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Abstract

We introduce a novel framework for analyzing reinforcement learning (RL) in
continuous state-action spaces, and use it to prove fast rates of convergence in both
off-line and on-line settings. Our analysis highlights two key stability properties,
relating to how changes in value functions and/or policies affect the Bellman
operator and occupation measures. We argue that these properties are satisfied
in many continuous state-action Markov decision processes. Our analysis also
offers fresh perspectives on the roles of pessimism and optimism in off-line and
on-line RL.

1 Introduction

Many domains of science and engineering involve making a sequence of decisions over time, with
previous decisions influencing the future in uncertain ways [1, 13, 22, 31, 32]. For instance, clinicians
managing diabetes [36] or engineers optimizing plasma control in tokamak systems [5] must develop
policies that adapt based on evolving conditions and lead to desirable outcomes over a longer
period. Markov decision processes (MDPs) and reinforcement learning (RL) provide frameworks and
methods for estimating effective policies for such sequential problems. While RL excels in data-rich
scenarios such as competitive gaming (e.g., AlphaGo and its extensions [30]), its application in
data-scarce areas like healthcare [36] and finance [27] remains challenging due to lack of history, or
underlying non-stationarity. With limited data, characterizing and improving the sample complexity
of RL methods becomes critical.

Considerable research effort has been devoted to studying RL sample complexity in many settings.
Existing studies for either the generative or the off-line settings (e.g., [21, 37, 35]) give procedures
that, when applied to a dataset of size n, yield a value gap that decays at the rate 1/

√
n. In the

on-line setting, there are various procedures that yield cumulative regret that grows at the rate
√
T

(e.g., [18, 20, 19, 6]). In contrast, the main result of this paper is to formalize conditions, suitable for
RL in continuous domains, under which much faster rates can be obtained using the same dataset,
achieving a value gap decay of 1/n and reducing regret growth to log T .

As revealed by our analysis, these accelerated rates depend on certain stability properties, ones
that—as we argue—are naturally satisfied in many control problems with continuous state-action
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spaces. Roughly speaking, these conditions ensure that the evolution of the dynamic system depends
in a “smooth” way on the influence of decision policy. Such notions of stability should be expected
in various controlled systems with continuous state-action spaces. In robotics, for example, a minor
torque or motion perturbation that occurs during a single step should not cause a notable deviation
from the intended trajectory. Similarly, in clinical treatment, slight deviations in medication dosage
should not significantly compromise effectiveness or safety.

1.1 A simple illustrative example: Mountain Car

The “Mountain Car” problem, a benchmark continuous control task, illustrates the acceleration
phenomenon and underlying stability. In this task, as shown in Figure 1(a), a car must reach the top
of a hill by adjusting its acceleration within the interval [−1, 1]. We employed fitted Q-iteration (FQI)
with carefully selected linear basis functions to derive near-optimal policies with off-line data. This
learning procedure exhibits a value sub-optimality decay at a rate of 1/n, a significant improvement
over the classical rate of 1/

√
n, as detailed in Figure 1(b). (See Appendix D for further explanation.

The experiment ran for 3 days on two laptops, each equipped with an Apple M2 Pro CPU and 16
GB RAM.) In this example, slight perturbations in the driving policy lead to only modest changes
in future trajectories, which shows the stability. Our theoretical analysis confirms that fast rates are
achievable in this and similar continuous control tasks when such stability properties are present.
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Figure 1: Illustration of the “fast rate” phenomenon using FQI on the Mountain Car problem. Each
red point in the plot represents the average value sub-optimality J(π⋆)−J(π̂n) from T = 80 Monte
Carlo trials, with the shaded area showing twice the standard errors. The blue dashed line is a
least-squares fit to the last 6 data points, yielding a 95% confidence interval of (−1.084,−0.905) for
the slope, significantly faster than the typical −0.5 “slow rate”.

1.2 Contributions of this paper

With this high-level perspective in mind, let us summarize the key contributions of this paper.

Fast rate of convergence: We develop a framework for analyzing RL in continuous state-action
spaces, and use it to prove a general result (Theorem 1) under which fast rates can be obtained. The
key insight is that stability conditions lead to upper bounds on the value sub-optimality that are
proportional to the squared norm of Bellman residuals. In the off-line setting, this quadratic scaling
improves convergence from a rate of n− 1

2 to n−1, while in on-line learning, it enhances the regret
bound from

√
T to log T .

Reconsidering pessimism and optimism principles: Our framework provides a novel perspective
on the roles of pessimism [21, 4] and optimism [18, 20, 19, 6, 12] in off-line and on-line RL. Our
theory reveals that there are settings in which neither pessimism nor optimism are required for
effective policy optimization—in particular, they are not required as long as one has a sufficiently
accurate pilot estimate policy. Moreover, our analysis shows that some procedures based on certainty
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equivalence can achieve fast-rate convergence, showing that the benefits gained from incorporating
additional pessimism or optimism measures may be limited in this context.

1.3 Related work

In this section, we discuss related work having to do with fast rates in optimization and statistics.

Fast rates in stochastic optimization and risk minimization: For many statistical estimators (e.g.,
likelihood methods, empirical risk minimization), it is well-understood that the local geometry around
the optimum determines whether fast rates can be obtained. For instance, when the loss function ex-
hibits some form of strong convexity (such as exp-concave loss) or strict saddle properties, it can lead
to significant reductions in additive regret from O(

√
T ) to just O(log T ) in stochastic approximation

(e.g., [15]), or a decrease in the error rate from n− 1
2 to n−1 in empirical risk minimization [23, 14].

These fast rate phenomena rely on a form of stability, one which relates the similarity of functions to
the closeness of their optima. Our work develops a new framework for analyzing value-based RL
methods, focusing on identifying specific stability conditions and inherent curvature properties that
promote fast rate convergence in RL, similar to the role of stability analysis in statistical learning.

Fast rates in reinforcement learning: In the RL literature, there are various lines of work related
to fast rates, but the underlying mechanisms are typically different from those considered here.
For problems with discrete state-action spaces, there is a line of recent work [17, 16, 33, 25] that
performs gap/marginal-dependent analyses of RL algorithms. However, such separation assumptions
are not helpful for continuous action spaces. Other work for discrete state-action spaces [28] has
shown convergence rates in off-line RL are influenced by data quality, with a nearly-expert dataset
enabling faster rate. In contrast, our analysis reveals that for off-line RL in continuous domains, fast
convergence can occur whether or not the dataset has good coverage properties.

An important sub-class of continuous state-action problems are those with linear dynamics and
quadratic reward functions (LQR for short). For such problems, it has been shown [24, 29] that value
sub-optimality can be connected with the squared error in system identification. Our general theory
can also be used to derive guarantees for LQR problems, as we explore in more detail in a follow-up
paper [8]. Stability also arises in the analysis of (deterministic) policy optimization and Newton-type
algorithms [26, 3], where it is possible to show superlinear convergence in a local neighborhood.
This accelerated rate stems from the smoothness of the on-policy transition operator Pπf with respect
to changes in the value function f; for instance, see condition (10) in Puterman and Brumelle [26].
Our framework exploits related notions of smoothness, but is tailored to the stochastic setting of
reinforcement learning, in which understanding the effect of function approximation and finite sample
sizes is essential.

2 Fast rates for value-based reinforcement learning

Let us now set up and state the main result of this paper. We begin in Section 2.1 with background on
Markov decision processes (MDPs) and value-based methods, before turning to the statement of our
main result in Section 2.2. In Section 2.3, we provide intuition for why stability leads to faster rates,
and discuss consequences for both the off-line and on-line settings of RL.

2.1 Markov decision processes and value-based methods

Basic set-up: We consider an episodic Markov decision process (MDP) defined by a quadru-
ple

(
S,A,P = {Ph}H−1

h=1 , {rh}Hh=1

)
. We assume that the rewards rh : S ×A → R are known;

however, this condition can be relaxed. A policy πh at time h is a mapping from any state s to
a distribution πh(· | s) over the action space A. If the support of πh(· | s) is a singleton, we
also let πh(s) ∈ A denote the single action to be chosen at state s. Given an initial distribution
ξ1 over the states at time h = 1, the expected reward obtained by choosing actions according to
a policy sequence π = (π1, . . . , πH) is given by J(π) ≡ J(π; ξ1): =Eξ1,π

[∑H
h=1 rh(Sh, Ah)

]
,

where S1 ∼ ξ1, Sh+1 ∼ Ph(· | Sh, Ah) and Ah ∼ πh(· | Sh) for h = 1, 2, . . . ,H . Our goal is to
estimate an optimal policy π⋆ ∈ argmaxπ J(π).
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Value functions and Bellman operators: Starting from a given state-action pair (s, a)
at stage h, the expected return over subsequent stages defines the state-action value
function Qπ

h (s, a) := Eπ

[∑H
h′=h r(Sh′ , Ah′)

∣∣ Sh = s,Ah = a
]
. The sequence of functions

Qπ = (Qπ
1 , . . . , Q

π
H) known as the Q-functions associated with π.

