al. (2020) found that learning rate rewinding
usually saturate at half of original training, thus, we perform on retraining for 80 epochs on CIFAR-10
and 45 epochs on ImageNet.

We first experiment with iterative `1-norm filters pruning on CIFAR-10 and report the results in
Figure 4(a,b), we can observe that SLR and CLR also perform comparable or better than LRW in
this setting. We then conduct experiments with iterative unstructured pruning on ImageNet with
ResNet-50 to verify the superior of CLR compared to fine-tuning in Figure 4(c), we find that MWP
with CLR significantly outperform fine-tuning and even increase the accuracy of the network until
80% sparsity (of convolutional layers).

In our experiments, CLR usually reaches slightly higher accuracy than LRW and SLR. A possible
explanation is that 1-cycle schedule gives better convergence speed than conventional schedules
(Smith & Topin, 2019), thus, bringing much better results when employing “low” retraining budgets.

3.3 EVALUATION WITH OTHER PRUNING ALGORITHMS

We investigate whether the effectiveness of learning rate restarting holds with other pruning algorithms
than simple norm-based pruning. As the performance of larger learning rate schedules such as LRW,
SLR, and CLR are rather similar, we select CLR for use in this experiment. Particularly, we examine
CLR with SFP (He et al., 2018) in this section..

Soft Filters Pruning (He et al., 2018). Previous sections demonstrate that the success of large
learning rate hold for a wide range of pruning algorithms, network architectures and datasets.
However, we note that all examined pruning algorithms followed the pruning-retraining paradigm,
i.e., it is necessary to retrain the pruned model. In this part, we investigate regularizing where we
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Table 1: Results (accuracy) for soft filters pruning (He et al., 2018). The “w/o FT” column demonstrate
the performance of networks follow original work (do not retrain after final prune). “FT” column
indicates results of networks when fine-tuning for 200 more epochs. “CLR-x” columns show accuracy
of networks after retraining with CLR for x more epochs.“%PF” indicates number of pruned filters.

.

Model %PF w/o FT FT CLR-50 CLR-100 CLR-200

CIFAR-10
ResNet-56

30 92.74±0.28 92.85±0.21 92.57±0.19 93.00±0.02 93.18± 0.25
40 91.95±0.29 91.94±0.26 92.19±0.16 92.23±0.12 92.78± 0.34

CIFAR-10
ResNet-110 40 92.25±0.55 92.23±0.50 92.30±0.37 92.79±0.38 92.91± 0.41

CIFAR-100
ResNet-56

30 68.92 ±0.33 69.41±0.38 70.27±0.40 70.24±0.43 70.29± 0.46
40 67.69±0.41 67.64±0.50 68.78±0.23 69.12± 0.22 68.88±0.44

CIFAR-100
ResNet-110

30 70.93±0.58 70.94±0.58 71.77±0.60 71.74±0.63 72.00± 0.21
40 68.41±0.26 69.04±0.41 70.22±0.14 70.05±0.27 70.34± 0.24

gradually, softly prune the network during the course of training. In contrast to pruning-retraining,
the latter approach does not require further training after final pruning. That being said, we still make
a case study to verify if retraining does improve the performance of models pruned with this type of
algorithms.

To make a fair comparison between fine-tuning and no fine-tuning, we randomly split the conventional
training set of CIFAR-10/CIFAR-100 (including 50000 images) to train (90% images of total set) and
val (10% remaining images) set and we then report the result of best-validation models on “standard”
test set (including 5000 images).

We report the performance of pruned network without fine-tuning, with fine-tuning and with learning
rate restarting (CLR) in Table 1. We find that applying fine-tuning on these model usually give
very fast convergences speed (roughly in first 20 epochs). However, fine-tuned models exhibit
negligible gain then pruned models without fine-tuning. In contrast, CLR significantly improves the
performance even with small retraining budgets. Interested readers can find our results with other
pruning algorithms namely HRank (Lin et al., 2020a) and Taylor pruning (Molchanov et al., 2019) in
the Appendix C.

