
Online Isolation Forest

Filippo Leveni 1 (�) Guilherme Weigert Cassales 2 Bernhard Pfahringer 2 Albert Bifet 2

Giacomo Boracchi 1

Abstract

The anomaly detection literature is abundant with
offline methods, which require repeated access
to data in memory, and impose impractical as-
sumptions when applied to a streaming context.
Existing online anomaly detection methods also
generally fail to address these constraints, resort-
ing to periodic retraining to adapt to the online
context. We propose ONLINE-IFOREST, a novel
method explicitly designed for streaming condi-
tions that seamlessly tracks the data generating
process as it evolves over time. Experimental
validation on real-world datasets demonstrated
that ONLINE-IFOREST is on par with online alter-
natives and closely rivals state-of-the-art offline
anomaly detection techniques that undergo peri-
odic retraining. Notably, ONLINE-IFOREST con-
sistently outperforms all competitors in terms of
efficiency, making it a promising solution in ap-
plications where fast identification of anomalies
is of primary importance such as cybersecurity,
fraud and fault detection.

1. Introduction
Anomaly detection deals with the problem of identifying
data that do not conform to an expected behavior (Chandola
et al., 2009). This task finds numerous applications ranging
from the financial fraud (Ahmed et al., 2016; Dal Pozzolo
et al., 2018) and intrusion (Bronte et al., 2016) detection,
to health (Banaee et al., 2013) and quality monitoring (Sto-
janovic et al., 2016), to name a few examples. Usually,
anomaly detection methods are trained offline with a static
dataset and then used to classify new arriving instances. Iso-
lation Forest (Liu et al., 2008; 2012) (IFOR) is perhaps

1Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy 2Artificial Intelligence Institute,
University of Waikato, Hamilton, New Zealand. Correspondence
to: Filippo Leveni <filippo.leveni@polimi.it>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

the most popular offline anomaly detection solution, which
is at the same time simple, easy to scale and shows strong
performance on a variety of benchmarks.

The popularity of IFOR can be acknowledged by the
large number of subsequent works that build on top of
it. The majority of these methods aim to improve the per-
formance of IFOR by addressing the limitation of axis-
parallel splits (Liu et al., 2010; Hariri et al., 2021; Lesou-
ple et al., 2021; Xu et al., 2023), while others extend
IFOR beyond the concept of point-anomaly, to identify
functional-anomalies (Staerman et al., 2019) and structured-
anomalies (Leveni et al., 2021; 2023). Despite their perfor-
mance, IFOR and its variants are offline anomaly detection
methods, and they are unable to operate in a streaming sce-
nario where data comes in endless streams possibly follow-
ing a dynamic nature. In the online context, offline anomaly
detection solutions fail because the models would quickly
become outdated and lose performance. The dynamic nature
of online environments demands continuous adaptability,
making offline approaches unsuitable for effective anomaly
detection in the long run.

Online anomaly detection is far less explored compared
to online classification (Gomes et al., 2017; 2019), and
most of the solutions present in the literature are just online
adaptations of offline anomaly detection methods carried
out by periodic retraining. Although the retraining approach
represents an improvement over the static counterpart, it
leads to a substantial processing overhead. Furthermore,
online anomaly detection algorithms have to cope with a
potentially endless stream of data, strict memory limitations
and the single-pass requirement, where it is not possible to
store all data for later analysis. Thus, it is essential to have
a fast and truly online anomaly detection approach.

We propose ONLINE-IFOREST, an anomaly detection
method tailored for the streaming scenario, which can effec-
tively handle the incremental nature of data streams. ON-
LINE-IFOREST models the data distribution via an ensemble
of multi-resolution histograms endowed with a dynamic
mechanism to learn new points and forget old ones. Each
histogram collects the points count within its bins and, upon
reaching a maximum height, a bin undergoes a split to in-
crease the resolution of the histogram in the most populated
regions of the space. Conversely, bins in sparsely populated

1

https://orcid.org/0009-0007-7745-5686
https://orcid.org/0000-0003-4029-2047
https://orcid.org/0000-0002-3732-5787
https://orcid.org/0000-0002-8339-7773
https://orcid.org/0000-0002-1650-3054

Online Isolation Forest

(a) Data stream x1, . . . ,xt ∈ Rd. (b) Anomaly scores s at different time instants t, from left to right.

Figure 1. ONLINE-IFOREST dynamically adapts to the data distribution of the stream and improves the anomaly scores estimate over time.

regions are eventually aggregated, thereby decreasing the
histogram resolution in the corresponding regions of the
space.

In Figure 1 we illustrate the online learning capabilities of
our method with a toy example. Genuine data, depicted in
green, are more densely distributed than anomalous one, rep-
resented in red. ONLINE-IFOREST processes points in Fig-
ure 1a one at a time (i.e., in a streaming fashion), and assigns
an anomaly score to each of them. As the stream continues,
ONLINE-IFOREST acquires more information about the data
distribution and refines the estimate of the anomaly scores
accordingly (Figure 1b).

Our experiments demonstrate that ONLINE-IFOREST fea-
tures an exceptionally fast operational speed, address-
ing the high-speed demands of a streaming context, and
achieves effectiveness on par with state-of-the-art online
anomaly detection techniques. These properties make
ONLINE-IFOREST a promising solution for streaming ap-
plications. The code of our method is publicly avail-
able at https://github.com/ineveLoppiliF/
Online-Isolation-Forest.

