
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING LLM REASONING: FROM EXPLICIT
TRAJECTORIES TO LATENT REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved impressive performance on com-
plex tasks by generating human-like, step-by-step rationales, referred to as rea-
soning trajectory, before arriving at final answers. However, the length of these
reasoning trajectories often far exceeds that of the final answers, which incurs sub-
stantial inference costs even for relatively simple tasks. Advanced methods typ-
ically attempt to compress reasoning trajectory length through post-training, but
they remain decoding-intensive and fail to inherently mitigate the efficiency chal-
lenge. In this work, we challenge the necessity of generating full reasoning trajec-
tories and empirically demonstrate that LLMs can generate accurate answers us-
ing only fragmental reasoning paths, without relying on complete token-by-token
sequences. To this end, we propose a novel Latent Reasoning Tuning (LRT)
framework, which empowers LLMs to perform reasoning using implicit, compact,
learnable representations instead of explicit textual trajectories. Technically, LRT
replaces the costly autoregressive generation of reasoning steps with a single for-
ward pass through a lightweight reasoning network, which generates latent vectors
that encapsulate the necessary reasoning logic and condition the LLM to produce
the final answer. Experiments on mathematical and out-of-domain benchmarks
demonstrate that our LRT consistently outperforms relevant efficient reasoning
methods. Moreover, by transforming explicit reasoning into latent reasoning, our
approach surpasses the state-of-the-art Qwen3 hybrid reasoning framework.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled slow-thinking reasoning mod-
els (Min et al., 2024), including OpenAI o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025),
and Qwen QwQ (Team, 2025). The output of these models typically consists of a reasoning tra-
jectory along with a summarized answer, the latter serving as a concise synthesis of the former.
Through increased allocation of computational resources, these models have demonstrated signif-
icantly enhanced capabilities in solving complex tasks. Such reasoning capabilities are acquired
through supervised fine-tuning (SFT) and reinforcement learning. For instance, DeepSeek-R1 em-
ploys Group Relative Policy Optimization (GRPO) with rule-based reward signals following the
SFT phase, yielding models with superior reasoning performance.

Despite their impressive capabilities, reasoning LLMs often incur substantial computational over-
head as they generate lengthy reasoning chains for backtracking and self-verification even for simple
tasks. This phenomenon, often referred to as overthinking (Sui et al., 2025), leads to computational
waste: the models devote significant resources to producing elaborate rationales that yield only
marginal performance gains. These lengthy reasoning chains also increase inference latency, posing
significant barriers to real-time applications.

Mitigating the substantial inference costs of slow-thinking reasoning models, which are largely dom-
inated by the auto-regressive generation of extended reasoning trajectories, has become a critical
research imperative. A prominent research line explores post-training approaches that explicitly
compress reasoning (Luo et al., 2025a; Hou et al., 2025). Methods such as ShorterBetter (Yi et al.,
2025) construct dynamic rewards by selecting the shortest correct sample among multiple genera-
tions, while LC-R1 (Cheng et al., 2025) integrates collaboration-length and compression terms in
addition to accuracy rewards. These reinforcement learning based approaches encourage shorter

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Reasoning Process

Question

… …

Reasoning Trajectory

𝑷𝜽 …

Answer

𝒓𝟏 ∼ 𝑷𝜽(⋅∣ 𝑿)

𝒓𝒌 ∼ 𝑷𝜽(⋅∣ 𝑿, 𝒓𝟏, … , 𝒓𝒌$𝟏)
…

𝒚𝟏 ∼ 𝑷𝜽(⋅∣ 𝑿, 𝑹)

𝒚𝒎 ∼ 𝑷𝜽(⋅∣ 𝑿, 𝑹, 𝒚𝟏… , 𝒚𝒎$𝟏)
…

𝑷𝜽	Large	Language	Model

(sampled step by step from 𝑃!)

Latent Reasoning Process

Question

… …

Latent Reasoning Trajectory

𝑷𝜽 …

Answer

𝑮𝝓

𝒓𝟏, 𝒓𝟐… , 𝒓𝒕 = 𝑮𝝓(𝑿)…
𝒚𝟏 ∼ 𝑷𝜽(⋅∣ 𝑿, 𝑹′)

𝒚𝒎 ∼ 𝑷𝜽(⋅∣ 𝑿, 𝑹′, 𝒚𝟏… , 𝒚𝒎$𝟏)
…

G𝝓	Reasoning	Net (computed directly via 𝐺")

Question Tokens
𝑿 = [𝑥#, 𝑥$, … , 𝑥%]

Reasoning Tokens
𝑹 = [𝑟#, 𝑟$, … , 𝑟&]

Latent Reasoning Tokens
𝑹′	 = [𝑟#, 𝑟$, … , 𝑟']

Answer Tokens
𝒀 = [𝑦#, 𝑦$, … , 𝑦(]

Figure 1: Comparison between the schematic diagrams of the reasoning LLM generation process
and the Latent Reasoning method generation process.

responses; however, they remain fundamentally “slow-thinking”, the models still traverse extended
reasoning trajectories, and the imposed length reward may even constrain problem-solving for real
hard problems. A complementary line of work attempts to bypass reasoning entirely by substitut-
ing trajectories with fixed prompts. For instance, NoThinking (Ma et al., 2025) prefills a fabricated
thinking block to skip chain-of-thought generation, and Qwen3 (Yang et al., 2025) enforces direct
answer emission via a special control token. While such methods effectively eliminate reasoning
tokens, their reliance on rigid prefilling introduces brittleness and can impair performance.

