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Abstract
We consider the branch-length estimation prob-
lem on a bifurcating tree: a character evolves
along the edges of a binary tree according to a
two-state symmetric Markov process, and we seek
to recover the edge transition probabilities from
repeated observations at the leaves. This problem
arises in phylogenetics, and is related to latent
tree graphical model inference. In general, the
log-likelihood function is non-concave and may
admit many critical points. Nevertheless, simple
coordinate maximization has been known to per-
form well in practice, defying the complexity of
the likelihood landscape. In this work, we pro-
vide the first theoretical guarantee as to why this
might be the case. We show that deep inside the
Kesten-Stigum reconstruction regime, provided
with polynomially many m samples (assuming
the tree is balanced), there exists a universal pa-
rameter regime (independent of the size of the
tree) where the log-likelihood function is strongly
concave and smooth with high probability. On
this high-probability likelihood landscape event,
we show that the standard coordinate maximiza-
tion algorithm converges exponentially fast to the
maximum likelihood estimator, which is within
O(1/

√
m) from the true parameter, provided a

sufficiently close initial point.

1. Introduction
Maximum likelihood estimation (MLE) for parameter esti-
mation is a fundamental technique in statistics and machine
learning. For this, one has a parametric probabilistic model
(Pθ;θ ∈ Θ ⊂ Rd) and some data x1, · · · , xm assumed to
be i.i.d. observations from Pθ∗ for some unknown θ∗ ∈ Θ.
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One seeks an estimate θ̂ ∈ Θ such that

θ̂ ∈ argmax
θ∈Θ

ℓ(θ;x1, . . . , xm), where

ℓ(θ;x1, . . . , xm) =
1

m

m∑
j=1

logPθ(xj), (1)

which maximizes the likelihood of seeing the observed data.

Classical theory (Cramér, 1946; Wald, 1949) tells us that
whenever the population landscape (i.e. the m→∞ limit)

E[ℓ(θ)] = EX∼Pθ∗ logPθ(X)

is concave and the likelihood is maximized at a unique point
that agrees with the true parameter θ∗, then θ̂ is a good esti-
mator of θ∗. Much of the rigorous theoretical foundation of
MLE assumes that one can extend this population landscape
to the empirical landscape ℓ(θ;x1, . . . , xm). This relies on
being able to approximate E[ℓ(θ)] by ℓ(θ;x1, · · · , xm) so
that optimizing ℓ(θ;x1, . . . , xm) approximately finds θ∗.
See (Li & Babu, 2019). However, many natural MLE prob-
lems such as those arising from mixture models (Murphy,
2012) involve maximizing non-concave log-likelihoods.

A similar story arises in the optimization literature, where
one typically minimizes a (hopefully convex) loss function.
Many natural questions on that side are non-convex due
to either the loss function being non-convex or having to
optimize over a non-convex parameter space, such as princi-
pal component analysis and best subset selection problems
(Beale et al., 1967; Hocking & Leslie, 1967). Within the
class of non-convex problems, there are many examples
of benign non-convex problems which, while not actually
convex, possess sufficiently nice structures that make them
manageable. These include some additional symmetries,
such as those in phase retrieval (Sun et al., 2018) and dic-
tionary learning (Arora et al., 2014; Bai et al., 2019), or the
loss function possesses sufficient regularity (e.g. the Polyak-
Łojasiewicz (Polyak, 1963; Lojasiewicz, 1963) condition)
so that gradient-based methods converge linearly despite
non-convexity (Karimi et al., 2016). See (Jain et al., 2017;
Zhang et al., 2020) for a general overview.

Here we investigate a specific maximum likelihood estima-
tion problem along the following lines. Even though the
population and empirical landscapes may be non-concave
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Figure 1. A cartoon depiction of non-concave 2D likelihood land-
scape (left) and its contour plot (right). Thm. 3.2 and 3.3 asserts that
the empirical likelihood landscape has a well-conditioned strongly
concave landscape over a box Θ̂0(δ) of size order 1 around the
true parameter θ∗. Thm. 3.4 asserts that coordinate maximization
initialized in the box converges to the MLE θ̂0 in O(1) iterations.

and contain numerous local (or even global) maximizers,
under particular assumptions one can still extract a semi-
global region inside which there is a unique maximizer and
all other local maximizers lie strictly outside this region.
This semi-global region is one that does not shrink as the
sample size or the problem dimension grows large, but is not
the entire parameter space Θ either. If this is the case, then
one should be able to recover the true parameter θ∗ using
standard likelihood maximization techniques and assess the
incurred statistical and computational errors rigorously.

More specifically, along this line of approach, we ana-
lyze the MLE problem for branch-length estimation (Guin-
don & Gascuel, 2003), arising in phylogenetics, under the
Cavender-Farris-Neyman model (Neyman, 1971; Farris,
1973; Cavender, 1978). Roughly speaking, it is the prob-
lem of estimating the probabilities of corruption in a noisy
channel along the edges of a communication tree, where
we are only allowed to observe signals at the tips of the
tree (see Sec. 2). While arising in phylogenetics, it has
applications to theoretical computer science, signal process-
ing, and statistical physics (Mossel, 2022). This problem is
hard as the population log-likelihood function admits expo-
nentially many critical points (in the problem dimension)
and there are instances where the empirical log-likelihood
has multiple global maximizers. We work deep inside the
Kesten-Stigum reconstruction regime (Kesten & Stigum,
1966; Bleher et al., 1995; Ioffe, 1996) where the corruption
probabilities are sufficiently small so that signal at internal
nodes can be approximated with good accuracy from just
observing the signals at the leafs.

1.1. Contribution

For this branch length estimation problem, we establish the
following results under some assumptions stated later on
(see Fig. 1 for illustrations):

• (Empirical likelihood landscape, Thm. 3.2) With enough
samples m (polynomial in the size of the tree in the
balanced case), the empirical log-likelihood is strongly
concave and smooth on an L∞ box around the true
parameter θ∗ with large probability.

• (Statistical estimation guarantee, Thm. 3.3) For any fixed
problem size, the MLE is O(1/

√
m)-consistent with the

true parameter with arbitrarily large probability.

• (Computational guarantee of coordinate maximization,
Thm. 3.4) The iterates of the coordinate maximization
algorithm (Alg. 1) converge exponentially fast to the
confined MLE θ̂

∗
with a rate independent of the tree,

provided a sufficiently close initial point.

While we focus on a particular likelihood function and a
particular optimization algorithm, our general approach re-
lies on three essential ingredients for analyzing such non-
concave MLE problems. Namely:

Step 1. Show that the population likelihood E[ℓ(θ)] is
strongly concave and smooth on some parameter space
B ⊆ Θ containing the true parameter θ∗;

Step 2. Show that entries of the population Hessian vary in
a Lipschitz manner with respect to the parameter; and

Step 3. Show that the per-sample empirical Hessian has
uniformly bounded spectral norm almost surely.

These conditions are enough to show that, with arbitrarily
large probability, with enough samples m, the empirical like-
lihood landscape concentrates around the population likeli-
hood landscape on B with high probability. Hence, on this
high-probability event, the empirical likelihood landscape
restricted on B looks ‘benign’, and standard algorithms for
computing MLE, initialized in B, converges rapidly to a
parameter θ̂ that is within O(1/

√
m) from the true param-

eter. In short, the Lipschitz condition on the entries of the
Hessian allows us to control the fluctuations of the eigen-
values of the Hessian in a non-trivial region around the true
parameter. One can then use a uniform version of matrix
concentration (Lemma 4.5) to turn this local behavior at
points to the desired semi-global statement around θ∗.

1.2. Related Works

The model we analyze is the Cavender-Farris-Neyman
(CFN) model (Neyman, 1971; Farris, 1973; Cavender, 1978)
used to study molecular evolution along an evolutionary
tree.

It has been a long-standing open problem to establish rigor-
ously conditions under which standard gradient/coordinate
descent algorithms for the maximum-likelihood principle
can solve the branch-length estimation problem (Felsenstein,

2



Sample Complexity of Branch-length Estimation by Maximum Likelihood

Figure 2. A 2D slice of a 5D 2-sample empirical log-likelihood
ℓ(θ̂;σ(1), σ(2)) containing θ∗ on a tree with n = 4 leaves.

1981). The corresponding joint likelihood function in gen-
eral is non-concave, admitting potentially many (complex)
critical points (Garcı́a Puente et al., 2024) for generic data
σ(j). Notably, Steel (1994) provided an explicit example
where there are multiple global maximizers to (2) with two
samples on the tree with four leaves, two internal nodes,
and five edges. A 2D slice of the 5D likelihood function is
shown in Figure 2, which is already non-concave despite
the small tree size and projection.

Despite all these challenges, optimization of the likelihood
function has proven remarkably effective in practice. For
example, Guindon & Gascuel (2003); Guindon et al. (2010)
developed PHYML, a coordinate-ascent algorithm that per-
forms well empirically, even with a small number of co-
ordinate updates. Other popular likelihood-based methods
include RAxML (Stamatakis, 2014) and IQ-TREE (Nguyen
et al., 2015). However, until today, it remains unclear as to
why this method works well and there has not been very
much theoretical understanding of the optimization land-
scape of the MLE.

Recent work in statistical estimation theory has highlighted
the importance of analyzing the geometric structure of like-
lihood landscapes (see, e.g., (Ma et al., 2020; Chen & Chen,
2019; Chi et al., 2019)). Very recently, Clancy, Jr. et al.
(2025a) showed that the likelihood landscape of the branch
length estimation problem in the population limit is very
well-conditioned in a box-neighborhood of the true param-
eter of size O(1). Their population likelihood landscape
result is an important building block of the present work
on the empirical likelihood landscape and optimization for
finding the MLE.

The paper (Clancy, Jr. et al., 2025a) provides bounds
for the eigenvalues of the population Hessian in an L∞-
neighborhood of the true parameter θ∗ which is just Step 1
of our three-step program. There are challenges in establish-
ing Steps 2 and 3. Using the population Hessian, it is easy to
obtain high probability statements for the empirical Hessian
for a fixed parameter θ; however, to do coordinate update

methods we need high probability statements for the Hes-
sian uniformly around the true parameter. Uniform matrix
concentration requires us to obtain reasonable bounds on
the derivative of the Hessian (as a function of the parameter
θ) not covered in (Clancy, Jr. et al., 2025a). This implies
that the empirical MLE is close to the true parameter with
large probability. Furthermore, we analyze a coordinate up-
date algorithm (see Alg. 1) to show that a commonly used
optimization algorithm converges to the MLE exponentially
fast, provided a sufficiently close initial point.