The Q-functions Qπ have an important connection with the Bellman evaluation operator for π.
For any policy π and stage h, we introduce a linear transition operator (Pπ

h f)(s, a) : =∫
S×A f(s′, a′) Ph(ds

′ | s, a)πh+1(da
′ | s′) for any function f ∈ RS×A. With this notation,

the Bellman evaluation operator at stage h takes the form

(T π
h f)(s, a) := rh(s, a) + (Pπ

h f)(s, a). (1)

From classical dynamic programming, the Q-functions Qπ must satisfy the Bellman relations
Qπ

h (s, a) = (T π
h Qπ

h+1)(s, a) for h = 1, . . . ,H − 1.

Bellman principle for optimal policies: Under mild regularity conditions, there is at least one
policy π⋆ such that, for any other policy π, we have Qπ⋆

h (s, a) ≥ Qπ
h (s, a), for any h ∈ [H], and

uniformly over all state-action pairs (s, a). Any optimal policy π⋆ must be greedy with respect to the
optimal Q-function Q⋆. By classical dynamic programming, the optimal Q-function Q⋆ is obtained
by setting Q⋆

H = rH , and then recursively computing Q⋆
h = T ⋆

h Q⋆
h+1 for h = H − 1, . . . , 2, 1, with

the Bellman optimality operator defined as

(T ⋆
h f)(s, a) := rh(s, a) + Eh

[
max
a′∈A

f(S′, a′)
∣∣ s, a

]
for S′ ∼ Ph(· | s, a). (2)

Value-based RL methods The main result of this paper applies to a broad class of methods for
reinforcement learning. They are known as value-based, due to their reliance on the following two
step approach for approximating an optimal policy π⋆: (1) Construct an estimate Q̂ = (f̂1, . . . , f̂H)

of the optimal value function Q⋆ = (Q⋆
1, . . . , Q

⋆
H). (2) Use Q̂ to compute the greedy-optimal policy

π̂h(s) ∈ argmaxa f̂h(s, a) for h = 1, 2, . . . ,H . It should be noted that there is considerable freedom
in the design of a value-based method, since different methods can be used to approximate value
functions in Step 1. Rather than applying to a single method, our main result applies to a very broad
class of these methods.

Underlying any value-based method is a class F of functions (s, a) 7→ f(s, a) used to approximate
the state-action value functions.1 We assume that the function class F is rich enough—relative
to the Bellman evaluation operators—to ensure that for any greedy policy π induced by some
f = (f1, . . . , fH) ∈ FH , we have the inclusion T π

h F ⊆ F for h = 1, . . . ,H−1. We see that
this condition depends on the structure of the transition distributions Ph(· | s, a). In many practical
examples, the reward function itself has some number of derivatives, and these transition distributions
perform some type of smoothing, so that we expect that the output of the Bellman update, given a
suitably differentiable function, will remain suitably differentiable.

2.2 Stable problems have fast rates

We now turn the central question in understanding the behavior of any value-based method:

How to translate “closeness” of the Q-function estimate Q̂
to a bound on the value gap J(π⋆)− J(π̂)?

At a high level, existing theory provides guarantees of the following type: if the Q-function estimates
are ε-accurate for some ε ∈ (0, 1), then the value gap is bounded by a quantity proportional to ε.
In contrast, our main result shows that when the MDP is stable in a suitable sense, the value gap
can be upper bounded by a quantity proportional to ε2. This quadratic as opposed to linear scaling
encapsulates the “fast rate” phenomenon of this paper.

Our analysis isolates two key stability properties required for faster rates; both are Lipschitz conditions
with respect to a certain norm. Here we define them with respect to the L2-norm induced by the

1In general, different function classes may be selected at each stage h = 1, 2, . . . , H; here, so as to reduce
notational clutter, we assume that the same function class F is used for each stage.
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state-action occupation measure induced by the optimal policy—namely

∥f ∥h : =
√
Eπ⋆

[
f2(Sh, Ah)

]
for any f ∈ ∂F 2, (3)

and over a neighborhood N of the optimal Q-value function Q⋆.

Bellman stability: The first condition measures the stability of the Bellman optimality operator (2):
in particular, we require that there is a scalar κ⋆

h such that
∥∥T ⋆

h fh+1 − T ⋆
h Q⋆

h+1

∥∥
h

≤ κ⋆
h

∥∥fh+1 −Q⋆
h+1

∥∥
h+1

(Stb(T ))

for any f ∈ N . Moreover, for any pair (h, h′) of indices such that 1 ≤ h < h′ ≤ H − 1, we define

κh,h′(T ⋆) := κ⋆
h κ

⋆
h+1 . . . κ

⋆
h′−1 .

Condition (Stb(T )) is directly linked to the stability of estimating the Q-function Q⋆. In typical
estimation procedures, such as approximate dynamic programming, the estimation is carried out
iteratively in a backward manner, so that it is important to control the propagation of estimation errors
across the iterations. Condition (Stb(T )) captures this property, since it implies that∥∥T ⋆

h T ⋆
h+1 . . . T ⋆

h′−1 fh′ − T ⋆
h T ⋆

h+1 . . . T ⋆
h′−1 Q

⋆
h′

∥∥
h

≤ κh,h′(T ⋆) ·
∥∥fh′ −Q⋆

h′

∥∥
h′ ,

which shows how the estimation error
(
fh′ −Q⋆

h′

)
at step h′ can be controlled in terms of estimation

error at an earlier time step h ≤ h′.

Occupation measure stability: Our second condition is more subtle, and is key in our argument.
Let us begin with some intuition. Consider two sequences of policies(

π⋆
1 , . . . , π

⋆
h−1, π

⋆
h, π

⋆
h+1, . . . , π

⋆
h′

)
and

(
π⋆
1 , . . . , π

⋆
h−1, πh, π

⋆
h+1, . . . , π

⋆
h′

)

that only differ at the h-th step, where π⋆
h has been replaced by πh. These two policy sequences induce

Markov chains whose distributions differ from stage h onwards, and our second condition controls
this difference in terms of the difference ∥fh −Q⋆

h∥h between the two Q-functions fh and Q⋆
h that

induce πh and π⋆
h, respectively.

We adopt P⋆
h as a convenient shorthand for the transition operator Pπ⋆

h , and define the multi-step
transition operator P⋆

h,h′ : = P⋆
h P⋆

h+1 · · · P⋆
h′−1. Using this notation, for any h′ ≥ h+ 1, we require

that there is a scalar κh,h′(π⋆) such that

sup
g∈∂F

∥g∥h′>0

∣∣Eπ⋆

[(
P⋆
h,h′g

)
(Sh, π

⋆
h(Sh))−

(
P⋆
h,h′g

)
(Sh, πh(Sh))

]∣∣
∥g∥h′

≤ κh,h′(π⋆)

∥∥fh −Q⋆
h

∥∥
h∥∥Q⋆

h

∥∥
h

(Stb(ξ))

for any f ∈ N . The renormalization in this definition serves to enforce a natural scale invariance.

With these notions of stability in hand, we are now equipped to state our main result. Taking as input
a value function estimate Q̂, it relates the induced value gap to the Bellman residuals T ⋆

h f̂h+1 − f̂h.
Note that these residuals are a way of quantifying proximity to the optimal value function Q⋆, which
has Bellman residual zero by definition. We assume that Q̂ has Bellman residuals bounded as

∥∥ T ⋆
h f̂h+1 − f̂h

∥∥
h

≤ εh for h = 1, 2, . . . ,H − 1 (4a)

for some sequence ε = (ε1, . . . , εH−1, εH = 0) that satisfies the constraint

εh ≥ 1

H − h

H∑

h′=h+1

εh′ for h = 1, 2, . . . ,H − 1. (4b)

This last condition means that the Bellman residual εh is larger than or equal to the average of the
bounds established after step h+1. It is natural because estimating at step h is at least as challenging
as a stage h′ > h; indeed, any such state h′ occurs earlier in the dynamic programming backward
iteration process. As a special case, the bound (4b) holds when εh = ε for all stages.