3.4 SCALING ORIGINAL TRAINING

Liu et al. (2019) present empirical evidence that 3-stage pipeline of structured pruning is inferior to
training compact models from scratch if training budgets of compact models are scaled proportion to
FLOPs ratio between original and pruned model. Following Evci et al. (2019); Gale et al. (2019), we
conduct experiments to compare this strong baseline with `1-norm filters pruning while employing
CLR on CIFAR-10, CIFAR-100 and ImageNet. Specifically, we compare pruned networks retrained
with fine-tuning and CLR mechanism with Scratch-B(udget) and Scratch-E(pochs) which train pruned
networks from scratch with the same computational budget and epochs respectively 1.

When evaluating with CIFAR-10 and CIFAR-100, we found that the validation accuracies of Scratch-
B, Scratch-E, and CLR are very similar to each other, and therefore, the comparisons and ranking
could be very sensitive to the variance of the accuracy. To reduce variance, we employ the following
training scheme. First, we re-run each experiment 5 times on CIFAR-10 and CIFAR-100 (more than
previous experiments to reduce noise). Second, we randomly (and independently between each run)
split the original training set of CIFAR-10 to training (90% images of total set) and validation set
(10% images of total set) and report the performance of best validation models on original test set.
Note that for ImageNet, we re-run the experiments 3 times. We found that for ImageNet, the variance
is negligible and thus we simply report the best validation accuracy.

For retraining, we adopt the same retraining budgets as in (Liu et al., 2019; Li et al., 2016) (40 and
20 epochs for CIFAR-10 and ImageNet respectively). Since the total number of retraining epochs is

1For Scratch-E, we use 160 (original training) + 40 (retraining) = 200 epochs while training from scratch
instead of 160 as in (Liu et al., 2019)
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Table 2: Results (accuracy) for `1-norm based filter pruning (Li et al., 2016). Configurations of Model
and Pruned Model are both from the original paper (Li et al., 2016). The results of “Scratch-E” and
“Scratch-B” on ImageNet are taken directly from work of Liu et al. (2019). Top- and second-ranked
results are highlighted in bold blue and blue.

Dataset Model Unpruned Version Fine-tuning Scratch-E Scratch-B CLR

CIFAR-10

VGG-16 93.01± 0.21 - 93.09± 0.19 93.01± 0.27 93.24± 0.25 93.12± 0.26

ResNet-56 92.32± 0.32
A 92.18± 0.28 92.60± 0.17 92.77± 0.19 92.71± 0.33
B 92.06± 0.23 92.39± 0.22 92.31± 0.23 92.41± 0.19

ResNet-110 92.91± 0.38
A 92.81± 0.39 92.97± 0.22 93.04± 0.18 93.08± 0.38
B 92.34± 0.33 92.63± 0.70 93.20± 0.25 93.03± 0.31

CIFAR-100

VGG-16 71.26± 0.23 - 69.97± 0.32 71.37± 0.07 71.72± 0.34 71.18± 0.07

ResNet-56 69.51± 0.25
A 69.55± 0.54 70.15± 0.52 69.74± 0.57 70.04± 0.30
B 69.53± 0.28 69.64± 0.24 69.91± 0.53 70.06± 0.35

ResNet-110 70.59± 0.36
A 70.71± 0.16 71.11± 0.05 70.61± 0.25 71.29± 0.25
B 69.54± 0.27 70.61± 0.45 70.79± 0.22 70.52± 0.31

ImageNet ResNet-34 73.30
A 72.96± 0.06 72.56 73.03 73.44± 0.06
B 72.50± 0.08 72.29 72.91 73.14± 0.03

limited, for ImageNet, we restart the learning rate to 0.01 (instead of 0.1 in the previous section) to
guarantee the convergence of the models.

The results of pruned network via PFEC are shown in Table 2. We can observe that for CIFAR-10, the
results of fine-tuning and Scratch-B/E are aligned with the prior work of Liu et al. (2019) while CLR
achieve slightly better results than Scratch-E and comparable with Scratch-B. However, PFEC+CLR
significantly outperform both fine-tuning and Scratch-B by a large margin.

Discussion. Our empirical results suggest that practitioners should employ retraining with large
learning rate schedules as an alternative technique for fine-tuning to obtain compact models with
better performance after network pruning. In our results, cyclic learning rate restarting (CLR) is
slightly more efficient than scaled learning rate restarting (SLR) and learning rate rewinding (LRW).