2. Problem Formulation
We address the online anomaly detection problem in a vir-
tually unlimited multivariate data stream x1,x2, . . . ,xt ∈
Rd, where t ≥ 1. We assume that each xi is a realization of
an independently and identically distributed (i.i.d.) random
variable having unknown distribution either Xi ∼ Φ0 or
Xi ∼ Φ1, where Φ0 is the distribution of genuine data and
Φ1 is the distribution of anomalous data. Given a point xt,
the goal is to identify whether Xt ∼ Φ0 or Xt ∼ Φ1 for
each time instant t.

We assume that anomalous data are “few” and “differ-
ent” (Liu et al., 2008) and express these assumptions in
the following way: (i) “few” – the probability that a point
xi has been generated by the distribution Φ1 of anoma-
lous data is much lower than the probability that it has
been generated by the distribution Φ0 of genuine data, i.e.,

P (Xi ∼ Φ1) ≪ P (Xi ∼ Φ0), and (ii) “different” – the
probability that a point xi is closer to an anomalous point
xj rather than a genuine point xk is low. As a consequence,
our focus is on scenarios where anomalous data do not form
dense and populous clusters.

Furthermore, we assume that we can store in memory only
a finite and small subset xt−ω, . . . ,xt of size ω from the
entire data stream at each time instant t, were ω is small
enough. Additionally, we require the time interval between
the acquisition of a sample xt and its classification to be as
small as possible.

3. Related Work
Among the wide literature on anomaly detection (Chan-
dola et al., 2009), we focus on tree-based methods, as they
achieve state-of-the-art performance at low computational
and memory requirements. IFOR (Liu et al., 2008; 2012)
introduced the concept of “isolation” as a criteria to catego-
rize anomaly detection algorithms, and subsequent works
showed that it is strongly related to the concepts of both dis-
tance and density (Zhang et al., 2017; Leveni et al., 2023).

The core component of IFOR is an ensemble of random
trees constructed through an iterative branching process.
Each individual tree is built by randomly selecting a data
dimension and a split value within the bounding box con-
taining data points in that dimension. Anomalous data are
identified via an anomaly score computed on the basis of
the average path length from the root node to the leaf node,
under the assumption that anomalies are easier to isolate.

The most straightforward extension of IFOR to the stream-
ing scenario is Isolation Forest ASD (Ding & Fei, 2013)
(asdIFOR), which periodically trains from scratch a new
IFOR ensemble on the most recent data and discards the
old ensemble. The periodic retraining delays the adapta-
tion to new data and, depending on how frequently it is
performed, slows down the execution. In contrast, ON-
LINE-IFOREST seamlessly updates its internal structure at
each new sample processed, enabling fast and truly online

2

https://github.com/ineveLoppiliF/Online-Isolation-Forest
https://github.com/ineveLoppiliF/Online-Isolation-Forest

Online Isolation Forest

anomaly detection. Robust Random Cut Forest (Guha et al.,
2016) (RRCF) represents the first attempt to adapt IFOR
to the streaming context. RRCF dynamically manages tree
structures, and introduces a novel anomaly score based on
the discrepancy in tree complexity when a data point is re-
moved from the stream. The anomaly score grounds on
the assumption that anomalies’ impact on tree structures is
more evident compared to genuine data points. However,
tree modifications performed by RRCF tend to be resource-
intensive compared to the fast bin splitting and aggrega-
tion of ONLINE-IFOREST. LODA (Pevnỳ, 2016) leverages
on the Johnson–Lindenstrauss (Johnson & Lindenstrauss,
1984) lemma to project data onto 1-dimensional spaces and
subsequently model data distributions via 1-dimensional his-
tograms. LODA makes use of fixed resolution histograms,
which make it ineffective in describing multi-modal and
complex data arrangements. Conversely ONLINE-IFOREST
histograms, thanks to their ability to increase resolution, suc-
cessfully adapt to various data configurations. Half Space
Trees (Tan et al., 2011) (HST), in contrast to LODA, em-
ploys an ensemble of d-dimensional multi resolution his-
tograms. Specifically, HST builds an ensemble of complete
binary trees by picking a random dimension and using the
mid-point to bisect the space. Under the assumption that
anomalous data points lie in sparse regions of the space,
authors of HST propose a score based on node masses.
Similarly to asdIFOR, HST suffers of periodic retraining.
Additionally, the bins in HST histograms are generated
without data, leading to high resolution in empty regions of
the space and subsequent memory inefficiency. On the other
hand, the data-dependent histograms of ONLINE-IFOREST
allows for a more detailed description of data distribution in
the most populous regions of the space.

4. Method
ONLINE-IFOREST, denoted as F , is an ensemble of ON-
LINE-ITREEs {T1, . . . , Tτ} that we specifically designed to
continuously and efficiently learn in streaming manner and
adapt to the evolving data distribution inherent in stream-
ing contexts. Each ONLINE-ITREE is a d-dimensional his-
togram that evolves its bins, both in terms of structure and
the associated height, as it collects more information about
the unknown distributions Φ0 and Φ1 over time. We rely on
a sliding buffer W = [xt−ω, . . . ,xt] containing the ω most
recent points and, at each time instant t, we use the most
and least recent points xt and xt−ω from the buffer W to
respectively expand and contract the tree accordingly.

