
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAFE MULTI-TASK PRETRAINING WITH CONSTRAINT
PRIORITIZED DECISION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning a safe policy from offline data without interacting with the environ-
ment is crucial for deploying reinforcement learning (RL) policies. Recent ap-
proaches leverage transformers to address tasks under various goals, demonstrat-
ing a strong generalizability for broad applications. However, these methods ei-
ther completely overlook safety concerns during policy deployment or simplify
safe RL as a dual-objective problem, disregarding the differing priorities between
costs and rewards, as well as the additional challenge of multi-task identifica-
tion caused by cost sparsity. To address these issues, we propose Safe Multi-task
Pretraining with Constraint Prioritized Decision Transformer (SMACOT), which
utilizes the Decision Transformer (DT) to accommodate varying safety threshold
objectives during policy deployment while ensuring scalability. It introduces a
Constraint Prioritized Return-To-Go (CPRTG) token to emphasize cost priorities
in the Transformer’s inference process, effectively balancing reward maximization
with safety constraints. Additionally, a Constraint Prioritized Prompt Encoder is
designed to leverage the sparsity of cost information for task identification. Exten-
sive experiments on the public OSRL dataset demonstrate that SMACOT achieves
exceptional safety performance in both single-task and multi-task scenarios, satis-
fying different safety constraints in over 2x as many environments compared with
strong baselines, showcasing its superior safety capability.

1 INTRODUCTION

Deep reinforcement learning (RL), a machine learning method that optimizes decision-making by
maximizing cumulative rewards, has gained significant attention (Wang et al., 2022) and demon-
strated remarkable potential in applications like autonomous driving (Zhao et al., 2024), industrial
robotics (Haarnoja et al., 2024), healthcare (Yu et al., 2021), and the value alignment or reasoning of
large language models (Ouyang et al., 2022; Shinn et al., 2023). However, real-world applications
often require policies to adhere to additional safety constraints, such as speed and lane restrictions
in autonomous driving to prevent accidents (Krasowski et al., 2020; Wang, 2022), as well as fuel
limitations to ensure the vehicle remains operational (Lin et al., 2023). Furthermore, the trial-and-
error nature of online RL becomes impractical when addressing safety concerns (Xu et al., 2022b).
Consequently, offline safe RL (Le et al., 2019), which learns safe policies using pre-collected offline
data without interacting with the real environment, has emerged as a major research focus.

Previous works in offline safe RL typically model the problem as a Constrained Markov Decision
Process (CMDP) (Altman, 2021) with fixed elements, and ensure policy safety by solving con-
strained optimization problems (Wachi et al., 2024). However, such modeling restricts the policy to
handling only one safety threshold under the specific task, reducing flexibility in real-world applica-
tions where multiple tasks and varying safety thresholds are often required. For instance, different
roadways may have distinct speed limits, and vehicles may need to adjust behavior based on fuel
levels to maintain safety performance. Therefore, multi-task safe RL, aiming to solve the mentioned
problems, should be considered a significant topic for RL deployment. Leveraging the strong ex-
pressive power and scalability of Transformers (Vaswani et al., 2017; Lin et al., 2022), several works
have attempted to apply them to multi-task decision-making. For instance, MGDT (Lee et al., 2022)
simply models all visual tasks in a consistent sequential format, leveraging the Decision Trans-
former (DT) (Chen et al., 2021a) framework for multi-task learning. Prompt-DT (Xu et al., 2022c)
introduces additional expert trajectory segments as prompts, enhancing multi-task identification in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

non-visual tasks. These approaches showcase the powerful ability of Transformer-based sequential
decision models to quickly adapt their behavior based on different token inputs to achieve various
goals. Consequently, recent works have also explored applying Transformers to offline safe RL for
decision-making under diverse safety thresholds. These methods either employ Cost-To-Go (CTG)
tokens (Zhang et al., 2023; Liu et al., 2023) or logic tokens (Guo et al., 2024) to integrate safety con-
straints into the Transformer inputs, allowing the policy to adjust its conservatism based on different
safety-related tokens, thus facilitating varied decision-making across numerous safety thresholds.

Despite their progress in multi-task or multi-safety threshold decision-making, these methods have
not effectively utilized Transformers for multi-task safe RL. Firstly, they overlook the differing pri-
orities between satisfying safety constraints and maximizing rewards by treating safety and rewards
equally in model inputs. As a result, during deployment, if safety constraints conflict with reward
maximization, the policy may prioritize rewards, potentially ignoring safety limits and leading to un-
safe decisions. Additionally, these methods fail to address the extra challenges of task identification
posed by multi-task safe scenarios, where differences between tasks mostly come from cost varia-
tions. Due to the sparsity of cost signals, short trajectory segments may lack sufficient distinguishing
information, leading to failures in task identification and subsequently poorer safety performance.
In conclusion, applying Transformers to multi-task safe RL still presents two key challenges that
need to be addressed:

• How to model the higher priority of cost compared to reward within the Transformer?

• How to design prompts to extract information from sparse costs for task identification?

To address the aforementioned challenges, we propose a novel algorithm Safe Multi-task Pretrain-
ing with Constraint Prioritized Decision Transformer (SMACOT) built upon the DT framework.
Firstly, to prioritize costs over rewards, SMACOT introduces a novel Constraint Prioritized Return-
To-Go (CPRTG) token by explicitly modeling RTG conditioned on CTG. Next, to efficiently extract
task-related information from sparse costs, SMACOT introduces a Constraint Prioritized Prompt
Encoder, which segments samples in the trajectory into safe and unsafe patches based on cost in-
formation, and then encodes them separately. This enables effective task identification based on the
varying safe (or unsafe) transition distributions for different tasks. SMACOT effectively resolves
the conflict between reward maximization and safety constraints satisfaction, while efficiently over-
coming the challenge of task identification caused by sparse characteristics of costs. Extensive ex-
periments on the open-source OSRL (Liu et al., 2024b) dataset demonstrate that SMACOT achieves
exceptional safety performance across various safety thresholds in both single-task and multi-task
scenarios. Compared to the previous SOTA sequence modeling method, it meets safety constraints
in more than 2x tasks, and is currently the only algorithm to surpass the Oracle baseline BC-Safe.

2 RELATED WORK

Safe RL and Offline Safe RL Safe RL ensures the safe deployment of policies by requiring
them to meet additional safety constraints besides maximizing rewards, which is often modeled as
constrained optimization problems (Garcıa & Fernández, 2015; Wachi et al., 2024), and Lagrangian
multiplier methods are used as foundational techniques to solve it (Wachi et al., 2024). Lagrangian
multiplier-based algorithms typically learn a cost value function and a parameterized Lagrangian
multiplier, adjusting the multiplier based on the policy’s cumulative cost to enhance safety (Chow
et al., 2018; Stooke et al., 2020; Tessler et al., 2019; Chen et al., 2021b). However, these algorithms
fail to consider the unsafe interactions with real-world environments during training, making them
impractical. To make safe RL conform to reality, some works recently explore to learn safe policies
using only pre-collected data, avoiding unsafe exploration, and hasten the offline safe RL. These
approaches evaluate the safety performance of policies in a conservative manner, treating out-of-
distribution (OOD) samples as unsafe to reduce visits to these regions (Le et al., 2019; Xu et al.,
2022a; Zheng et al., 2024; Yao et al., 2024), thus mitigating the negative impacts of extrapolation
errors (Fujimoto et al., 2019).

Policy Learning as Sequence Modeling Due to the impressive performance of Transformers in
complex sequential tasks such as large language models (Zhao et al., 2023) and time series analy-
sis (Nie et al., 2023), many works aim to leverage their expressive power in offline RL, which can
also be modeled a sequential task. For instance, DT (Chen et al., 2021a) uses a GPT-like Transformer

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

architecture (Achiam et al., 2023) with historical sequences and RTG tokens to infer optimal actions,
breaking traditional RL paradigms and circumventing extrapolation errors directly. Variants like
ODT (Zheng et al., 2022) and QDT (Yamagata et al., 2023) enhance DT’s performance with online
fine-tuning and Q-Learning (Watkins & Dayan, 1992), respectively. MGDT (Lee et al., 2022) and
Prompt-DT (Xu et al., 2022c) extend DT to multi-task scenarios by using visual inputs or adding ad-
ditional expert trajectory segments as prompts. For the safe problem, SaFormer (Zhang et al., 2023)
and CDT (Liu et al., 2023) introduce CTG tokens to apply DT first in safe RL. SDT (Guo et al.,
2024) utilizes signal temporal logic tokens to incorporate more information about safety constraints
into DT. However, they all fail to account for the differing priorities between RTG and safety-related
tokens, resulting in an incomplete resolution of the conflict between reward maximization and safety
constraints, which motivates our work. More related work will be discussed in App. B.