4 INTERPLAY OF PRUNING ALGORITHMS AND RETRAINING SCHEMES

Section 3 suggests that learning rate schedule can significantly improve the performance of several
pruning algorithms. We notice that there are notable differences between settings of implementation
of network pruning especially in retraining phase. In this section, we show that the difference between
implementation could easily lead to misleading results and unfair comparisons between pruning
algorithms.

4.1 A STRONG BASELINE: `1-NORM FILTERS PRUNING WITH CLR

In this section, we demonstrate that even with same retraining budgets, utilizing simple CLR with
`1-norm filters pruning can achive comparable or exceed the performance of more sophisticated
saliency metrics without meticulous hyperparameters searching. The implementation details are as
follows.

Our baseline For pruning, we adopt the pretrained of Torchvision and apply `1-norm Filters
Pruning on these models. In our implementation, the number of removed filters in each block are
approximately equal so that the final pruned models have similar number of parameters with the
compared one. Thus, if any, this setting should favor other approaches involving laborious sensitive
analysis. For retraining, we apply the CLR learning rate schedule while choosing the maximum value
of learning rate according to learning rate rewinding. For pruning algorithms that only retrain for
small number of epochs (e.g. 25 epochs in case of Taylor Pruning) we also restart the learning rate
value to the slightly higher value of 0.01.

Generative Adversarial Learning (GAL) Lin et al. (2019) suggest to leverage generative adver-
sarial learning, which learns a sparse soft mask in a label-free and an end-to-end manner, to effectively
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Table 3: Comparing the performance of pruned network via PFEC + CLR and GAL on ImageNet.
The results of GAL are taken directly from original papers.

Model Unpruned Top-1 Method Param ↓ % FLOPs ↓ % Top-1

ResNet-50 76.15

GAL-0.5 17.2 43.0 71.95
PFEC + CLR 17.6 - 75.26

GAL-1 42.6 61.4 69.88
PFEC + CLR 43.1 - 73.81

Table 4: Comparing the performance of pruned network via PFEC + CLR and HRankPlus on
ImageNet. The results of HRankPlus are taken directly from official Github repository.

Model Unpruned Top-1 Method Param ↓ % FLOPs ↓ % Top-1

ResNet-50 76.15

HRankPlus 40.8 44.8 75.56
PFEC + CLR 41.4 - 75.59

HRankPlus 56.7 62.8 74.19
PFEC + CLR 56.9 - 74.39

solve the optimization problem. The original work retrain the pruned network for 30 epochs with
batch size of 32 and initial learning rate of 0.01 (which is decayed by factor of 10 every 10 epochs).
Thus, we use CLR with learning rate of 0.01 and batch size of 32 in our experiments when comparing
with GAL. Table 3 shows the results of PFEC + CLR when retrained under same settings with GAL.
We can see that PFEC+CLR can create a very strong baseline compare with GAL.

HRankPlus An extension of HRank (Lin et al., 2020a) which is better than HRank in both retraining
efficiency and performance 2. Inspired by the discovery that average rank of feature maps of a filter
is consistent, the authors suggested to iteratively remove low-rank feature maps that contain less
information. In the original implementation, the authors retrain the pruned networks for 90 epochs
with initial learning rate of 0.1 and also utilize label smoothing. For simplicity, we do not use label
smoothing in our implementation. As shown in Table 12, PFEC+CLR also attain similar results with
HRankPlus approach.

Additional results on CIFAR-10 and Discrimination-aware Channel Pruning (Zhuang et al., 2018),
Taylor Pruning (Molchanov et al., 2019), Provable Filters Pruning (Liebenwein et al., 2020) are
reported in Appendix D for interested readers.

4.2 RANDOM PRUNING WITH LEARNING RATE RESTARTING

In last subsection, we demonstrated that slight modification in retraining of simple `1-norm Filters
Pruning can exceed the perfomance of much more sophisticated pruning algorithms. In this subsection,
we investigate the interplay between pruning saliency metrics and retraining configurations by
comparing accuracy of randomly pruned networks with the original performance of methodically
pruned networks.