With this set-up, we have the following guarantee in terms of the stability coefficients κh,h′(π⋆) and
κh,h′(T ⋆) from conditions (Stb(ξ)) and (Stb(T )).

2We let ∂F be the set of all difference functions of the form g = f − f̃ for some f, f̃ ∈ F .
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Theorem 1. There is a neighborhood of Q⋆ such that for any value function estimate f̂ with
ε-bounded Bellman residuals (4a), the induced greedy policy π̂ has value gap bounded as

J(π⋆)− J(π̂) ≤ 2

H−1∑

h=1

1

∥Q⋆
h∥h

{ H−1∑

h′=h

κh,h′(π⋆) εh′

}{ H−1∑

h′=h

κh,h′(T ⋆) εh′

}
. (5)

See Appendix A for the proof.

Treating dependence on the stability coefficients as constant, the main take-away is that value sub-
optimality is bounded above by a quantity proportional to the squared norm of the Bellman residuals.
Concretely, if the Bellman residuals are uniformly upper bounded by some ε, then equation (5) leads
to an upper bound of the form

J(π⋆)− J(π̂) ≤ c H3 ε2,

where c is a universal constant. Due to the quadratic scaling in the Bellman residual error ε, this
bound is substantially tighter than the linear in ε rates afforded by a conventional analysis.

2.3 Intuition for fast rates: Smoothness and cancelling terms in the telescope bound

Why does “fast rate” phenomenon formalized in Theorem 1 arise? The fast rates proved in this paper
are established by a novel argument, starting from a known telescope bound, which we begin by
stating. Given a Q-function estimate f̂ =

(
f̂1, . . . , f̂H

)
, let π̂ denote the induced greedy policy.

Then the value gap of π̂ with respect to an arbitrary comparator policy π is bounded as

J(π)− J(π̂) ≤
H−1∑

h=1

(
Eπ − Eπ̂

)[(
T ⋆
h f̂h+1 − f̂h

)
(Sh, Ah)

]
. (6)

This result follows by a “telescope” relation induced by the structure of the Bellman updates.3 For
completeness, we provide a proof of the telescope bound in Appendix E.2.

A key feature of inequality (6) is the difference of two expectations Eπ −Eπ̂ , corresponding to the
occupation measures under π versus π̂. In standard uses of this inequality, an initial argument is used
to guarantee that one of these expectations is negative, and so can be dropped [20, 21].

In contrast, the proof of our Theorem 1 exploits a more refined approach, one that handles the differ-
ence of expectations directly. Doing so can be beneficial—and lead to “fast rates”— because various
terms in this difference can cancel each other out. Specifically, under the smoothness conditions that
underlie Theorem 1, when applying the telescope inequality (6) with comparator π = π⋆, we show
that the discrepancy between the occupation measures associated with π⋆ and π̂ is of the same order
as the Bellman residual associated with f̂ . Note that the Bellman residuals of f̂ already appear on
the right-hand side of inequality (6), so that this fortuitous cancellation can be exploited—along with
a number of auxiliary results laid out in the proof—so as to upper bound the value gap by a quantity
proportional to the squared Bellman residual ε2.

It is worthwhile making an explicit comparison of our cancellation approach with the more standard
uses of the telescope relation, which typically consider only one portion of the Bellman residuals
(e.g., [18, 20, 21, 19, 6, 12, 35]). We do so in the following two subsections.

2.3.1 Pessimism for off-line RL

In the off-line instantiation of RL, the goal is to learn a “good” policy based on a pre-collected
dataset D. Note that no further interaction with the environment is permitted, hence the notion of the
learning being off-line. More precisely, an off-line dataset D of size n consists of quadruples

D =
{(

sh, i, ah, i, s
′
h, i, rh, i

)}n

i=1
,

where sh, i and ah, i represent the i-th state and action at the h-th step in the MDP; s′h, i is the
successive state; and rh, i = rh(sh, i, ah, i) denotes the scalar reward. Note that while the successive

3Results of this type are known; for example, analogous results can be found in past work (e.g., Theorem 2
of the paper [34]; or Lemma 3.2 in the paper [7]).
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states are defined by transition dynamics, and the rewards by the reward function, there are no
restrictions on how the state-action pairs (sh, i, ah, i) are collected. That is, they need not have
been generated by any fixed policy, but may have collected from some ensemble of behavioral
policies, or even adaptively by human experts. The goal of off-line reinforcement learning is to
use the n-sample dataset D so as to estimate a policy π̂ ≡ π̂n that (approximately) maximizes
the expected return J(π̂n). We expect that—at least for a sensible method for estimating π̂n—the
value gap J(π⋆) − J(π̂n) should decay to zero as n increases to infinity, and we are interested in
understanding this rate of decay.

The use of pessimism is standard in off-line RL algorithms. Its purpose is to mitigate risks associated
with “poor coverage” of the off-line dataset. For instance, the naive approach of simply maximizing
Q-function estimates based on an off-line dataset can behave poorly when certain portions of the
state-action space are not well covered by the given dataset. The pessimism principle suggests to
form a conservative estimate of the value function—say with

f̂h(s, a) ≤ T ⋆
h f̂h+1(s, a) (7a)

with high probability over state-action pairs (s, a). Thus, the estimated value f̂h(s, a) is an under-
estimate of the Bellman update, a form of conservatism that protects against unrealistically high
estimates due to poor coverage. Doing so in the appropriate way ensures that

−Eπ̂

[(
T ⋆
h f̂h+1 − f̂h

)
(Sh, Ah)

]
≤ 0. (7b)

Applying this upper bound to the inequality (6) yields the sub-optimality bound

J(π)− J(π̂) ≤
H−1∑

h=1

Eπ

[(
T ⋆
h f̂h+1 − f̂h

)
(Sh, Ah)

]
.

Upper bounds derived in this manner only contain one portion of the Bellman residual. When
the value functions are approximated in a parametric way (e.g., tabular problems, linear function
approximation), this line of analysis leads to value sub-optimality decaying at a “slow” 1/

√
n rate in

terms of the sample size n (e.g., [21]). In contrast, an application of Theorem 1 can lead to value
gaps bounded by 1/n.

2.3.2 Optimism in on-line RL

In the setting of on-line RL, a learning agent interacts with the environment in a sequential manner,
receiving feedback in the form of rewards based on its actions. At the beginning, the learner possesses
no prior knowledge of the system’s dynamics. In the t-th episode, the agent learns an optimal pol-
icy π̂(t) using existing observations, implements the policy and collects data

{(
s
(t)
h , a

(t)
h , r

(t)
h

)}H

h=1

from the new episode. In each round, the system starts at an initial state s
(t)
1 independently drawn

from a fixed distribution ξ1.

In this on-line setting, it is common to measure the performance of an algorithm by comparing it,
over the T rounds of learning, with an oracle that knows and implements an optimal policy. At each
round t, we incur the instantaneous regret J(π⋆)− J(π̂(t)), where π⋆ is any optimal policy. Over T
rounds, we measure performance in terms of the cumulative regret

Regret
(
{π̂(t)}Tt=1

)
: = max

policy π

T∑

t=1

{
J(π)− J(π̂(t))

}
=

T∑

t=1

{
J(π⋆)− J(π̂(t))

}

︸ ︷︷ ︸
Regret at round t

. (8)

In a realistic problem, the cumulative regret of any procedure grows with T , and our goal is to obtain
algorithms whose regret grows as slowly as possible.

In contrast to off-line RL, the on-line setting allows for exploring state-action pairs that have been
rarely encountered; doing so makes sense since they might be associated with high rewards. Principled
exploration of this type can be effected via the optimism principle: one constructs function estimates
such that

f̂h(s, a) ≥ T ⋆
h f̂h+1(s, a) (9a)
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with high probability over state-action pairs.4 Note that f̂h(s, a) is optimistic in the sense that it is an
over-estimate of the Bellman update T ⋆

h f̂h+1(s, a). In this way, we can ensure that

Eπ

[(
T ⋆
h f̂h+1 − f̂h

)
(Sh, Ah)

]
≤ 0. (9b)

Combining this inequality with the telescope bound (6) allows one to upper bound the regret as

Regret
(
{π̂(t)}Tt=1

)
=

T∑

t=1

{
J(π⋆)− J(π̂(t))

}
≤

T∑

t=1

H−1∑

h=1

Eπ̂(t)

[(
f̂h − T ⋆

h f̂h+1

)
(Sh, Ah)

]
.

which only includes a single portion of the Bellman residual. In the case of tabular or linear
representations of the Q-functions, it results in a regret rate of

√
T (e.g., see the papers [18, 20]). In

contrast, an appropriate use of Theorem 1 leads to regret growing only as log(T ), which corresponds
to a much better guarantee.

