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Abstract

Differential privacy is widely adopted to provide provable privacy guarantees in
data analysis. We consider the problem of combining public and private data (and,
more generally, data with heterogeneous privacy needs) for estimating aggregate
statistics. We introduce a mixed estimator of the mean optimized to minimize the
variance. We argue that our mechanism is preferable to techniques that preserve
the privacy of individuals by subsampling data proportionally to the privacy needs
of users. Similarly, we present a mixed median estimator based on the exponential
mechanism. We compare our mechanisms to the methods proposed in Jorgensen
et al. [2015]. Our experiments provide empirical evidence that our mechanisms
often outperform the baseline methods.

1 Introduction

Differential privacy (DP) is a mathematical framework for drawing inferences from data while
providing provable privacy guarantees for the individuals represented in the data. Informally, DP
ensures that the individual contribution by a user cannot affect the aggregate statistic of interest
enough to allow an adversary to infer the membership of that individual in the data. In a data-analytic
context, DP is commonly achieved by adding random noise to the computation; the noise should
be calibrated to the sensitivity of the output to the contribution of an individual user, and to the
privacy parameter ε, which represents how tight the privacy guarantee must be. In the literature, it
is commonly assumed that ε is fixed for all individuals. However, in practice we can have data that
comprise groups of individuals with different ε requirements. For example, the data might be part
public, and part private, possibly with different privacy requirements. This poses the problem of how
to compute a private estimator that respects all privacy requirements while also optimally capturing
as much information from the data as possible.

Jorgensen et al. [2015] proposed “Personalized Differential Privacy” (PDP), as a framework for DP
estimation with multiple privacy requirements. In this framework, data entries are included in the
analysis according to a sampling mechanism that either includes a tuple for sure (if the corresponding
ε is greater than a given threshold t) or with probability calibrated to the privacy required by the user.
Their method shares similarities with Alaggan et al. [2015], which is instead based on rescaling data
values based on the privacy requirements, but applies to a more limited set of problems (it cannot
be applied to the exponential mechanism). In this paper, we propose a method for optimally mixing
estimates from subgroups of the data with heterogeneous privacy requirements. In particular, we
focus on the problem of computing means and quantiles from mixed datasets. Our experiments show
that the proposed estimators are competitive with the PDP baseline.

Background Formally, DP ensures that, given two “neighboring” data sets X and X ′ of size n
that differ by one entry (denoted X ∼ X ′), and given a randomized algorithm A : X → R, the
probability distribution of A(X) is approximately the same as the distribution of A(X ′):
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Definition 1 (Differential privacy (DP), Dwork et al. 2006). A randomized algorithm A satisfies
ε-differential privacy (ε-DP) if, for neighboring data sets X ∼ X ′, and any subset S ⊆ Range(A),

Pr[A(X) ∈ S] ≤ exp(ε) Pr[A(X ′) ∈ S].

Definition 2 (Sensitivity, Dwork et al. 2006). Given any two neighboring data sets X ∼ X
′
, the

sensitivity of a function f is
∆f = max

X,X′
‖f(X)− f(X

′
)‖1

The Laplace mechanism adds calibrated Laplace noise to a summary statistic of the data:
Definition 3 (Laplace mechanism, Dwork et al. 2006). Given a function f that maps data sets to Rm,
the Laplace mechanism outputs L(X) ∼ Lap(f(X),∆f/ε) from the Laplace distribution, which
has density Lap(y;u, b) = (2b)−m exp(−‖y − u‖1 /b). This is the same as adding independent
noise ui ∼ Lap(0,∆f/ε) to each component of f(X). This mechanism is ε-DP.

The exponential mechanism is often used for discrete output spaces:
Definition 4 (Exponential mechanism, McSherry and Talwar 2007). Given a scoring function
u : X × O → R with sensitivity ∆u = maxX∼X′,o∈O |u(X, o) − u(X ′, o)|, a mechanismM(X)
that outputs r with probability proportional to exp(εu(X, o)/2∆u) is ε-DP.

2 Proposed mechanisms

We consider the simple setting where all data comes from a distribution of known variance σ2 and is
defined on a range [a, b]. Data is assumed to be divided into k groups, with group i having privacy
requirement εi1. We use ni to denote the number of data points in group i, a quantity that we assume
is public (this is consistent with the "swap model" of DP, or the counts can be estimated privately in a
separate step). Additionally, for simplicity of the exposition, we assume that each user contributes
a single data point2. The problem then is how to combine data from the k groups to get the best
possible overall estimate of the desired statistic. In the subsections below, we propose mechanisms
for combining data to estimate two common statistics: means and quantiles.