We directly adopt the original implementation from the authors of Taylor Pruning, HRankPlus for
comparisons. For PFEC and MWP we make use of the implementation of Liu et al. (2019). We
selected these works because they do not utilize a similar learning rate value as LRW in the original
implementation, i.e., the authors applied a smaller value then the heuristic of LRW. The detailed
training recipe of the original works can be found in Appendix E.1. To make the randomly pruned
network have the same structure as the methodically pruned networks, i.e., equal number of filters
per layer, we propose to replace the importance score of each neuron estimated by these methods by
a uniformly random score value.

For retraining randomly pruned networks, we adopt the same principle at described in Section 4.1.
Table 5 presents novel results of performance of random pruning + CLR with corresponding results
of considered pruning algorithms. It is worth pointing out that we report the original results of all

2https://github.com/lmbxmu/HRankPlus
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Table 5: Results of networks when applying random pruning and methodically pruning algorithms.
“Original” column presents accuracy of pruned network reported in original papers. “R-CLR” presents
the results of Random Pruning with CLR.

Dataset Method Model Params ↓ % FLOPs ↓ % Original R-CLR

CIFAR-10 HRankPlus

ResNet-56 70.0 74.1 92.32 92.40± 0.16
ResNet-110 68.3 71.6 93.23 93.37± 0.04
DenseNet-40 61.9 59.9 93.66 93.71± 0.05
VGG-16 87.3 78.6 93.10 93.06± 0.07

ImageNet

PFEC ResNet-34 A 2.3 15.9 72.96± 0.06 73.47± 0.08
ResNet-34 B 10.8 24.2 72.50± 0.08 73.05± 0.05

Taylor
Pruning

ResNet-50 72% 44.5 45.0 74.50 74.91
ResNet-50 81% 30.1 35.0 75.48 75.54
ResNet-50 91% 11.4 20.0 76.43 75.93

methodical pruning are taken directly from their papers respectively. In our experiments, Random
Pruning + CLR could surpass the performance of sophisticated saliency metrics even on large-scale
and challenging dataset such as ImageNet with only minimal change in learning rate schedule and
initial learning rate value.

Comprehensive results of random pruning with different compression ratio for `1-norm Filters
Pruning and MWP is reported in Appendix E.2.

These results suggest that retraining techniques, e.g., learning rate restarting and learning rate
schedule, play a pivotal role to final performance. Thus, in order to perform fair comparison of
different methods, one should be cautious of this seemingly subtle detail. While it is unclear to set
up a fair comparison between pruning algorithms that belong to different categories, e.g., pruning
before/during/after training, iterative vs. oneshot pruning, we advocate standardizing (a set of)
retraining configurations for each algorithm group or thorough hyperparamters searching to find the
best configuration of each pruning method when evaluating different algorithms.

5 DISCUSSION AND CONCLUSION

In this work, we conducted extensive experiments to show that learning rates do matter in achieving
good performance of pruned neural networks. We concluded that compared to traditional fine-tuning,
learning rate restarting in general is an efficient way to retrain pruned networks to recover performance
drop due to pruning. The success of learning rate rewinding is accounted by the use of large learning
rates in the retraining. We believe that these findings help raise awareness of proper use of learning
rate schedule when desiging pruning algorithms, standardizing empirical experiments and allowing
fair comparisons. Our takeaway message is:

Pruning algorithms should be compared in the same retraining configurations.

Our work is not without limitations. So far we investigated with hyperparameters identical to those of
the original implementations of the pruning algorithms, and only experiment with different learning
rate schedules. We also limited our experiments to the image classification task in computer vision.
Considering more datasets and other domains is a great research avenue for future work.
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APPENDIX

A NETWORK PRUNING FORMULATION

Let us start with a formal definition of the network pruning problem. Let θ ∈ RD be the parameters
of a (large) neural network that needs to be pruned, D be the dataset for training. The parameters θ is
updated to minimize the loss function L(θ;D). Define sparsity mask m ∈ {0, 1}D indicating if a
weight should be kept or removed. Similar to Molchanov et al. (2016), we can formulate the pruning
algorithms as finding the optimal sparsity mask such that:

m∗ = argmin
m

L(θ∗ �m;D)− L(θ∗;D) (1)

where � denotes the Hadamard (element-wise) product, θ∗ represents the (locally) optimal solution
of θ. An alternative approach is minimizing the different between final output of two networks (Lin
et al., 2019):

m∗ = argmin
m

‖F(θ∗ �m;D)−F(θ∗;D)‖22 (2)

where F : RD → RD′
is the function mapping input feature (i.e. images) to the final output (before

softmax).