Unlike existing methods that pursue efficiency primarily via fine-tuning or prompt control, we pro-
pose latent reasoning tuning (LRT), a framework that fundamentally reimagines reasoning com-
putation. As illustrated in Figure 1, we introduce an additional lightweight component, termed the
reasoning network, to facilitate model reasoning. This component converts explicit reasoning trajec-
tories into fixed-length, implicit latent representations, thereby obviating the need for autoregressive
sampling of individual reasoning steps. The core of LRT is training reasoning network Gϕ to gen-
erates latent reasoning chains which support the reasoning model to generate the final answers. Our
approach mitigates the limitations of the two aforementioned methods: on the one hand, it replaces
explicit reasoning trajectories with latent representations that can be directly computed; on the other
hand, since our latent representations are derived from a reasoning network, they can be optimized
to further enhance model performance, rather than relying on fixed representations for all inputs.
Furthermore, its modular and non-intrusive design allows reasoning LLMs to be augmented with-
out parameter modifications, thereby supporting seamless transitions between latent and explicit
reasoning modes. Our primary contributions are as follows:

• We propose a novel Latent Reasoning Tuning framework which enhances reasoning effi-
ciency by replacing the explicit, token-by-token generation of reasoning steps with a com-
pact latent trajectory computed via an auxiliary network.

• The design of our framework is grounded in a key finding from our analysis of LLM rea-
soning. We demonstrate that models maintain high accuracy even when conditioned on
fragmented reasoning trajectories, establishing that a fully explicit trajectory is not essential
for correct inference. Building on this insight, our method further transforms the explicit
trajectory into an latent representation.

• Experimental results demonstrate that LRT outperforms other efficient reasoning ap-
proaches when forcing the model to reason efficiently and surpasses the performance of
Qwen3’s non-thinking mode, thereby validating the effectiveness of our framework.

2 REASONING TRAJECTORY ANALYSIS

As analyzed in TokenSkip (Xia et al., 2025), tokens in the reasoning trajectory contribute unequally;
many serve primarily as transitional elements that maintain coherence. These tokens can therefore

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

be omitted to compress the trajectory, and token importance can be quantified using perplexity or a
BERT-like language model. We further argue that, in slow-thinking models, the backtracking and
self-verification behavior allows even certain important tokens or entire sub-steps to be partially
compressed without loss of performance. To verify this hypothesis, we provide LLMs with rea-
soning trajectories of varying completeness and measure how these incomplete trajectories affected
final answer accuracy.

Settings. Let Pθ be a reasoning LLM. In our implementation, we employ Deepseek-R1-Distill-
Qwen-7B. Given a prompt X and its corresponding reasoning trajectory R, the model defines a
conditional distribution over answers Pθ(Y | [X,R]). We can obtain the final answer by auto-
regressively sampling from this distribution Y ∼ Pθ(· | [X,R]). To examine redundancy, we
construct incomplete trajectories by randomly omitting certain tokens or steps and then compare the
performance of models conditioned on complete reasoning trajectories with those conditioned on
incomplete variants. The skipping scheme is designed at two levels of granularity:

• Token-level Skipping: For a skip rate p ∈ [0, 1], construct Rt(p) by independently deleting
each token in R with probability p (preserving the order of the remaining tokens).

• Step-level Skipping: Segment R into sentences/steps; for a skip rate p ∈ [0, 1], construct
Rs(q) by randomly deleting each step with probability p.

We generate answers conditioned on these incomplete trajectories: Ŷt(p) ∼ Pθ(· | [X,Rt(p)]) and
Ŷs(p) ∼ Pθ(· | [X,Rs(p)]).

1500 2000 2500 3000 3500 4000

10%

20%

30%

40%

50%

10%

20%

30%

40%

50%

O
ri

gi
na

l
St

ep
 L

ev
el

To
ke

n
Le

ve
l

Token Nums (Original)
Accuracy (Original)

Token Nums (Step Level)
Accuracy (Step Level)

Token Nums (Token Level)
Accuracy (Token Level)

60 65 70 75 80 85 90 95

Accuracy (%)

92.80

91.85

91.45

91.53

90.35

89.48

92.24

92.28

91.86

91.36

90.60

Figure 2: Experimental results of Deepseek-R1-Distill-
Qwen-7B on Math-500 and corresponding token consump-
tion in reasoning trajectories.

Observation. Figure 2 presents
a systematic comparison between
models conditioned on complete rea-
soning trajectories and their incom-
plete variants across five skipping
ratios. When provided with com-
plete trajectories, the model con-
sumes an average of 3529.3 tokens
and achieves a pass rate of 92.8%,
outperforming all incomplete coun-
terparts. Notably, the performance
degradation from trajectory ablation
remains minimal. As the skip rate in-
creases, model performance demon-
strates remarkable robustness: when
30% of tokens are randomly omitted,
the pass rate decreases by fewer than
2 percentage points; at a 50% token-
level skip rate, the model maintains a
90.60% pass rate while utilizing ap-
proximately half the original trajec-
tory length.

Based on the above observations, we
can conclude that: 1. Reasoning tra-
jectories exhibit substantial redun-
dancy. Consistent with our hypoth-
esis, the model maintains robust per-
formance despite skipping 50% of tokens or steps, demonstrating that reasoning trajectories contain
significantly more information than required for correct answer inference. This suggests that cur-
rent reasoning LLMs generate excessive intermediate representations. 2. Models demonstrate
resilience to noisy or fragmental input. The model is able to exploit salient information even
from highly degraded trajectories, despite their higher perplexity. This robustness indicates that
reasoning LLMs possess strong information-filtering capabilities and can identify critical reasoning
components amid substantial noise or incompleteness.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reasoning Trajectory

𝑟!

Decode

… 𝑟"

Decode

Answer

𝑦!

Decode

…

Decode

𝑦#
Latent Trajectory Answer

𝑦!

Decode

…

Decode

𝑦#𝒓𝟏 … 𝒓𝒕

Prefill

Slow-thinking Reasoning Latent Reasoning

Figure 3: Explicit Slow-thinking Reasoning vs. Latent Reasoning. Comparison of the decoding pro-
cess. Our latent reasoning performs the reasoning steps in compact latent representations, avoiding
costly intermediate text generation.