3 PRELIMINARIES

3.1 SAFE RL AND MULTI-TASK SAFE RL

Safe RL can be modeled as a Constrained Markov Decision Process (CMDP), which is defined as a
tuple ⟨S,A, r, c, P, γ, b⟩, where S and A represent the state space and the action space, respectively,
r : S × A → [−Rmax, Rmax] and c : S × A → {0, 1} denote the reward and cost functions, respec-
tively. P : S×A×S → [0, 1] is the transition probability function, γ ∈ (0, 1) is the discount factor,
and b represents the safety threshold. A policy π : S → ∆(A) maps states to action distributions.
Under a given policy π, the reward return can be expressed as R(π) = Eτ∼Pπ

[
∑∞

t=0 γ
tr(st, at)],

where τ = (s0, a0, s1, a1, . . .) denotes a trajectory and τ ∼ Pπ indicates that the distribution of
trajectories induced by policy π and the environment dynamics P . Similarly, the cost return is given
by C(π) = Eτ∼Pπ [

∑∞
t=0 γ

tc(st, at)]. Thus, the objective of solving a CMDP is to learn a policy
that maximizes reward return while adhering to safety constraints, which can be represented as:

max
π

R(π), s.t. C(π) ≤ b. (1)

In multi-task safe RL, the policy π needs to be trained across multiple tasks to develop the capability
to handle them simultaneously. Each task is defined as a unique CMDP, and differences between
tasks may arise from changes of any element in (S,A, P, r, c, b). Specifically, different tasks with
the same (S,A, P) are referred to as same-domain, otherwise the cross-domain tasks. In this paper,
both scenarios are considered. We refer to the “domain” in this context as the “environment”, which
is uniquely determined by a group of (S,A, P), and “tasks” in an environment only differ in (r, c, b).
For simplicity, we assume that the environment ID is known during both training and deployment.

During training, the policy is provided with a set of environments {Ei}Ni=1 and tasks {Tj}Mj=1, where
each task belongs to a specific environment, i.e. an injection that maps task ID to environment ID
is known. During deployment, the policy is required to make decisions for a task T which belongs
to environment Ei. If T ∈ {Tj}Mj=1, then the policy can only utilize one expert trajectory for task
identification. Otherwise, it is provided with L expert trajectories of T to achieve efficient transfer.

3.2 SAFE RL VIA DECISION TRANSFORMER

Decision Transformer (DT) is one of the most prominent methods that apply sequence modeling to
decision-making. It uses a Transformer network framework, modeling RL’s reward maximization
problem as a sequence prediction task. When applied to safe RL, DT models the trajectory as the
following sequence to support training and generation with Transformers:

τ = (Ĉ1, R̂1, s1, a1, Ĉ2, R̂2, s2, a2, . . . , ĈT , R̂T , sT , aT), (2)

where R̂t =
∑T

i=t ri is the Return-To-Go (RTG) token at time step t, and Ĉt =
∑T

i=t ci is the
Cost-To-Go (CTG) token. Let τ−K:t = (Ĉt−K , R̂t−K , st−K , at−K , . . . , Ĉt−1, R̂t−1, st−1, at−1),
DT’s policy can be expressed as πDT(ât|τ−K:t, Ĉt, R̂t, st), inferring the current action based on the
previous K-step trajectory, the current RTG, CTG and state. In the trajectory τ , only actions at are
generated auto-regressively, while the other elements are externally provided. The policy is trained
by minimizing the difference between the inferred actions and actual actions. During deployment,
DT in safe RL requires an initial RTG token R̂1, CTG token Ĉ1, and state s1 to generate actions,
with the RTG and CTG updated using R̂t+1 = R̂t − rt and Ĉt+1 = Ĉt − ct, respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

causal transformer

…
�𝑪𝑪

t
𝒔𝒔

t
𝒂𝒂

t

�𝒂𝒂
t

𝒒𝒒ϕ
t

�𝑹𝑹
t

�𝑹𝑹

trainingdeployment

t-1
�𝒄𝒄

prompt

Few-shot Demonstrations

Figure 1: Structure of SMACOT. SMACOT introduces a CPRTG token R̃t during testing, which is
generated based on the state and CTG token of the current step. For multi-task scenarios, SMACOT
utilizes the Constraint Prioritized Prompt Encoder to generate a prompt for each task. This prompt
will be used in both action inference and CPRTG generation to distinguish between tasks.

4 METHOD

This section gives a detailed description of our proposed SMACOT, a novel algorithm for offline
safe and multi-task reinforcement learning (As visually depicted in Fig. 1). Sec. 4.1 illustrates the
process of CPRTG token generation, Sec. 4.2 presents SMACOT’s procedure for prompt encoding,
while Sec. 4.3 introduces SMACOT’s overall algorithm.

4.1 CPRTG TOKEN GENERATION

In safe RL, the policy optimization objective is represented by Eqn. 1. This constrained optimization
problem implicitly prioritizes constraint satisfaction over reward maximization, as solutions that fail
to meet constraints cannot be considered valid (Heath, 2018). In DT, these objectives are typically
expressed through the RTG token R̂t and the CTG token Ĉt. To ensure safety performance, CTG
should be given higher priority when the policy falls short of meeting both reward maximization and
safety constraint objectives.

Modeling RTG Conditioned on CTG To achieve the prioritization of CTG in SMACOT, a
straightforward approach is to model RTG as conditioned on CTG, i.e., learning the model p(R̂t|Ĉt)
from the offline dataset. Since the relationship between RTG and CTG is primarily derived from
offline trajectories, where multiple RTG values might correspond to the same CTG, we further con-
strain the generation process by incorporating state information at each time step, and model p as a
non-deterministic normal distribution N approximated by a neural network qϕ. Formally, given the
offline dataset D = {(st, at, s′t, rt, ct, R̂t, Ĉt, t)k}|D|

k=1, we have:

qϕ(·|Ĉt, st) = N (µϕ(Ĉt, st),Σϕ(Ĉt, st)), (3)

where µϕ and Σϕ are the mean and standard deviation networks, respectively, and Ĉt and st repre-
sent the CTG and state at step t. To maximize the probability of generating R̂t conditioned on the
given Ĉt and st, the model qϕ is optimized by the following negative log-likelihood objective:

min
qϕ

Est,R̂t,Ĉt∼D[− log qϕ(R̂t|Ĉt, st)]. (4)

CTG-based β-quantile Sampling for Safe And Expert Inference However, such modeling
only prioritizes CTG without considering the need for expert-level inferences after ensuring safety.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Therefore, in addition to maximizing p(R̂t|Ĉt, st), we also aim to maximize p(R̂t|expertt, Ĉt, st)
by introducing a variable expertt that indicates the trajectory is expert after time step t. Similar to
MGDT (Lee et al., 2022), we apply Bayes’ theorem to obtain the following:

p(R̂t|expertt, Ĉt, st) ∝ p(R̂t|Ĉt, st)p(expertt|R̂t, Ĉt, st). (5)

In Eqn. 5, p(expertt|R̂t, Ĉt, st) represents the probability that the future trajectory is expert given
the current RTG, CTG, and state. Intuitively, when fixing Ĉt, a higher probability is attributed to
p(expertt|R̂t, Ĉt, st) if R̂t possesses a larger value. Therefore, this term could be maximized by
sampling large R̂t. In practice, we first sample X possible values from the distribution qϕ(·|Ĉt, st),
and then select the β-quantile from the candidates as the final input RTG token. Although larger
β brings about higher probability of p(expertt|R̂t, Ĉt, st), it can lead to decrease of p(R̂t|Ĉt, st),
necessitating an adjustment of β to find a suitable balance. We propose the CTG-based β decay
technique:

βt = min(βstart + (βstart − βend)
Ĉt − Ĉ1

Ĉ1

, βend), (6)

where Ĉ1 is the initially given safety threshold, βstart and βend are two hyperparameters. When
CTG is large—indicating more room for potential future safety violations—a larger βt for more
aggressive decision-making is acceptable. Conversely, when CTG is small, the policy should be
more conservative, resulting in a smaller βt.