2. The Branch-length Estimation Problem
2.1. Problem Statement

Consider a tree T = (V,E) where all nodes have either
degree 1 or 3. Information is transmitted from an internal
root ρ to the leaves where each edge can corrupt the signal.
More precisely, the root node ρ is assigned a uniform spin
σρ ∈ {±1}, this spin is propagated to the leaves where,
independently, across each edge e = {u, v} the signal is
changed σu ̸= σv with some probability pe = Pθ(σu ̸=
σv). Equivalently, σ evolves along the edges according to
the symmetric two-state inhomogeneous Markov chain with
transition matrices (Pe; e ∈ E)

Pe =

[
1− pe pe
pe 1− pe

]
=

[
1+θe
2

1−θe
2

1−θe
2

1+θe
2

]
.

Here θ = (θe; e ∈ E) is a convenient reparametrization
of the parameter space. While the possible values for θe ∈
[−1, 1], we will focus on the “ferromagnetic regime” θ ∈
[0, 1]E where spins at neighboring vertices are positively
correlated. That is, it is more likely that there is no signal
corruption than there is corruption across each edge.

The problem we are interested in is to recover the true un-
known parameter θ∗ from repeated, independent observa-
tions of the signals at the leaves of the tree. Namely, let L
denote the set of all leaves in the unrooted binary tree T and
suppose we have m independent samples σ(1), . . . , σ(m)

from the process as described above sampled from the
true model Pθ∗ . We only get to observe the signals at the
leaves, which we denote as σ(j)|L = (σ

(j)
v ; v ∈ L) for

j = 1, . . . ,m. The goal is to estimate the true parame-
ter θ∗ from these leaf observations σ(1), . . . , σ(m). This is
equivalent to the classical branch-length estimation problem
(Felsenstein, 1981), as one can view the true parameter θ∗e
as a monotonic function of the ‘length’ l∗e of the edge e
along which there is a constant rate (in continuous time) of
mutation.

With leaf observations σ(1)|L, . . . , σ(m)|L, we seek to find
the maximum likelihood estimator (MLE) as

θ̂MLE ∈ argmax
θ̂∈[−1,1]E

ℓ(θ̂;σ(1)|L, · · · , σ(m)|L). (2)
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To simplify the notation, throughout we drop the explicit
reference to the leaves in all likelihoods.

Here we consider the phylogenetic tree T to be fixed and
known so that the MLE problem above is only optimizing
over the edge-length parameter θ̂ and not the tree T . In
general, one is also interested in optimizing over the phylo-
genetic tree T in the MLE (2); doing so introduces further
complications of a combinatorial nature. In particular, this
more general problem is known to be NP-hard in the worst
case (Chor & Tuller, 2006; Roch, 2006). The work of (Roch
& Sly, 2017) (together with the results of (Daskalakis et al.,
2011)) shows that an ad hoc polynomial-time algorithm can
compute the true parameters with high probability when-
ever the edge lengths take values in a lattice εZE , under
optimal sample complexity. This present article can be seen
as a step towards understanding the properties of optimiza-
tion approaches, specicically deep inside the Kesten-Stigum
reconstruction regime (and without the additional lattice
constraint). Many other algorithms with theoretical guaran-
tees are known for reconstructing phylogenetic trees and
their branch lenghts (see, e.g., (Steel, 2016; Warnow, 2018)
and references therein).

3. Statement of Results
We formally state our main results in this section. We also
sketch the proofs. Detailed proofs are in the appendix. We
begin with some assumptions.

3.1. Assumptions

Our analysis operates under the assumption that we are well
within the Kesten-Stigum reconstruction regime (Kesten
& Stigum, 1966; Bleher et al., 1995; Ioffe, 1996), that is,
roughly speaking that mutation probabilities are sufficiently
small that an ancestral state can be reconstructed with better-
than-random accuracy.

Throughout the paper, constants are numbered by the equa-
tion in which they appear. We introduce the following re-
stricted parameter spaces that depend on δ.

Definition 3.1 (Restricted parameter spaces). Let C4 >
C3 > c3 > c4 > 0 fixed constants. For a fixed δ > 0, define
two subsets Θ0(δ) ⊆ Θ̂0(δ) ⊂ [−1, 1]E by

Θ0(δ) :=

{
(θe = 1− 2pe)e∈E

∣∣∣∣ c3δ ≤ pe ≤ C3δ ∀e ∈ E

}
= [1− 2C3δ, 1− 2c3δ]

E , (3)

Θ̂0(δ) :=

{
(θ̂e = 1− 2p̂e)e∈E

∣∣∣∣ c4δ ≤ p̂e ≤ C4δ ∀e ∈ E

}
= [1− 2C4δ, 1− 2c4δ]

E . (4)

A1 (Parameter regime). Assume that θ∗ ∈ Θ0(δ) and θ̂ ∈
Θ̂0(δ). Moreover, the constants C4 > C3 > c3 > c4 satisfy
C4 ≥ 2c4.

We will frequently say θ∗ or θ̂ satisfy (3) and (4), respec-
tively, which means that these parameters belong to the sets
defined in these equations.

3.2. Comments on Notation

Before continuing, we introduce the following convention
that is used throughout the article. Given any non-negative
function f(σ, θ̂) depending on the signals σ = (σu;u ∈ T )

and the estimator θ̂ ∈ Θ̂0 satisfying Assumption A1, we
write Eθ∗ [f(σ, θ̂)] = O(δα) for some α ∈ R to mean
the there exists a K(c3, C3, c4, C4) ∈ (0,∞) and δ0 =
δ0(c3, C3, c4, C4) such that

sup
(θ,θ̂)∈Θ0×Θ̂0

Eθ∗

[
f
(
σ, θ̂

)]
≤ Kδα

The constants K = K(c3, C3, c4, C4) ∈ (0,∞) and
δ0 = δ0(c3, C3, c4, C4) depend on the constants appear-
ing in Assumption A1, but otherwise independent of both
the size and topology of the tree T .

We will similarly write f(σ, θ̂) = O(δα) if there exists
a constant K = K(c3, C3, c4, C4) ∈ (0,∞) and δ0 =

δ0(c3, C3, c4, C4) such that for all δ ∈ (0, δ0] and (θ, θ̂) ∈
Θ0 × Θ̂0

Pθ∗

(
f(σ, θ̂) ≤ Kδα

)
= 1.

Here we remind the reader that Θ0, Θ̂0 are sets that depend
on δ. We similarly use Ω(δα) for analogous statements in-
volving the lower bounds of Kδα and we use Θ(δα) for the
funcitons that are both O(δα) and Ω(δα).

3.3. Empirical Maximum Likelihood Landscape

Our first main result concerns a high-probability characteri-
zation of the landscape of the empirical log-likelihood func-
tion in (1). Namely, we establish that ℓ is Θ(δ−1)-strongly
concave and Θ(δ−1)-smooth with probability 1− ε inside
a L∞-box with universal (tree-independent) diameter Θ(δ)
around the true parameter θ∗ provided the number of sam-
ples m is large enough.

Theorem 3.2 (Finite-sample log-likelihood landscape:
strong concavity and smoothness). Let δ be smaller than
some universal constant and let Ĥ denote the Hessian of
the m-sample log-likelihood function ℓ in (1). Fix ε ∈ (0, 1).
Then there exists constants C5 > 0, C̃6 > C6 > 0 s.t. if

m ≥ (C5/δ)
diam(T )+8 log(ε−1), (5)
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then for any binary tree T , and θ∗ ∈ Θ0(δ),

Pθ∗

(
− C̃6δ

−1 ≤ inf
θ∈Θ̂0(δ)

λmin(Ĥ(θ)) (6)

≤ sup
θ∈Θ̂0(δ)

λmax(Ĥ(θ)) ≤ −C6δ
−1

)
≥ 1− ε.

The required sample complexity for Theorem 3.2 grows
exponentially in the diameter of the tree T , which can be
as small as O(log n) when the tree is ‘well-balanced’. In
such case, Theorem 3.2 below establishes a polynomial
sample complexity to obtain a strongly concave and smooth
optimization landscape for the MLE problem with high
probability. To the best of our knowledge, this is the first re-
sult in the literature establishing strong regularity properties
of the maximum likelihood landscape for the branch length
optimization problem with polynomial sample complexity.

To establish such a result, we use a uniform version of ma-
trix Bernstein’s inequality (Lemma 4.5) to show that the
Hessian of the empirical log-likelihood function is concen-
trated near its expectation uniformly over the box Θ̂0(δ)
with high probability. Then the assertion will follow from
the population landscape result in Lemma 4.4 below.

3.4. Statistical and Computational Guarantees

Hereafter, we will denote a generic global maximizer of the
empirical log-likelihood function ℓ(·) (in (1)) over Θ̂0(δ)

(which always exists) by θ̂
∗
. A particular consequence of

Theorem 3.2 is that θ̂
∗

is uniquely determined with high
probability and enough samples. In Theorem 3.3 below,
we prove a stronger result that with high probability, in
addition to the nice geometry of ℓ(·) on the box, the MLE
θ̂
∗

is a 1/
√
m-consistent estimator of the true parameter

θ∗ with high probability. This consistency (up to a constant
depending on T ) does not depend on our choice of norm on
RE for any fixed tree. We write ∥ · ∥ for the L2-norm of a
vector.