In summary, then, the fast rates obtained in this paper are based on a different approach than the
standard pessimism or optimism principles. Since we deal directly with the difference of expectations
in the bound (6), there is no need to nullify either of them through the use of these principles.
However, it should be noted that we are assuming smoothness conditions that allow us to control this
difference. As we discuss in the sequel, such smoothness conditions rule out certain “hard instances”
used in past work on lower bounds (e.g. [18, 20, 21, 37]).

3 Consequences for linear function approximation

In this section, we explore some consequences of our general theory when applied to value-based
methods using (finite-dimensional) linear function approximation.

Let ϕ : S ×A → Rd be a given feature map on the state-action space, and consider linear expansions
of the form fw(s, a) = ⟨ϕ(s, a), w⟩ ≡

∑d
j=1 wjϕj(s, a) where w ∈ Rd is a weight vector. We

adopt the conventional assumption that ∥ϕ(s, a)∥2 ≤ 1 and rh(s, a) ∈ [0, 1] for all state-action pairs.
Defining the linear function class F : =

{
fw | w ∈ Rd

}
, we note that the Minkowski difference

class ∂F is equal to F .

In our analysis of linear approximation, we make use of the norm ∥f ∥h : =
√
Eπ⋆ [f2(Sh, Ah)],

corresponding to L2-norm under the occupation measure induced by the optimal policy π⋆.

3.1 Consequences for off-line RL

We now turn to some implications of Theorem 1 for off-line reinforcement learning. Let us recall the
off-line setting: for each h = 1, . . . ,H − 1, we are given a dataset Dh = {(sh,i, ah,i, s′h,i, rh,i)}ni=1

of quadruples, from which we can compute estimates f̂ = (f̂h)
H
h=1 with certain Bellman residu-

als {εh}H−1
h=1 , which then appear in the bound (5). The remaining factors on the right-hand side of

inequality (5) do not depend on the dataset itself (but rather on structural properties of the MDP).
Consequently, in terms of statistical understanding, the main challenge is to establish high-probability
bounds on the Bellman residuals {εh}H−1

h=1 for a particular estimator.

3.1.1 Fitted Q-iteration (FQI)

As an illustration, let us analyze the use of fitted Q-iteration (FQI) for computing estimates of the
Q-function. At a given stage h = 1, . . . ,H − 1, we can use the associated data Dh to define a
regularized objective function

Lh

(
f, g

)
: =

1

|Dh|

[ ∑

(sh,i,ah,i,s′h,i,rh,i)∈Dh

{
f(sh, i, ah, i)−

(
rh, i +max

a∈A
g(s′h, i, a)

)}2
]
+ Λ2

h(f) .

Here g represents the target function from stage h + 1, and it defines the targeted responses
yh,i(g) := rh,i +maxa∈A g(s′h,i, a). For a given target g, we obtain a Q-function estimate for

4Please refer to, for example, Lemma B.3 in the paper [20] for further details.
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stage h by minimizing the functional f 7→ Lh(f, g). Given that our objective is defined with a
quadratic cost, doing so can be understood as a regression method for estimating the conditional ex-
pectation that underlies the Bellman update—viz. T ⋆

h g(s, a) = E[ yh, i(g) | (sh, i, ah, i) = (s, a) ].
Here Λ2

h(f) = λh ∥w∥22 for f = ⟨ϕ(·), w⟩ is a regularizer, with λh ≥ 0 being the regulariza-
tion weight. Given this set-up, we can generate a Q-function estimate f̂ = (f̂1, . . . , f̂H) by
first initializing f̂H = rH , and then recursively computing f̂h = argminf∈F Lh

(
f, f̂h+1

)
, for

h = H − 1, H − 2, . . . , 2, 1.

3.1.2 Fast rates for FQI-based estimates

In the analysis here, we assume that the dataset consists of i.i.d. tuples (but this can be relaxed as
needed). We now state a corollary of Theorem 1, applicable to value function estimates based on FQI
with ridge regression.

Corollary 1 (Fast rates for ridge-based FQI). For FQI based on ridge regression, with a suffi-
ciently large sample size n and with suitable choices of the regularization parameters {λh}H−1

h=1 , the
bound (5) from Theorem 1 holds with

εh = c
√

{d(H − h)/n} log(dH/δ) (10)

with probability at least 1− δ.

We omit the proof of Corollary 1, as it follows from standard ridge regression analysis.

Fast rates and comparisons to past work: So as to be able to compare with results from past
work, let us consider some consequences of the bound (10) under the following assumptions:
(i) κh,h′(T ⋆) = O(1); (ii) κh,h′(π⋆) = O(

√
d); (iii) ∥Q⋆

h∥h ≍ H − h + 1. Then it can be shown
that the bound from Corollary 1 takes the form

J(π⋆)− J(π̂) ≤ c d3/2 H3 n−1 log(dH/δ), (11a)

and is valid for a sample size n ≥ cd2H3. Alternatively stated, Corollary 1 guarantees that for
FQI using ridge regression with d-dimensional function approximation, the number of samples n(ϵ)
required to obtain ϵ-optimal policy is at most

nfast(ϵ) ≍ d
3
2H3/ϵ+ d2H3, (11b)

where we use ≍ to denote a scaling that ignores constants and logarithmic factors.
Let us compare this guarantee to related work by Zanette et al. [37], who analyzed the use of
pessimistic actor-critic methods for linear function classes. When translated into the notation of our
paper, their analysis established5 a sample complexity of the order nZan(ϵ) ≍ d2H3/ϵ2. Consequently,
we see that once the target error ϵ is relatively small—ϵ ∈ (0, 1)—then stable MDPs can exhibit a
much smaller (1/ϵ) sample complexity.
It should be noted that past work (e.g., [21, 37]) has established (1/ϵ2)-lower bounds on the sample
complexity of estimating ϵ policies in the off-line setting. However, these lower bounds do not
contradict our fast rate guarantee (11b), because the “hard instances” used in these lower bound
proofs violate the stability condition (Stb(ξ)). In particular, even infinitessimally small perturbations
in policy lead to occupation measures that are significantly different.

When is pessimism necessary? An interesting aspect of the guarantee from Corollary 1 is that it
provides guarantees for off-policy RL (and with fast rates) using a method that does not incorporate
any form of pessimism. This is a sharp contrast with many other methods for off-policy RL, such as
pessimistic forms of Q-learning and actor-critic methods (e.g., [21, 37]).
To be clear, as noted following the bound (11a), the guarantee from Corollary 1 requires the sample
size to be lower bounded as n ≥ cd2H3. In contrast, pessimistic schemes only require a sample size
sufficiently large to ensure validity of the Bellman residual upper bounds that underlie Corollary 1—
meaning that n ≳ d up to logarithmic factors. Thus, the pessimism principle can be useful for
problems with smaller sample sizes.

5See Appendix C.2 for the details of this calculation.
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3.2 Consequences for on-line RL
In this section, we explore some consequences of Theorem 1 for on-line reinforcement learning. We
begin by describing a two-stage procedure6 that allows us to convert the risk bounds for FQI from
off-line RL into regret in on-line RL:

Phase 1 (Exploration) In the initial T0f episodes, the focus is purely on exploration, resulting in an
estimate of Q-function denoted as f̂ (T0).

Phase 2 (Fine-tuning) For k = 0, 1, . . . ,K−1 with K : =⌈log2(T/T0)⌉, repeat:

• In the t-th episode, for each t = T0 2
k + 1, . . . , T0 2

k+1, execute the greedy policy
induced by function f̂ (T0 2k).

• Update the Q-function estimate f̂ (T0 2k+1) using FQI based on observations collected
from episodes T0 2

k + 1, T0 2
k + 2, . . . , T0 2

k+1.

We assume the burn-in time T0 is large enough so as to ensure the pilot Q-function estimate f̂ (T0)

obtained in Phase 1 falls within a certain “absorbing” region N (ρ) around Q⋆. Under these conditions,
we have the following bound on the regret.
Corollary 2. For FQI based on ridge regression with rewards in [0, 1], with a sufficiently large
burn-in time T0 and with suitable choices of the regularization parameters {λh}H−1

h=1 , the two-phase
scheme achieves regret bounded as

Regret(T ) ≤ c
{
T0 ·H + d

√
d H4 log T · log(dHK/δ)

}

with probability at least 1− δ.