CPRTG Token Generalization In conclusion, at time step t, we sample X candidate values from
qϕ(·|Ĉt, st), and chose the βt-quantile value as the CPRTG token, denoted as R̃t. This token pro-
vides a simple but efficient method for adjusting policy conservatism while attaining high-rewarding
behaviors during deployment. If the policy does not meet safety requirements, lowering βstart or βend
can increase conservatism without altering model parameters. Similarly, adjustments can be made
to improve reward return when the policy is too conservative. In practice, we typically fix βstart as
0.99 and adjust βend only. More interpretations and theoretical results are provided in App. A.

4.2 CONSTRAINT PRIORITIZED PROMPT ENCODER LEARNING

The use of the CPRTG token successfully extends DT to scenarios with safety constraints. Our next
goal is to expand SMACOT to multi-task settings for pretraining.

Environment-specific Encoders First, considering the presence of cross-domain tasks, it is chal-
lenging to use a single unified neural network for all tasks due to the inconsistency in state action
dimensions. Therefore, for each environment in the set {Ei}Ni=1, we apply environment-specific en-
coders to reduce the dimensions of the state and action spaces. Specifically, for environment Ei, we
introduce two encoders, es,i for states and ea,i for actions, along with decoders ds,i and da,i. To
ensure that the action encodings retain sufficient information from the original actions, ea,i and da,i
are trained using the reconstruction loss:

min
ea,i,da,i

Eat∼Di
[(da,i(ea,i(at))− at)

2], (7)

where Di represents the combined offline dataset for all tasks within environment Ei and at is the
sampled action. As for es,i and ds,i, we introduce an additional inverse dynamics model gi, and
train them by simultaneously minimizing the reconstruction error and the inverse dynamics error to
incorporate both state information and dynamics transition information into state encodings:

min
es,i,ds,i,gi

Est,at,s′t∼Di
[(ds,i(es,i(st))− st)

2 + (gi(es,i(st), es,i(s
′
t))− ea,i(at))

2], (8)

where st, at, s
′
t are the sampled state-action transitions. The use of these encoders unifies the state

and action spaces across all tasks, allowing us to simplify the problem to a same-domain task sce-
nario for further discussion.

In same-domain tasks, differences typically emerge from (r, c, b). Within SMACOT’s DT frame-
work, variations in b are naturally handled through different initial CTG inputs, leaving us to focus
on variations in (r, c). Typical methods, such as Prompt-DT (Xu et al., 2022c), work well with dense
rewards, but the sparse, binary nature of c presents unique challenges under safe RL scenarios. Us-
ing limited K-step expert trajectory segments as prompts may fail to capture steps where tasks differ
in safety constraints, leading to failure in task identification.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Constraint Prioritized Prompt Encoder To address the challenge posed by the sparse, binary
nature of c, we propose the Constraint Prioritized Prompt Encoder pe. Specifically, pe = (ps, pu)
consists of two prompt encoders. Given an expert trajectory τ∗ = (s1, a1, r1, c1, . . . , sT , aT , rT , cT)
for task T , where rt, ct are the reward and cost of time step t, the prompt encoding z is computed
as follows:

z = pe(τ
∗) =

1

T

T∑
t=1

(1condition(ct = 0)ps(st, at, rt) + 1condition(ct = 1)pu(st, at, rt)), (9)

where 1condition is the indicator function. Since task differences may arise from variations in state
spaces (environments), reward functions, and cost functions, it is crucial for pe to capture informa-
tion from all three to ensure accurate task differentiation. To accomplish this, we introduce three
additional decoder networks fs, fr, and fc, and train them by minimizing prediction errors:

min
pe,fs,fr,fc

ET ∼{Tj}M
j=1

[Eτ∗,st,at,s′t,rt,ct∼DT [(fs(st, at, pe(τ
∗))− s′t)

2

+(fr(st, at, pe(τ
∗))− rt)

2 + (fc(st, at, pe(τ
∗))− ct)

2]],
(10)

where DT is the dataset for task T , containing trajectories with both reward and cost information,
τ∗ refers to the trajectory that includes s′t, rt, ct, and z = pe(τ

∗) as defined in Eqn. 9.

The Constraint Prioritized Prompt Encoder removes the cost information from the prompt encoder’s
input and instead uses it to determine which encoder network to apply. This design ensures efficient
use of cost information by distinguishing tasks based on the differences in the input distributions of
state, action, and reward for different encoders. The resulting prompt encoding z serves as both the
first token for DT and input to the CPRTG generator qϕ.

4.3 OVERALL ALGORITHM

With the design above, we can apply SMACOT to both single-task and multi-task scenarios to learn
safe policies. Below, we briefly outline SMACOT’s training and deployment in multi-task scenarios.
Detailed pseudo-codes are provided in App. C and the approach for task identification in unknown
environments are provided in App. D.

Training During training, SMACOT first learns the environment-specific encoders by Eqn. 7 and
Eqn. 8. After that, the Constrained Prioritized Prompt Encoder pe is learned by Eqn. 9. Then the
CPRTG generator qϕ is similarly optimized by Eqn. 4. However, in multi-task scenarios, due to
the existence of cross-domain tasks, environment-specific state action input heads and action output
heads are used in both DT policy and qϕ. Therefore, an additional environment ID is added to the
input of qϕ and DT to select the appropriate head, as well as the prompt encoding z. With the
learned pe and qϕ, we can learn the DT policy. Let the policy network be denoted as πθ, which has
two output heads: πθ,a for actions and πθ,c for costs. The additional cost head is utilized to aid the
policy in extracting cost-related information to identify tasks better. Given the expert trajectory τ∗,
the learned pe, environment ID i, and sampled trajectory τ−K:t, R̂t, st from task T ’s offline dataset,
the input can be represented as ot = (τ−K:t, Ĉt, R̂t, st, pe(τ

∗), i). The cost output head πθ,c is
modeled deterministically, while the action output head is modeled as a normal distribution:

πθ,a(·|ot) = N (µθ,a(ot),Σθ,a(ot)), (11)
where µθ,a and Σθ,a are the mean and standard deviation networks for the action output head,
respectively. We optimize the policy by minimizing the negative log-likelihood loss and negative
entropy loss of the actions, as well as the difference between the predicted costs and true costs:

min
πθ,a,πθ,c

ET ,i∼{Tj}M
j=1

[Eτ∗,τ−K:t,Ĉt,R̂t,st,at,ct∼DT
[− log πθ,a(at|ot)

−λhH[πθ,a(·|ot)] + λc(πθ,c(ot)− ct)
2]],

(12)

where i represents the environment ID to which task T belongs, H is the Shannon entropy regular-
izer commonly used in RL (Haarnoja et al., 2018), λh and λc are two hyperparameters that control
the weighting of the entropy regularization and the cost loss, respectively.

Deployment During deployment, the initial task safety threshold Ĉ1 is provided, and in each time
step, the CPRTG R̃t ∼ qϕ(·|Ĉt, st, pe(τ

∗), i) is computed to replace the original RTG R̂t. At this
point, the policy’s input is ot = (τ̃−K:t, Ĉt, R̃t, st, pe(τ

∗), i), where

τ̃−K:t = (Ĉt−k,R̃t−k, st−k, at−k, . . . , Ĉt−1, R̃t−1, st−1, at−1). (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a)

10 20 30 40

Target Reward

80
40

20
10

Ta
rg

et
 C

os
t

Normalized Reward with Different Target

0.1

0.2

0.3

0.4

0.5

(b)

10 20 30 40

Target Reward

80
40

20
10

Ta
rg

et
 C

os
t

Cost with Different Target

20

40

60

80

100

(c)

10 20 40 80
Target Cost

3

4

5

6

7

8

R
M

ea
n

SMACOT's Performance

R Mean

0

20

40

60

80

R
ea

l C
os

t

Real Cost

(d)

Figure 2: A case study in PointButton1 task. (a) The visualization of PointButton. (b) The normal-
ized rewards of CDT with different initial RTGs and CTGs. (c) The real costs of CDT with different
initial RTGs and CTGs. (d) The generated R̃ and cost performance of SMACOT with different tar-
get initial CTGs.