Theorem 3.3 (Statistical estimation guarantee). Assume the
hypothesis of Theorem 3.2 holds. Let E6 denote the event
in (6). Fix ε ∈ (0, 1). Then there exists a constant C7 > 0
such that, provided m = Ω(|E|2/ε),

Pθ∗

(
E6 ∩

{
∥θ∗ − θ̂

∗
∥ ≤ C7

√
|E|/m log(|E|/ε)

})
≥ 1− 3ε. (7)

Now that we know the MLE θ̂
∗

is close to the true pa-
rameter θ∗ with high probability, we turn our attention
to how we can compute the MLE θ̂

∗
from the observed

samples σ(1), . . . , σ(m) restricted to the leaves. While the
log-likelihood function ℓ in (1) is non-concave, it has the

nice structure of being strictly concave when restricted to a
single branch length θ̂e for e ∈ E (see Lem. 4.2). Thus, it
is natural to cycle through the branch lengths and optimize
one at a time, maximizing the one-dimensional restricted
likelihood function. This yields the following “cyclic co-
ordinate maximization” algorithm for computing the MLE
θ∗. Namely, given our estimate θ̂k = (θ̂k;e; e ∈ E) after k
iterations, our algorithm proceeds by optimizing for a single
branch length θk;e by

θ̂k+1;e ← argmax
θ̂∈[−1,1]

fk;e(θ̂), where (8)

fk;e(θ̂) :=
1

m

m∑
i=1

ℓ(θ̂k+1;1:e−1, θ̂, θ̂k;e+1:|E|;σ
(i)),

θ̂k;i:j := (θ̂k;i, θ̂k;i+1, · · · , θ̂k;j)

assuming that we label the edge set E as integers from 1
through |E|. The one-dimensional objectives fk;e(θ̂) in (8)
are known to be strictly concave (Fukami & Tateno, 1989)
and they have a unique maximizer in (−1, 1) at a unique
critical point:

∂

∂θ̂e
fk;e(θ̂) = 0. (9)

The unique zero of the above critical-point equation can
be found rapidly by using standard zero-finding algorithms
(e.g., (Brent, 2013)). See Alg. 1 in Appendix A for a de-
tailed implementation of the algorithm. See e.g. (Guindon
& Gascuel, 2003) for a practical implementation of this type
of algorithm.

Despite the popularity and the empirical success of the coor-
dinate maximization algorithm above, however, due to the
non-concavity of the optimization landscape, there has been
no guarantee about the convergence of this algorithm to the
maximizer of ℓ or the true parameter θ∗. In Theorem 3.4
below, we establish that the coordinate maximization algo-
rithm above (8) converges exponentially fast to the MLE θ̂

∗
,

which is within C(T, ε, δ)m−1/2 from the true parameter
θ∗, provided the initial estimate θ̂0 is within O(δ) from the
true parameter θ in L2 norm.

Theorem 3.4 (Statistical and computational estimation guar-
antee). Suppose the hypothesis of Theorem 3.3 holds. Let
(θ̂k)k≥0 denote the sequence of estimated parameters gen-
erated by the coordinate maximization algorithm (see Alg.
1) with the initial estimate θ̂0 with ∥θ̂0−θ∗∥ = O(δ). Then
with probability at least 1− 3ε, for all k ≥ 0,

∥θ̂
∗
− θ̂k∥2 ≤

C̃6

C6

(
1− C6

C̃6

)k−1

∥θ̂
∗
− θ̂0∥2. (10)
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In particular,

∥θ∗ − θ̂k∥ ≤ C7

√
|E|/m log(|E|/ε)︸ ︷︷ ︸
=statistical error

(11)

+

√
C̃6

C6

(
1− C6

C̃6

)(k−1)/2

∥θ̂
∗
− θ̂0∥︸ ︷︷ ︸

=computational error

.

It is important to note that the exponential rate of con-
vergence of the coordinate maximization in Theorem 3.4,
C̃6

C6
∈ (0, 1), is a universal constant that does not depend on

the tree T and also the parameter δ (as long as it is less than
some universal constant in Thm. 3.2). This means that the
computational error for computing the MLE can be made to
be less than a desired tolerance ε within C log ε−1 iterations
for some universal constant C. This gives some theoretical
support for the empirical fact that coordinate maximiza-
tion algorithm performs well empirically, even with a small
number of coordinate updates (Guindon & Gascuel, 2003;
Guindon et al., 2010).

It would be of interest to show that the assumption that
∥θ̂0 − θ∗∥ = O(δ) can be dropped; however, our proof
needs the initial iterate to be sufficiently close to θ∗ in
order to know that the empirical Hessian is smooth and
strongly concave with high probability (Thm. 3.2) and that
the subsequent iterates also lie in this “good” region.

4. Sketch of Proofs
4.1. Characterizing the Likelihood Landscape Using

Magnetization

Fix two distinct nodes u, v in T . We call a node w a de-
scendant of u with respect to node v if the shortest path
between w and v contains u. The descendant subtree at u
with respect to v is the subtree Tu rooted at u consisting of
all descendants of u with respect to v. A subtree of T rooted
at u is a descendant subtree of u if it is a descendant subtree
of u with respect to some node v.

The following notion of ‘magnetization’ is central to com-
puting the derivatives of the log-likelihood. Roughly speak-
ing, the magnetization Zu of a node u with respect to a
descendant subtree Tu rooted at u is the ‘bias’ on its spin
after observing all spins at the leaves of the descendant sub-
tree Tu. For instance, if all spins on the leaves of Tu are
+, then u will be quite likely to have + spin as well. The
formal definition of magnetization is given below.

Definition 4.1 (Magnetization). Let Tu be a descendant
subtree of T rooted at a node u. Let Lu denote the set of all
leaves in Tu. For a generic parameter θ̂ ∈ [0, 1]E(Tu) and
spin configuration τ ∈ {±}Lu on the leaves of Tu, define

the magnetization at the root u of Tu as Zu = Zu(θ̂;σ) by

Zu =Pθ̂(σ̂u = +1 | σ̂Lu = σLu) (12)
− Pθ̂(σ̂u = −1 | σ̂Lu = σLu),

where σ̂ is a random spin configuration on T sampled from
Pθ̂.

If Tu consists of a single node u, then Zu = σu as we get to
observe the spin at u. In general, Zu is a random variable de-
termined by the spin configuration σLu

on the leaves of Tu

and takes values in [−1, 1]. The magnetization Zu at a node
u also depends implicitly on the choice of the descendant
subtree Tu. In (Borgs et al., 2006), Borgs et al. established
that the magnetization of a root on any tree can be obtained
as an explicit function of the magnetizations of the descen-
dant subtrees for all the children and the edge parameters.
We recall this in the appendix, see (29) in particular.

Consider the log-likelihood function ℓ(θ̂;σ) in (1) and two
edges e = {x, y} and f = {u, v} ∈ E(T ). Let Tx and Ty

denote the subtrees rooted at x and y (resp.) obtained by
removing e from the edges of T . Suppose that f ∈ E(Ty)
and that u is closer to y than v, i.e., d(u, y) < d(v, y).
Enumerate the vertices on the path from y to u by y =
yN , yN−1, . . . , y1, y0 = u and set y−1 = v and yN+1 = x.
Note that for each vertex yj with j ∈ {0, . . . , N}, the vertex
yj has degree three and so has neighbors {yj−1, yj+1, wj}
for some other vertex wj . Accordingly, we have Tx = TyN+1

and Ty = TyN
, and for every node z in Ty, the descendant

subtree Tz is with respect to the root x.

The following key lemma relates the derivatives of the log-
likelihood and the magnetizations.
Lemma 4.2 (Likelihood and magnetization). The following
formulas hold.

(i) (Gradient) For edge e = {x, y}, we have

∂

∂θ̂e
ℓ(θ̂;σ) =

ZxZy

1 + ZxZy θ̂e
, (13)

(ii) (Hessian) For edges e = {x, y} and f = {u, v} with
dist(e, f) = N as above, we have

∂2

∂θ̂e∂θ̂f
ℓ(θ̂;σ) =

 θ̂eZxZv

(1 + θ̂eZxZy)2

N∏
j=1

θ̂{yj ,yj−1}


×

N∏
j=0

(
1− (θ̂{yj ,wj}Zwj

)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2 . (14)

(iii) (Third-order derivatives) If θ̂ ∈ Θ̂0(δ), then for all
edges e1, e2, e3:∣∣∣∣∣ ∂3

∂θ̂e1∂θ̂e2∂θ̂e3
ℓ(θ̂;σ)

∣∣∣∣∣ ≤ 4 diam(T )

(2c4δ)4 diam(T )+2
. (15)

6



Sample Complexity of Branch-length Estimation by Maximum Likelihood

The expression for the Hessian in (14) above is rather com-
plicated. Looking at the denominators in (14), we see that
each of them is (at worst) Ω(δ2), and as there are most
diam(T ) many a naı̈ve bound on the Hessain gives∣∣∣∣∣ ∂2

∂θ̂e∂θ̂f
ℓ(θ̂;σ)

∣∣∣∣∣ = O
(
δ−2 diam(T )

)
;

however, we can provide a much better bound. We state this
as the following lemma.

Lemma 4.3. There exists constants C16, C̃16 and δ16 such
that for all binary trees T and δ ≤ δ16∣∣∣∣∣ ∂2

∂θ̂e∂θ̂f
ℓ(θ̂;σ)

∣∣∣∣∣ ≤ C16

(
C̃16

δ

)diam(T )/2+4

. (16)

4.2. Sketch of the Proof of Thm. 3.2

To analyze the MLE landscape in (1) we rely on knowledge
of the population landscape obtained in (Clancy, Jr. et al.,
2025a) which we now recall. Define H(θ̂) to be the Hessian
of the one-sample population log-likelihood

H(θ̂) = D2Eθ∗

[
ℓ(θ̂;σ)

]
= Eθ∗

[
D2ℓ(θ̂;σ)

]
(17)

=

(
Eθ∗

[
∂2

∂θ̂e∂θ̂f
ℓ(θ̂;σ)

]
; e, f ∈ E(T )

)
. (18)

In (Clancy, Jr. et al., 2025a), the following population likeli-
hood landscape result is shown:

Theorem 4.4 (Population log-likelihood landscape: strong
concavity and smoothness). There exists a constant δ19 ∈
(0, 1) depending only on c3, C3, c4, C4 such that for all bi-
nary trees T , δ ≤ δ19 and θ̂ ∈ Θ̂0(δ) and θ∗ ∈ Θ0(δ)

− C̃19

δ
≤ Eθ

[
∂2

∂θ̂2e
ℓ(θ̂;σ)

]
≤ −C19

δ
for all e ∈ E(T )

− C̃19

δ
− 26 ≤ λmin(H(θ̂)) ≤ λmax(H(θ̂)) ≤ −C19

δ
+ 26,

(19)

where λmin(·) and λmax(·) denote the minimum and the
maximum eigenvalues of a matrix. In particular, in the pop-
ulation limit m→∞, the log-likelihood function ℓ in (2) is
(C19

δ − 26) - strongly concave and ( C̃19

δ + 26)-smooth. In
particular, the true parameter θ∗ is the unique maximizer
of ℓ over Θ̂0.