See Appendix C.1 for the proof.

Sharper bound on regret: The leading term (as T grows) in the regret bound grows as log T ,
which is much smaller than the typical

√
T -rate found in past work [18, 20]. The

√
T rate has been

shown to be unimprovable in general, but the worst-case instances[18, 20] that lead to
√
T -regret

violate the stability conditions used in our analysis.

When is optimism needed? The use of optimism—by adding bonuses to the current value function
estimates so as to encourage exploration—underlies many schemes in on-line RL. An interesting
take-away from Corollary 2 is that under the stability conditions highlighted by our theory, it is
possible to achieve excellent regret bounds without the use of optimism. In our two-phase scheme,
the only exploration occurs in Phase 1. All other data is simply collected using the greedy policy
induced by the current Q-function estimate. A well-designed exploration scheme—one that might
incorporate the optimism principle—is necessary only during the burn-in Phase 1.

4 Discussion
This paper introduces a novel approach for the analysis of value-based RL methods for continuous
state-action spaces. Our analysis highlights two key stability properties of MDPs under which much
sharper bounds on value sub-optimality can be guaranteed. Our analysis offers fresh perspectives on
the commonly used pessimism and optimism principles, in off-line and on-line settings respectively.

Our study leaves open various questions for future work. First, our main result (Theorem 1) has
consequences for linear quadratic control, to be described in an upcoming paper [8]. It provides
insight into the role of covariate shift in linear quadratic control, as well as efficient exploration in
the on-line setting. Second, our current statistical analysis focused on i.i.d. data with linear function
approximation. It is interesting to consider the extensions to dependent data and non-parametric
function approximation (e.g. kernels, boosting, and neural networks). Third, while this paper has
provided upper bounds, it remains to address the complementary question of lower bounds for policy
optimization over the classes of stable MDPs isolated here. Last, to better align our framework with
real-world scenarios, we intend to go beyond the idealized completeness condition used in this paper,
and treat the role of model mis-specification.

6To be clear, the purpose of this scheme is primarily conceptual, rather than practical in nature.
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A Proofs of Theorem 1

This section is devoted to the proof of Theorem 1, which consists of three main steps. These
steps rely on two auxiliary lemmas whose proofs are fairly technical, so that they are deferred to
in Appendices B.1 and B.2.

High-level outline: Let us outline the three steps of the proof. In Step 1, we use a one-step expansion
of the difference in the occupation measures to reformulate the standard telescope inequality (6).
Doing so results in a relation with structure similar to that of the left-hand side of inequality (Stb(ξ)).
In Step 2, we develop a constraint on the function estimation error dh

(
f̂h, Q

⋆
h

)
that ensures the

occupation measure produced by policy π̂ remains stable and does not deviate too much from the
occupation measure associated with the optimal policy π⋆. In Step 3, we use Bellman stability
(Stb(T )) to connect the Q-function error f̂h −Q⋆

h with Bellman residuals. With this high-level view
in place, we now work through the three steps.

A.1 Step 1: Reformulation of the telescope inequality.

Recall the standard telescope inequality (6). Our proof makes use of an alternative form, which
involves the functions

∆h(π; s, a ) =

H−1∑

h′=h

Pπ
h,h′

(
T ⋆
h′ f̂h′+1 − f̂h′

)
(s, a). (12)

Lemma 1. Given a Q-function estimate f̂ =
(
f̂1, . . . , f̂H−1, f̂H = rH

)
and the associated greedy

policy π̂, we have the bound

J(π)− J(π̂) ≤
H−1∑

h=1

Eπ̂

[
∆h(π; sh, πh(sh))−∆h(π; sh, π̂h(sh))

]
(13)

valid for any policy π.

See Appendix B.1 for the proof.

We apply the bound (13) with π = π⋆. Following some algebra, we find that

J(π⋆)− J(π̂) ≤
H−1∑

h=1

H−1∑

h′=h

β̂(h, h′) · εh′ ,

where εh′ is an upper bound on the Bellman residual
∥∥T ⋆

h′ f̂h′+1 − f̂h′
∥∥
h′ as given in equation (4a).

The term β̂(h, h′) is given by

β̂(h, h′) := sup
f∈∂F : ∥f∥h′>0

{
1

∥f∥h′

∣∣∣Eπ̂

[(
P⋆
h,h′ f

)
(sh, π

⋆
h(sh))−

(
P⋆
h,h′ f

)
(sh, π̂h(sh))

]∣∣∣
}
.

(14a)

We note that the left-hand side of inequality (Stb(ξ)) has a similar form to the term β̂(h, h′), differing
only in that the expectation is taken over the occupation measure of running the optimal policy π⋆,
rather than the estimated policy π̂.

A.2 Step 2: Constraint to ensure stability

Our next step is to establish an upper bound on the coefficient β̂(h, h′) defined by the estimated
policy π̂ in terms of the analogous quantity defined by the optimal policy π⋆—namely, the coefficient

β(h, h′) := sup
f∈∂F : ∥f∥h′>0

{
1

∥f∥h′

∣∣∣Eπ⋆

[(
P⋆
h,h′ f

)
(sh, π

⋆
h(sh))−

(
P⋆
h,h′ f

)
(sh, π̂h(sh))

]∣∣∣
}
.

(14b)
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In order to do so, we demonstrate that a sufficiently small function estimation error dh
(
f̂h, Q

⋆
h

)
ensures the inequality

H−1∑

h=1

H−1∑

h′=h

β̂(h, h′) · εh′ ≤ 2

H−1∑

h=1

H−1∑

h′=h

β(h, h′) · εh′ . (15)

Once we have established this bound, we can replace the term β(h, h′) with
κh,h′(π⋆)·

∥∥f̂h−Q⋆
h

∥∥
h

/
∥Q⋆

h∥h, using the inequality (Stb(ξ)).

We summarize the result in the following auxiliary lemma:

Lemma 2. Suppose that the function estimation errors satisfy dh
(
Qh, Q

⋆
h

)
≤ 1

2 bF
(H − h+ 1)−1

for h = 2, 3, . . . ,H − 1 and the sequence ε = (ε1, . . . , εH−1, εH = 0) satisfies the regularity
condition (4b). Then we have

J(π⋆)− J(π̂) ≤ 2

H−1∑

h=1

∥∥f̂h −Q⋆
h

∥∥
h

∥Q⋆
h∥h

{ H−1∑

h′=h

κh,h′(π⋆) εh′

}
. (16)

See Appendix B.2 for the proof.

A.3 Step 3: Connecting Q-function error and Bellman residuals

The remaining piece of the proof is to connect the function difference f̂h−Q⋆
h with Bellman residuals

T ⋆
h f̂h+1 − f̂h, using the stability condition (Stb(T )) on the Bellman operator T ⋆. This is relatively

straightforward: indeed, we claim that

∥∥f̂h −Q⋆
h

∥∥
h

≤
H−1∑

h′=h

κh,h′(T ⋆) ·
∥∥T ⋆

h′ f̂h′+1 − f̂h′
∥∥
h′ . (17)

Recall that Q⋆
h = T ⋆

h Q⋆
h+1 for h = 1, 2, . . . ,H − 1. Therefore, we have

f̂h −Q⋆
h =

(
T ⋆
h f̂h+1 − T ⋆

h Q⋆
h+1

)
−

(
T ⋆
h f̂h+1 − f̂h

)
.

By employing the triangle inequality and the Bellman stability given in equation (Stb(T )), we derive
that

∥∥f̂h −Q⋆
h

∥∥
h
≤

∥∥T ⋆
h f̂h+1 − f̂h

∥∥
h
+
∥∥T ⋆

h f̂h+1 − T ⋆
h Q⋆

h+1

∥∥
h

≤
∥∥T ⋆

h f̂h+1 − f̂h
∥∥
h
+ κ⋆

h

∥∥f̂h+1 −Q⋆
h+1

∥∥
h+1

.

Applying this inequality recursively yields the claim (17).

With this piece in place, we can complete the proof of Theorem 1. Indeed, we have

J(π⋆)− J(π̂)
(a)

≤ 2

H−1∑

h=1

∥∥f̂h −Q⋆
h

∥∥
h

∥Q⋆
h∥h

{ H−1∑

h′=h

κh,h′(π⋆) εh′

}

(b)

≤ 2

H−1∑

h=1

1

∥Q⋆
h∥h

{ H−1∑

h′=h

κh,h′(T ⋆) εh′

} { H−1∑

h′=h

κh,h′(π⋆) εh′

}
.