5 EXPERIMENTS

In this section, we present our experimental analysis conducted on 26 tasks from the OSRL (Liu
et al., 2024b) dataset. The experiments aim to answer the following questions: (1) How does the tra-
ditional DT behave when reward maximization conflicts with safety satisfaction, and can SMACOT
address this issue (Sec. 5.2)? (2) Can SMACOT outperform other baselines in safety performance
across single-task and multi-task settings, and do its components contribute to this (Sec. 5.3)? (3)
Will pre-training SMACOT helps improve learning efficiency in new tasks (Sec. 5.4)?

For a thorough evaluation, all results are averaged across twenty evaluation episodes, three random
seeds, and four safety thresholds. For the baselines that do not use the DT framework, we train sep-
arate models for each safety threshold and report the average performance across these thresholds.
For page limits, additional experimental information and results will be provided in App. G.

5.1 BASELINES AND TASKS

To provide a more comprehensive evaluation of SMACOT’s performance, we conducted experi-
ments with the following algorithms:

• Ours: (1) SMACOT (ST) is the single-task version of SMACOT with unified hyperpa-
rameters. (2) SMACOT (MT) is the multi-task version of SMACOT with unified hyperpa-
rameters. (3) SMACOT (Oracle) is the single-task version of SMACOT with task-specific
βend. It is not compared directly with the other baselines due to hyperparameter differences.

• Single-task: (4) CPQ (Xu et al., 2022a) applies CQL’s (Kumar et al., 2020) conservative
estimation to the cost critic and achieves state-of-the-art (SOTA) in traditional CMDP based
offline safe RL algorithms. (5) CDT (Liu et al., 2023) adds CTG token to DT and reduces
the conflict between CTG and RTG via data augmentation. It achieves SOTA in sequence
modeling based offline safe RL algorithms. (6) BC-Safe modifies the dataset for behavior
cloning only on safe trajectories, which is considered Oracle and also will not be compared
to the other algorithms due to different learning data.

• Multi-task: (7) MTCDT extends CDT to multi-task settings with separate input or output
heads for each environment without prompts. (8) Prompt-CDT (Xu et al., 2022c) builds
on MTCDT with additional expert trajectory segments as prompts.

We first selected 21 tasks from the OSRL dataset, all part of the Safety-Gymnasium (Ji et al., 2023)
benchmark, including 16 navigation tasks and 5 velocity tasks. The navigation tasks use 2 types of
robots (Point and Car) across 4 scenarios: Button, Circle, Goal, and Push, with 2 tasks per scenario.
The original 5 velocity tasks involve robots Ant, HalfCheetah, Hopper, Swimmer, and Walker2d,
with one task for each robot. To enhance the dataset, we added one additional velocity task per
robot with different velocity thresholds, bringing the total to 26 tasks across 13 environments. More
details about baselines and tasks are provided in App. E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 CASE STUDY: WHEN RTG CONFLICTS WITH CTG

To explore the behavior of previous DT algorithms when RTG and CTG objectives conflict, we
conducted experiments using the CDT algorithm on the PointButton1 task, just as shown in Fig. 2(a).
We tested four different target rewards (initial RTG inputs) [10, 20, 30, 40] and four different target
costs [10, 20, 40, 80] to compare policy behavior. The results, shown in Fig. 2(b) and Fig. 2(c),
reveal that as the target reward increases, the achieved reward also rises, while the cost remains
mostly unchanged regardless of the target cost. However, as the target reward increases, the cost also
noticeably increases, indicating that the policy may prioritize RTG over CTG when they conflict.
This reveals why previous DT methods fail to solve the conflict between rewards and costs.

Then, we aim to demonstrate that the CPRTG in SMACOT effectively resolves this issue. We
conducted experiments on the same task using SMACOT with four different target costs, as shown
in Fig. 2(d). The results show that the average CPRTG R̃ increases with the target cost but remains
within a conservative range, while the real cost increases with the target cost but stays within safe
limits, proving the effectiveness of SMACOT in resolving RTG-CTG conflicts.

5.3 COMPETITIVE RESULTS AND ABLATIONS

To validate the generality of SMACOT’s outstanding safety performance, we conduct extensive ex-
periments in the OSRL dataset. The experimental results of SMACOT and various baselines across
26 tasks are shown in Tab. 1. In the single-task setting, CPQ, which is based on CMDP, shows the
poorest safety performance due to significant extrapolation errors and unstable training, failing to
achieve high reward returns. In contrast, CDT, based on sequence modeling, performs better, with
higher rewards and improved safety over CPQ, though still lacking satisfactory safety performance.
SMACOT demonstrates a substantial improvement in safety, nearly doubling the average safety per-
formance compared to CDT, without significantly sacrificing rewards, highlighting its effectiveness
in balancing reward maximization with safety constraints.

Next, comparing the results in the multi-task setting, both MTCDT and Prompt-CDT show unsatis-
factory safety performance. Part of this is due to CDT’s inherent limitations in safety, while another
factor is task identification failure. This issue is particularly evident in the Velocity tasks, where
both MTCDT and Prompt-CDT exceed safety thresholds by tens of multiples in some tasks. This
indicates that relying solely on the first K time steps or short expert trajectory prompts fails to cap-
ture necessary cost-related information. In contrast, SMACOT demonstrates safety performance on
par with the single-task setting, showcasing the effectiveness of the Constraint Prioritized Prompt
Encoder in generating prompts for task identification.

Finally, comparing the results in the Oracle setting, BC-Safe effectively ensures policy safety by
filtering offline data, meeting safety constraints in most environments. However, it cannot adapt to
different safety thresholds with a single policy and requires retraining and data filtering for each new
threshold. SMACOT, on the other hand, adapts to varying safety thresholds using a single policy
model through different CTG token inputs and fine-tunes conservatism via the βend hyperparameter.
As a result, SMACOT achieves safety in more environments and typically yields higher rewards
than BC-Safe. This demonstrates that SMACOT effectively leverages both safe and unsafe training
data, resulting in superior decision-making capability. The accompanying Fig. 3(a) shows the total
number of tasks where each algorithm meets safety constraints, revealing that SMACOT consistently
outperforms other baselines across all settings, achieving safe performance in more than twice as
many tasks as previous approaches. Experiments about SMACOT under different safety thresholds
and the visualization of prompt encodings are provided in App. G.

Next, we conducted ablation studies on the 26 tasks in the multi-task setting to investigate the impact
of different modules on SMACOT’s performance. The baselines used in the ablation studies include:
(1) W/o CP means SMACOT without CPRTG. (2) Det CP uses a deterministic qϕ rather than a
normal distribution. (3) W/o CD does not use the CTG-based β decay. (4) W/o PE does not use
the Constraint Prioritized Prompt Encoder for prompt generation. (5) Simp PE uses a simple MLP
prompt encoder without separating safe and unsafe patches. (6) Small DT utilizes a DT backbone
with fewer parameters.

The overall results are shown in Fig. 3(b). Comparing SMACOT with W/o CP and W/o CD shows
that the CPRTG and CTG-based β decay significantly enhances policy safety. Although using de-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Final normalized reward and normalized cost return in all tasks. The rewards are normalized
by the maximum and minimum reward return in the offline dataset of each task, and the costs are
normalized by each safety threshold. The ↑ symbol denotes that the higher the reward, the better.
The ↓ symbol denotes that the lower the cost (up to threshold 1), the better. Each value is averaged
over 4 safety thresholds [10, 20, 40, 80], 20 evaluation episodes, and 3 random seeds. Bold: Safe
agents. Gray: Unsafe agents. Blue: Safe agent with the highest reward in each setting.