3 METHOD

In this section, we begin by analyzing the reasoning model alongside existing efficient reasoning
approaches. We then introduce our proposed latent reasoning tuning framework, elaborating on its
architectural components, training methodology, and inference procedure.

3.1 PRELIMINARY

For a reasoning LLM Pθ, the generation process typically involves producing intermediate reasoning
content before arriving at the final answer to a given prompt. Formally, we denote the input prompt
as X = [x0, . . . , xn], the reasoning trajectory as R = [r1, . . . , rk], and the final answer as Y =
[y1, . . . , ym], where in general k ≫ m. The reasoning trajectory is generated autoregressively
according to the conditional distribution Pθ(· | X). This process can be expressed as:

r1 ∼ Pθ(· | X), r2 ∼ Pθ(· | [X, r1]), . . . , rk ∼ Pθ(· | [X, r1, . . . , rk−1]), (1)

where [·, ·] denotes the concatenation operation. The final answer is also sampled in this way, can
be expressed as: Y ∼ Pθ(· | [X,R]).

Previous research has focused on internalizing the reasoning process by fine-tuning models to di-
rectly predict the final answer Y without explicitly generating intermediate trajectories R. The
optimization objective is to learn a model Pθ̂ such that Pθ̂(· | X) approximates the behavior of
Pθ(· | [X,R]), effectively bypassing explicit reasoning. However, discarding intermediate reason-
ing steps often leads to suboptimal reasoning quality and reduced adaptability. Moreover, these
methods typically output only the single answer, without any summary of the underlying rationale.
Another line of work employs reinforcement learning to encourage models to generate more con-
cise reasoning trajectories R̂. These approaches optimize Pθ̂ such that Pθ̂(· | [X, R̂]) aligns with the
original distribution while reducing redundancy in R. Nevertheless, even the shortened trajectories
R̂ remain considerably longer than the final answer Y , thereby limiting efficiency gains.

Moreover, both internalization-based and RL-based approaches require retraining the model, which
substantially hinders the ability to leverage long-form reasoning for more challenging tasks.

3.2 LATENT REASONING TUNING

Our framework bypasses the computationally expensive process of generating explicit reasoning
traces (illustrated in Figure 3). Instead, it utilizes compact latent representations, thereby eliminating
the redundancy inherent in step-by-step reasoning.

Under greedy decoding, the generation of the reasoning trajectory becomes a deterministic process.
We can therefore formalize this process (Equation 1) as a function h : X × Θ → R, where R =
h(X, θ). Consequently, the probability distribution for the final answer is given by:

Pθ(Y | [X,R]) = Pθ(Y | [X,h(X, θ)]). (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Latent Reasoning Tuning Framework
Require: Base model Pθ, reference model Pref, training dataset D = {(Xi, Yi)}Ni=1
Ensure: Trained reasoning network Gϕ

1: Initialize: Reasoning network Gϕ with parameters ϕ
2: Freeze: Base model parameters θ

3: Stage 1: Supervised Fine-tuning
4: for batch (X,Y) ∈ D do
5: EX ← Embedddingθ(X) ▷ Get the embedding of input tokens
6: HX ← HiddenStatesθ(EX) ▷ Extract final hidden states
7: z ← Gϕ(HX) ▷ Generate latent reasoning
8: LSFT ← − logPθ(Y | [EX , z]) ▷ Compute SFT loss
9: Update ϕ using ∇ϕLSFT ▷ Update reasoning network

10: Stage 2: Reinforcement Learning
11: for batch X ∈ D do
12: EX ← Embeddingθ(X) ▷ Get the embedding of input tokens
13: HX ← HiddenStatesθ(EX) ▷ Extract final hidden states
14: z ← Gϕ(HX) ▷ Generte latent reasoning
15: Ŷ1:k ← Sample(Pθ(· | [EX , z])) ▷ Generate K candidate answers
16: r1:k ← {ComputeReward(Ŷk, Y)}Kk=1 ▷ Compute rewards
17: r̄ ← mean(r1:k), σr ← std(r1:k)
18: Ak ← (rk − r̄)/σr ▷ Normalized advantages
19: ρk ← ComputeRatio(Pθ, Pref, Ŷk)

20: LGRPO ← − 1
K

∑K
k=1 min

(
ρkAk, clip(ρk, 1− ϵ, 1 + ϵ)Ak

)
▷ Clipped policy loss

21: Update ϕ using ∇ϕLGRPO ▷ Policy update

22: Inference:
23: function GENERATEANSWER(Xtest)
24: EX ← Embedddingθ(Xtest)
25: HX ← HiddenStatesθ(EX)
26: ztest ← Gϕ(HX)
27: Ypred ← Decode(Pθ(· | [EX , ztest]))
28: return Ypred

The function h preserves the autoregressive structure of reasoning, ensuring that each token rt ∈ R
depends causally on its predecessors r<t. However, our analysis in Section 2 demonstrates that
complete step-by-step trajectories are not essential for achieving high performance. This finding
indicates that LLMs primarily leverage salient trajectory components to derive final answers, sug-
gesting that the strict autoregressive constraint is not a prerequisite. Motivated by this insight, we
propose circumventing the explicit generation process by introducing a dedicated reasoning net-
work, Gϕ : X → Z , which directly maps inputs to compact latent representations of reasoning
trajectory:

z = Gϕ(X). (3)

The latent representation z is optimized to support the downstream prediction of the correct answer,
thereby serving as a compact surrogate for the explicit trajectory R.

To train the reasoning network Gϕ to generate effective latent representations, we employ a two-
stage training paradigm. The first stage uses Supervised Fine-Tuning (SFT) to align the behavior of
the reasoning network with the reasoning LLM. The second stage leverages reinforcement learning
to further enhance its problem-solving capabilities. The two-stage training and inference process is
presented in Algorithm 1.