Here step (a) is a restatement of the bound (16) from Lemma 2, whereas step (b) follows from
inequality (17). Thus, we have established the claim given in Theorem 1.

B Proof of auxiliary lemmas for Theorem 1

We now turn to proofs of the two auxiliary results used to establish our main theorem, with Lemmas 1
and 2 treated in Appendices B.1 and B.2, respectively.
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B.1 Proof of Lemma 1

For any integrable vector function g = (g1, . . . , gH) ∈ RS×A×H , we define

D(g) =

H∑

h=1

(
Eπ − Eπ̂

)[
gh(Sh, Ah)

]
. (18a)

We claim that this functional satisfies the recursive relation

D(g) =

H∑

h=1

Eπ̂

[
gh(Sh, πh(Sh))− gh(Sh, π̂h(Sh))

]
+D(Pπg), (18b)

where we have introduced the shorthand Pπg : =
(
Pπ
1 g2, . . . ,Pπ

H−1 gH , 0
)
∈ RS×A×H .

Taking this claim as given for the moment, let us prove the bound (13) from Lemma 1. First, we set g :
= (Pπ)h g =

(
Pπ
1,1+h g1+h, . . . ,Pπ

H−h,H gH , 0, . . . , 0
)

in equation (18b) for h = 0, 1, . . . ,H−1,
which yields

D
(
(Pπ)h g

)
=

∑

1≤h′≤j≤H,
j−h′=h

Eπ̂

[
{Pπ

h′,j gj}(Sh′ , πh′(Sh′))− {Pπ
h′,j gj}(Sh′ , π̂h′(Sh′))

]

+D
(
(Pπ)h+1 g

)
.

Note that (Pπ)H g = 0, which implies D
(
(Pπ)H g

)
= 0. We then sum the resulting bounds so as

to obtain

D(g) =
∑

1≤h≤h′≤H

Eπ̂

[
{Pπ

h,h′ gh′}(Sh, πh(Sh))− {Pπ
h,h′ gh′}(Sh, π̂h(Sh))

]
. (19)

Setting g = T ⋆f̂ − f̂ , or equivalently gh = T ⋆
h f̂h+1 − f̂h, in equation (19), we find that

D
(
T ⋆f̂ − f̂

)
=

H−1∑

h=1

Eπ̂

[
∆h(π;Sh, πh(Sh))−∆h(π;Sh, π̂h(Sh))

]
,

where we have used the fact (12) that ∆h(π; ·) =
∑H

h′=h Pπ
h,h′

(
T ⋆
h′ f̂h′+1 − f̂h′

)
. Thus, we have

established the bound (13) stated in Lemma 1.

It remains to establish the auxiliary claim (18b). Note that the functional D can be decomposed as
D(g) = D1 +D2, where

D1 : =

H∑

h=1

Eπ̂

[
gh(Sh, πh(Sh))− gh(Sh, π̂h(Sh))

]
and

D2 : =

H∑

h=1

(
Eπ − Eπ̂

)[
gh(Sh, πh(Sh))

]
.

Applying the tower property of conditional expectation, we find that

D2 =

H−1∑

h=1

(
Eπ − Eπ̂

)[
E[gh+1(Sh+1, πh+1(Sh+1)) | Sh, Ah]

]

=

H−1∑

h=1

(
Eπ − Eπ̂

)[
(Pπ

h gh+1)(Sh, Ah)
]
= D

(
Pπg

)
.

Combining the expressions for D1 and D2 above yields the claim (18b).
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B.2 Proof of Lemma 2

The key step in proving Lemma 2 is establishing that inequality (15) holds when the function
estimation error dh

(
f̂h, Q

⋆
h

)
is sufficiently small. In order to do so, we need to establish upper bounds

on the term β̂(h, h′) by using β(h, h′). In particular, we will show that for any 1 ≤ h ≤ h′ ≤ H − 1,

β̂(h, h′) ≤ β(h, h′) +

h−1∑

j=1

β̂(j, h− 1) · bF · dh
(
f̂h, Q

⋆
h

)
. (20)

The inequality (20) is derived based on the definitions of metric dh and parameter bF = 1. After
a close examination of the right-hand side of this inequality, it becomes evident that as long as the
function estimation error dh

(
f̂h, Q

⋆
h

)
is sufficiently small, the terms associated with dh

(
f̂h, Q

⋆
h

)
are

negligible and are dominated by β(h, h′). Consequently, inequality (15) within the arguments in
Appendix A.2 is likely to hold true.

With claim (20) assumed to be valid at this point, we now establish a proper upper bound on the
estimation error dh

(
f̂h, Q

⋆
h

)
under which inequality (15) is satisfied. By taking linear combinations

of inequality (20) using weights ε = (ε1, . . . , εH−1, εH = 0), we obtain
H−1∑

h=1

H−1∑

h′=h

β̂(h, h′) · εh′ ≤
H−1∑

h=1

H−1∑

h′=h

β(h, h′) · εh′

+

H−1∑

h=2

h−1∑

j=1

β̂(j, h− 1) · bF · dh
(
f̂h, Q

⋆
h

) H−1∑

h′=h

εh′ . (21)

When the sequence ε = (ε1, . . . , εH−1, εH = 0) is regular in the sense that inequality (4b) holds,
the bound (21) reduces to

∑

1≤h≤h′≤H

β̂(h, h′) · εh′ ≤
∑

1≤h≤h′≤H

β(h, h′) · εh′

+
∑

1≤h≤h′≤H−2

β̂(h, h′) · εh′ · bF (H − h′) · dh′+1

(
f̂h′+1, Q

⋆
h′+1

)
.

Under the condition dh
(
f̂h, Q

⋆
h

)
≤ 1

2 bF
(H − h+ 1)−1 for 2 ≤ h ≤ H − 1, the inequality above

implies bound (15), which further establishes the bound (16), as stated in Lemma 2.

It remains to prove the relation between β̂(h, h′) and β(h, h′), as shown in inequality (20).

Proof of bound (20): It is evident that inequality (20) holds for h = 1, therefore, we focus on its
validation for indices 2 ≤ h ≤ H − 1. Recall the definitions of functions β̂(h, h′) and β(h, h′), as
given by equations (14a) and (14b). We apply the triangle inequality and derive that
∣∣β̂(h, h′)− β(h, h′)

∣∣

≤ sup
f∈∂F : ∥f∥h′>0

{
1

∥f∥h′

∣∣∣
(
Eπ̂ − Eπ⋆

)[(
P⋆
h,h′ f

)
(Sh, π

⋆
h(Sh))−

(
P⋆
h,h′ f

)
(Sh, π̂h(Sh))

]∣∣∣
}

= sup
f∈∂F : ∥f∥h′>0

{
1

∥f∥h′

∣∣∣
(
Eπ̂ − Eπ⋆

)[{(
P⋆
h−1 − P π̂

h−1

)
P⋆
h,h′ f

}
(Sh−1, Ah−1)

]∣∣∣
}

= : ∆β(h, h′) .

The term ∆β(h, h′) involves differences from two sources: (i) the difference in transition kernels
P⋆
h−1 − Pπ̂

h−1 that captures the divergence between policies π⋆
h and π̂h; (ii) the discrepancy of

occupation measures at the (h − 1)-th step reflected by the difference in expectations Eπ⋆ − Eπ̂,
which is determined by the policies (π⋆

1 , . . . , π
⋆
h−1) and (π̂1, . . . , π̂h−1) until the (h− 1)-th step. We

treat them separately and write

∆β(h, h′) ≤ ν1(h− 1, h′) · ν2(h− 1) , (22)
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where the functionals ν2 and ν1 are defined as

ν1(h− 1, h′) := sup
f∈∂F : ∥f∥h′>0

{
1

∥f∥h′

∥∥(P⋆
h−1 − P π̂

h−1

)
P⋆
h,h′ f

∥∥
h−1

}
,

ν2(h− 1) := sup
f∈∂F : ∥f∥h−1>0

{
1

∥f∥h−1

∣∣(Eπ̂ − Eπ⋆

)[
f(Sh−1, Ah−1)

]∣∣
}
.

We first consider the term ν1. According to the definitions of metric dh and parameter bF we find
that

∥∥(P⋆
h−1 − P π̂

h−1

)
P⋆
h,h′ f

∥∥
h−1

≤ dh
(
f̂h, Q

⋆
h

)
·
∥∥P⋆

h,h′ f
∥∥
h

(∗)
≤ dh

(
f̂h, Q

⋆
h

)
· bF ∥f∥h′ ,

which in turn implies

ν1(h− 1, h′) ≤ bF · dh
(
f̂h, Q

⋆
h

)
. (23a)

The proof of inequality (∗) for bF = 1, as mentioned above, can be found in Appendix E.1.