Oracle Single-Task Multi-Task

BC-Safe SMACOT CPQ CDT SMACOT MTCDT Prompt-CDT SMACOTTask

r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓

PointButton1 0.04 0.74 0.09 0.91 0.67 5.28 0.54 5.16 0.05 0.66 0.49 4.17 0.55 4.90 0.04 0.55
PointButton2 0.15 1.75 0.08 0.92 0.53 6.04 0.45 4.32 0.14 1.41 0.38 3.81 0.40 4.22 0.08 0.98
PointCircle1 0.38 0.16 0.54 0.62 0.41 0.94 0.55 0.55 0.50 0.63 0.52 0.47 0.55 0.87 0.55 1.09

PointCircle2 0.45 0.99 0.61 0.98 0.23 5.40 0.61 1.33 0.61 0.98 0.61 3.13 0.58 2.68 0.57 1.75

PointGoal1 0.38 0.53 0.51 0.87 0.58 0.48 0.67 1.71 0.36 0.56 0.61 1.28 0.68 1.68 0.24 0.30
PointGoal2 0.29 1.13 0.29 0.91 0.39 3.45 0.54 2.84 0.31 1.02 0.45 2.01 0.54 2.94 0.26 0.66
PointPush1 0.13 0.67 0.19 0.88 0.23 1.60 0.27 1.42 0.19 0.88 0.23 1.11 0.24 1.25 0.12 0.69
PointPush2 0.13 1.05 0.13 0.63 0.16 1.42 0.20 1.76 0.19 1.47 0.20 1.77 0.17 1.49 0.11 0.83
CarButton1 0.07 0.87 0.07 0.74 0.48 15.40 0.20 3.97 0.07 0.74 0.23 4.61 0.29 6.38 0.04 0.89
CarButton2 -0.03 1.25 -0.02 0.89 0.29 19.32 0.14 4.70 -0.02 1.33 0.22 5.19 0.25 5.46 -0.02 0.94
CarCircle1 0.29 1.66 0.49 2.96 -0.04 4.69 0.55 4.03 0.51 3.34 0.55 3.47 0.51 3.39 0.50 2.89

CarCircle2 0.51 5.17 0.28 0.98 0.45 1.31 0.63 6.28 0.28 0.98 0.56 6.37 0.57 5.61 0.34 1.67

CarGoal1 0.28 0.39 0.39 0.75 0.76 2.29 0.64 2.13 0.33 0.47 0.54 1.48 0.56 1.80 0.22 0.32
CarGoal2 0.14 0.57 0.19 0.81 0.57 4.72 0.42 2.59 0.19 0.81 0.30 1.93 0.38 2.70 0.13 0.91
CarPush1 0.15 0.45 0.28 0.96 0.03 1.07 0.29 0.98 0.20 0.67 0.25 0.84 0.25 0.93 0.18 0.48
CarPush2 0.05 0.63 0.09 0.88 0.16 7.50 0.18 2.30 0.07 0.73 0.18 2.31 0.17 2.27 0.06 0.62

SwimmerVelocityV0 0.52 0.08 0.62 0.98 0.09 0.99 0.71 1.32 0.63 1.29 0.72 7.48 0.72 0.75 0.69 0.84
SwimmerVelocityV1 0.5 0.63 0.44 0.87 0.15 1.40 0.65 1.21 0.44 0.87 0.62 0.48 0.66 0.68 0.61 0.74
HopperVelocityV0 0.50 0.25 0.18 0.52 0.04 2.01 0.84 0.92 0.84 1.50 0.68 13.37 0.89 5.01 0.57 4.28

HopperVelocityV1 0.42 0.65 0.18 0.86 0.15 1.49 0.72 1.60 0.35 1.17 0.68 1.13 0.68 5.50 0.27 1.09

HalfCheetahVelocityV0 0.92 1.11 0.67 0.38 0.40 2.24 0.94 1.05 0.51 0.36 0.89 14.71 1.08 35.24 0.70 0.36
HalfCheetahVelocityV1 0.89 0.75 0.84 1.00 0.38 2.20 0.98 0.93 0.84 1.00 0.94 1.16 0.95 0.41 0.75 1.22

Walker2dVelocityV0 0.24 1.45 0.32 2.90 0.04 0.46 0.29 1.91 0.32 2.90 1.25 24.51 0.81 14.30 0.35 4.44

Walker2dVelocityV1 0.79 0.01 0.78 0.12 0.03 0.36 0.79 0.09 0.73 0.42 0.79 0.26 0.76 0.13 0.66 0.73
AntVelocityV0 0.86 0.61 0.90 0.84 -0.94 0.00 0.90 0.95 0.90 0.84 0.93 1.40 0.96 2.56 0.95 4.89

AntVelocityV1 0.96 0.38 0.97 1.58 -1.01 0.00 0.97 0.81 0.98 1.75 0.99 0.88 0.99 0.71 0.92 3.42

Average 0.39 0.92 0.39 0.99 0.19 3.54 0.56 2.19 0.4 1.11 0.57 4.2 0.58 4.38 0.38 1.45

Average Ranking 3.46 2.15 6.46 4.96 3.42 5.58 5.38 4.00

terministic qϕ improves safety performance, it limits βend adjustments, leading to reduced rewards
and less flexibility in tuning policy conservatism for Det CP. Furthermore, the Constraint Prioritized
Prompt Encoder enhances task identification, improving safety, as seen when comparing SMACOT
with W/o PE and Simp PE. Lastly, the Small DT results demonstrate the importance of DT pa-
rameter size, underscoring the necessity of using Transformers for scalability. Therefore, we can
conclude that all parts of SMACOT’s design contribute positively to its strong safety performance.
More detailed ablation results can be seen in App. G.

Additionally, we conducted ablation studies on how different values of βend will affect the safety
performance, with the results shown in Fig. 3(c). It is evident that as βend increases, both the reward
and cost of the policy also gradually rise. This confirms SMACOT’s robust capability to quickly
adjust conservatism by tuning βend.

5.4 POLICY TRANSFER

In this section, we aim to explore the impact of SMACOT pretraining on task transfer. We designed 5
additional tasks within the Velocity task set, where each task uses 10 expert trajectories for transfer
under a single safety threshold. We tested three methods: (1) from scratch: training SMACOT
from scratch on the new task. (2) FFT: full fine-tuning of the pretrained model on the new task; (3)
LoRA (Hu et al., 2022): using LoRA to fine-tune the pretrained model. For a clearer evaluation of
only the transfer ability, the CPRTG token was not used during testing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ours (Oracle)
Safe BC

Ours (ST)
Ours (MT) CPQ CDT

Prompt CDT
MTCDT

0

4

8

12

16

20

24

S
af

e
C

ou
nt

s

23

18

16 16

7 7 7

5

Safe Counts of Different Algorithms

(a) Safe Counts

Ours (MT) W/o CP Det CP W/o CD W/o PE Simp PE Small DT

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.60

R
ew

ar
d

0.38

0.53

0.35

0.41
0.42

0.39
0.38

Ablation Results
reward

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

C
os

t

1.45

2.08

1.42

1.58

3.16

1.6

1.84

cost

(b) Main Ablation Results

0.90.80.70.60.5
end

0.32

0.36

0.40

R
ew

ar
d

0.394

0.379

0.364

0.355

0.347

Performance with different end
reward

1.32

1.38

1.44

1.50

C
os

t

1.488

1.446

1.395
1.3881.39

cost

(c) Ablation on βend

Figure 3: (a) The number of tasks each algorithm can make a safe decision. (b) The mean ablation
results of different algorithms in all tasks. (c) The mean ablation results of different βend.

0.0 2.5 5.0 7.5 10.0

0.40

0.60

0.80

1.00

R
ew

ar
d

AntV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.2

0.5

0.8

1.0

1.2

1.5

1.8

C
os

t

0.0 2.5 5.0 7.5 10.0
0.00

0.20

0.40

0.60

0.80

1.00

HalfCheetahV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

1.0

2.0

3.0

4.0

0.0 2.5 5.0 7.5 10.0

0.40

0.60

0.80

HopperV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

0.0 2.5 5.0 7.5 10.0

0.20

0.40

0.60

0.80

1.00

SwimmerV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.5 5.0 7.5 10.0

0.40

0.60

0.80

1.00

Walker2dV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.0

2.5

5.0

7.5

10.0

12.5

from_scratch FFT LoRA cost bound

Figure 4: The transfer results of SMACOT in 5 new tasks.