Means. We first consider the case of computing the data’s mean. Let Σi represent the sum of the
data points in group i. Define r = max(|a|, |b|), the max amount by which any one user can change
the magnitude of their corresponding Σi; this is the sensitivity of the sum. If we apply the standard
Laplace mechanism to group i in isolation, with zi ∼ Lap(r/εi), then the estimate of the mean is
(Σi + zi)/ni. What we propose is a convex combination of these individual estimates, with weights
βi ≥ 0 and

∑k
i=1 βi = 1. The joint estimator, and its corresponding variance are then:

X̃ =
k∑
i=1

βi
Σi + zi
ni

, sjoint =
k∑
i=1

β2
i

niσ
2 + 2r2/ε2i
n2i

..

To find the optimal βi, we can search for the setting that minimizes the joint variance. This form of
minimization problem has been studied before, and the Theorem in point 2 of Rubin and Weisberg
[1975] shows that the minimizing solution is to assign each estimator a weight inversely proportional
to its variance. In more detail, for the i-th estimator, the optimal weight is:

βi ∝ β̃i :=
1

Vari
=

n2i
niσ2 + 2r2/ε2i

, which normalizes to βi =
β̃i∑k
j=1 β̃j

=

n2
i

niσ2+2r2/ε2i∑
j

n2
j

njσ2+2r2/ε2j

Intuitively, the lower the variance of the estimator from one data group, the more we want that
estimator to contribute to the joint estimator. Note that in the case where one dataset is public, its
corresponding zi term disappears, and the weight simplifies to βi ∝ ni/σ2.

1ε = ∞ for public data.
2This is not an inherent limitation of the proposed methods; they could be trivially extended with the

appropriate sensitivity scaling factor to handle the case where users contribute multiple data points.
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Comparison with baseline method. In contrast to our mixing method, Jorgensen et al. [2015]
propose a method they call the Sample mechanism. This mechanism requires first selecting a
“threshold” hyperparameter t. Then, it independently samples each data point in group i with
probability min(1, (eεi − 1)/(et − 1)). The remaining data points are fed to a DP mechanism with ε
set to t, and the result of this mechanism is released. Jorgensen et al. [2015] shows that this preserves
the required εi privacy levels for all groups. Although this method is very flexible and can be applied
to adapt any DP mechanism to the heterogeneous privacy setting, it also makes a natural baseline
for our approach when applied to the Laplace mechanism. To develop some intuition for how these
mechanisms compare, consider a simple example with two groups of data points, one public with
npub points, and one private with npriv points and parameter ε. Under the Sample mechanism, the
private points will be sampled independently as described above, whereas all public points will be
retained (as they have an effective privacy parameter of∞).

Suppose that a threshold t is selected, and nprivsamp private points are subsequently sampled. Then,
letting Σpub denote the sum of the public points and Σprivsamp denote the sum of the sampled private
points, we can write the Sample mechanism’s estimate as follows:

X̃PDP = α · Σpub

npub
+ (1− α) · Σprivsamp + Lap(r/t)

nprivsamp
, where α =

npub
(npub + nprivsamp)

.

On the other hand, letting Σpriv denote the sum of all private points, our method computes

X̃ = β · Σpub

npub
+ (1− β) · Σpriv + Lap(r/ε)

npriv

for the value of β that minimizes the overall variance. Note that, for X̃PDP, the choice of threshold
t determines both the sampling rate for the private points and the coefficient α. In particular, if
t = ε, then all private points are sampled and the second terms in the two estimates above coincide.
However, α will not be equal to β—which is the variance-minimizing choice—and therefore the
variance of the Sample mechanism will be suboptimal.