As for term ν2, we claim that

ν2(h− 1) ≤
h−1∑

j=1

β̂(j, h− 1) . (23b)

Combining the bound β̂(h, h′) ≤ β(h, h′) + ∆β(h, h′) with inequalities (22), (23a) and (23b), we
establish the bound (20), as claimed. It remains to prove the claim (23b).

Proof of inequality (23b): This proof is analogous to that of Lemma 1. We begin by introducing
an analogue of the functional D(g) from equation (18a); in particular, for any index h ∈ [H − 1] and
function g ∈ ∂F , define

D⋆
h(g) :=

(
Eπ⋆ − Eπ̂

)[
g(Sh, Ah)

]
.

Using the notation of D⋆
h, we can rewrite the left-hand side of inequality (23b) as ν2(h − 1) =

supf∈∂F : ∥f∥h−1>0

{
|D⋆

h−1(f)|/∥f∥h−1

}
. Following the same arguments as in the proof of inequal-

ity (18b), we can show that

D⋆
h(g) = Eπ̂

[
g(Sh, π

⋆
h(Sh))− g(Sh, π̂h(Sh))

]
+D⋆

h−1(P⋆
h−1 g) for h = 1, 2, . . . ,H, (24)

where we set D⋆
0 ≡ 0.

We consider function g : = P⋆
j,h−1 f for 1 ≤ j < h ≤ H − 1. It follows from equation (24) that

D⋆
j

(
P⋆
j,h−1 f

)
= Eπ̂

[(
P⋆
j,h−1f

)
(Sj , π

⋆
j (Sj))−

(
P⋆
j,h−1f

)
(Sj , π̂j(Sj))

]
+D⋆

j−1

(
P⋆
j−1,h−1 f

)
,

where we have used the relation P⋆
j−1P⋆

j,h−1 = P⋆
j−1,h−1. Recalling the definition of β̂(j, h− 1) in

equation (14a), applying the triangle inequality yields
∣∣D⋆

j

(
P⋆
j,h−1 f

)∣∣ ≤ β̂(j, h− 1) · ∥f∥h−1 +
∣∣D⋆

j−1

(
P⋆
j−1,h−1 f

)∣∣ .
Summing this equation over indices j = 1, 2, 3, . . . , h− 1 yields

|D⋆
h−1(f)| ≤

h−1∑

j=1

β̂(j, h− 1) · ∥f∥h−1 ,

which establishes inequality (23b).
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C Proof of corollaries

This section cotains proofs of several corollaries.

C.1 Proof of Corollary 2

We now turn to proving Corollary 2 regarding ridge-based FQI in on-line settings.

In Phase 1 of pure exploration, the cumulative regret is always bounded from above by T0 · H .
During Phase 2 of fine-tuning, we let π̂k be the policy employed in the rounds T02

k+1, T02
k+2, . . .,

T02
k+1, which is determined by the estimate f̂ (T02

k) calculated at the end of the (T02
k)-th round.

To estimate the regret, we consider the decomposition

T∑

t=T0+1

{
J(π⋆)− J(π̂(t))

}
≤

K−1∑

k=0

T02
k+1∑

t=T02k

{
J(π⋆)− J(π̂(t))

}
=

K−1∑

k=0

T0 2
k
{
J(π⋆)− J(π̂k)

}
.

We leverage our bound (11a) for off-line RL in Section 3.1.2 to control the value sub-optimality
J(π⋆)− J(π̂k). Recall that the policy π̂k is derived from i.i.d. trajectories collected from the rounds
T0 2

k−1 + 1, T0 2
k−1 + 2, . . . , T0 2

k. We divide those T0 2
k−1 trajectories into H − 1 equal shares

and use each share to conduct estimation in one iteration of the FQI procedure. This subsampling
technique ensures the independence of samples used in different iterations. It is primarily adopted for
the sake of convenience (to keep the explanations concise) and is not essential in general. It follows
from inequality (11a) that the bound

J(π⋆)− J(π̂k) ≤ c
d
√
d H4

T0 2k
log(dHK/δ)

holds uniformly for indices k = 0, 1, . . . ,K − 1 with a probability exceeding 1− δ.

Putting together the pieces, we arrive at

Regret(T ) ≤ T0 ·H + c d
√
d H4 K log(dHK/δ) .

We then derive the regret bound in Corollary 2 by noticing that K = O(log T ).

C.2 Comparing to known off-line bounds

In this section, we derive the sample complexity nZan(ϵ) ≍ d2H3

ϵ2 in Section 3.1.2 based on the results
of Zanette et al. [37]; it gives the conventional 1/

√
n slow rate to which we compare. Zanette et

al. [37] proved upper bounds on a pessimistic actor-critic scheme based on d-dimensional linear
function approximation. Using our notation, Theorem 1 in their paper [37] can be expressed as

J(π⋆)− J(π̂) ≤ c

{
1

H

H−1∑

h=1

√
ϕh

⊤(Σ̂h,D + λhI)−1 ϕh

}√
dH4

n
, (25)

where the vector ϕh is given by ϕh : = Eπ⋆

[
ϕ(Sh, Ah)

]
, the covariance matrix

Σ̂h,D : =
1

|Dh|
∑

(sh,i,ah,i,s′h,i,rh,i)∈Dh

ϕ(sh, i, ah, i)ϕ(sh, i, ah, i)
⊤ .

We now consider the explicit dependence of this upper bound on dimension d, horizon H and sample
size n. The divergence term ϕh

⊤(Σ̂h,D + λhI)
−1 ϕh measures the conditioning of the regularized

covariance matrix (Σ̂h,D + λhI) along a specific direction of ϕh. When the feature mapping ϕ
operates within a d-dimensional space, it is reasonable to assume that

ϕh
⊤(Σ̂h,D + λhI)

−1 ϕh ≤ c′ d .

The bound (25) then reduces to J(π⋆) − J(π̂) ≤ c dH2/
√
n . Regarding the dependence on

horizon H , we conjecture that by incorporating the law of total variance in a more refined manner, it
may be possible to further reduce the dependence by a factor of

√
H . Under these conditions, the

bound takes the form J(π⋆)− J(π̂) ≤ c d
√
H3/n.
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D Details of the mountain car experiment

In this experiment, a car is situated in a valley between two hills. The car’s objective is to overcome
the gravitational pull and reach the top of the right hill by efficiently controlling its acceleration.

D.1 Structure of the Markov decision process

The Markov decision process underlying the mountain car problem has a state space S ⊂ R2 and an
action space A ⊂ R. The state s = (p, v) consists of the current position p and velocity v, whereas
the scalar action a = f corresponds to the applied input force. The state variables (p, v) and action f
are restricted as

p ∈ [pmin, pmax] = [−1.2, 0.6],

v ∈ [vmin, vmax] = [−0.07, 0.07] and
f ∈ [fmin, fmax] = [−1, 1] .

The mountain is described by the function

m(p) = 1
3 sin(3p) +

0.025

(pmax − p)(p− pmin)
,

over the interval p ∈ [pmin, pmax].

Let m′ be the derivative of the mountain shape function m, which represents the instantaneous
slope, and let (σv, σp) = (0.01, 0.0025) be a pair of standard deviations that dictate the amount of
randomness in the updates. For an interval [a, b], we define the truncation function

Ψ[a,b](u) :=





u if u ∈ [a, b],

b if u > b,

a if u < a.

With this notation, at each discrete time step h = 0, 1, 2, . . ., the position and velocity of the car
evolve as

vh+1 = Ψ[vmin,vmax]

(
vh + 0.0015 fh − 0.0025m′(ph) + σvZh

)

ph+1 = Ψ[pmin,pmax]

(
ph + vh+1 + σpZ

′
h

)

where (Zh, Z
′
h) are a pair of independent standard normal variables. Note that the system dynamics

are non-linear due to both the presence of the derivative m′ and the truncation function Ψ.

The objective of the car is to reach the peak of the mountain, designated by the position pgoal = 0.45.
The reward at state-action pair (s, a) is given by

r(s, a) := − 1
10f

2 + 100
[
max{0, p− pgoal}

]2
.

For any policy π, we define the γ-discounted value function

J(π) := Eπ

[ ∞∑

h=0

γh r(Sh, Ah)
]
,

using γ = 0.97. The initial state s0 = (p0, v0) is generated with p0 following a uniform distribution
over the interval [−0.6,−0.4], and we initialize with velocity v0 = 0.