Now, how do we transfer this population landscape result
to the empirical landscape with high probability? We essen-
tially need some type of uniform concentration bound on
parameterized matrix-valued random functions around its

expectation. To this end, we establish a uniform version of
the well-known matrix Bernstein inequality (Thm. 1.4 in
(Tropp, 2012)) for sums of self-adjoint independent random
matrices. Given a pre-compact parameter space Θ ⊂ Rp,
we let ∥Θ∥ := supx,y∈Θ ∥x− y∥ denote the (L2-)diameter
of Θ.

Lemma 4.5 (Uniform Matrix Bernstein). Fix a compact
parameter space Θ ⊆ Rp. Consider a finite sequence
(Xk(θ))1≤k≤n of self-adjoint independent random matri-
ces in dimension d parameterized by θ ∈ Θ. Assume that
there exists a constant R ≥ 0 such that for each θ ∈ Θ,
1 ≤ k ≤ n that almost surely

E[Xk(θ)] = O and λmax(Xk(θ)) ≤ R

Furthermore, suppose that the random matrices depend on
the parameter smoothly: There exists a constant L > 0 such
that

∥Xk(θ)−Xk(θ
′)∥2 ≤ L∥θ − θ′∥ (20)

almost surely for all 1 ≤ k ≤ n and θ, θ′ ∈ Θ. Then for all
t ≥ 0, denoting σ2 := supθ∈Θ

∥∥∑
k E
[
Xk(θ)

2
] ∥∥

2
,

P

(
sup
θ∈Θ

∥∥∥∥∑
k

Xk(θ)

∥∥∥∥
2

≥ t

)
(21)

≤ 2d ∥Θ∥p
(
1 +

4nL

t

)p

exp

(
−t2/8

σ2 +Rt/6

)
.

Sketch of proof. The statement can be deduced by using
an ε-net argument with the standard matrix Bernstein in-
equality. Lipschitz continuity of the parameterized random
matrix Xk(·) is needed to do so. See Appendix B for more
details.

Now we sketch the proof of Theorem 3.2. The key is to
look at the fluctuation of the empirical Hessian about its
population expectation:

Ĥ(θ)−H(θ) =

m∑
k=1

m−1(Hk(θ)−H(θ))︸ ︷︷ ︸
=:Xk(θ)

, (22)

where Hk denotes the (random) Hessian of the kth leaf
observation σ(i). Once we verify the hypothesis of Lemma
4.5, it implies that the random matrix on the left-hand side
above has a small spectral norm. By Weyl’s inequality, this
implies that the maximum eigenvalue of the empirical Hes-
sian is concentrated around that of the expected Hessian:
Uniformly over all θ ∈ Θ̂0(δ),

|λmax(Ĥ(θ))− λmax(H(θ))| ≤ ∥Ĥ(θ)−H(θ)∥2 ≤ 1

with high probability (provided m is sufficiently large).

7
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In order to verify the hypothesis of the uniform matrix Bern-
stein inequality (Lem. 4.5), we crucially use the determinis-
tic bounds on the entries of the Hessian (in Lem. 4.3) and
the third-order derivatives of the log-likelihood (in Lem.
4.2). Namely, by Lem. 4.3, the entries in the Hessian Hk(θ)

at any parameter θ ∈ Θ̂0(δ) are uniformly bounded by
J = δ−O(diam(T )/2). Hence the entries of the deviation
matrix Xk(θ) are also uniformly bounded by J . Then by
Gershgorin’s circle theorem, it follows that

∥Xk(θ)∥2 ≤ |E|J = |E|δ−O(diam(T )/2) (23)

uniformly over all θ ∈ Θ̂0(δ), as this is an upper bound of
the absolute row sums.

Next, note that each entry of Hk(θ)
2 is uniformly bounded

by |E|J2, so by a similar argument and an application of
Weyl’s inequality, the maximum eigenvalue of

σ2 ≤
m∑

k=1

∥∥E[Xk(θ)
2]
∥∥
2
= O(m|E|2J2). (24)

Lastly, for the Lipschitz continuity in (20), we may use the
mean value theorem and the uniform bound on the third-
order derivative in Lem. 4.2 to deduce

∥Hk(θ)−Hk(θ
′)∥2

≤ |E|2∥Hi(θ)−Hi(θ
′)∥max (25)

≤M |E|2∥θ − θ′∥ (26)

= |E|2diam(T )δ−O(diam(T ))∥θ − θ′∥. (27)

for all θ,θ′ ∈ Θ̂0(δ), where M denotes the largest absolute
value of the third-order derivatives of ℓ(θ;σ(i)) over all
θ ∈ Θ̂0(δ). Since the above bound holds almost surely
for all parameters in the box, it also holds for the expected
Hessians, and hence for their deviations from the mean.

4.3. Sketch of the Proof of Thm. 3.3

The reason why we should expect to see an O(1/
√
m) error

term appearing in Theorem 3.3 is the central limit theorem
tells us that ℓ(θ) should be within O(m−1/2) of E[ℓ(θ)]
as it has finite variance (Lemma 4.3). We can make this
quantitative and non-asymptotic with the Berry-Esseen the-
orem. In order to turn this idea into a statement about the
maximizers, we use a first-order Taylor expansion of their
difference at θ∗.

In standard maximum likelihood analysis, one uses the
Fisher information (expected Hessian at the true parameter)
for the second-order term and controls the error subsumed
in the third-order term. But in our context, this requires us
to understand the continuity of the third-order derivative of
the log-likelihood, which in turn reduces to bounding the

fourth-order derivative of the likelihood function, which is
somewhat complicated. Instead, we directly use the random
empirical Hessian for the second order term and use our
previous result that with high probability, the empirical Hes-
sian has bounded maximum eigenvalue uniformly within a
‘good box’ in the parameter space.

To sketch the proof of Theorem 3.3, we will write ℓ(θ̂) =

ℓ(θ̂;x1, . . . , xm) = m−1
∑m

j=1 ℓ(θ̂;xj). Then, by a first-
order Taylor expansion around θ∗

ℓ(θ̂)− ℓ(θ∗) = ⟨∇θ̂ℓ(θ
∗), θ̂ − θ∗⟩+O

(
∥θ̂ − θ∗∥2

)
=
∥θ̂ − θ∗∥√

m
Tm(θ̂) +O(∥θ̂ − θ∗∥2)

where

Tm(θ̂) =

√
m

∥θ̂ − θ∗∥
⟨∇θ̂ℓ(θ

∗)− E[∇θ̂ℓ(θ
∗)], θ̂ − θ∗⟩

and the big-O error term depends on the empirical Hessian.
This allows us to write the big-O error term above in terms
of some (explicit) function of the empirical Hessian of ℓ(θ̂),
say Λm. In turn, we can say

ℓ(θ̂)− ℓ(θ∗) ≤ ∥θ̂ − θ∗∥√
m

Tm(θ̂) + Λm∥θ̂ − θ∗∥2.

If we restrict our attention to θ̂ such that ∥θ̂ − θ∗∥ =
Rm−1/2 for some R > 0

ℓ(θ̂)− ℓ(θ∗)

∥θ − θ∗∥2
≤ 1

R
Tm(θ̂) + Λm. (28)

If we can show that there is some non-random choice of R
(depending on T and ε) such that the right-hand side above
is strictly negative then we can use our previous result on the
concavity of ℓ(θ̂) near θ∗ to conclude that the maximizer
satisfies ∥θ̂

∗
MLE − θ∗∥ ≤ Rm−1/2.

This final task boils down to showing that Tm(θ̂) concen-
trates around 0 uniformly in θ̂ close to θ∗ and showing that
there is some t > 0 such that Pθ∗(Λm < −t) ≥ 1 − ε.
We can use Berry-Esseen to accomplish the former and our
previous result controlling the eigenvalues of the empirical
Hessian accomplishes the latter.

4.4. Sketch of the Proof of Thm. 3.4

As already mentioned, the concavity of the empirical log-
likelihood, showing that the right-hand side of (28) is strictly
negative with large probability implies that the (unique)
maximizer satisfies ∥θ̂

∗
MLE − θ∗∥ ≤ Rm−1/2. One of the

key steps in proving Theorem 3.4 is to show that not only in
the global maximizer within Rm−1/2 of θ∗ but also all the

8
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iterates from the coordinate maximization algorithm (Alg.
1) are also within Rm−1/2 of θ∗. That means we do not
escape an L2 neighborhood of θ∗ with large probability
whenever we start with a good initialization.

The last step is to analyze the coordinate maximization algo-
rithm without confinement constraints. In the optimization
literature, the block coordinate minimization iterates for ρ-
strongly convex and smooth landscapes with two blocks is
known to converge linearly (Beck & Tetruashvili, 2013).
Moreover, the rate of convergence depends on the parameter
ρ and the block-smoothness parameter L1, L2. We extend
this to arbitrarily many blocks to deal with arbitrarily large
trees.
Lemma 4.6 (Block coordinate minimization for strongly
convex and smooth objectives). Fix a parameter space Ω :=∏b

i=1 Ii ⊆ Rp, where Ii ⊆ Rpi is an open convex subset
with p1+· · ·+pb = p for some b ∈ {1, . . . , p}. Let f : Ω→
R be a ρ-strongly convex function for some ρ > 0. Further
assume that, there exists constants L1, . . . , Lb such that f
restricted on the ith block Ii is Li-smooth for i = 1, . . . , b.
Consider the following cyclic block coordinate minimization
algorithm: Given θn−1 ∈ Ω, θn = (θn;i; i = 1, . . . , b) be
as

θn;i ← argmin
θ∈Ii

f(θn;1, . . . , θn;i−1, θ, θn−1;i+1, . . . , θn−1;b).

Assume these iterates are well-defined. Suppose f∗ :=
minθ∈Ω f(θ) > −∞ and the minimum is attained. Then
for all n ≥ 1,

f(θn)− f∗ ≤
(
1− ρ

min{L1, . . . , Lb}

)n−1

(f(θ0)− f∗).

Conclusion
In this work, we analyzed a maximum likelihood estimation
(MLE) problem with a non-concave likelihood landscape.
Specifically, for branch-length estimation in phylogenetics,
we showed that even when the likelihood landscape may
contain multiple local maxima, one can identify a semi-
global region where the landscape behaves well – exhibiting
strong concavity and containing a unique maximizer. Our
analysis demonstrates that with polynomial sample com-
plexity when the tree is balanced, the empirical likelihood
concentrates around its population counterpart within this
region.