On the other hand, if t 6= ε, then the variance of the second term of X̃PDP will itself generally
be suboptimal. To see this, recall that the probability with which each private point is sampled is
min(1, (eε − 1)/(et − 1)), which is at most p̂ := min(1, ε/t) since (ex − 1)/x is increasing and
therefore (eε − 1)/(et − 1) ≤ ε/t whenever ε ≤ t. In expectation, then, at most nprivp̂ private points
will be sampled. In that case, the variance of the second term will be at least

nprivp̂σ
2 + 2(r/t)2

(nprivp̂)2
=

σ2

(nprivp̂)
+ 2

(
r/t

nprivp̂

)2

≥ σ2

npriv
+ 2

(
r/ε

npriv

)2

,

where for the first term we use the fact that p̂ ≤ 1, and for the second we use the fact that p̂ ≤ ε/t.
Note that the right hand side is now exactly the variance of the Laplace mechanism applied to the
private points alone, i.e., the second term of X̃ . Thus, when t 6= ε the Sample mechanism is a convex
combination of two independent terms, where the first term matches our mechanism but the second
term has higher variance. Since our mechanism selects the variance-minimizing parameter β, there
can be no value of α that compensates for this deficit.

Quantiles. Private quantiles are typically computed via the exponential mechanism (see Algorithm
2 in Smith [2011]). Jorgensen et al. [2015] proposes a PDP instance of the exponential mechanism
(the PE mechanism) that combines all data groups and their various εi into one utility function. We
propose instead to simply run an independent exponential mechanism for each data group, using
the standard utility function from Smith [2011]. We then re-use the mixing weights derived for the
computation of means in order to mix the results from these exponential mechanisms to produce a
single overall quantile estimate. We compare our mixing method against the PE mechanism in a
simple setting (Section 3). The experiments show that our proposed mixing strategy is competitive
with the PE mechanism in RMSE performance. We leave it to future work to develop a mixing
strategy tailored explicitly for the exponential mechanism (as opposed to re-using the mixing weights
that are optimized for mean estimation).

3 Experiments

Means. We compare our proposed estimator to the PDP Sample method from Jorgensen et al.
[2015] in a scenario with k data subgroups — one very low-privacy group with εmax = 10 and n data
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points, and the remaining higher-privacy groups with varying privacy requirements and sizes. Data is
drawn from a normal distribution with µ = 0 and σ2 = 25. We fix the size of the private groups and
let n vary with values from 100 to 10000. For the threshold value t, we follow Jorgensen et al. [2015]
and compare setting t equal to the minimum ε among the groups, or the average of the ε values across
groups. We also directly optimize t for minimum variance, which leads to a similar performance as
our weighted estimator. Additionally, we test the case where t = εmax. Results in Figure 1 show the
competitive advantage of our proposed estimator over PDP, with a lower overall variance.

Figure 1: Variance of the weighted vs PDP mean estimators over 1000 trials. Dotted lines represent
95% CIs. ~n = [n, 100, 500, 1000, 5000, 10000] and ~ε = [10.0, 0.05, 0.1, 0.01, 0.25, 0.15]. Left to
right, the PDP threshold t is set to: tmin(0.01); toptimized(0.25); taverage(1.76); tmax(10.0). topimized is
the optimal threshold obtained by minimizing the PDP joint variance. In this case, the performance
of PDP matches that of our proposed mechanism. In the other cases, the variance of the proposed
estimator is always lower than the variance of the PDP estimator, with the two converging as n→∞.

Medians. We also consider the release of medians. In particular, we consider the simple setting
where part of the data comes from users who require a high level of privacy, εH = 0.1, and the rest
from users with a looser privacy constraint of εL = 1.0. In a second scenario, we look at εH = 0.01
and εL = 10.0. Data from both groups is drawn from a standard normal distribution with total (odd)
number of data points, n, set to 1001 and we compare different ratios of high vs low-privacy users.
We compare the RMSE (root mean squared error) of the median released via the PE mechanism, and
our weighted median. Results in Figure 2 show the competitive advantage of the weighted median.

Figure 2: RMSE for the median of a standard normal over 500 trials. Left: εH = 0.1, εL = 1.0.
Right: εH = 0.01, εL = 10.0.

4 Discussion and conclusions

We present a minimum-variance unbiased estimator of the mean in the case of heterogeneous data
with multiple privacy requirements. Our method is based on a weighting scheme that can also
be applied for the release of quantiles. Our estimators often outperform the existing baseline of
Personalized Differential Privacy [Jorgensen et al., 2015]. One limitation of our mechanism is that it
adds random noise to every subgroup. In the worst case where every one of the k groups has a single
user and the εi differ only by an infinitesimal amount, we end up adding k times as much noise as
PDP Sample. Future work will explore this tradeoff, as well as a custom weighting scheme optimized
for the exponential mechanism.
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