The primary objective of the SFT stage is to ensure that the latent trajectories produced by Gϕ enable
the reasoning model Pθ to replicate the answer of its original, explicit reasoning process. Formally,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

we aim to make the conditional probability distribution Pθ(· | [X,Gϕ(X)]) closely approximate the
target distribution Pθ(· | [X,h(X, θ)]). A common approach for aligning distributions is knowledge
distillation, which would involve minimizing the KL-divergence between them. But this method
requires generating logits for the target distribution, a computationally prohibitive step. We therefore
adopt a more direct and efficient SFT approach that circumvents this requirement. Our SFT dataset
D consists of triplets (Xi, Ri, Yi) extracted from the outputs of a reasoning LLM, where Ri denotes
the reasoning trajectory and Yi the final answer. While the dataset contains both trajectories and
answers, our training objective only leverages (Xi, Yi). For each input Xi, we first extract its final
hidden state representation, HXi , from the reasoning model Pθ. This state serves as a contextual
embedding of the input Xi. The reasoning network Gϕ then maps this representation to a latent
trajectory. We optimize the parameters ϕ of the reasoning network by minimizing the negative
log-likelihood, formally expressed as:

L(ϕ) = − log fθ(Y | [X,Gϕ(HX)]). (4)

While the first stage aligns the reasoning network with the reasoning model’s behavior, it is inher-
ently limited by the quality of the in the training data. To transcend this limitation and enhance
the model’s intrinsic problem-solving capabilities, we employ reinforcement learning in the sec-
ond stage of training. In this stage, we refine Gϕ by providing a direct reward signal based on the
correctness of the final answer. This signal offers verifiable feedback for optimizing the latent rea-
soning process. Unlike SFT, which promotes imitation, the RL objective incentivizes the reasoning
network to explore the latent space for more effective reasoning trajectories that consistently yield
correct outcomes.

4 EXPERIMENTS

4.1 SETTINGS

Models. We evaluate our method alongside baseline approaches on DeepSeek-R1-Distill-Qwen-
1.5B (Guo et al., 2025) and the Qwen3 series (Yang et al., 2025). DeepSeek-R1-Distill-Qwen-1.5B
is a suitable model for evaluation as it is specifically optimized for reasoning tasks, making it a
common target for efficiency improvements. The Qwen3 series features a native hybrid reasoning
mode controlled via chat templates, where special tokens toggle between thinking and non-thinking
modes. Our method offers an alternative approach to hybrid reasoning by transforming explicit rea-
soning models into latent reasoning models, achieving similar flexibility with improved efficiency.
The reasoning network employs Qwen3-Embedding-0.6B (Zhang et al., 2025) to operate over a
vocabulary of 256 learnable embeddings.

Datasets. For model training, we utilize the OpenR1-Math-220k dataset (Hugging Face, 2025) for
supervised fine-tuning and the DeepScaleR-Preview-Dataset (Luo et al., 2025b) for reinforcement
learning, respectively. To provide a comprehensive evaluation, we select five diverse reasoning
benchmarks that encompass mathematical, logical, and scientific domains. Our assessment begins
with GSM8K (Cobbe et al., 2021), which tests multi-step arithmetic reasoning through linguisti-
cally diverse grade-school word problems. For more advanced mathematical challenges, we utilize
MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023), a competition-level subset of the MATH
dataset, alongside the American Mathematics Competitions (AMC) dataset (MAA, 2023), which as-
sesses creative problem-solving and insight beyond routine calculations by demanding the synthesis
of non-obvious solution strategies. To further probe the generalization capabilities of our method on
out-of-domain benchmarks, we incorporate the LSAT (Zhong et al., 2023) and GPQA (Rein et al.,
2024). The LSAT evaluates analytical deduction and reading comprehension through complex argu-
mentative structures, targeting crucial abstract reasoning capabilities. Concurrently, GPQA gauges
performance on expert-level scientific problems, presenting a collection of graduate-level questions
in physics, chemistry, and biology specifically crafted to resist straightforward information retrieval
and instead demand profound domain knowledge and intricate multi-step reasoning.

Baselines. In addition to the base model DeepSeek-R1-Distill-Qwen-1.5B, we compare our ap-
proach with several efficient reasoning methods: NoThinking (Ma et al., 2025), which bypasses
the reasoning process through a simple prompt; ShorterBetter (Yi et al., 2025), which employs rein-
forcement learning with a dynamic reward signal to guide the model toward more efficient reasoning;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and LC-R1 (Cheng et al., 2025), which combines length and compression rewards to encourage the
model to retain only the most critical steps.

4.2 RESULTS AND DISCUSSIONS

Table 1: Accuracy (%) of different baselines and our method on in-domain and out-of-domain tasks.

Method Budget In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K LSAT GPQA

Baseline

512

33.25 43.15 70.00 19.02 24.24 37.93
NoThinking 37.75 58.35 73.24 18.15 23.74 42.25
ShorterBetter 33.87 55.11 60.78 19.05 26.23 39.01
LC-R1 35.75 48.00 74.26 18.59 24.24 40.17
Ours 38.00 60.65 77.16 19.57 29.17 44.91
Baseline

1024

42.88 67.50 79.10 20.98 28.16 47.72
NoThinking 40.25 66.70 75.00 22.72 25.88 46.11
ShorterBetter 36.31 55.76 60.78 18.32 28.38 39.91
LC-R1 44.87 68.00 78.98 20.22 30.56 48.53
Ours 42.50 68.50 78.95 22.39 30.55 48.58

Comparison with Other Efficient Reasoning Methods. Table 1 presents a comprehensive com-
parison between our method and four baseline models. Under the 512-token budget,, for in-domain
tasks, our method improves baseline accuracy across three benchmarks from 33.25%, 43.15%, and
70.00% to 38.00%, 60.65%, and 77.16%, respectively. Compared to the NoThinking’s prompt
strategy, our method achieves an average improvement of 2.16%. Furthermore, our approach out-
performs the RL-based efficient reasoning methods ShorterBetter and LC-R1 by average margins
of 8.68% and 5.93%, respectively. For out-of-domain tasks, our method also demonstrates superior
performance. Compared to the baseline model, it improves accuracy from 19.02% and 24.24% to
19.57% and 29.17%, respectively. In addition, our method surpasses the NoThinking, ShorterBet-
ter, and LC-R1 approaches by average margins of 3.43%, 1.73%, and 2.96%, respectively. These
results highlight the effectiveness of our method under limited token budgets. When more tokens
are available, our approach continues to outperform other baselines in terms of average accuracy.