Relying strong concavity of the population likelihood in a
suitable neighborhood, the key steps of our approach are:
proving Lipschitz continuity of the population Hessian en-
tries and bounding the spectral norm of the per-sample em-
pirical Hessian. While we focused on branch-length estima-
tion, some aspects of our methodology may be relevant to a
broader class of non-concave maximum likelihood problems
where similar ”benign” non-concavity structures exists.
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Sample Complexity of Branch-length Estimation by Maximum Likelihood

Sample complexity of branch-length estimation by maximum likelihood
Supplementary Material

A. A detailed implementation of coordinate maximization algorithm (8)

Here we provide a detailed implementation of the coordinate maximization algorithm (8) for branch length estimation. A key
step is to solve the critical point equation (9), for which we need to compute the first-order derivatives of the log-likelihood
function. In (Clancy, Jr. et al., 2025b), Clancy et al. obtained a simple recursive formula for the gradient of the log-likelihood
of a single sample using the magnetization in Def. 4.1. In particular, they show for a single sample σ that

∂

∂θ̂e
ℓ(θ̂;σ) =

Zu(θ̂;σ)Zv(θ̂;σ)

1 + θ̂eZu(θ̂;σ)Zv(θ̂;σ)

where e = {u, v} and Zu(θ̂;σ), Zv(θ̂;σ) can computed recursively as follows. Consider the subtree Tu of T obtained by
deleting the edge e and rooted at u. For all the leafs x ∈ Tu define Zx = Zx(θ̂;σ) = σx and for any other vertex x with
children a, b define

Zx = q(θ̂{x,a}Za, θ̂{x,b}Zb) (29)

where q(s, t) = s+t
1+st . This yields the following explicit and easily executable implementation of the coordinate maximization

algorithm in (8).

Algorithm 1 Empirical likelihood maximization by cyclic coordinate maximization

1: Input: T = (V,E) (Binary phylogenetic tree); θ̂0 = (θ̂0;e)e∈E (initial estimate); m (number of samples); M (number of
iterations); τ > 0 (optional step-size)

2: Sample m i.i.d. spin configurations σ(1), . . . , σ(m) on T under the true model Pθ∗

3: for k = 0, . . . ,M do:
4: Set θ̂k+1 = (θ̂k+1;e)e∈E ← θ̂k

5: for edges e = uv ∈ E do:
6: for i = 1, . . . ,m do:
7: Compute the magnetizations Z(i)

k;u and Z
(i)
k;v using σ(i)|L and θ̂k+1

8: end for
9: Compute the empirical gradient: ∂

∂θ̂e
f̄k;e(θ̂e) :=

1
m

∑m
i=1

Z
(i)
k;u

Z
(i)
k;v

1+θ̂eZ
(i)
k;u

Z
(i)
k;v

(▷ a rational function θ̂e)

10: θ̂k+1;e ← zero of ∂

∂θ̂e
f̄k;e(θ̂e) = 0 in [−1, 1] (▷ update the coordinate e of θ̂k+1 by coordinate maximization)

11: end for
12: end for
13: output: θ̂M

B. A uniform matrix Bernstein’s inequality
Proof of Lemma 4.5. Since Θ ⊆ Rp is compact, it can be covered by a finite number of L2-balls of any given radius ε > 0.
Let Uε denote a smallest collection of ε-balls that cover Θ and let N(ε) := |Uε| denote the smallest number of ε-balls to
cover Θ. It is easy to verify (see, e.g., (Roch, 2024))

N(ε) ≤ ∥Θ∥p(1 + (2/ε))p. (30)

Let θ1, · · · , θN(ε) be the centers of ε-balls in Uε. Then for each θ ∈ Θ, there exists 1 ≤ j ≤ N(ε) such that ∥θ − θj∥ < ε.

Next, denote Y (x) :=
∑

k Xk(x) for each x ∈ Θ, which is self-adjoint. By Weyl’s inequality and the hypothesis, for each
x, y ∈ Θ,

|λmax(Y (x))− λmax(Y (y))| ≤ ∥Y (x)− Y (y)∥2 ≤
∑
k

∥Xk(x)−Xk(y)∥2 ≤ nL∥x− y∥.

12
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Hence for each θ ∈ Θ, there exists 1 ≤ j ≤ N(ε) such that

λmax(Y (θ)) ≤ λmax(Y (θj)) + |λmax(Y (θ))− λmax(Y (θj))|
≤ λmax(Y (θj)) + nLε.

If follows that, by choosing ε = t
2nL and using a union bound with (30),

P
(
sup
θ∈Θ

λmax(Y (θ)) ≥ t

)
≤

N( t
2nL )∑

j=1

P (λmax(Y (θj)) ≥ t/2)

≤ d ∥Θ∥p
(
1 +

4nL

t

)p

exp

(
−t2/8

σ2 +Rt/6

)
.

Here the second inequality uses the standard matrix Bernstein inequality for self-adjoint random matrices (see, Thm.1.4 in
(Tropp, 2012)), where σ2 is defined in the statement.

To finish, note that

sup
θ∈Θ

max
1≤i≤d

|λi(Y (θ))| ≤ max

{
sup
θ∈Θ

max
1≤i≤d

λi(Y (θ)), sup
θ∈Θ

max
1≤i≤d

λi(−Y (θ))

}
.

Therefore, applying the same argument for −Y (θ) and combining the resulting concentration bounds using a union bound,
we can derive (21).

C. Proof of results for statistical and computational guarantees
In this section, we prove Theorems 3.2, 3.3, and 3.4.

We now prove Theorem 3.2, which we re-state below with more explicit constants.

Theorem C.1 (Finite-sample log-likelihood landscape: strong concavity and smoothness, Thm. 3.2). Let δ ≤ δ19 and let Ĥ
denote the Hessian of the m-sample log-likelihood function ℓ in (1). Fix ε ∈ (0, 1). Then there exists a constant C31 > 0
such that if

m ≥ (C31/δ)
diam(T )+8 log(ε−1), (31)

then for any binary tree T , and θ∗ ∈ Θ0(δ),

Pθ∗

(
− C̃19

δ
− 27 ≤ inf

θ∈Θ̂0(δ)
λmin(Ĥ(θ)) ≤ sup

θ∈Θ̂0(δ)

λmax(Ĥ(θ)) ≤ −C19

δ
+ 27

)
≥ 1− ε. (32)

Proof. Recall that we denote by H(θ̂) the Hessian of the population likelihood (see (17)). Let Hi(θ̂) := ∇θ̂∇θ̂
T ℓ(θ̂;xi)

denote the Hessian of the log-likelihood of the ith configuration xi at parameter θ̂. Then Ĥ(θ̂) := m−1
∑m

i=1 Hi(θ̂) is the
Hessian of the empirical likelihood function ℓ in (1) at θ̂. Denote H(θ̂) := Ĥ(θ̂)− Eθ∗ [Ĥ(θ̂)] = Ĥ(θ̂)−H(θ̂).

First, we will use the uniform matrix Bernstein inequality (Lemma 4.5) to deduce that the empirical Hessian uniformly
concentrates on its population expectation in the spectral norm. To do so, we need to verify the hypothesis of Lemma
4.5. First, by using Lemma 4.2, the entries in the Hessian Hi(θ̂) at any parameter θ̂ ∈ Θ̂0(δ) are uniformly bounded by

J := C16

(
C̃16/δ

)diam(T )/2+4

. By Gershgorin’s circle theorem, it follows that the eigenvalues of the Hessian of Hi(θ̂) are

uniformly bounded by |E|J (as this is an upper bound of the row sums). Next, note that each entry of Hi(θ̂)
2 is uniformly

bounded by |E|J2, so by a similar argument, the maximum eigenvalue of
∑m

i=1 E[Hi(θ̂)
2] are uniformly bounded by

m|E|2J2. Lastly, for the Lipschitz continuity in (20), we may use the mean value theorem to deduce

∥Hi(θ̂)−Hi(θ̂
′
)∥2 ≤ |E|2∥Hi(θ̂)−Hi(θ̂

′
)∥max ≤M |E|2∥θ̂ − θ̂

′
∥ for all θ̂, θ̂

′
∈ Θ̂0(δ),

13



Sample Complexity of Branch-length Estimation by Maximum Likelihood

where M denotes the largest absolute value of the third-order derivatives of ℓ(θ;σ(i)) over all θ ∈ Θ̂0(δ). According to
Lemma 4.2(iii), M ≤ 4 diam(T )(2c4δ)

−4diam(T )−2. Since the above bound holds almost surely for all parameters in the
box, it also holds for the expected Hessians, and hence for their deviations from the mean.

Thus, by the uniform matrix Bernstein inequality (Lemma 4.5), we get

Pθ∗

(
sup

θ̂∈Θ̂0(δ)

∥H(θ̂)∥2 ≥ 1

)
≤ 2|E|

(
2
√
|E|(C4 − c4)δ

)|E|
(
1 +

16 diam(T )

(2c4δ)4 diam(T )+2

)|E|

exp

(
−m2/8

σ2 +Rm/6

)
, (33)

where R = |E|J and σ2 = m|E|2J2. We will choose the sample size m so that the right-hand side of (33) is at most ε/2.
For this, it is sufficient to have

log(2|E|) + |E| log
(
2
√
|E|(C4 − c4)δ(1 + 16 diam(T )(2c4δ)

−4 diam(T )−2)
)
+

−m/8

|E|2J2 + |E|J/6
≤ log ε/2.

Rearranging, it is enough to have

m ≥ 8

1 + |E|C16

(
C̃16

δ

) 1
2 diam(T )+4

2

(34)

×
[
log(2|E|) + |E| log

(
2|E|1/2(C4 − c4)δ

(
1 +

16 diam(T )

(2c4δ)4 diam(T )+2

))
+ log(2/ε)

]
.

We choose C31 large enough so that (C31/δ)
diam(T )+8 dominates the right-hand side above with the term log(2/ε) disre-

garded. Then we increase C31 so the right-hand side above is dominated by (C31/δ)
diam(T )+8 log(1/ε), which is the sample

complexity bound in (31).

Next, we will deduce that the extreme eigenvalues of Ĥ(θ) are uniformly concentrated around the extreme eigenvalues
of the expected Hessian over all parameters θ ∈ Θ̂0(δ) with high probability. For the maximum eigenvalue, by Weyl’s
inequality for self-adjoint matrices,

∥λmax

(
Ĥ(θ̂)

)
− λmax

(
E[Ĥ(θ̂)]

)
∥ ≤ ∥H(θ̂)]∥2.