D.2 Fitted Q-iteration (FQI) with linear function approximation

Here we describe the use of fitted Q-iteration (FQI) with linear function approximation to estimate
the optimal Q-function, along with the corresponding greedy policy π̂.

Linear function approximation We approximate the the optimal Q-function (s, a) 7→ Q⋆(s, a)
using a d-dimensional linear function class with d = 3000 features. We begin by defining the base
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feature maps ϕp : [ pmin, pmax ] → R50 for position, and ϕv : [ vmin, vmax ] → R15 for velocity, with
components given by

{
ϕp,2j+1(p) := cos(jp), for j = 0, 1, . . . , 24, and
ϕp,2j(p) := sin(jp), for j = 1, 2, . . . , 25 ;

{
ϕv,2j+1(v) := cos(jv), for j = 0, 1, . . . , 7, and
ϕv,2j(v) := sin(jv), for j = 1, 2, . . . , 7.

To represent the action a ≡ f , we define the base action feature map

ϕf (f) :=
(
1, f, f2, f3

)
∈ R4.

The overall feature map ϕ : S ×A → R3000 is constructed by taking the outer product of the three
base feature maps ϕp, ϕv , and ϕf as follows:

ϕ(s, a) := vec
{
ϕp(p)⊗ ϕv(v)⊗ ϕf (f)

}
∈ R3000 . (26)

Taking all possible triples of the three base features in the outer product leads to the overall di-
mension d = 3000 = 50 × 15 × 4. Given a weight vector w ∈ R3000, we define the function
fw(s, a) := ⟨w, ϕ(s, a)⟩, and we approximate the optimal Q-function using the function class
F : =

{
fw | w ∈ R3000

}
.

Fitted Q-iteration (FQI) We employed fitted Q-iteration with the linear feature ϕ : S×A→R3000

to estimate an optimal policy π̂. The FQI process begins by initializing the weight vector as w0 : =
0 ∈ R3000. In each iteration, we first use the dataset D =

{
(si, ai, ri, s

′
i)
}n

i=1
⊂ S ×A×R× S to

construct the pseudo-responses
yi : = ri + γ max

a∈A
⟨wt, ϕ(s

′
i, a)⟩︸ ︷︷ ︸

fwt (s
′
i,a)

for i = 1, . . . , n, (27)

corresponding to a stochastic estimate of the Bellman update applied to our current Q-function
estimate fwt

. The polynomial form of the force feature ϕf allows for a closed-form solution to the
maximum operation required in equation (27). Given these pseudo-responses, we then update the
weight vector wt → wt+1 via the ridge regression

wt+1 : = arg min
w∈R3000

{ 1

n

n∑

i=1

{
yi − ⟨w, ϕ(si, ai)⟩

}2
+ λn∥w∥22

}
, (28)

where λn = 0.01
n in all experiments reported here.

We terminate the procedure after at most 500 iterations, or when there have been 5 consecutive
iterations with insignificant improvements in weights, where insignificant means that ∥wt+1 −
wt∥2 /

√
3000 < 0.005. Letting ŵ represent the weight vector obtained from this procedure,

the resulting policy π̂ is given by selecting the greedy action based on the Q-function estimate
f̂(s, a) := ⟨ŵ, ϕ(s, a)⟩.

D.3 Experimental configurations

Our experiments were based on an off-line dataset consisting of n i.i.d. tuples

D =
{
(si, ai, ri, s

′
i)
}n

i=1
⊂ S ×A×R× S,

where the state-action pairs
{
(si, ai) = (pi, vi, fi)

}n

i=1
were generated from a uniform distribution

over the cube [pmin, pmax]× [vmin, vmax]× [fmin, fmax]. We performed independent experiments
with the sample size n varying over the range

n ∈
{
⌊ek⌋

∣∣ k = 10.5, 10.75, 11, . . . , 13
}

= {36315, 46630, 59874, 76879, 98715, 126753, 162754, 208981, 268337, 344551, 442413} .

In each experiment, we generated a dataset D, estimated an optimal policy π̂ based on the data, and
evaluated the return J(π̂). For each sample size, we conducted 80 independent trials.
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In order to evaluate the return J(π̂), for each initial position p0 = −0.5 + 0.2 j/1000 with j =
−500,−499, −498, . . . , 499, we simulated 30 independent 1000-step trajectories by executing the
estimated policy π̂. The average return over the 30× 1000 trajectories is used as the estimate of J(π̂).

In order to approximate the policy7 π† that represents “ground truth”, we conducted a single experi-
ment with sample size n = 6.4× 106 to obtain π†. We simulated 1000 trajectories for each initial
position p0 and calculated the average return, which serves as the reference value J(π†). The value
sub-optimality is then computed as the difference J(π†)− J(π̂).

E Verification of auxiliary claims

In this appendix, we collect the verification of various auxiliary claims made in the main text.

E.1 Properties of occupation measures

In this appendix, we prove a useful inequality
∥∥P⋆

h,h′ f
∥∥
h
≤ ∥f ∥h′ , (29)

which holds for the state-action occupation measures (3). This bound is used in the proof of bound (20)
in Appendix B.2.

By definition, we have

∥P⋆
h f ∥2h = Eπ⋆

[
(P⋆

h f )
2(Sh, Ah)

]
= Eπ⋆

[
Eh

[
f(Sh+1, π

⋆
h+1(Sh+1))

∣∣ Sh, Ah

]2]
.

According to the property of variance, we can deduce

Eπ⋆

[
Eh

[
f
(
Sh+1, π

⋆
h+1(Sh+1)

) ∣∣ Sh, Ah

]2] ≤ Eπ⋆

[
f2

(
Sh+1, π

⋆
h+1(Sh+1)

)]
= ∥f ∥2h+1 .

As a consequence, we find that ∥P⋆
h f ∥h ≤ ∥f ∥h+1. Applying this inequality recursively leads to

the conclusion that for any indices 1 ≤ h ≤ h′ ≤ H , we have
∥∥P⋆

h,h′ f
∥∥
h
=

∥∥P⋆
h P⋆

h+1,h′ f
∥∥
h
≤

∥∥P⋆
h+1,h′ f

∥∥
h+1

≤
∥∥P⋆

h+2,h′ f
∥∥
h+2

≤ · · · ≤ ∥f ∥h′ .

This establishes the bound (29).

E.2 Proof of the telescope inequality (6)

For completeness of this paper,8 let us prove the telescope relation (6) stated in Section 2.3. For any
policy π = (π1, . . . , πH) and sequence of functions f = (f1, . . . , fH) with fH = rH , we have the
“telescope” relation

V π
1 (s) = f1(s, π1(s)) +

H−1∑

h=1

Eπ

[(
T π
h fh+1 − fh

)
(Sh, Ah)

∣∣ S1 = s
]

for any state s ∈ S. (30)

Here the value function V π
1 is given by V π

1 (s) : = Qπ
1 (s, π1(s)). Taking f = f̂ in equation (30)

yields

V π
1 (s) = f̂1(s, π1(s)) +

H−1∑

h=1

Eπ

[(
T π
h f̂h+1 − f̂h

)
(Sh, Ah)

∣∣ S1 = s
]
. (31a)

Letting π = π̂ in equation (31a) yields

V π̂
1 (s) = f̂1(s, π̂1(s)) +

H−1∑

h=1

Eπ̂

[(
T π̂
h f̂h+1 − f̂h

)
(Sh, Ah)

∣∣ S1 = s
]
. (31b)

7In general, it is not guaranteed that π† is equal to the optimal policy π⋆, due to approximation error that
might arise from using the linear function class defined here.

8We are not claiming novelty here; see Theorem 2 of the paper [34]; or Lemma 3.2 in the paper [7] for
analogous results.
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Since π̂ is a greedy policy with respect to function f̂ , we have

f̂1(s, π̂1(s)) ≥ f̂1(s, π1(s)), and T π̂
h f̂h+1 = T ⋆

h f̂h+1 ≥ T π
h f̂h+1 for any policy π.

Using this fact and subtracting equations (31a) and (31b), we obtain

V π
1 (s)− V π̂

1 (s) ≤
H−1∑

h=1

(
Eπ − Eπ̂

)[(
T ⋆
h f̂h+1 − f̂h

)
(Sh, Ah)

∣∣ S1 = s
]
.

Finally, taking the expectation over the initial distribution ξ1 yields the claimed inequality (6).
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the experiments?

Answer: [Yes]

Justification: Section 1.1 details the computer setup: “The experiment ran for 3 days on two
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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13. New Assets
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Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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