ONLINE-IFOREST, detailed in Algorithm 1, initializes the
buffer W as an empty list, and each tree T ∈ F is initially
composed of the root node only. At each time step t, we
get a new point xt from the data stream (line 4), store it
in the sliding buffer W , and use it to update every base

Algorithm 1: ONLINE-IFOREST

Input: ω window size, τ - number of trees, η - max
leaf samples

1 initialize W as empty list
2 initialize F as set of τ empty trees {T1, . . . , Tτ}
3 while true do
4 xt ← get point from stream

/* Update forest */

5 append xt to W
6 for i = 1 to τ do
7 learn point(xt, Ti.rootN, η,c(ω, η))

8 if length of W greater than ω then
9 xt−ω ← pop oldest point from W

10 for i = 1 to τ do
11 forget point(xt−ω, Ti.rootN, η)

/* Score point */

12 D ← ∅
13 for i = 1 to τ do
14 D ← D ∪ point depth(xt, Ti.rootN)

15 st ← 2−
E(D)
c(ω,η)

model T within our ensemble (lines 5-7). A tree T learns
the new point xt by updating each bin along the path from
the root to the corresponding leaf, and potentially expand-
ing its tree structure as described by the learning procedure
in Algorithm 2. Subsequently, we remove the oldest point
xt−ω from the buffer W and force every tree T to forget
it (lines 8-11) via the forgetting procedure that entails up-
dating the bins along the leaf path. The forgetting step, in
contrast to the learning one, involves a potential contraction
of the tree structure instead of an expansion, as outlined
in Algorithm 3. We formalize and detail the learning and
forgetting procedures in Section 4.1.

We compute the anomaly score st ∈ [0, 1] for the point xt

(lines 12-15) according to the principles behind IFOR (Liu
et al., 2008). In particular, anomalous points are easier to
isolate than genuine ones, and therefore they are more likely
to be separated early in the recursive splitting process of a
random tree. Therefore, we determine the anomaly score by
computing the depth of all the leaves where xt falls in each
tree T ∈ F , and consequently mapping the depths to the
corresponding st via the following normalization function

st ← 2−
E(D)
c(ω,η) , (1)

where E(D) is the average depth along all the τ trees of
the ensemble, and c(ω, η) = log2

ω
η is an adjustment factor

as a function of the window size ω and the number η of
points required to perform a bin split. The adjustment factor
represents the average depth of an ONLINE-ITREE and we
derive it in Section 4.2. The computation of the leaf depth

3

Online Isolation Forest

(a) Bin support R and its
boundaries [li, ri].

(b) Maximum bin height ĥ and
split information q and p.

(c) Sampled points X and
new bins height hl and hr .

(d) New bins support Rl

and Rr .

Figure 2. Split procedure of a leaf node N = (h,R) in a tree T . (b) As soon as a node N reaches the maximum bin height ĥ, we
randomly select a dimension q and a split value p. (c) We randomly sample a set X of ĥ points from the support R and use them to
initialize bins of newborn child nodes Nl = (hl,Rl) and Nr = (hr,Rr).

where xt falls into is detailed in Algorithm 4.

4.1. ONLINE-ITREE

The fundamental component of our solution is the ONLINE-
ITREE structure. Every ONLINE-ITREE is a d-dimensional
histogram constructed by recursively splitting the input
space Rd into bins, such that each bin stores the number
of points that fell in the corresponding region of the space.
We define ONLINE-ITREE as a dynamic collection of nodes
T = {Nj}j=1,...,m that is continuously updated as new
points are learned and old points are forgotten by the tree.
We characterize the j-th node as Nj = (hj ,Rj), where hj
is the number of points that crossed it in their path to the
leaf, that is the bin height, and Rj =×d

i=1
[li, ri] is the

minimal d-dimensional hyperrectangle that encloses them,
that is the support of the bin, where×denotes the Cartesian
product. It is worth noting that hj andRj are sufficient for
achieving an efficient online adaptation of IFOR.

When a new sample xt is received from the data stream
we run, independently on each ONLINE-ITREE, a learn-
ing procedure to update the tree. The learning procedure
involves sending the incoming sample xt to the correspond-
ing leaf, and updating the heights h and supports R of all
the bins along the path accordingly. When a leaf reaches
the maximum height ĥ, we split the corresponding bin in
two according to the procedure illustrated in Figure 2 and
described next. This is repeated until the window W gets
full, then, together with the learning procedure for the new
incoming sample xt, we include a forgetting procedure for
the oldest sample xt−ω in W . The forgetting procedure
might involve aggregating nearby bins in a single one as
illustrated in Figure 3. The two fold updating mechanism
enables ONLINE-ITREE to (i) incrementally learn when the
stream starts and (ii) track possible evolution of the stream.

Algorithm 2: ONLINE-ITREE – learn point
Input: x - input data, N - a tree node, η - max leaf

samples, δ - depth limit
1 Function learn point(x, N, η, δ):
2 update bin height h and supportR
3 if N is a leaf then
4 if h ≥ η 2k and k < δ then
5 q ← sample from U{1,...,d}
6 p← sample from U[lq,rq]
7 X ← sample from UR
8 partition X into Xl, Xr

9 compute hl, hr andRl,Rr

10 initialize child nodes Nl, Nr

11 else
12 if xq < p then
13 learn point(x, Nl, η, δ)

14 else
15 learn point(x, Nr, η, δ)

ONLINE-ITREE bins associated to more populated regions
of the space undergo frequent splits, whereas bins associ-
ated with sparsely populated regions undergo less frequent
splits. Since each split increases the depth of the tree’s leaf
nodes, we can distinguish between anomalous and genuine
points based on the depth k of the leaf nodes they fall into.
In Figure 1b we see that an ensemble of ONLINE-ITREEs
assigns different anomaly scores to regions with high and
low population.