Thus (33) implies that λmax

(
Ĥ(θ̂)

)
≤ λmax

(
E[Ĥ(θ̂)]

)
+ 1 for all θ̂ ∈ Θ̂0(δ) with probability at least 1 − (ε/2). By

applying the same argument for −Ĥ(θ̂), we have that λmin

(
H(θ̂)

)
≥ λmin

(
E[H(θ̂)]

)
− 1 for all θ̂ ∈ Θ̂0(δ) with

probability at least 1− (ε/2). Hence by union bound and Lemma 4.4, we deduce the assertion (32).

Next, we prove Theorem 3.3, which we re-state below with more explicit constants.

Theorem C.2 (Statistical estimation guarantee, Thm. 3.3). Assume the hypothesis of Theorem 3.2 holds. Let E32 denote the
event in (32). Fix ε ∈ (0, 1) and denote ρ := C19

δ − 27 and C7 := 16C̃19

C19
Then we have

Pθ∗

(
E32 ∩

{
∥θ∗ − θ̂

∗
∥ ≤ C7

√
|E|/m log(|E|/ε)

})
≥ 1− 3ε

provided that m satisfies (31) and m ≥ |E|2
4C6

19c
6
4δ

3ε
.

Proof. Fix ε > 0. By Theorem 3.2, Pθ∗(E32) ≥ 1− ε. At present let R > 0 be some yet-to-be-determined quantity.

We will show that the log-likelihood function ℓ attains a local maximizer within Cm−1/2-ball around θ∗:

Pθ∗

(
sup

θ̂∈Θ̂0(δ), ∥θ̂−θ∗∥=Rm−1/2

ℓ(θ̂;σ)− ℓ(θ∗) < 0

)
≥ 1− 2ε. (35)

Hence by a union bound, the intersection of E32 and the event in (35) occurs (under Pθ∗) with probability at least
1 − 3ε. On the event E32, since ℓ is strictly concave over Θ̂0(δ), it follows that the local maximizer near θ∗ must be

14
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θ̂
∗
, the global maximizer of ℓ over Θ̂0(δ). This is enough to deduce (7). In the remainder of this proof we will write

ℓ(θ̂) = 1
m

∑m
i=1 ℓ(θ̂;xi) but write ℓ(θ̂;xi) to refer to a single sample.

Fix θ̂ ∈ Θ̂0(δ) such that ∥θ̂ − θ∗∥ = Rm−1/2. We introduce two random variables that we will bound to be small by using
some concentration inequalities:

Tm(θ̂) :=

√
m

∥θ̂ − θ∗∥

〈
∇θ̂ℓ(θ

∗)− E
[
∇θ̂ℓ(θ

∗)
]
, θ̂ − θ∗

〉
,

Sm(θ̂) :=
1

∥θ̂ − θ∗∥2
sup

z∈Θ̂0(δ)

1

2
(θ̂ − θ∗)T Ĥ(z)(θ̂ − θ∗),

where Ĥ denotes the Hessian of the m-sample log-likelihood function ℓ in (1). By first-order Taylor expansion,

ℓ(θ̂)− ℓ(θ∗) ≤ ⟨∇θ̂ℓ(θ
∗), θ̂ − θ∗⟩+ ∥θ̂ − θ∗∥2Sm(θ̂)

≤ ∥θ̂ − θ∗∥√
m

· Tm(θ̂) +
1

2
∥θ̂ − θ∗∥2 sup

z∈Θ̂0(δ)

λmax(Ĥ(z)),

where the second inequality uses∇θ̂E[ℓ(θ
∗)] = 0 and that (θ̂ − θ∗)T Ĥ(z)(θ̂ − θ∗) ≤ λmax(Ĥ(z))∥θ̂ − θ∗∥2. Dividing

both sides by ∥θ̂ − θ∗∥2 = R2m−1 and rearranging,

ℓ(θ̂)− ℓ(θ∗)

∥θ̂ − θ∗∥2
≤ 1

R

(
Tm(θ̂)− Rρ

4

)
︸ ︷︷ ︸

=:I1

+

(
1

2
sup

z∈Θ̂0(δ)

λmax(Ĥ(z)) +
ρ

4

)
︸ ︷︷ ︸

=:I2

(36)

where ρ := C19

δ − 27. We wish to show that the supremum of the left-hand side of (36) overall θ̂ ∈ Θ̂0(δ) with
∥θ̂ − θ∗∥ = Rm−1/2 is strictly negative with probability 1− ε. Indeed, by Theorem 3.2, we have

Pθ∗(I2 ≤ −ρ/4) ≥ 1− 2ε

provided the sample complexity of (31). Thus it is enough to show that I1 < 0 at least with probability 1− ε. Asymptotically
as m → ∞, Tm(θ̂) is of order 1 with high probability by the central limit theorem. Below we give a non-asymptotic
argument using Berry-Esseen theorem. We will show the following inequality

Pθ∗

 sup
θ̂∈Θ̂0(δ)

∥θ̂−θ∗∥=Rm−1/2

Tm(θ̂) ≥ Rρ

4

 ≤ |E| exp
(
− ρ2R2δ2

64|E|C̃2
19

)
+

3|E|
8C3

19c
3
4δ

3/2
√
m
. (37)

Supposing (37) for the moment, Theorem 3.3 follows once we find R (resp. m) large enough so that the first (resp.
second) term on the right-hand side above are at most ε. The first term is smaller than ε by simply rearranging (7) with
R = C7

√
|E| log(|E|/ε). The second term is clearly satisfied by the choice of m in the statement.

It remains to verify (37). To this end, write ∇θ̂ℓ(θ
∗) = ∇θ̂ℓ(θ

∗) − E
[
∇θ̂ℓ(θ

∗)
]

= 1
m

∑m
i=1 U i, where U i :=

∇θℓ(θ
∗;σ(i)) ∈ R|E|. We write U i(k) for the kth coordinate of U i. Then by using Cauchy-Schwarz inequality and

noting that ∥θ − θ∗∥ = Cm−1/2, we get

Tm(θ) =

〈
1√
m

m∑
i=1

Ui,
θ̂ − θ∗

∥θ̂ − θ∗∥

〉
≤

∥∥∥∥∥ 1√
m

m∑
i=1

Ui

∥∥∥∥∥ =

√√√√ |E|∑
k=1

∣∣∣∣∣ 1√
m

m∑
i=1

U i(k)

∣∣∣∣∣
2

.

It is important to note that the distribution of the random variable on the last term above does not depend on θ̂. Note that U i

for i = 1, . . . , n are independent mean zero i.i.d. random vectors in R|E|, as we will see below, their respective coordinates

15
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have uniformly bounded variances. Hence by a union bond,

Pθ∗

 sup
θ∈Θ̂0(δ)

∥θ−θ∗∥=m−1/2

Tm(θ) ≥ t

 ≤ |E|∑
k=1

Pθ∗

(∣∣∣∣∣ 1√
m

m∑
i=1

U i(k)

∣∣∣∣∣ ≥ t√
|E|

)
. (38)

Let Qk
n = 1√

m

∑m
i=1 U i(k). Then by the Berry-Esseen Theorem (Thm. 3.4.17 in (Durrett, 2019)) and the hypothesis, for

Z ∼ N(0, 1),

sup
z∈R

∣∣Pθ∗
(
Qk

n ≤ σz
)
− Pθ∗ (Z ≤ z)

∣∣ ≤ 3E[|Ui(k)|3]
σ3
√
m

where σ2 = σ2(k) = Varθ∗(U i(k)) = Eθ∗ [|U i(k)|2].

Write σmin = mink σ(k) and σmax = maxk σ(k). Combining with (38) and using a triangle inequality, we obtain

Pθ∗

 sup
θ∈Θ̂0(δ)

∥θ−θ∗∥=m−1/2

Tm(θ) ≥ t

 ≤ |E|P
(
Z ≥ t

2
√
|E|σmax

)
+

1√
m

3
∑|E|

k=1 Eθ∗ [|U1(k)|3]
σ3
min

. (39)

To simplify the last term above, note that for each edge e ∈ E with corresponding coordinate k for U i, Lemma 4.2 and A1
yield |U i(k)| =

∣∣∣ ZxZy

1+ZxZy θ̂∗
e

∣∣∣ ≤ 1/(2c4δ)

|E|∑
k=1

Eθ∗ [|Ui(k)|3] ≤
|E|

(2c4δ)3
.

Furthermore, using ∂2

∂θ̂2
e

ℓ(θ∗) = ∂
∂θ̂e

ZxZy

1+ZxZy θ̂e
= −

(
ZxZy

1+ZxZy θ̂e

)2
= −

(
∂

∂θ̂e
ℓ(θ̂

∗
)
)2

= −(U i(k))
2 from Lemma 4.2(i) we

see that

σ2(k) = Varθ∗(U i(k)) = Eθ∗
[
Ui(k)

2
]
= −Eθ∗

[
∂2

∂θ̂2e
ℓ(θ∗)

]
∈

[
C19

δ
,
C̃19

δ

]
.

To get the last inclusion above we used Lemma 4.4. Going back to (39), this shows

Pθ∗

 sup
θ∈Θ̂0(δ)

∥θ−θ∗∥=m−1/2

Tm(θ) ≥ t

 ≤ |E|P
(
Z ≥ tδ

2
√
|E|C̃19

)
+

1√
m

3|E|
8C3

19c
3
4δ

3/2

≤ |E| exp

(
− t2δ2

4|E|C̃2
19

)
+

1√
m

3|E|
8C3

19c
3
4δ

3/2

where we used the standard Gaussian tail bound P(Z ≥ x) ≤ exp(−x2/2). Setting t = Rρ
4 gives (37), as desired.

In the remainder of this section, we prove Theorem 3.4.