The results are shown in Fig. 4. In four out of the five tasks, although the SMACOT pretrained
model can’t guarantee zero-shot safety, fine-tuning with FFT or LoRA shows clear advantages in
both safety performance and reward compared to training from scratch. In one environment, the
pretrained model ensures zero-shot safety, but fine-tuning results in a performance drop, likely due
to insufficient trajectory coverage. Comparing FFT and LoRA, both perform similarly, possibly due
to the relatively small model size, with LoRA offering lower fine-tuning overhead. Based on the
above results, it can be found that the pretraining of SMACOT can effectively improve the policy’s
adaptation ability in new tasks, enhancing the algorithm’s applicability. More transfer results and
ablation studies on different LoRA ranks on policy’s adaptation ability are provided in App. G.

6 FINAL REMARKS

In this work, we present a novel algorithm, SMACOT, designed to tackle the challenge of learning
safe policies using the Transformer in both single-task and multi-task scenarios. SMACOT assigns
higher priority to safety constraints through the use of CPRTG token, effectively addressing con-
flicts between RTG and CTG. Additionally, the design of Constraint Prioritized Prompt Encoder
leverages the sparse and binary nature of cost for efficient information extraction and task identifi-
cation. Extensive experiments on the OSRL dataset demonstrate SMACOT’s strong performance in
both safety and task identification, as well as its effective task transfer capabilities. Further studies
on optimizing the Constraint Prioritized Prompt Encoder’s learning, such as introducing contrastive
loss, could be a promising way to improve task identification performance. In addition, achieving
zero-cost exploration in safe RL using large language models (Wang et al., 2024) and deploying safe
RL in embodied robots (Liu et al., 2024a) are also highly promising future research directions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: reinforcement learning via
sequence modeling. In Proceedings of the 35th International Conference on Neural Information
Processing Systems, pp. 15084–15097, 2021a.

Yi Chen, Jing Dong, and Zhaoran Wang. A primal-dual approach to constrained markov decision
processes. arXiv preprint arXiv:2101.10895, 2021b.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 33, pp. 3387–3395, 2019.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In International Conference
on Learning Representations, 2024.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhut-
dinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In
International Conference on Learning Representations, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll.
A review of safe reinforcement learning: Methods, theory and applications. arXiv preprint
arXiv:2205.10330, 2022.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial In-
telligence, 319:103905, 2023.

Cong Guan, Ruiqi Xue, Ziqian Zhang, Lihe Li, Yi-Chen Li, Lei Yuan, and Yang Yu. Cost-aware
offline safe meta reinforcement learning with robust in-distribution online task adaptation. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems,
pp. 743–751, 2024.

Zijian Guo, Weichao Zhou, and Wenchao Li. Temporal logic specification-conditioned decision
transformer for offline safe reinforcement learning. In International Conference on Machine
Learning, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870, 2018.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

Michael T Heath. Scientific computing: an introductory survey, revised second edition. SIAM,
2018.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Weidong Huang, Jiaming Ji, Chunhe Xia, Borong Zhang, and Yaodong Yang. Safedreamer: Safe
reinforcement learning with world models. In International Conference on Learning Representa-
tions, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-
based policy optimization. In Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems, pp. 12519–12530, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Proceedings of the 35th International Conference on Neural Information
Processing Systems, pp. 1273–1286, 2021.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: a unified safe reinforcemei
learning benchmark. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 18964–18993, 2023.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: model-
based offline reinforcement learning. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, pp. 21810–21823, 2020.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Hanna Krasowski, Xiao Wang, and Matthias Althoff. Safe reinforcement learning for autonomous
lane changing using set-based prediction. In 2020 IEEE 23rd International conference on intelli-
gent Transportation Systems, pp. 1–7, 2020.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, pp. 1179–1191, 2020.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, pp. 3703–3712, 2019.

Kuang-Huei Lee, Ofir Nachum, Sherry Yang, Lisa Lee, C Daniel Freeman, Sergio Guadarrama, Ian
Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers. In
Advances in Neural Information Processing Systems, 2022.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. In International Conference on Learning
Representations, 2021.

Qian Lin, Bo Tang, Zifan Wu, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
Wang. Safe offline reinforcement learning with real-time budget constraints. In International
Conference on Machine Learning, pp. 21127–21152, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI open, 3:
111–132, 2022.

Yang Liu, Weixing Chen, Yongjie Bai, Jingzhou Luo, Xinshuai Song, Kaixuan Jiang, Zhida Li,
Ganlong Zhao, Junyi Lin, Guanbin Li, et al. Aligning cyber space with physical world: A com-
prehensive survey on embodied ai. arXiv preprint arXiv:2407.06886, 2024a.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Con-
strained variational policy optimization for safe reinforcement learning. In International Confer-
ence on Machine Learning, pp. 13644–13668, 2022.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-
ference on Machine Learning, pp. 21611–21630, 2023.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe rein-
forcement learning. Journal of Data-centric Machine Learning Research, 2024b.

Fan-Ming Luo, Tian Xu, Xingchen Cao, and Yang Yu. Reward-consistent dynamics models are
strongly generalizable for offline reinforcement learning. In The Twelfth International Conference
on Learning Representations, 2024.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2019.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, pp. 27730–27744, 2022.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In Proceedings of the Interna-
tional Conference on Machine Learning, pp. 5331–5340, 2019.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 8634–8652, 2023.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143, 2020.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Akifumi Wachi, Xun Shen, and Yanan Sui. A survey of constraint formulations in safe reinforcement
learning. arXiv preprint arXiv:2402.02025, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Xiao Wang. Ensuring safety of learning-based motion planners using control barrier functions. IEEE
Robotics and Automation Letters, 7(2):4773–4780, 2022.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064–5078, 2022.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Zifan Wu, Bo Tang, Qian Lin, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
Wang. Off-policy primal-dual safe reinforcement learning. In International Conference on Learn-
ing Representations, 2024.

Wenli Xiao, Yiwei Lyu, and John Dolan. Model-based dynamic shielding for safe and efficient
multi-agent reinforcement learning. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 1587–1596, 2023.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
8753–8760, 2022a.

Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, and Ding Zhao. Trust-
worthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and generaliz-
ability. arXiv preprint arXiv:2209.08025, 2022b.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International Con-
ference on Machine Learning, pp. 24631–24645, 2022c.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations, 2020.

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. In Proceed-
ings of the 37th International Conference on Neural Information Processing Systems, pp. 12555–
12568, 2023.

Yihang Yao, Zhepeng Cen, Wenhao Ding, Haohong Lin, Shiqi Liu, Tingnan Zhang, Wenhao Yu,
and Ding Zhao. Oasis: Conditional distribution shaping for offline safe reinforcement learning.
arXiv preprint arXiv:2407.14653, 2024.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys, 55:1–36, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: model-based offline policy optimization. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, pp. 14129–14142, 2020.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Junhai Zhai, Sufang Zhang, Junfen Chen, and Qiang He. Autoencoder and its various variants. In
2018 IEEE international conference on systems, man, and cybernetics, pp. 415–419, 2018.

Qin Zhang, Linrui Zhang, Li Shen, Haoran Xu, Bowen Wang, Bo Yuan, Yongzhe Chang, and Xue-
qian Wang. Saformer: A conditional sequence modeling approach to offline safe reinforcement
learning. In International Conference on Learning Representations 2023 Workshop on Scene
Representations for Autonomous Driving, 2023.

Xinyu Zhang, Wenjie Qiu, Yi-Chen Li, Lei Yuan, Chengxing Jia, Zongzhang Zhang, and Yang Yu.
Debiased offline representation learning for fast online adaptation in non-stationary dynamics. In
International Conference on Machine Learning, 2024.

Rui Zhao, Yun Li, Yuze Fan, Fei Gao, Manabu Tsukada, and Zhenhai Gao. A survey on recent ad-
vancements in autonomous driving using deep reinforcement learning: Applications, challenges,
and solutions. IEEE Transactions on Intelligent Transportation Systems, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, pp. 27042–27059, 2022.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In The Twelfth
International Conference on Learning Representations, 2024.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

A ADDITIONAL INTERPRETATIONS OF CPRTG FROM THE PERSPECTIVE OF
OFFLINE RL

A core challenge in offline RL is mitigating the extrapolation errors caused by visiting OOD re-
gions (Prudencio et al., 2023), which is partially solved by DT by restricting the policy to the offline
dataset through supervised learning. However, when RTG is treated as part of the state, OOD RTG
values can still introduce extrapolation errors. The generation of CPRTG can be seen as produc-
ing only RTG values seen in the offline dataset, reducing extrapolation errors and thus improving
safety performance. From this perspective, we can make some theoretical analysis about the policy’s
performance bound.