Table 2: Performance comparison of Qwen3 non-thinking mode and our method on Qwen3-1.7B
and Qwen3-4B.

Model In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K GPQA LSAT

Qwen3-1.7B

base@1 44.50 66.05 66.79 30.81 26.52 46.93
ours@1 44.50 60.90 77.01 32.07 27.61 48.42
base@4 50.00 77.80 83.85 56.57 44.78 62.60
ours@4 51.00 77.40 89.61 62.12 53.91 66.81

Qwen3-4B

base@1 47.25 70.70 75.08 44.82 32.50 54.07
ours@1 46.25 72.60 88.51 39.27 28.59 55.04
base@4 54.00 80.00 88.10 64.65 42.17 65.78
ours@4 54.00 84.80 95.07 67.17 56.96 71.60

Comparison with the Qwen3 Series Models. The Qwen3 series integrates thinking and non-
thinking modes within a single model, with the mode determined by the chat template. Since our
method transforms reasoning models into latent reasoning models, it offers an alternative approach
for achieving hybrid reasoning. To evaluate this capability, we converted the thinking mode to
latent reasoning and compared its performance against the corresponding non-thinking mode. We
report results for Qwen3-1.7B and Qwen3-4B models enhanced with our method, evaluated against
their non-thinking counterparts across five benchmarks. Performance is measured using the pass@k

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

metric: for each problem, k samples are generated, and the problem is considered solved if at least
one sample produces the correct answer.

As shown in Table 2, our Latent Reasoning Tuning method improves average accuracy across five
benchmarks for both Qwen3-1.7B and Qwen3-4B models, increasing pass@1 from 46.93% and
54.07% to 48.42% and 55.04%, respectively. The improvements in pass@4 are even more substan-
tial, rising from 62.60% and 65.78% to 66.81% and 71.60%, respectively. Notably, while pass@1
performance occasionally matches or slightly underperforms the non-thinking mode, pass@4 con-
sistently surpasses it, indicating that our method generates more diverse solution paths. These results
demonstrate the effectiveness of our approach in enabling hybrid reasoning capabilities.

4.3 ABLATION ANALYSIS

This section examines the results of our latent reasoning tuning methods with respect to the number
of latent reasoning tokens and the training strategies employed.

Table 3: Accuracy (%) of the latent reasoning method with varying numbers of latent tokens.

Tokens In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K GPQA LSAT

64 36.25 55.15 69.43 26.26 25.54 42.53
128 41.50 58.90 73.67 29.04 22.07 45.04
256 44.50 60.90 77.01 32.07 27.61 48.42
512 41.50 61.45 76.88 28.91 25.87 46.92

Analysis of the Number of Reasoning Tokens. Initially, we evaluated the LRM’s performance
using a fixed number of latent reasoning tokens. To further investigate the impact of token quantity,
we conducted experiments with the Qwen3-1.7B model, varying the number of reasoning tokens
from 64 to 512. All models were trained under identical experimental settings, with performance
evaluated across five benchmarks. As shown in Table 3, performance improves as reasoning tokens
increase up to n ≤ 256, with accuracy rising from 42.53% to 45.04% and then to 48.42%. This
finding aligns with the test-time scaling law, as performance improves with an increasing number
of reasoning tokens. However, further increasing the token count does not yield continued improve-
ments. When using 512 reasoning tokens, average performance falls below that of the 256-token
model, with superior results observed only on the MATH-500 benchmark. This suggests that larger
training scales may be necessary to fully leverage additional latent reasoning tokens.

Table 4: Accuracy (%) of the latent reasoning method under different training methods.

Training Method In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K GPQA LSAT

SFT 37.00 54.65 63.64 28.66 22.50 41.29
SFT + RL 44.50 60.90 77.01 32.07 27.61 48.42

Analysis of the training methods. The reasoning network employs a two-stage training process.
The first stage uses the reasoning dataset for supervised fine-tuning, followed by reinforcement
learning to optimize the model and enhance its problem-solving capabilities. To evaluate the effec-
tiveness of the two-stage approach, we compare the model trained solely with supervised fine-tuning
to the model trained with both stages. As shown in Table 4, the two-stage training improves accu-
racy by 6.45%, 7.5%, and 13.37% on MATH-500, AMC, and GSM8K benchmarks, respectively.
For out-of-domain tasks, we observe considerable improvements as well, with an average gain of
4.26%. These results demonstrate that the two-stage training strategy plays a vital role in enhancing
problem-solving capabilities.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

5.1 CHAIN-OF-THOUGHT REASONING

The reasoning capabilities of Large Language Models (LLMs) were significantly advanced by
Chain-of-Thought (CoT) (Wei et al., 2022; Chu et al., 2023) prompting, a technique that elicits
a sequence of intermediate steps to deconstruct complex problems before deriving a final answer.
Building on this, a new paradigm of slow-thinking systems like OpenAI’s o1 (Jaech et al., 2024),
DeepSeek-R1 (Guo et al., 2025), and Qwen-QwQ (Team, 2025) has emerged to further elevate per-
formance on challenging tasks. These models employ extensive test-time computation, generating
vast reasoning trajectories that are subsequently summarized into a concise answer. This process
is typically optimized via Reinforcement Learning from Verifiable Rewards (RLVR) (Wen et al.,
2025), where the model is rewarded based on the correctness of the final outcome. While highly ef-
fective, this slow-thinking paradigm is hampered by a critical inefficiency: overthinking (Sui et al.,
2025). Models often generate disproportionately verbose reasoning chains, replete with redundant
steps and superfluous calculations, particularly for simpler problems.