LEARNING PROCEDURE

Every time we feed a point xt to the tree via the learning
procedure, we update both the height h and the supportR

4

Online Isolation Forest

(a) Before (b) After

Figure 3. Following the forgetting procedure, support R of node
N is the minimal hyperrectangle that encloses supports Rl,Rr of
child nodes Nl, Nr .

Algorithm 3: ONLINE-ITREE – forget point
Input: x - input data, N - a tree node, η - max leaf

samples
1 Function forget point(x, N, η):
2 decrease bin height h
3 if N is NOT a leaf then
4 if h < η 2k then
5 update bin supportR fromRl,Rr

6 forget split q, p and child nodes Nl, Nr

7 else
8 if xq < p then
9 forget point(x, Nl, η)

10 else
11 forget point(x, Nr, η)

of all the nodes crossed by xt along the path from the root
to the leaf (line 2 of Algorithm 2). When the bin height h
of a leaf node N reaches a maximum value ĥ, we increase
the resolution of the histogram in the corresponding region
of the space by splitting the associated bin in two, and
generating two child nodes Nl and Nr.

We define the maximum height of a bin as ĥ = η 2k, where
η is a user-defined parameter, and k is the depth of the
corresponding node N ∈ T . Since the maximum height
ĥ grows exponentially as a function of the depth k of the
considered node, we increase the number of points required
to perform a split in deeper nodes of the tree. This design
choice results in compact trees, leading to a substantial
efficiency gain. We perform the split procedure only if the
depth k of the leaf node N is less than a maximum value
δ = log2

ω
η , as a function of the window size ω and the

number η of points required to split histogram bins. Trees
with limited depth had already been discussed in IFOR as
a solution to the swamping and masking effects (Murphy,
1951) in anomaly detection.

The split procedure, invoked when the bin height h reaches

Algorithm 4: ONLINE-ITREE – point depth
Input: x - input data, N - a tree node, η - max leaf

samples
Output: depth of point x

1 Function point depth(x, N):
2 if N is a leaf then
3 return k + c(h, η)

4 else
5 if xq < p then
6 return point depth(x, Nl)

7 else
8 return point depth(x, Nr)

the maximum value ĥ, is as follows. First, we randomly
sample a split dimension q ∈ {1, . . . , d} and split value
p ∈ [lq, rq] from the random variables Q ∼ U{1,...,d} and
P ∼ U[lq,rq] respectively, where U denotes the uniform
distribution (lines 5-6 of Algorithm 2). Second, we sam-
ple a set X of ĥ points from the support R =×d

i=1
[li, ri]

such that each element x ∈ X is distributed according to
X ∼ UR (line 7). The uniform sampling of X grounds on
the approximation of the data distribution by a piece wise
uniform distribution represented by the union of histogram
leaves’ bins. Finally, we partition the elements of X into
Xl = {x ∈ X |xq < p} and Xr = {x ∈ X |xq ≥ p}, and
use them to initialize heights hl, hr and supportsRl,Rr of
the newborn left and right child nodes Nl and Nr respec-
tively (lines 8-10). For illustration purposes, we depicted
the split procedure in Figure 2 when d = 2.

FORGETTING PROCEDURE

In contrast to the learning procedure, which involves creat-
ing new nodes and thereby enhancing the histogram resolu-
tion in that area, in the forgetting procedure we aggregate
nodes and merge the associated bins, ultimately reducing
the number of bins and, hence, the histogram resolution in
the corresponding region of the space. Specifically, every
time we feed a point xt−ω to the tree via the forgetting
procedure, we decrease the bin height h of all the nodes
N crossed by it along the path from the root to the leaf
(line 2 of Algorithm 3). When the height h of an internal
node (i.e., of a node that experienced a split) drops below
the threshold ĥ, we forget the split in N by merging its two
child nodes Nl and Nr. The forget procedure (illustrated
in Figure 3) consists in first updating the bin supportR of
the node N as the minimal hyperrectangle that encloses bin
supports Rl and Rr (line 5 of Algorithm 3) of Nl and Nr

respectively. Then split information q, p and child nodes
Nl, Nr are discarded (line 6).

5

Online Isolation Forest

Table 1. Average and worst case complexity of ONLINE-IFOREST.

COMPLEXITY AVERAGE CASE WORST CASE

TIME O(n τ log2
ω
η
) O(n τ log2

w
η
)

SPACE O(τ
√

ω
η
+ ω) O(τ ω

η
+ ω)

4.2. Complexity Analysis

The computational complexity is a crucial aspect in the on-
line context, where data streams must be processed at high
speed with low memory requirements. Time and space com-
plexities of ONLINE-IFOREST are closely tied to the depth
of the ONLINE-ITREEs within the ensemble. Therefore, we
first derive ONLINE-ITREE depth in both the average and
worst case scenarios, and then express time and space com-
plexities of ONLINE-IFOREST as functions of these depths
(Table 1).