Lemma 1. (Janner et al., 2019) Suppose we have two distributions p1(x, y) = p1(x)p1(y|x) and
p2(x, y) = p2(x)p2(y|x). We can bound the total variation distance (TVD) of the joint as

DTV(p1(x, y)||p2(x, y)) ≤ DTV(p1(x)||p2(x)) + Ex∼p1
[DTV(p1(y|x)||p2(y|x))]. (14)

Lemma 2. (Janner et al., 2019) Suppose the expected TVD between two dynam-
ics distributions is bounded as maxt Es∼pt

1(s)
[DTV(p1(s

′|s, a)||p2(s′|s, a))] ≤ ϵm, and
maxS DTV(π1(a|s)||π2(a|s)) ≤ ϵπ , where pt1(s) is the state distribution of π1 under dynamics
p1(s

′|s, a). Then the returns are bounded as:

|η1 − η2| ≤
2Rmaxγ(ϵπ + ϵm)

(1− γ)2
+

2Rmaxϵπ
1− γ

, (15)

where ηi is the expected reward return under πi and pi, γ is the shared discount factor and Rmax is
the maximum possible reward.

Theorem 1. Suppose the transition distribution of CTG given the next state dur-
ing deployment is p1(Ĉt+1|s′, s, R̂t, Ĉt, a), and that induced from the offline dataset is
p2(Ĉt+1|s′, s, R̂t, Ĉt, a). The transition distribution of RTG given the next state and next

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CTG during deployment is p1(R̂t+1|Ĉt+1, s
′, s, R̂t, Ĉt, a), and that induced from the offline

dataset is p2(R̂t+1|Ĉt+1, s
′, s, R̂t, Ĉt, a). Let the TVD between the CTG transition distribution

DTV(p1(Ĉt+1|s′, s, R̂t, Ĉt, a)||p2(Ĉt+1|s′, s, R̂t, Ĉt, a)) be TV(C, t), and the TVD between the
RTG transition distribution DTV(p1(R̂t+1|Ĉt+1, s

′, s, R̂t, Ĉt, a)||p2(R̂t+1|Ĉt+1, s
′, s, R̂t, Ĉt, a))

be TV(R, t). If
max

t
Es∼pt

1(s),s
′∼p1(·|s,R̂t,Ĉt,a)

[TV(C, t)] ≤ ϵC , (16)

max
t

Es∼pt
1(s),s

′∼p1(·|s,R̂t,Ĉt,a),Ĉt+1∼p1(·|s′,s,R̂t,Ĉt,a)
[TV(R, t)] ≤ ϵR, (17)

then we have

ηR1 ≥ ηR2 − 2Rmaxγ(ϵπ + ϵC + ϵR)

(1− γ)2
− 2Rmaxϵπ

1− γ
, (18)

ηC1 ≤ ηC2 +
2γ(ϵπ + ϵC + ϵR)

(1− γ)2
+

2ϵπ
1− γ

, (19)

where pt1(s) is the state distribution of the learned DT policy in timestep t, p1(·|s, R̂t, Ĉt, a) is the
dynamics transition distribution of the target task, ηR1 , η

C
1 are the expected reward return and cost

return for the learned DT policy during deployment, and ηR2 , η
C
2 is the expected reward return and

cost return for the behavior policy under the state, CTG, RTG transition induced from the dataset.

Proof. We view RTG R̂t and CTG Ĉt from a different perspective, rather than the condition, but part
of the state. Then, we take the state, RTG and CTG transition distribution induced from the offline
dataset p2(s′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a) as the ground truth transition distribution, but the state, RTG
and CTG transition distribution during deployment as the environment model transition.

First, applying Bayes rule we have
pi(s

′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a)

= pi(s
′|s, R̂t, Ĉt, a)pi(Ĉt+1|s′, s, R̂t, Ĉt, a)pi(R̂t+1|Ĉt+1, s

′, s, R̂t, Ĉt, a), (20)

i = 1, 2, and p1(s
′|s, R̂t, Ĉt, a) = p2(s

′|s, R̂t, Ĉt, a) due to the same state transition distribution.
Therefore, apply Lemma 1 we can obtain

DTV(p1(s
′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a)||p2(s′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a))

≤ DTV(p1(s
′|s, R̂t, Ĉt, at)||p2(s′|s, R̂t, Ĉt, a))

+ Es′∼p1(·|s,R̂t,Ĉt,a)
[DTV(p1(R̂t+1, Ĉt+1|s′, s, R̂t, Ĉt, a)||p2(R̂t+1, Ĉt+1|s′, s, R̂t, Ĉt, a))]

≤ Es′∼p1(·|s,R̂t,Ĉt,a)
[DTV(p1(Ĉt+1|s′, s, R̂t, Ĉt, a)||p2(Ĉt+1|s′, s, R̂t, Ĉt, a))

+ EĈt+1∼p1(·|s′,s,R̂t,Ĉt,a)
[DTV(p1(R̂t+1|Ĉt+1, s

′, s, R̂t, Ĉt, a)||p2(R̂t+1|Ĉt+1, s
′, s, R̂t, Ĉt, a))]].

(21)
Since

max
t

Es∼pt
1(s),s

′∼p1(·|s,R̂t,Ĉt,a)
[TV(C, t)] ≤ ϵC , (22)

max
t

Es∼pt
1(s),s

′∼p1(·|s,R̂t,Ĉt,a),Ĉt+1∼p1(·|s′,s,R̂t,Ĉt,a)
[TV(R, t)] ≤ ϵR, (23)

and thus
max

t
Es∼pt

1(s)
[DTV(p1(s

′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a)||p2(s′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a))]

≤ max
t

Es∼pt
1(s),s

′∼p1(·|s,R̂t,Ĉt,a)
[TV(C, t)]

+ max
t

Es∼pt
1(s),s

′∼p1(·|s,R̂t,Ĉt,a),Ĉt+1∼p1(·|s′,s,R̂t,Ĉt,a)
[TV(R, t)]

≤ ϵC + ϵR.

(24)

Therefore, treat pi(s′, R̂t+1, Ĉt+1|s, R̂t, Ĉt, a) as the state transition pi(s
′|s, a) in Lemma 2, we

further obtain

|ηR1 − ηR2 | ≤
2Rmaxγ(ϵπ + ϵC + ϵR)

(1− γ)2
+

2Rmaxϵπ
1− γ

, (25)

|ηC1 − ηC2 | ≤
2γ(ϵπ + ϵC + ϵR)

(1− γ)2
+

2ϵπ
1− γ

. (26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Finally, we have

ηR1 ≥ ηR2 − 2Rmaxγ(ϵπ + ϵC + ϵR)

(1− γ)2
− 2Rmaxϵπ

1− γ
, (27)

ηC1 ≤ ηC2 +
2γ(ϵπ + ϵC + ϵR)

(1− γ)2
+

2ϵπ
1− γ

. (28)

Theorem 1 provides an upper bound on the performance gap between the DT policy during deploy-
ment and the offline data-driven behavior policy. This gap is primarily influenced by three factors:
ϵπ , ϵC , and ϵR. ϵπ is mainly determined by the degree of optimization of the policy loss function,
which is difficult to alter. As for ϵC , we rely on the generalization ability of the Transformer for the
CTG to adapt to different safety thresholds, and thus, we do not wish to modify the initial settings
or update method of the CTG. Therefore, a natural approach to improving the lower bound of policy
performance is to reduce the value of ϵR. In this context, the CPRTG generator in SMACOT can be
viewed as a neural network approximation of p2(R̂t+1|Ĉt+1, s

′, s, R̂t, Ĉt, a), which helps to lower
ϵR during deployment.

Future research could also explore addressing OOD CTG values, for instance, by mapping large
initial CTGs (those exceeding the maximum in the offline dataset) to the dataset’s maximum, thus
ensuring safety while further mitigating OOD-related extrapolation errors.