5.2 EFFICIENT REASONING

To mitigate the overthinking issue, prior work has explored several strategies to enhance the effi-
ciency of reasoning LLMs (Feng et al., 2025). Some approaches focus on inference-time prompting,
which guides models to generate more concise reasoning steps (Xu et al., 2025; Aytes et al., 2025)
or even bypass reasoning entirely by forcing a direct answer (Ma et al., 2025). Other methods seek
to instill this efficiency more directly by fine-tuning models on compressed reasoning chains. For in-
stance, TokenSkip (Xia et al., 2025) and C3oT (Kang et al., 2025) utilize trajectories containing only
keywords, while PAUSE Token (Goyal et al., 2023) replaces entire reasoning chains with special
”pause tokens.” ICoT-SI (Deng et al., 2024) internalizes reasoning chains through staged training on
step-skipped datasets, enabling models to perform reasoning steps internally rather than explicitly.
A particularly prominent strategy employs reinforcement learning to explicitly penalize verbosity,
typically by incorporating a length-based penalty into the reward function. O1-Pruner (Luo et al.,
2025a), for example, introduces a length-harmonizing reward, while other works apply penalties for
exceeding token budgets (Aggarwal & Welleck, 2025; Hou et al., 2025) or use dynamic penalties
based on answer correctness (Yeo et al., 2025). While effective, these methods still operate on ex-
plicit, token-based reasoning steps. Distinct from methods that shorten explicit reasoning, another
line of work explores latent reasoning (Chen et al., 2025). These approaches (Hao et al., 2024; Saun-
shi et al., 2025; Wu et al., 2025; Geiping et al., 2025; Ruan et al., 2025) circumvent the generation
of textual CoT steps by performing reasoning in a latent, continuous space. This computation is
executed by iteratively refining the model’s hidden states without decoding them into text at each
step. Our approach diverges from these work by not training a latent reasoner from scratch. Instead,
we adapt a pre-trained, explicit reasoning LLM, empowering it to leverage the latent representations
for computation without generating intermediate text.

6 CONCLUSION

In this work, we investigate the overthinking problem by conditioning the answers of reasoning
LLMs on fragmental reasoning trajectories. Our analysis shows that these models can exploit salient
information even when trajectories are highly degraded and exhibit high perplexity. We then model
the reasoning trajectory as a function of the input. Building on these insights, we introduce the
Latent Reasoning Tuning (LRT) framework, which uses an auxiliary reasoning network to model the
trajectory and encode it as a compact latent representation. With two-stage training, LRT effectively
guides models toward correct reasoning. Comprehensive experiments across multiple benchmarks
validate its effectiveness. Notably, since our method does not modify LLM parameters, it enables
flexible switching between latent and explicit reasoning modes, offering a practical alternative to
hybrid reasoning systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Xinghao Chen, Anhao Zhao, Heming Xia, Xuan Lu, Hanlin Wang, Yanjun Chen, Wei Zhang, Jian
Wang, Wenjie Li, and Xiaoyu Shen. Reasoning beyond language: A comprehensive survey on
latent chain-of-thought reasoning. arXiv preprint arXiv:2505.16782, 2025.

Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length compres-
sion in large reasoning models. arXiv preprint arXiv:2506.14755, 2025.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. Navigate through enigmatic labyrinth a survey of chain of
thought reasoning: Advances, frontiers and future. arXiv preprint arXiv:2309.15402, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025b. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

MAA. American mathematics competitions. In American Mathematics Competitions, 2023.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

11

https://qwenlm.github.io/blog/qwq-32b/
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoyi Wu, Zhihao Teng, and Kewei Tu. Parallel continuous chain-of-thought with jacobi iteration.
arXiv preprint arXiv:2506.18582, 2025.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal
inference length for efficient reasoning. arXiv preprint arXiv:2504.21370, 2025.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reason-
ing by superposition: A theoretical perspective on chain of continuous thought. arXiv preprint
arXiv:2505.12514, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

• A LLM Usage Statement.

• B Experiment Details.

• C Architecture of the Reasoning Network.

• D Complementary Experiments and Analysis.

• E Discussion of Other Latent Reasoning Methods.

A LLM USAGE STATEMENT

In the preparation of this manuscript, LLMs (Large Language Models) were employed exclusively
for text polishing and grammar checking, with the goal of improving readability. All technical
ideas, methodological designs, mathematical formulations, and experimental results were conceived,
implemented, and verified solely by the authors.

B EXPERIMENT DETAILS

Training Setup. We train our latent reasoning network on eight NVIDIA A100 GPUs. The frame-
work is implemented using the open-source TRL (von Werra et al., 2020) library. In the SFT stage,
we train the reasoning network for 3 epochs with a batch size of 64 and a learning rate of 1× 10−3.
In the subsequent RL stage, we use a batch size of 1024, generate 8 rollouts per question, and cap
the maximum rollout length at 2048 tokens. RL training is performed for 100 steps with a learning
rate of 1× 10−5 and a KL penalty coefficient of 2× 10−3.

Inference Setup. All inference experiments are conducted on a single NVIDIA A100 GPU to
ensure a fair comparison of efficiency. We set the generation temperature to 0.6 and top-p to 0.95.
To evaluate performance specifically under efficient reasoning constraints, we adopt the budget-
forcing implementation from S1 (Muennighoff et al., 2025) and enforce the same token budget
across all models. Specifically, for the DeepSeek-R1-Distill-Qwen-1.5B model, we use 512- and
1024-token budgets, and for the Qwen3 series models, we use a 1024-token budget unless otherwise
indicated in the tables. To ensure a strictly fair comparison of inference cost, all baselines and
our method are evaluated using the same HuggingFace Transformers (Wolf et al., 2020) stack on
identical hardware. Consequently, the reported speedups reflect algorithmic improvements rather
than differences in system-level optimizations or implementation details.