Average case To determine the average depth k̄ of an ON-
LINE-ITREE, we first note that a perfectly balanced binary
tree constructed with ω points has exactly ω

2k
points at each

node at depth k (Knuth, 2023). Since a node at depth k
requires η 2k points to undergo a split in ONLINE-ITREE,
we can state that depth k exists if and only if

ω

2k−1
≥ η 2k−1, (2)

i.e., if there were enough points at depth k − 1 to perform
the split. Making explicit the inequality with respect to k
we have

k ≤ 1

2
log2

ω

η
+ 1, (3)

from which it follows that the average depth of an ONLINE-
ITREE is

k̄ = ⌊1
2

log2
ω

η
+ 1⌋. (4)

Hence, the average time complexity of ONLINE-IFOREST
(i.e., the computational complexity of traversing each tree
from the root to a leaf), is O(n τ log2

ω
η), where τ it the

number ONLINE-ITREEs in the ensemble and n is the num-
ber of samples in the data stream. We express the average
space complexity of ONLINE-IFOREST (i.e., the amount
of memory space required) as a function of the number
of nodes in an ONLINE-ITREE, that is in turn tied to the
average depth k̄, plus the buffer size ω. Specifically, we
note that the number of nodes in a perfectly balanced bi-
nary tree with depth k is 2k+1 − 1 (Knuth, 2023). There-
fore, the average space complexity of ONLINE-IFOREST is
O(τ 2

1
2 log2

ω
η + ω) = O(τ

√
ω
η + ω), and it is independent

from the number n of samples in the data stream.

Worst case We note that a binary tree degenerated into a
linked list, constructed with ω points, has ω − k points at
depth k. Therefore, similarly to the average case, depth k
exists if and only if

ω − (k − 1) ≥ η 2k−1. (5)

By making the depth k explicit, and placing an upper bound
on it, we have

k ≤ log2
w + 1− k

η
+ 1 ≤ log2

w + 1

η
+ 1 (6)

from which it follows that the worst case depth of an ON-
LINE-ITREE is

k̃ ≤ ⌊log2
w + 1

η
+ 1⌋. (7)

Thus, the worst case time and space complexities of ON-
LINE-IFOREST areO(nτ log2

w
η) andO(τ2log2

w+1
η +ω) =

O(τ ω
η + ω) respectively.

4.3. Adaptation Speed vs. Modeling Accuracy

The length ω of the sliding buffer W plays a crucial role in
controlling the trade-off between adaptation speed and mod-
eling accuracy in ONLINE-IFOREST. Specifically, adopt-
ing a small ω allows ONLINE-IFOREST to quickly adapt to
changes, but it results in a coarse modeling of the underlying
data distribution. To this regard, we can observe Figure 1b,
illustrating the anomaly scores as ONLINE-IFOREST pro-
cesses an increasing number of points. Moving from left to
right, the anomaly scores describe the learned data distri-
bution after processing 100, 300 and 1000 points, and this
is equivalent to what ONLINE-IFOREST would learn over
sliding buffers of corresponding lengths. Notably, after pro-
cessing 100 points, the anomaly scores are coarse, whereas
they become more fine-grained after 1000 points.

5. Experiments
In this section we first compare the performance of ONLINE-
IFOREST and state-of-the-art methods on a large anomaly
detection benchmark where anomalous and genuine distribu-
tions Φ0 and Φ1 are stationary. Then, we resort to a dataset
exhibiting concept drift to assess their capability to adapt to
distribution changes.

5.1. Datasets

Stationary We run our experiments on the eight largest
datasets used in (Liu et al., 2008; 2012) (Http, Smtp (Ya-
manishi et al., 2004), Annthyroid, Forest Cover Type, Satel-
lite, Shuttle (Asunction & Newman, 2007), Mammography
and Mulcross (Rocke & Woodruff, 1996)), two datasets
from Kaggle competitions (Donors and Fraud (Pang et al.,

6

Online Isolation Forest

Table 2. Stationary datasets properties.
DATASET n d % OF ANOMALIES

DONORS 619326 10 5.90
HTTP 567497 3 0.40
FORESTCOVER 286048 10 0.90
FRAUD 284807 29 0.17
MULCROSS 262144 4 10.00
SMTP 95156 3 0.03
SHUTTLE 49097 9 7.00
MAMMOGRAPHY 11183 6 2.00
NYC TAXI SHINGLE 10273 48 5.20
ANNTHYROID 6832 6 7.00
SATELLITE 6435 36 32.00

2019)), and the shingled version of NYC Taxicab dataset
used in (Guha et al., 2016). We chose these datasets as
they contain real data where the genuine and anomalous
distributions Φ0 and Φ1 are unknown, and contain labels
about anomalous data to perform performance evaluation.
Information on the cardinality n, dimensionality d, and %
of anomalies for the datasets is outlined in Table 2.

Non-stationary We use the INSECTS dataset (Souza
et al., 2020) previously used for change detection (Frittoli
et al., 2023; Stucchi et al., 2023a;b). INSECTS contains
feature vectors (d = 33) describing the wing-beat frequency
of six (annotated) species of flying insects. This dataset con-
tains 5 real changes caused by temperature modifications
that affect the insects’ flying behavior. For our purposes,
we selected the two most populous classes as genuine (‘ae-
aegypti-female’, ‘cx-quinq-male’), and the least populous
as the anomalous one (‘ae-albopictus-male’). This results
in a total of n = 212514 points with 5.50% of anomalies.

5.2. Competing methods and methodology

In our experiments we compared ONLINE-IFOREST
(oIFOR) to state-of-the-art methods in the online anomaly
detection literature described in Section 3. In particular,
we compared to iForestASD (asdIFOR), Half Space Trees
(HST), Robust Random Cut Forest (RRCF) and LODA
(LODA) using their PySAD (Yilmaz & Kozat, 2020) imple-
mentation.