Theoretically speaking, as the pruning formulation only takes the loss function into account, and
there is a caveat that pruning can result in a set of weights that belong to a bad local minima, making
the network generalize poorly. In practice, it is common to observe such issues from the performance
drop of the pruned model. In such cases, a fine-tuning process can be applied to further optimize the
weights, mitigating the accuracy drop. However, as what fine-tuning means, the weights might be
only slightly adjusted without any guarantee about the final network performance.

B TRAINING CONFIGURATION

The implementation of `1-norm filters pruning (PFEC) Li et al. (2016) and magnitude-based weights
pruning (MWP) Han et al. (2015) are adopted from the work of Liu et al. (2019). The implementations
of other algorithms are taken from the authors’ official repositories.

For simplicity, we adopt Pytorch’s pretrained models for ImageNet. The unpruned models (used for
`1-norm filters pruning) are trained with below configurations.

Table 6: Training configuration for unpruned models. To train CIFAR-10, we use Nesterov SGD with
β = 0.9, batch size 64, weight decay 0.0001 for 160 epochs. To train ImageNet, we use Nesterov
SGD with β = 0.9, batch size 32, weight decay 0.0001 for 90 epochs.

Dataset Network #Params. Learning rate (t = training epoch) Test accuracy

CIFAR-10

ResNet-56 0.85M

α =


0.1 t ∈ [0, 80)

0.01 t ∈ [80, 120)

0.001 t ∈ [120, 160)

93.46± 0.21%

ResNet-110 1.73M

ImageNet

ResNet-18 11.69M

α =


0.1 t ∈ [0, 30)

0.01 t ∈ [30, 60)

0.001 t ∈ [60, 90)

69.76% top-1

ResNet-34 21.8M 73.30% top-1

ResNet-50 25.5M 76.15% top-1

B.1 ADDITIONAL RESULTS

In addition results in Figure 2, we conduct experiments to examine impact of different retraining
techniques to networks pruned with low and high compression ratios. The results are shown in Figure
5.
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Figure 5: Results from pruning with high compression ratios for one-shot structured pruning on
CIFAR-10 dataset using `1-norm filters pruning (Li et al., 2016). With a proper learning rate schedule,
it is possible to achieve almost no accuracy drop while having much more compact models and using
slightly more training budgets.

Table 7: Results (accuracy) for HRank ilters pruning (Lin et al., 2020a) on CIFAR-10. “Pruned +
FT†” is the model pruned from the large model with original fine-tuning scheme that are reported.
“Prune + FT” and “Prune + CLR” are results of our runs with original retraining and CLR respectively.
Configurations of Model and Pruned Model are both from the original paper.

Model Unpruned Prune + FT † Prune + FT Prune + CLR FLOPs ↓ % Params ↓ %
VGG-16 (BN) 93.93 92.34 91.97 92.53 65.3% 82.10%
ResNet-56 93.26 93.17 92.97 93.16 50.0% 42.4%
ResNet-110 93.50 94.23 93.84 93.90 37.9% 38.7%
DenseNet-40 94.81 94.24 94.10 94.10 40.8% 30.5%

C EVALUATING CLR WITH OTHER PRUNING ALGORITHMS

Taylor Pruning (Molchanov et al., 2019). In this method, the authors estimated the contributions
of each filter to the final performance by utilizing the first- and second-order Taylor expansion and
performing iterative pruning. In the original implementation, the authors fine tuned the network with
a small learning rate (0.001) for 25 epochs on ImageNet. In our implementation, we opt to evaluate
the accuracy of network retrained with learning rate restarting (CLR) with a relatively small budget.
Therefore, we keep the retraining budget the same and only increase the learning rate to 0.01.