To support reproducibility, we provide an anonymized repository containing all implementation de-
tails, hyperparameters, and scripts for training and evaluation: https://anonymous.4open.
science/r/LatentReasoningTuning/.

C ARCHITECTURE OF THE REASONING NETWORK

As described in Section 4, the reasoning network Gϕ is initialized from Qwen3-Embedding-
0.6B (Zhang et al., 2025). Here, we provide additional architectural details. In our framework,
the input to Gϕ consists of the hidden states of the base model rather than token embeddings; ac-
cordingly, we remove the original embedding layer of Gϕ. We introduce a linear projection layer fin
to map the base model’s hidden states into the input space of Gϕ, and a second projection layer fout
to project the output of Gϕ back to the hidden dimension of the base model. The sequence length of
the latent reasoning is determined by a set of learnable vectors [r̂1, r̂2, . . . , r̂t], which are optimized
jointly during both the SFT and RL stages. Formally, the latent representations are produced as

z = fout (Gϕ (fin(HX)⊙ [r̂1, r̂2, . . . , r̂t])) , (5)

where HX denotes the hidden states of the base model for input X , and ⊙ represents the Hadamard
product with broadcasting. The reasoning network is not trained from scratch; instead, it is ini-
tialized from the pre-trained Qwen3-Embedding-0.6B model. We adopt this initialization because
Qwen3-Embedding-0.6B has been trained on large-scale multilingual and long-text corpora, provid-
ing semantically rich representations and leading to substantially more stable training.

13

https://anonymous.4open.science/r/LatentReasoningTuning/
https://anonymous.4open.science/r/LatentReasoningTuning/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D COMPLEMENTARY EXPERIMENTS AND ANALYSIS

D.1 COMPARISON WITH LARGER BASE MODEL

Table 5: Comparison of Qwen3 and our method on Qwen3-8B. The terms non-thinking and thinking
denote the standard and reasoning modes, respectively.

Method Budget In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K GPQA LSAT

non-thinking 1024 46.25 77.05 73.88 46.21 38.80 56.44
ours 50.25 78.20 91.02 44.43 34.26 59.63

thinking
1024 48.50 71.30 90.52 40.15 29.57 56.01
2048 51.25 83.50 90.54 48.23 39.67 62.64
4096 55.75 90.10 91.04 56.82 54.35 69.61

As shown in Table 5, on the Qwen3-8B backbone, our method achieves an average score of 59.63%,
outperforming the non-thinking baseline by 3.19% on average. This demonstrates that our approach
is not limited to 1.7B or 4B models and can effectively enhance the reasoning capabilities of larger
8B-scale base models.

To further illustrate the performance characteristics of our method, we also compare it with the
thinking mode of the Qwen3-8B model. As shown in Table 5, the performance of Qwen3 (thinking
mode) steadily improves as more token budget is allocated. When inference cost is not a constraint,
the thinking mode can achieve even higher accuracy. However, in scenarios where low latency and
computational efficiency are essential, our method provides a superior alternative.

D.2 HOW REASONING TOKENS INTERACT WITH BASE-MODEL CAPACITY

Table 6: Accuracy (%) of the latent reasoning method with varying numbers of latent tokens for
larger base model (Qwen3-8B).

Tokens In-Domain Tasks Out-of-Domain Tasks Average
AMC MATH-500 GSM8K GPQA LSAT

256 50.25 78.20 91.02 44.43 34.26 59.63
512 50.75 78.50 92.49 44.95 33.15 59.97

As shown in Table 3, there exists a “sweet spot” in the number of latent tokens. For the Qwen3-
1.7B base model, increasing the latent length from 256 to 512 results in a slight performance drop,
indicating that 256 tokens already saturate the model’s effective capacity. To further examine how
model capacity interacts with latent-token length, we extend the analysis to a larger base model. As
shown in Table 6, the Qwen3-8B model continues to benefit from longer latent trajectories within
this range: increasing the length from 256 to 512 improves performance on four out of five bench-
marks and yields a small gain in the overall average. These results suggest that larger base models
possess sufficient capacity to exploit richer latent information, enabling the same 0.6B reasoner to
leverage longer latent sequences (e.g., 512 tokens) and achieve higher performance. Consequently,
the performance–length curve is expected to peak at a larger latent-token budget for larger models.

D.3 COMPARISON OF INFERENCE EFFICIENCY

To quantify the efficiency gains of the latent representations, we measured the average inference
latency, throughput and peak memory on 64 random MATH-500 problems using the Qwen3-1.7B
base model. We compare our method against the base model’s thinking and non-thinking modes.

As shown in Table 7, our method achieves the lowest latency, even outperforming the non-thinking
mode. This is because the reasoning network guides the base model to produce concise, direct

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison of inference cost on the Qwen3-1.7B model. The terms non-
thinking and thinking refer to the standard and reasoning modes, respectively. The symbol † indicates
that the computation accounts for the number of latent tokens.

Method Latency (sec/question) Throughput (tokens/sec) Peak Memory (MB)

thinking 71.09 40.53 7538
non-thinking 14.62 48.93 3946
ours 11.79 51.31 (73.02†) 6528

answers, thereby reducing the number of decoding steps. In terms of throughput, our method also
delivers the highest effective throughput. Its standard token-level throughput is 51.31 tokens per
second, and the effective throughput rises to 73.02 tokens per second when accounting for the 256
learned latent vectors processed in parallel. As for memory usage, the peak memory of our method
falls between the non-thinking and thinking modes. This overhead is primarily attributable to the
one-time generation of the latent representations, which temporarily increases activation and KV-
cache usage and contributes to the higher throughput. After the latent representations are produced,
decoding proceeds token-by-token as in the non-thinking mode, and memory consumption drops
below this peak. These results confirm that our method delivers substantially higher information
density per unit time while maintaining a memory footprint that remains well below that of slow-
thinking reasoning.