Theorem C.3 (Statistical and computational estimation guarantee, Thm. 3.4). Suppose the hypothesis of Theorem 3.3 holds.
Let (θ̂k)k≥0 denote the sequence of estimated parameters generated by the coordinate maximization algorithm (see Alg. 1)
with the initial estimate θ̂0 satisfying

∥θ̂0 − θ∗∥ ≤ (C19 − 27δ)C40

C19 + C̃19

δ

2
, (40)

16
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where C40 := (C4 − C3) ∧ (c4 − c3) > 0. Then with probability at least 1− 3ε, for all k ≥ 0,

∥θ̂
∗
− θ̂k∥2 ≤

C̃19 − 27δ

C19 − 27δ

(
1− C19δ

−1 − 27

C̃19δ−1 − 27

)k−1

∥θ̂
∗
− θ̂0∥2. (41)

In particular,

∥θ∗ − θ̂k∥ ≤ C7

√
|E|/m log(|E|/ε)︸ ︷︷ ︸
=statistical error

+

√
C̃19 − 27δ

C19 − 27δ

(
1− C19δ

−1 − 27

C̃19δ−1 − 27

)(k−1)/2

∥θ̂
∗
− θ̂0∥︸ ︷︷ ︸

=computational error

. (42)

A crucial ingredient is the following local confinement result of coordinate maximization for the maximum likelihood
landscape.
Lemma C.4 (Local confinement of coordinate maximization). Suppose the hypothesis of Theorem 3.3 holds. Fix ε ∈ (0, 1)

and let E7 denote the event in (7). If (θ̂k)k≥0 is a sequence of parameters computed by the coordinate maximization
algorithm (Alg. 1) with the initial estimate θ̂0 satisfying (40), then

Pθ∗

(
E7 ∩

{
θ̂k ∈ Int

(
Θ̂0(δ)

)
for all k ≥ 0

})
≥ 1− 3ε, (43)

provided m ≥ 1 is large enough so that

C7

√
|E| log |E|√

m
<

C40

2

C19

C̃19 + C19

δ. (44)

Proof. In this proof, we denote f = −ℓ for the negative of the empirical log-likelihood in (1). We will crucially use the fact
that coordinate minimization generates a sequence of iterates that monotonically decreases the objective f . Namely, let A0

denote the event of interest in (43). Define the following events:

A1 :=
{
{θ̂ ∈ Θ̂0(δ) | f(θ̂) ≤ f(θ̂0)} ⊆ Int

(
Θ̂0(δ)

)}
,

A2 :=

{
∥θ̂

∗
− θ∗∥ < C40

2

C19

C̃19 + C19

δ

}
,

E32 := the event in (32) in Theorem 3.2.

Note that both f and θ̂
∗

are random and so both A1 and A2 are indeed events. We claim that the following inclusions hold:

E7 ⊆ A2 ∩ E32 ⊆ A1 ∩ E32 ⊆ A0.

The first inclusion is immediate by the definition of the events and the choice of sample size (44). Since Pθ∗(E7) ≥ 1− 3ε
by Theorem 3.3, this implies that A0 occurs with probability at least 1− 3ε, as desired. We first show A1 ⊆ A0 by induction.
For the base step, note that, by A1, θ∗ ∈ Θ0(δ) and that Θ0(δ) is a closed box contained in the C40δ-interior of the closed
box Θ̂0(δ) (see A1). Hence, {

θ̃ : ∥θ̃ − θ∗∥ < C40δ
}
⊆ Int

(
Θ̂0(δ)

)
. (45)

Since the initial estimate θ̂0 satisfies (40), in particular it holds that ∥θ̂0 − θ∗∥ < C40δ. Hence from the above inclusion, we
have θ̂0 ∈ Int

(
Θ̂0(δ)

)
. This verifies the base step.

For the induction step, suppose A1 ∩ E32 holds and θ̂0, . . . , θ̂k ∈ Int
(
Θ̂0(δ)

)
for some k ≥ 0. We wish to show that

θ̂k+1 ∈ Int
(
Θ̂0(δ)

)
. Recall that θ̂k+1 is obtained from θ̂k by updating a coordinate θ̂k;e corresponding to some unique

edge e in T . We now use the fact that the restriction of f on each coordinate is strictly convex almost surely (Fukami &
Tateno, 1989). Denote this function θe 7→ f(θ) by fe. Then by definition

θ̂k+1;e = argmin
θ∈[−1,1]

fe(θ).

17
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In addition, define

θ̃k+1;e = argmin
θ∈[1−2C4δ,1−2c4δ]

fe(θ)

and let θ̃k+1 denote the parameter obtained from θ̂k by replacing θ̂k;e with θ̃k+1;e. By induction hypothesis, θ̂k ∈
Int
(
Θ̂0(δ)

)
. In particular, θ̂k;e ∈ (1 − 2C4δ, 1 − 2c4δ). Hence f(θ̃k+1) ≤ f(θ̂k) ≤ · · · ≤ f(θ̂0). Thus, on the event

A1, we deduce θ̃k+1 ∈ Int
(
Θ̂0(δ)

)
. This implies θ̃k+1;e is in fact in the open interval (1− 2C4δ, 1− 2c4δ). Now since

fe is strictly convex on the whole interval [−1, 1], it follows that θ̃k+1;e = θ̂k+1;e; in words, the strictly convex function
fe attains its global minimizer in the whole domain [−1, 1] inside the open interval (1 − 2C4δ, 1 − 2c4δ). This yields
θ̂k+1 = θ̃k+1 ∈ Int

(
Θ̂0(δ)

)
, which completes the induction step. This shows the inclusion A1 ∩ E32 ⊆ A0.

It remains to show A2 ∩ E32 ⊆ A1 as it is obviously a subset of E32. To this effect, we suppose that A2 ∩ E32 holds
and choose θ ∈ Θ̂0(δ) with f(θ) ≤ f(θ̂0). We wish to show that θ ∈ Int

(
Θ̂0(δ)

)
. By (45), it suffices to show that

∥θ − θ∗∥ < C40δ. Note that on the event A2, we have that θ̂
∗

is in the interior of Θ̂0(δ) by (45). Since θ̂
∗

is the global
maximizer of the empirical log-likelihood ℓ over the box Θ̂0(δ), it follows that ∇f(θ̂

∗
) = 0 on A2. Let µ := C19

δ − 27 and

L := C̃19

δ +27. On the event E32, f is µ-strongly convex and L-smooth over Θ̂0(δ). On this event, f restricted on Θ̂0(δ) is
upper and lower bounded by quadratic functions as

f(θ̂
∗
) +

µ

2
∥θ − θ̂

∗
∥2 ≤ f(θ) ≤ f(θ̂

∗
) +

L

2
∥θ − θ̂

∗
∥2 for all θ ∈ Θ̂0(δ).

Hence it follows that, for each θ ∈ Θ̂0(δ), f(θ) ≤ f(θ̂0) implies µ
2 ∥θ − θ̂

∗
∥2 ≤ L

2 ∥θ̂0 − θ̂
∗
∥2. Using the hypothesis (40),

this yields

∥θ − θ∗∥ ≤ ∥θ̂
∗
− θ∗∥+ ∥θ − θ̂

∗
∥

≤ ∥θ̂
∗
− θ∗∥+ L

µ
∥θ̂0 − θ̂

∗
∥

≤ L+ µ

µ

(
∥θ̂

∗
− θ∗∥+ ∥θ̂0 − θ∗∥

)
≤ C̃19 + C19

C19 − 27δ

(
C40

2

C19 − 27δ

C̃19 + C19

δ + ∥θ̂0 − θ∗∥
)

≤ C40δ.

According to (45), this implies θ ∈ Int
(
Θ̂0(δ)

)
as desired.

We now prove Theorem 3.4, which we re-state below with a more explicit dependence on constants. In the proof, we will use
a general result (Lemma 4.6) on linear convergence of coordinate minimization algorithm for minimizing strongly convex
and smooth objectives with a closed constraint set. For the flow of the paper, we relegated its statement and proof in Section
D.

Proof of Theorem 3.4/C.3. Let E43 denote the event in (43). By Lemma C.4, Pθ∗(E43) ≥ 1− 3ε. On the event E43, the
iterates (θ̂k)k≥0 are confined in the interior of the box constraint set Θ̂0(δ). Since the log-likelihood function ℓ is strictly
convex in each coordinate, it follows that if we had imposed the additional open box constraint Int(Θ̂0(δ)) when we
computed the coordinate maximization iterates in Alg. 1, the same iterates would have been generated. Thus, without loss
of generality, we will assume that the iterates (θ̂k)k≥0 are computed via the coordinate maximization algorithm for the
following constrained maximization problem:

max
θ∈Int(Θ̂0(δ))

ℓ(θ). (46)
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On the event E43, ℓ is ρ := (C19δ
−1 − 27) - strongly concave and L := (C̃19δ

−1 + 27)-smooth over Θ̂0(δ). Hence we can
apply Lemma 4.6 with ρ = (C19δ

−1− 27) and (Li; i ∈ |E|) are any uniform (over Θ̂0(δ)) upper-bounds for corresponding
diagonal entry of the empirical Hessian on E43. Clearly,

max
i

Li ≤ sup
θ̂∈Θ̂0(δ)

sup
v∈S|E|−1

⟨v, Ĥ(θ̂)v⟩ ≤ L.

Therefore, we may choose Lmax = L. This gives, for all k ≥ 0,

ρ

2
∥θ − θ̂

∗
∥2 ≤ ℓ(θ∗)− ℓ(θk) ≤

(
1− ρ

L

)k−1

(ℓ(θ̂
∗
)− ℓ(θ̂0)) ≤

L

2

(
1− ρ

L

)k−1

∥θ̂
∗
− θ∥2.

From this, we can deduce (41) immediately. Lastly, (42) follows by combining (41) and Theorem 3.3 with triangle
inequality.

D. Coordinate minimization for constrained strongly convex and smooth problems
It is a classcial result in optimization by Beck and Tehruashvili (Beck & Tetruashvili, 2013) that alternating minimization
(two-block unconstrained coordinate minimization) converges to the global minimizer at a linear rate 1− ρ

min{L1,L2} for
ρ-strongly convex and blockwise (L1, L2)-smooth objectives. It is straightforward to extend this result for multi-block
unconstrained coordinate minimization to obtain linear convergence with rate 1− ρ

min{L1,...,Lb} , where f is b-block smooth
with block-smoothness parameters L1, . . . , Lb. This result is stated and proved below.

Proof of Lemma 4.6. We follow the approach of (Beck & Tetruashvili, 2013) and write

θt = (θn;1, · · · , θn;i, θn−1,i+1, · · · , θn−1,b) for t = n+
i

b
for i ∈ {0, 1, , b− 1}.

We will always write t = n+ i/b for some n ≥ 0 and some i ∈ {0, 1, , b− 1} in the sequel.

It follows from Lemma 5.1 in (Beck & Tetruashvili, 2013) that

f(θt)− f(θt+1/b) ≥
1

2Li+1
∥∇f(θt)∥2 whenever t = n+

i

b
.