Table 8 shows the accuracy of ResNet-50 on ImageNet when pruning 72% of network weights. It can
be seen that for a small retraining budget, employing learning rate restarting also gives significant
gain in performance.

HRank (Lin et al., 2020a). Inspired by the discovery that average rank of feature maps of a filter
is consistent, the authors suggested to iteratively remove low-rank feature maps that contain less
information. Particularly, we iteratively remove filters in each layer and then retrain the network
for 30 epochs each time. We examine the performance of pruned models with HRank on CIFAR
while employing CLR at each fine-tuning step. Due to the heavily expensive computational cost
for retraining, we only run each model once for HRank. In the original version of this method, the
authors used the learning rate of 0.01 and drop by 10× at epochs 5 and 10. In our implementation,
we restart the learning rate to 0.1 and apply the CLR schedule.

The quantitative results are shown in Table 7. In our experiments, CLR also attains comparable or
better results than proposed retraining methods in original work.

D STRONG BASELINES WITH `1-NORM FILTERS PRUNING

D.1 CIFAR-10

Furthermore, we show that by naively neglecting retraining configurations (i.e. budget), we can also
reach state-of-the-art results on CIFAR-10 with PFEC Li et al. (2016). Specifically, we prune two
“standard” models namely ResNet-56 and ResNet-110 and retrain with CLR for 152 epochs, and then
we compare with more sophisticated algorithms in Table 9.
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Table 8: Results (accuracy) for Taylor filters pruning (Molchanov et al., 2019) on ImageNet. All
columns have same meaning with corresponding columns in Table 7.

Model Unpruned Prune + FT Prune + CLR FLOPs ↓ % Params ↓ %
Taylor-FO-BN-56%

76.15
71.69 72.51 67.2 66.8

Taylor-FO-BN-72% 74.50 75.22 45.0 44.5
Taylor-FO-BN-81% 75.48 75.67 35.0 30.1

Table 9: Results of ResNet-56 and ResNet-110 on CIFAR-10. The performance of other pruning
algorithms are taken directly from original papers.

Model Method Unpruned Params ↓ FLOPs ↓ Prune Acc. ↓

ResNet-56

PFEC (Li et al., 2016) 93.04 14.1 27.6 93.06 -0.02
NISP (Yu et al., 2018) 93.26 42.4 35.5 93.01 0.25
HRank (Lin et al., 2020a) 93.26 42.4 50.0 93.17 0.09
GAL (Lin et al., 2019) 93.26 - 37.6 92.98 0.28
PFEC + CLR (ours) 93.21 48.7 - 93.29 -0.07

ResNet-110

PFEC (Li et al., 2016) 93.53 32.6 38.7 93.30 -0.23
GAL-0.5 (Lin et al., 2019) 93.50 44.8 48.4 92.74 0.76
HRank (Lin et al., 2020a) 93.50 59.2 58.2 93.36 0.14
PFEC+CLR (ours) 93.56 64.2 - 93.69 -0.13

D.2 IMAGENET

Taylor Pruning (Molchanov et al., 2019) In this method, the authors estimated the contributions
of each filter to the final performance by utilizing the first- and second-order Taylor expansion and
performing iterative pruning.

Original work retrains pruned networks for 25 epochs with learning rate of 0.001 with the exception
for Taylor-FO-BN-56%. Table 10 demonstrates the performance of PFEC+CLR compare with
original works of Molchanov et al. (2019). In most cases, PFEC+CLR attains higher or comparable
accuracy with Taylor Pruning.

Table 10: Comparing the performance of pruned network via PFEC + CLR and Taylor Pruning on
ImageNet. The results of Taylor Pruning are taken directly from original papers.