D.4 EMPIRICAL ANALYSIS OF LATENT REPRESENTATIONS

Table 8: Cosine similarity across latent representations of different benchmarks.
AMC MATH-500 GSM8K GPQA LSAT

AMC 0.438 0.565 -0.173 0.104 -0.276
MATH-500 0.565 0.730 -0.223 0.141 -0.347
GSM8K -0.173 -0.223 0.076 -0.051 0.070
GPQA 0.104 0.141 -0.051 0.149 -0.032
LSAT -0.276 -0.347 0.070 -0.032 0.441

The latent representations are not linguistically interpretable in the way Chain-of-Thought traces
are, since they are not composed of discrete tokens. While we have analyzed their functional role in
Section 3 based on the training objective, here we further examine their empirical geometric struc-
ture across different benchmarks. For each dataset (AMC, MATH-500, GSM8K, GPQA, LSAT),
we first average the latent representations over the sequence dimension to obtain a question-level
latent vector. We then center these vectors by subtracting the global mean and compute the average
pairwise cosine similarity between questions from any two benchmarks.

As shown in Table 8, three consistent patterns emerge: domain clustering, semantic separation,
and complexity stratification. Competition-style math datasets (AMC and MATH-500) exhibit the
highest cross-dataset similarity as well as strong within-domain similarity, suggesting that their la-
tent representations are closely aligned despite covering different subdomains. LSAT exhibits pos-
itive within-domain similarity (≈ 0.441) but strongly negative similarity to AMC and MATH-500
(−0.276 and −0.347, respectively), indicating that logic-style reasoning occupies a distinctly dif-
ferent region of the latent space compared to olympiad-style mathematical reasoning. GSM8K and
GPQA fall between these extremes: they show moderate self-similarity and relatively small cosine
similarity with both competition math and LSAT, reflecting their hybrid reasoning characteristics.

Overall, these patterns indicate that the learned latent representations are organized by problem
domain and difficulty, functioning as compressed, task-specific instructions and reasoning cues that
guide the base reasoning LLM.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Mean± standard deviation of accuracy across benchmarks for DeepSeek-R1-Distill-Qwen-
1.5B under the 512-token budget.

Benchmarks AMC MATH-500 GSM8K GPQA LSAT

Mean Accuracy 38.00 60.65 77.16 29.17 19.57
Standard Deviation (σ) ±2.39 ±1.39 ±0.78 ±1.40 ±1.16

D.5 STATISTICAL SIGNIFICANCE

As detailed in Section B, the answers are generated stochastically rather than deterministically. To
mitigate the resulting variance, we already sample multiple reasoning paths for each query and report
the average accuracy over these stochastic decodings. Thus, the improvements we report are not
artifacts of a single lucky sample, but reflect consistent performance gains. To further quantify the
stability of our results and directly address the reviewer’s concern regarding variability, we provide
a detailed statistical breakdown (Mean ± Standard Deviation) in Table 9. As shown, most datasets
exhibit very low variance (≈ 0.8%–1.4%), with AMC showing slightly higher variance due to its
substantially smaller test set. In all cases, the performance improvements of our method exceed
the corresponding standard deviations, indicating that the gains are robust rather than artifacts of
stochastic sampling.

E DISCUSSION OF OTHER LATENT REASONING METHODS

Recent latent reasoning methods, including Coconut (Hao et al., 2024) and related work, share with
our method the broad objective of reducing explicit chain-of-thought generation by operating in a
latent space. The approaches, however, differ in mechanism, reasoning horizon, and architectural
design. Existing methods often rely on iterative refinement of a recurrent hidden state, where the
model repeatedly updates a continuous latent representation before producing the next token. This
design encourages a local, stepwise form of latent computation (Zhu et al., 2025). Our method fol-
lows a different path. The reasoning network predicts an entire latent reasoning trajectory in a single
forward computation, producing a sequence of latent vectors that represent the overall structure of
the reasoning process rather than just the next refined state. This parallel formulation provides a
larger expressive space and avoids entanglement with the base model’s decoding loop.

The intended reasoning horizon also distinguishes the two approaches. Prior latent methods typically
rely on only a small number of latent tokens, often fewer than ten, a scale suited to short-form
inference or simple deductive steps. Our method is aimed at long-form reasoning tasks, where the
explicit chain-of-thought becomes substantially longer. Our method allows the reasoning process
to be expressed in parallel and reduces the tendency of the model to generate unnecessarily long or
repetitive chains, thereby mitigating the overthinking problem.

A further distinction lies in how reasoning is integrated into the model architecture. Prior latent rea-
soning methods require retraining or substantial fine-tuning of the base LLM so that the model can
internalize the latent computation. Our methods retains the base model entirely unchanged. The rea-
soning ability resides in a lightweight auxiliary module that can be enabled or disabled at inference
time. This modular structure preserves the base model’s original capabilities and allows seamless
switching between latent reasoning and explicit chain-of-thought generation without modifying or
reloading weights.

Overall, these points outline the key similarities and differences between our method and prior latent
reasoning methods, offering a clearer view of its role in the broader development of latent reasoning
techniques.

16

	Introduction
	Reasoning Trajectory Analysis
	Method
	Preliminary
	Latent Reasoning Tuning

	Experiments
	Settings
	Results and Discussions
	Ablation Analysis

	Related work
	Chain-of-Thought Reasoning
	Efficient Reasoning

	Conclusion
	LLM Usage Statement
	Experiment Details
	Architecture of the Reasoning Network
	Complementary Experiments and Analysis
	Comparison with Larger Base Model
	How Reasoning Tokens Interact with Base-Model Capacity
	Comparison of Inference Efficiency
	Empirical Analysis of Latent Representations
	Statistical Significance

	Discussion of Other Latent Reasoning Methods