For comparison purposes, we set the number of trees τ = 32
for all the algorithms, and considered the number of random
cuts in LODA equivalent to the number of trees. We set
window size ω = 2048 for both oIFOR and asdIFOR, and
used the default value ω = 250 for HST. We set the sub-
sampling size used to build trees in asdIFOR to the default
value ψ = 256, while the number of bins for each random
projection in LODA to b = 100. The trees maximum depth
δ depends on the subsamping size ψ in asdIFOR, on the
window size ω and number η of points required to split his-

Table 3. Algorithms execution parameters.
ALGORITHM τ ω η ψ δ b

OIFOR 32 2048 32 – log2
ω
η

–
ASDIFOR 32 2048 – 256 log2 ψ –
HST 32 250 – – 15 –
RRCF 32 – – 256 – –
LODA 32 – – – – 100

togram bins in oIFOR, while it is fixed to the default value
δ = 15 in HST. The parameters configuration for all the
algorithms is illustrated in Table 3.

Each algorithm was executed 30 times on both stationary
and non-stationary datasets. We randomly shuffled every
stationary dataset before each execution, then used the same
shuffled version to test all the algorithms. Processing each
data point individually is prohibitive in terms of time due
to the data stream size. To solve this problem we divided
every dataset in batches of 100 points each and passed one
chunk at a time to the algorithms in an online manner.

We use the ROC AUC and execution time (in seconds) to
evaluate the effectiveness and efficiency of the considered
algorithms, respectively. In addition, we employ the crit-
ical difference diagram for both metrics to synthesize the
results across multiple executions on datasets with diverse
characteristics.

5.3. Results

ANOMALY DETECTION IN STATIONARY DATA STREAMS

In Table 4 we show the median ROC AUC for each algo-
rithm after processing each dataset, as well as the median
total execution time for each algorithm to process the entire
data stream at hand. The last two rows represent the median
value and the mean rank among the total 330 executions.
We highlight the best row-wise result in bold.

oIFOR exhibits, by far, the lowest time complexity with
respect to all the competitors at hand. In particular, when
we compare oIFOR to the second best method (asdIFOR),
we can notice that oIFOR execution time is less than half in
4 out of 5 biggest datasets, and it is reduced by more than an
order of magnitude in 4 out of 6 smallest ones. This result
is confirmed by the critical difference diagram presented
in Figure 4b, which shows that oIFOR is statistically better
than all the others, while LODA and asdIFOR are statisti-
cally equivalent. The statistical analysis has been conducted
for 5 populations (one for each algorithm) with 330 paired
total execution times. Critical difference diagrams are based
on the post-hoc Nemenyi test, and differences between pop-
ulations are significant when the difference of their mean
rank is greater than the critical distance CD = 0.336. Mean

7

Online Isolation Forest

Table 4. ROC AUCs and total execution times.

AUC (↑) TIME (↓)
OIFOR ASDIFOR HST RRCF LODA OIFOR ASDIFOR HST RRCF LODA

DONORS 0.795 0.769 0.715 0.637 0.554 252.36 551.85 2145.85 4924.46 2111.09
HTTP 0.998 0.999 0.992 0.996 0.632 179.36 509.40 2016.00 8367.16 2017.85
FORESTCOVER 0.887 0.861 0.722 0.917 0.500 107.65 197.82 1045.39 2997.86 1009.92
FRAUD 0.936 0.946 0.910 0.951 0.722 100.09 285.69 973.91 4936.03 931.93
MULCROSS 0.995 0.952 0.011 0.800 0.506 90.33 270.79 936.01 3244.96 848.12
SMTP 0.861 0.905 0.851 0.894 0.731 29.95 142.65 325.77 1273.98 254.69
SHUTTLE 0.992 0.996 0.981 0.957 0.528 16.35 108.28 167.48 770.61 130.61
MAMMOGRAPHY 0.854 0.855 0.831 0.824 0.622 3.32 80.01 37.92 118.22 29.55
NYC TAXI SHINGLE 0.572 0.709 0.342 0.725 0.499 8.03 83.15 36.70 151.67 36.82
ANNTHYROID 0.685 0.810 0.636 0.740 0.589 2.00 77.06 24.26 93.40 19.79
SATELLITE 0.651 0.709 0.531 0.662 0.501 3.74 78.90 21.78 93.77 17.55

MEDIAN 0.866 0.863 0.739 0.832 0.541 29.95 142.57 323.29 1274.45 254.64
MEAN RANK 2.167 1.583 3.917 2.500 4.833 1.000 2.667 3.500 5.000 2.833

12345

LODA
HST

RRCF
oIFOR
asdIFOR

CD

(a) ROC AUCs

12345

RRCF
HST

LODA
asdIFOR
oIFOR

CD

(b) Times

Figure 4. Critical difference diagram for ROC AUCs and total execution times.

ranks and critical diagrams have been generated via Au-
torank (Herbold, 2020) library. In Figure 6 we sorted the
median total execution times listed in Table 4 by dataset
size, and we can appreciate the linear trend exhibited by all
the algorithms.

Table 4 shows that oIFOR, asdIFOR and RRCF exhibit the
best detection performance over different datasets. While
oIFOR exhibits a slightly higher overall median ROC AUC,
the Nemenyi test highlights that asdIFOR is the most effec-
tive algorithm, and that oIFOR and RRCF are statistically
equivalent (Figure 4a). The exceptionally low performance
of HST on the Mulcross dataset in Table 4 is due to the fact
that the size of anomaly clusters is large and that anomaly
clusters have an equal or higher density compared to gen-
uine ones in that dataset. This scenario, combined with the
high default maximum depth value δ, makes this situation
particularly difficult for HST to handle, as it is based on the
opposite assumptions.