Model Method Param ↓ % FLOPs ↓ % Unpruned Top-1 Top-1

ResNet-34 Taylor-FO-BN-82% 21.1 22.3 73.31 72.83
PFEC + CLR 22.5 - 73.30 73.01

ResNet-50

Taylor-FO-BN-56% 66.8 67.2 76.18 71.69
PFEC + CLR 68.8 - 76.15 70.70

Taylor-FO-BN-72% 44.5 45.0 76.18 74.50
PFEC + CLR 44.5 76.15 75.04

Taylor-FO-BN-81% 30.1 35.0 76.18 75.48
PFEC + CLR 30.1 - 76.15 75.79

Taylor-FO-BN-91% 11.4 20.0 76.18 76.43
PFEC + CLR 12.5 - 76.15 76.37

Discrimination-aware Channel Pruning (Zhuang et al., 2018) The authors introduce additional
discrimination-aware losses into the network to increase the discriminative power of intermediate
layers and then select the most discriminative channels for each layer by considering the additional
loss and the reconstruction error.
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We use the retraining budget of 60 epochs and set initial learning rate to 0.01 same as Zhuang et al.
(2018). However, we employ the 1-cycle learning rate instead of stepwise learning rate as original
work. The detailed comparison is presented in Table 11.

Table 11: Comparing the performance of pruned network via PFEC + CLR and DCP on ImageNet.
The results of DCP are taken directly from original papers.

Model Param ↓ % FLOPs ↓ % Method Unpruned Top-1 Top-1

ResNet-18

28.1 27.1 DCP 69.64 69.21
31.9 - PFEC + CLR 69.76 69.31± 0.06

47.1 46.1 DCP 69.64 67.35
50.6 - PFEC + CLR 69.76 67.38

65.7 64.1 DCP 69.64 64.12
- - PFEC + CLR 69.76 64.08

ResNet-50

33.3 35.7 DCP 76.01 76.40
33.7 - PFEC + CLR 76.15 76.03

51.4 55.5 DCP 76.01 74.95
51.5 - PFEC + CLR 76.15 75.16

65.9 71.1 DCP 76.01 72.75
66.1 - PFEC + CLR 76.15 72.92

Provable Filters Pruning (Liebenwein et al., 2020) This algorithm uses a small batch of input
data points to assign a saliency score to each filter and constructs an importance sampling distribution
where filters that highly affect the output are sampled with correspondingly high probability.

Original implementation of Liebenwein et al. (2020) retrain the pruned network on ImageNet for 90
epochs with standard learning rate schedule (drop learning rate by factor of 10 after 30 epochs) with
batch size of 256 and weight decay of 0.0001. In our implementation, pruned networks are trained
for 90 epochs with maximum learning rate of 0.1 while keeping the same configurations for all other
hyperparameters as original work.

Table 12: Comparing the performance of pruned network via PFEC + CLR and Provable Filters
Pruning (PFP) on ImageNet. The results of PFP are taken directly from original paper (Liebenwein
et al., 2020).

Model Method Param ↓ % FLOPs ↓ % Unpruned Top-1 Top-1

ResNet-50

PFP (lowest top-1 err.) 18.0 10.8 76.13 75.91
PFEC + CLR 18.1 - 76.15 76.56

PFP (within 1.0% top-1) 44.0 30.1 76.13 75.21
PFEC + CLR 44.3 - 76.15 75.38

E RANDOM PRUNING WITH CLR

E.1 RETRAINING CONFIGURATION

We compare the configuration between original implementation of aforementioned pruning methods
and corresponding random pruning in Table 13. Note that for HRankPlus, the original implementation
employs different values of weight decay for each model: 0.005, 0.006, 0.005, 0.002 for VGG-16,
ResNet-56, ResNet-110, DenseNet-40 respectively. We found that these value is relatively higher
than “conventional” values (0.0001) making the models hard to converge after restarting. Thus, we
use weight decay of 0.0005 through out experiments with HRankPlus. In all our experiments, other
details such as batch size, retraining budget are set to similar value of original implementation.
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Table 13: Training configurations of original pruning methods and random pruning.

Method Model Original Random Pruning

HRankPlus

ResNet-56

α =


0.01 t ∈ [0, 150)

0.001 t ∈ [151, 225)

0.0001 t ∈ [226, 300) 
αinit = 0.001

αmax = 0.1

αmin = 0.00001

ResNet-110

DenseNet-40

VGG-16 α =


0.01 t ∈ [0, 50)

0.001 t ∈ [51, 100)

0.0001 t ∈ [101, 150)

PFEC ResNet-34 α = 0.001 t ∈ [0, 20)

αinit = 0.0001

αmax = 0.01

αmin = 0.000001
Taylor Pruning ResNet-50 α = 0.001 t ∈ [0, 25)
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Figure 6: One-shot structured pruning on CIFAR-10 dataset using PFEC (Li et al., 2016) and
randomly filters pruning with different retraining schemes.