Hence, whenever t = n+ i/b for some i ∈ {0, 1, , b− 1}:

f(θt)− f(θt+1) ≥ f(θt)− f(θt+1/b) ≥
1

2Li+1
∥∇f(θt)∥2. (47)

Since f is convex, with unique minimum θ∗, we can apply the Cauchy-Schwarz inequality to get

f(θt)− f∗ ≤ ⟨∇f(θt),θt − θ∗⟩ ≤ ∥∇f(θt)∥∥θk − θ∗∥ for all t.

Moreover, since θt is attained by repeated minimization problems f(θt) ≤ f(θ0) and so

f(θk)− f∗ ≤ C∥∇f(θk)∥ where C = sup{∥θ − θ∗∥ : f(θ) ≤ f(θ0)} <∞.

Combining this with (47) we have

f(θt)− f(θt+1) ≥
(f(θt)− f∗)2

2Li+1C2
whenever t = n+

i

b
.

If we set an = an(i) = f(θn+i/b)− f∗ then

an − an+1 = f(θn+i/b)− f(θn+1+i/b) ≥
(f(θn+i/b)− f∗)2

2Li+1C
= γa2n where γ :=

1

2Li+1C2
.
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By Lemma 3.5 in (Beck & Tetruashvili, 2013), we conclude an ≤ 1
γn = 2Li+1C

2

n for all n ≥ 1. Next, by strong convexity,
and for t = n+ i/b

an(i) = f(θt)− f∗ ≤ 1

2ρ
∥∇f(θt)∥2 (strong convexity)

≤ Li+1

σ
(f(θt)− f(θt+1)) =

Li+1

σ
(an(i)− an+1(i)) (by (47)).

Upon rearranging,

an+1(i) = f(θn+1+i/b)− f∗ ≤
(
1− ρ

Li+1

)(
f(θn+i/b)− f∗) = (1− ρ

Li+1

)
an(i)

and so, by induction,

f(θn+i/b)− f∗ ≤
(
1− ρ

Li+1

)n

(f(θi/b)− f∗) ≤
(
1− ρ

Li+1

)n

(f(θ0)− f∗) .

Now just choose the index i∗ such that L∗ = Li∗ = minLi so that

f(θn+1)− f∗ ≤ f(θn+(i∗−1)/b)− f∗ ≤
(
1− ρ

L∗

)n
(f(θ0)− f∗).

This is simply re-indexing the desired statement.

E. Almost Sure Statements for the Hessian
In this section we prove Lemma 4.2, noting that the first two are contained in (Clancy, Jr. et al., 2025a) and so we just need
to show (15) holds. Maintaining the notation from the Hessian, we see that (Clancy, Jr. et al., 2025a) essentially computed

∂

∂θ̂f
Zy = Zv

N∏
j=1

θ̂{yj ,yj−1}

N∏
j=0

1− (θ̂{yj ,wj}Zwj
)2(

1 + θ̂{yj ,wj}θ̂{yj ,yj−1}ZwjZyj−1

)2
provided that the edge f is contained in the subtree Ty . In particular, since each of the denominators is at least (2c4δ)2, we
get the following claim:

Claim 1. Let Ty be a binary tree rooted at y and let d denote the maximum distance from y to a leaf in Ty . Then∣∣∣∣∣ ∂

∂θ̂f
Zy

∣∣∣∣∣ ≤ 1

(2c4δ)2d
.

Proof of Lemma 4.2. This bound trivially holds for all e1 = e2 = e3, and using Lemma 4.2(i,ii) it is also easily checked
(using the symmetry of mixed partial derivatives) if ei = ej = e and ek = f for distinct i, j, k since

∂3

∂θ̂f∂θ̂2e
ℓ(θ̂;σ) =

∂2

∂θ̂f∂θ̂e

ZxZy

(1 + θ̂eZxZy)2
=

∂

∂θ̂f

−2Z2
xZ

2
y

(1 + θ̂eZxZy)3

=
−2Z2

xZy(2− θ̂eZxZy)

(1 + θ̂eZxZy)4
∂

∂θ̂f
Zy.

So, using Claim 1 and d the maximum distance from y to a leaf in Ty ,∣∣∣∣∣ ∂3

∂θ̂f∂θ̂2e
ℓ(θ̂;σ)

∣∣∣∣∣ ≤ 6

(2c4δ)4
1

(2c4δ)2d
= 6(2c4δ)

−2 diam(T )−4.

Therefore, we just check when e1, e2, e3 are distinct. There are two cases to consider (again using symmetry of mixed
partials). Say e3 = {x, y}. Either e1 ∈ Tx and e2 ∈ Ty or both e1, e2 ∈ Ty .

20



Sample Complexity of Branch-length Estimation by Maximum Likelihood

In the case of the former, we see

∂3

∂θ̂e1∂θ̂e2∂θ̂e3
ℓ(θ̂;σ) =

∂2

∂θ̂e1∂θ̂e2

ZxZy

1 + θ̂e3ZxZy

=
1

(1 + θ̂e3ZxZy)2

(
Zx

∂

∂θ̂e1
Zx + Zy

∂

∂θ̂e2
Zy

)

and, since the sum of distance from x to any leaf in Tx and the distance from y to any leaf in Ty is at most the diameter,∣∣∣∣∣ ∂3

∂θ̂e1∂θ̂e2∂θ̂e3
ℓ(θ̂;σ)

∣∣∣∣∣ = 1

(2c4δ)2
2

(2c4δ)diam(T )
.

The latter case is a bit harder. In this case we will assume that e3 = e = {x, y} and e2 = f = {u, v} as in Lemma 4.2. Thus

∂3

∂θ̂e1∂θ̂e2∂θ̂e3
ℓ(θ̂;σ) =

∂

∂θ̂e1

ZxZv

(1 + θ̂eZxZy)2

N∏
j=1

θ̂{yj ,yj−1}

N∏
j=0

(
1− (θ̂{yj ,wj}Zwj )

2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2
Note, we can suppose that e1 ̸= {yj , yj−1} for any of the edges on the path from e to f as well as also that e1 /∈ Tv as
these are covered by the previous case. Therefore either e1 = {yk, wk} for some k or e1 ∈ Twk

for some k. If it is an edge
e1 = {yk, wk} then Zyj

depends on θ̂e1 for j ≥ k but none of the other magnetizations appearing in the right-hand side of
the above equation; while if e1 ∈ Twk

then there is the additional dependence on Zwk
. Note that for any N ≥ j > k and

e1 = {yk, wk} it holds that

∂

∂θ̂e1

1− (θ̂{yj ,wj}Zwj
)2

(1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj
Zyj−1

)2

=
2
(
1− (θ̂{yj ,wj}Zwj

)2
)
θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

(
1− (θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

)2
)

(1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj
Zyj−1

)3
∂

∂θ̂e1
Zyj

=
1− (θ̂{yj ,wj}Zwj

)2

(1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj
Zyj−1

)2
E1 (say)

as well as

∂

∂θ̂e1

1− (θ̂{yk,wk}Zwk
)2

(1 + θ̂{yk,wk}θ̂{yk,yk−1}Zwk
Zyk−1

)2
= −

2Zwk
(θ̂{yk,wk}Zwk

+ θ̂{yk,yk−1}Zyk−1
)

(1 + θ̂{yk,wk}θ̂{yk,yk−1}Zwk
Zyk−1

)3

=
1− (θ̂{yk,wk}Zwk

)2

(1 + θ̂{yk,wk}θ̂{yk,yk−1}Zwk
Zyk−1

)2
E2

∂

∂θ̂e1

ZxZv

(1 + θ̂eZxZy)2
=
−2Z2

xZvZy

(1 + θ̂eZxZy)3
∂

∂e1
Zy =

ZxZv

(1 + θ̂eZxZy)2
E3 (say).

Here E1, E2, E3 are (signed) errors satisfying

|E1| ≤
2

(2c4δ)
× 1

(2c4δ)2 diam(T )

|E2| ≤
4

(2c4δ)2

|E3| ≤
2

(2c4δ)
× 1

(2c4δ)2 diam(T )
.
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Therefore by the product rule when e1 = {yk, wk} then

∣∣∣∣∣ ∂3

∂θ̂e1∂θ̂e2∂θ̂e3
ℓ(θ̂;σ)

∣∣∣∣∣ =
∣∣∣∣∣∣∣

∂

∂θ̂e1

ZxZv

(1 + θ̂eZxZy)2

N∏
j=1

θ̂{yj ,yj−1}

N∏
j=0

(
1− (θ̂{yj ,wj}Zwj

)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
ZxZv

(1 + θ̂eZxZy)2

N∏
j=1

θ̂{yj ,yj−1}

N∏
j=0

(
1− (θ̂{yj ,wj}Zwj

)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2
∣∣∣∣∣∣∣ (diam(T )max(|E1|, |E2|, |E3|))

≤ 4 diam(T )

(2c4δ)4 diam(T )+1

where the exponent in the denominator is 2 diam(T ) + (2 diam(T ) + 1) which is the worst-case bound for each of the
denominators in the Hessian and maximum bound from E3, respectively.

The bound for whenever e1 ∈ Twk
is similar, except the error for the corresponding “E2 term” is the same as the bound for

E3 above. We omit the details.

We finally prove Lemma 4.3.

Proof of Lemma 4.3. We start with the simple observations that from (14) and the fact that θ̂ ∈ [0, 1]E , and 1 + θ̂ZxZy ≥
2c4δ that ∣∣∣∣∣ ∂2

∂θ̂e∂θ̂f
ℓ(θ̂;σ)

∣∣∣∣∣ ≤
 θ̂eZxZv

(1 + θ̂eZxZy)2

N∏
j=1

θ̂{yj ,yj−1}

 N∏
j=0

(
1− (θ̂{yj ,wj}Zwj

)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2
≤ 1

(2c4δ)2

N∏
j=0

(
1− (θ̂{yj ,wj}Zwj

)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2 .
By Proposition 6.8 in (Clancy, Jr. et al., 2025a), there is some constant C > 0 (depending only the constants in A1) such that(

1− (θ̂{yj ,wj}Zwj
)2
)

(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)2
(
1− (θ̂{yj+1,wj+1}Zwj+1)

2
)

(
1 + θ̂{yj+1,wj+1}θ̂{yj+1,yj}Zwj+1

Zyj

)2 ≤ C

δ
for all j = 0, 1, 2, · · · , N − 1.

Note that for each j we have
(
1 + θ̂{yj ,wj}θ̂{yj ,yj−1}Zwj

Zyj−1

)
≥ 2c4δ since θ̂e ≤ 1− 2c4δ and Zv ∈ [−1, 1] for all v. It

follows that
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