Learning in the early stages of a data stream In addition
to the conventional evaluation of online anomaly detection
algorithms based on their final anomaly detection capabil-
ity, we highlight the initial learning speed demonstrated by
various methods. We focused to the early stages of the data
stream, aiming to comprehend how the various methods

learn in a critical phase such as the initial one, and ana-
lyzed their performance within the first 1000 samples of the
stream. Solid curves in Figure 5a show the median ROC
AUC of each algorithm over all the 30 executions and the
11 datasets, for a total of 330 runs. We computed the ROC
AUCs at each time instant ṫ using the scores from t = 1 to
t = ṫ. All the algorithms show a fast learning speed, since
within the first 1000 samples all of them get very close to
the final median performance showed in Table 4. The cor-
responding efficiency is shown in Figure 5b, where all the
algorithms exhibit similar trends, with oIFOR being the
fastest to adapt.

ANOMALY DETECTION IN NON-STATIONARY DATA
STREAMS

In Figure 7 we show the median ROC AUC of each al-
gorithm over 30 executions on the INSECTS dataset. We
are interested in investigating the instantaneous anomaly
detection performance of all the algorithms, therefore we
computed the ROC AUCs at each time instant ṫ using the
scores within a window of size 5000 centered in ṫ, i.e., from
t = ṫ − 2500 to t = ṫ + 2500. The choice of 5000 for
window size was made to guarantee that the resulting curves
exhibit a satisfactory degree of smoothness. Vertical dotted
lines represent the time instants when the change in distri-

8

Online Isolation Forest

0 200 400 600 800 1000
samples

0.5

0.6

0.7

0.8

0.9

1.0
AU

C

(a) ROC AUCs

0 200 400 600 800 1000
samples

10 2

10 1

100

101

tim
e

(s
)

(b) Times

Figure 5. Evolution of the median ROC AUCs and total execution times within the first 1000 samples of the stream.

104 105

samples

101

102

103

104

tim
e

(s
)

Ht
tp

Fo
re

st
Co

ve
r

M
ul

cr
os

s

Sm
tp

Sh
ut

tle

M
am

m
og

ra
ph

y

An
nt

hy
ro

id
Sa

te
llit

e

do
no

rs

fra
ud

ny
c_

ta
xi

_s
hi

ng
le

Dataset

Figure 6. Total execution times ordered by dataset size.

butions occur. Figure 7 shows that all the tested algorithms
are affected in a similar way by sudden changes in the gen-
uine and anomalous distributions Φ0 and Φ1, and we cannot
identify a method that consistently maintains performance
after a change. Although LODA is less affected by changes
compared to the others, the overall low performance in-
dicates that LODA struggles in learning the underlying
distributions. The execution times of the algorithms are not
influenced by distribution changes, and ONLINE-IFOREST
remains the fastest option.

6. Conclusion and Future Works
In this work we presented ONLINE-IFOREST, an anomaly
detection algorithm specifically designed for the streaming

0 50000 100000 150000 200000
samples

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Figure 7. The performance of online anomaly detection methods
is significantly influenced by changes in data distributions Φ0 and
Φ1.

scenario. ONLINE-IFOREST is an ensemble of histograms
that dynamically adapt to the data distribution keeping only
statistics about data points. Thanks to a sliding window, ON-
LINE-IFOREST is able to selectively forget old data points
and update histograms accordingly. Extensive experiments
showed that ONLINE-IFOREST features an extremely fast
processing and learning speed while maintaining effective-
ness comparable to that of state-of-the-art methods. The
intuitive operational approach, coupled with its high speed,
positions ONLINE-IFOREST as a good candidate for address-
ing real-world streaming anomaly detection challenges.

As future work we aim to remove the sliding window
W while retaining the forgetting capabilities of ONLINE-
IFOREST. Additionally, we seek to automate the selection
of the number η of points required to split histogram bins.

9

Online Isolation Forest

Acknowledgements
This work was supported by the “PNRR-PE-AI FAIR” and
the “AI for Sustainable Port-city logistics (PNNR Grant
P2022FLLPY)” projects, both funded by the NextGenera-
tion EU program.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahmed, M., Mahmood, A. N., and Islam, M. R. A survey of

anomaly detection techniques in financial domain. Future
Generation Computer Systems, 55:278–288, 2016.

Asunction, A. and Newman, D. The uci machine learn-
ing repository. https://archive.ics.uci.edu,
2007.

Banaee, H., Ahmed, M. U., and Loutfi, A. Data mining
for wearable sensors in health monitoring systems: A
review of recent trends and challenges. Sensors, 13(12):
17472–17500, 2013.

Bronte, R., Shahriar, H., and Haddad, H. Information
theoretic anomaly detection framework for web appli-
cation. In Computer Software and Applications Confer-
ence (COMPSAC), volume 2, pp. 394–399. Institute of
Electrical and Electronics Engineers (IEEE), 2016.

Chandola, V., Banerjee, A., and Kumar, V. Anomaly de-
tection: A survey. ACM Computing Surveys, 41(3):1–58,
2009.

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and
Bontempi, G. Credit card fraud detection: A realistic
modeling and a novel learning strategy. Transactions
on Neural Networks and Learning Systems, 29(8):3784–
3797, 2018.

Ding, Z. and Fei, M. An anomaly detection approach based
on isolation forest algorithm for streaming data using
sliding window. International Federation of Automatic
Control (IFAC), 46(20):12–17, 2013.

Frittoli, L., Carrera, D., and Boracchi, G. Nonparametric
and online change detection in multivariate datastreams
using quanttree. Transactions on Knowledge and Data
Engineering (TKDE), 35(8):8328–8342, 2023.

Gomes, H. M., Barddal, J. P., Enembreck, F., and Bifet, A. A
survey on ensemble learning for data stream classification.
ACM Computing Surveys, 50(2):1–36, 2017.

Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., and Gama,
J. Machine learning for streaming data: State of the art,
challenges, and opportunities. International Conference
on Knowledge Discovery and Data Mining (SIGKDD)
Explorations Newsletter, 21(2):6–22, 2019.

Guha, S., Mishra, N., Roy, G., and Schrijvers, O. Robust
random cut forest based anomaly detection on streams. In
International Conference on Machine Learning (ICML),
volume 48, pp. 2712–2721. Proceedings of Machine
Learning Research (PMLR), 2016.

Hariri, S., Kind, M. C., and Brunner, R. J. Extended isola-
tion forest. Transactions on Knowledge and Data Engi-
neering (TKDE), 33(04):1479–1489, 2021.

Herbold, S. Autorank: A python package for automated
ranking of classifiers. Journal of Open Source Software
(JOSS), 5(48):2173, 2020.

Johnson, W. B. and Lindenstrauss, J. Extensions of lipschitz
mappings into a hilbert space. In Conference on Mod-
ern Analysis and Probability, volume 26, pp. 189–206.
American Mathematical Society, 1984.

Knuth, D. E. The Art of Computer Programming, volume
1-4B Boxed set. Addison-Wesley Professional, 2023.

Lesouple, J., Baudoin, C., Spigai, M., and Tourneret, J.-
Y. Generalized isolation forest for anomaly detection.
Pattern Recognition Letters, 149:109–119, 2021.

Leveni, F., Magri, L., Boracchi, G., and Alippi, C. Pif:
Anomaly detection via preference embedding. In Inter-
national Conference on Pattern Recognition (ICPR), pp.
8077–8084. Institute of Electrical and Electronics Engi-
neers (IEEE), 2021.

Leveni, F., Magri, L., Alippi, C., and Boracchi, G. Hashing
for structure-based anomaly detection. In International
Conference on Image Analysis and Processing (ICIAP),
pp. 25–36. Springer Nature, 2023.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
International Conference on Data Mining (ICDM), pp.
413–422. Institute of Electrical and Electronics Engineers
(IEEE), 2008.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. On detecting clus-
tered anomalies using sciforest. In European Conference
on Machine Learning (ECML), pp. 274–290. Springer
Nature, 2010.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation-based
anomaly detection. Transactions on Knowledge Discov-
ery from Data (TKDD), 6(1):1–39, 2012.

Murphy, R. B. On Tests for Outlying Observations. Prince-
ton University Press, 1951.

10

https://archive.ics.uci.edu

Online Isolation Forest

Pang, G., Shen, C., and van den Hengel, A. Deep anomaly
detection with deviation networks. In International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 353–362. Association for Computing Ma-
chinery (ACM), 2019.

Pevnỳ, T. Loda: Lightweight on-line detector of anomalies.
Machine Learning, 102(2):275–304, 2016.

Rocke, D. M. and Woodruff, D. L. Identification of outliers
in multivariate data. Journal of the American Statistical
Association (JASA), 91(435):1047–1061, 1996.

Souza, V. M., dos Reis, D. M., Maletzke, A. G., and Batista,
G. E. Challenges in benchmarking stream learning algo-
rithms with real-world data. Data Mining and Knowledge
Discovery, 34(6):1805–1858, 2020.

Staerman, G., Mozharovskyi, P., Clémençon, S., and
d’Alché Buc, F. Functional isolation forest. In Asian
Conference on Machine Learning (ACML), volume 101,
pp. 332–347. Proceedings of Machine Learning Research
(PMLR), 2019.

Stojanovic, L., Dinic, M., Stojanovic, N., and Stojadinovic,
A. Big-data-driven anomaly detection in industry (4.0):
An approach and a case study. In International Confer-
ence on Big Data (ICBD), pp. 1647–1652. Institute of
Electrical and Electronics Engineers (IEEE), 2016.

Stucchi, D., Magri, L., Carrera, D., and Boracchi, G. Mul-
timodal batch-wise change detection. Transactions on
Neural Networks and Learning Systems, 34(10):6783–
6797, 2023a.

Stucchi, D., Rizzo, P., Folloni, N., and Boracchi, G. Kernel
quanttree. In International Conference on Machine Learn-
ing (ICML), volume 202, pp. 32677–32697. Proceedings
of Machine Learning Research (PMLR), 2023b.

Tan, S. C., Ting, K. M., and Liu, T. F. Fast anomaly detection
for streaming data. In International Joint Conference on
Artificial Intelligence (IJCAI), volume 2, pp. 1511–1516.
Association for the Advancement of Artificial Intelligence
(AAAI), 2011.

Xu, H., Pang, G., Wang, Y., and Wang, Y. Deep isolation
forest for anomaly detection. Transactions on Knowledge
and Data Engineering (TKDE), 35(12):12591–12604,
2023.

Yamanishi, K., Takeuchi, J.-i., Williams, G., and Milne,
P. On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms. Data
Mining and Knowledge Discovery, 8(3):275–300, 2004.

Yilmaz, S. F. and Kozat, S. S. Pysad: A streaming
anomaly detection framework in python. arXiv preprint
arXiv:2009.02572, 2020.

Zhang, X., Dou, W., He, Q., Zhou, R., Leckie, C., Kotagiri,
R., and Salcic, Z. Lshiforest: A generic framework for
fast tree isolation based ensemble anomaly analysis. In In-
ternational Conference on Data Engineering (ICDE), pp.
983–994. Institute of Electrical and Electronics Engineers
(IEEE), 2017.

11