E.2 RANDOM PRUNING WITH VARIOUS COMPRESSION RATIO

`1-norm Filters Pruning Figure 6 illustrates the performance of networks pruned with PFEC and
random pruning on CIFAR-10 and CIFAR-100 when retraining with 40 epochs – the same setting
used by Li et al. (2016). We can see that randomly pruned networks consistently achieve superior
performance than methodically pruned networks (fine-tuned with standard learning rate schedule) in
terms of accuracy. However, random pruning obtain lower accuracy than PFEC when using identical
retraining techniques.

Magnitude-based Weights Pruning We extend the scope of experiment in Sec 4.2 to unstructured
pruning and analyze performance of MWP with CLR. Figure 7 represents the results of random
pruning with CLR and methodically pruning while varying difference compression ratio in both
iterative and oneshot pruning manner. Specifically, we retrain the trimmed network for 40 epochs.
We can observe that though Random Pruning + CLR can achieve higher accuracy with low sparsity,
the performance of randomly pruned network immensely reduced with the increasing of compression
ratio.
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Figure 7: One-shot and Iterative unstructured pruning on CIFAR-10 dataset using MWP (Han et al.,
2015) and randomly weights pruning with different retraining schemes.
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Figure 8: `1-norm Filters Pruning (Li et al., 2016) on CIFAR-10 with different number of warmup
epochs.

F PERFORMANCE OF CLR WITH DIFFERENT WARMUP EPOCHS

To avoid the laborious hyperparameters tuning process, we simply warm up the learning rate for
CLR and SLR for the first 10% budget of retraining. In this section, we investigate whether the
performance of pruned network is sensitive to this hyperparameter.

Figure 8 presents the results of pruned networks obtained with fine-tuning and CLR while varying
number of warmup epochs namely 0, 5, 10, 15% of total retraining. We can observe that there is
no significant diversity in results of CLR with different number of warmup epochs and all of them
exceed performance of fine-tuning by a large margin.

G TRAINING FROM SCRATCH WITH CLR

In this section, we conduct experiment where we train the unpruned models from scratch with
CLR schedule. Then, we compare performance of networks pruned from these baseline with those
pruned from models trained with conventional step wise learning rate schedule. Table 14 presents the
accuracy of pruned ResNet-56 models on CIFAR-10 with different training and retraining recipes.
We use the budget of 160 for training the baseline networks. For retraining the trimmed networks, we
examine the budget of 40 and 56 epochs. We can see that both CLR and SLR consistently exceed the
performance of fine-tuning under these configurations.
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Table 14: Performance of ResNet-56 pruned from models trained with CLR and conventional step-
wise learning rate schedule on CIFAR-10. “Epochs” column indicates the number of epochs for
retraining trimmed networks. “Schedule” colum indicates the learning rate schedule used for training
baseline (unpruned) networks. The best and second best methods are highlighted in bold blue and
blue respectively.

Epochs Schedule Param ↓ % Baseline Fine-tuning SLR CLR

40

Step-wise 13.7 93.15± 0.36 92.81± 0.49 92.93± 0.15 93.14± 0.37
CLR 13.7 93.45± 0.17 93.06± 0.20 93.03± 0.16 93.15± 0.11

Step-wise 34.9 93.15± 0.36 92.25± 0.35 92.83± 0.16 92.81± 0.32
CLR 34.9 93.45± 0.17 92.50± 0.07 92.63± 0.05 93.03± 0.16

56

Step-wise 13.7 93.15± 0.36 92.81± 0.41 92.86± 0.28 93.22± 0.37
CLR 13.7 93.45± 0.17 93.04± 0.16 93.22± 0.05 93.37± 0.25

Step-wise 34.9 93.15± 0.36 92.48± 0.45 92.89± 0.11 93.26± 0.17
CLR 34.9 93.45± 0.17 92.63± 0.13 92.83± 0.03 93.29± 0.25
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