B MORE DETAILS ABOUT RELATED WORK

Safe RL Safe RL is a kind of machine learning approach aimed at learning policies that maximize
cumulative rewards while adhering to additional predefined safety constraints (Gu et al., 2022).
Safe RL algorithms are broadly divided into two categories: safe exploration and safe optimiza-
tion (Garcıa & Fernández, 2015). Safe exploration algorithms do not focus on directly optimizing
the policy. Instead, they aim to modify the policy’s behavior through additional mechanisms to pre-
vent violations of safety constraints. A typical example of these algorithms is shielding-based meth-
ods (Alshiekh et al., 2018; Cheng et al., 2019; Xiao et al., 2023), which construct or learn logical
structures known as ”shields” or ”barriers” that ensure the actions taken in a given state comply with
the safety constraints. However, the decoupling from policy learning of safe exploration methods
results in lower learning efficiency, leading to a growing focus on safe optimization algorithms. Safe
optimization algorithms typically model the problem as a CMDP, with Lagrangian multiplier-based
algorithms being the mainstream solution, as discussed in the main paper. Other than Lagrangian
multiplier-based algorithms, trust region methods are among the most prevalent approaches in safe
optimization. They attempt to keep policies within a safe trust region during updates via low-order
Taylor expansions (Achiam et al., 2017; Yang et al., 2020) or variational inference (Liu et al., 2022).
Due to their robust learning process, trust region methods are also further applied to multi-agent
scenarios (Gu et al., 2023). However, their on-policy nature results in lower data efficiency. In re-
sponse, recent works have increasingly focused on off-policy safe optimization. CAL (Wu et al.,
2024) improves the optimization of Lagrange multipliers using the augmented Lagrangian method
and enhances the conservatism of the cost function learned off-policy via the use of upper confi-
dence bound. Meanwhile, SafeDreamer (Huang et al., 2024) increases data efficiency by learning
an environment model and using model rollouts for data augmentation. Recently, more attention
has been directed toward safety-conditioned RL. CCPO (Yao et al., 2023) effectively adapts to dif-
ferent safety thresholds in an online algorithm by incorporating the safety threshold into the input
of CVPO. On the other hand, SDT (Guo et al., 2024) attempts to integrate safety prior knowledge
expressed through temporal logic into the input of DT, further enhancing the policy’s safety perfor-
mance while adapting to various temporal logic safety constraints. This provides a fresh perspective
for the practical application of safety RL. With the growing body of research on safe RL, these algo-
rithms have found increasing applications in various fields. Notable examples include ensuring the
safety of vehicles in autonomous driving (Kiran et al., 2021) and safeguarding robots in industrial
settings (Brunke et al., 2022). In cutting-edge research, safe RL has also been applied to safe value
alignment in large language models (Dai et al., 2024).

Offline RL Offline RL trains policies using pre-collected datasets, avoiding real-world trial and
error, which is critical for deploying RL in practical settings. Its primary challenge is addressing

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the extrapolation errors (Prudencio et al., 2023). Methods like BCQ (Fujimoto et al., 2019) and
CQL (Kumar et al., 2020) tackle this by constraining actions to those seen in the offline data or by
penalizing unseen actions. Others, such as MOReL (Kidambi et al., 2020) and MOPO (Yu et al.,
2020), learn the environment models from the offline data and utilize these models with uncertainty
estimates to avoid OOD regions with low model accuracy. However, these methods only focus on
reducing extrapolation errors, without addressing the challenge of generalizing in OOD areas. To
tackle this limitation, MOREC (Luo et al., 2024) employs adversarial learning in the model learning
process, improving model generalization abilities.

Meta RL Meta RL is similar to multi-task RL, with both involving multi-task training. However,
Meta RL does not receive additional expert trajectories as prompts during testing. Instead, it must
collect data in the unknown environment to generate prompts. Additionally, it focuses on training
across large-scale similar tasks for generalization to new ones (Zhu et al., 2023). PEARL (Rakelly
et al., 2019) uses a probabilistic encoder to facilitate task identification and employs Thompson
sampling for data collection in new environments. Other works, like FOCAL (Li et al., 2021)
and CORRO (Yuan & Lu, 2022), focus on designing contrastive loss functions for the encoder,
improving task encoding robustness. COSTA (Guan et al., 2024) first considers safety in meta RL,
designing a cost-based contrastive loss and a safety-aware data collection framework, improving
policy safety in both task identification and deployment.

C ALGORITHMS

In this part, we will offer the detailed algorithms of SMACOT in multi-task scenarios. As described
in the main paper, the workflow of SMACOT primarily includes four parts: qϕ training, pe training,
policy training, and policy deployment. For qϕ and pe = (ps, pu), we both use simple multi-layer
perceptron (MLP) networks, and additional prompt embeddings and environment IDs will be used
as inputs for qϕ in multi-task scenarios:

min
qϕ

ET ,i∼{Tj}M
j=1

[Eτ∗,st,R̂t,Ĉt∼DT
[− log qϕ(R̂t|Ĉt, st, pe(τ

∗), i)]]. (29)

The use of ps and pu in pe is similar to traditional context-based meta RL (Rakelly et al., 2019; Li
et al., 2021; Yuan & Lu, 2022). Assume that the safe patch, classified using cost information, is
represented as {(st, at, rt)}Ts

t=1. For each sample (st, at, rt) within this patch, we first concatenate
it into a single vector xt. Then, xt is passed through the MLP neural network ps to obtain an output
vector zt. Consequently, we obtain Ts output vectors for the safe patch. Similarly, we can obtain
Tu output vectors for the unsafe patch. By averaging these Ts + Tu output vectors, we obtain the
final prompt embedding z. During the training of pe, the prompt embedding z is further input into
MLP networks fs, fr, and fc to attempt to predict the corresponding s′, r, and c values based on
the given (s, a) information (fs, fr, and fc are decoupled from the DT policy). The prediction is
then used to compute a regression loss, which allows gradients to be backpropagated into ps and
pu. The relationship between pe and fs, fr, fc is essentially that of the encoder and decoder in a
traditional autoencoder (Zhai et al., 2018). They are trained jointly before DT training, but only the
frozen encoder (not updated with DT) is required for the DT policy training and deployment phase.

Detailed pseudo-codes for qϕ training, pe training, and policy training are provided in Alg. 1, while
the pseudo-codes for policy deployment are provided in Alg. 2. Actually, from Alg. 1 we can learn
that the training process of qϕ and πθ are quite similar, which inspires us the potential of combining
qϕ and πθ together by using another head of DT as the CPRTG generator in future works.

D DISTINGUISH TASKS IN UNKNOWN ENVIRONMENTS

In this section, we will introduce the task identification method when the environment ID is un-
known. Based on the definition in Sec. 3.1, an environment is determined by its state space, action
space, and dynamics transition. Therefore, we need to infer the true environment ID based on this
information. First, we filter out potential candidate environments from the previously seen environ-
ments based on the state space and action space dimensions of the unknown environment. Then, we
sequentially use the environment-specific encoders, environment-specific decoders, and the inverse
dynamics model from the candidate environments to test the given trajectory in the unknown envi-
ronment. Specifically, given the trajectory (st, at, s

′
t)

T
t=1, and the set {es,i, ea,i, ds,i, da,i, gi}N

′

i=1 of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 SMACOT Training

Input: task set {Tj}Mj=1, environment set {Ei}Ni=1, offline dataset for each task {DTj
}Mj=1, DT tra-

jectory length K, hyperparameters λh, λc.
Initialize: Constraint Prioritized Prompt Encoder pe, decoders fs, fr, fc, state action encoders and

decoders for each environment {es,i, ea,i, ds,i, da,i, gi}Ni=1, CPRTG generator qϕ, DT policy πθ.
1: for step in environment-specific training steps do
2: for each environment Ei do
3: Merge each task dataset in this environment to get the environment dataset Di.
4: Sample a batch {(st, at, s′t)}.
5: Update ea,i and da,i with Eqn. 7.
6: Update es,i, ds,i and gi with Eqn. 8.
7: end for
8: end for
9: for step in prompt encoder training steps do

10: for each task T with its environment ID i do
11: Sample a batch {(τ∗, st, at, s′t, rt, ct)} from DT .
12: Encode states sampled with es,i and actions sampled with ea,i.
13: Update pe, fs, fr, fc with Eqn. 10.
14: end for
15: end for
16: for step in policy training steps do
17: for each task T with its environment ID i do
18: Sample a batch {(τ∗, τ−K:t, Ĉt, R̂t, st, at, ct)} from DT .
19: Update πθ with Eqn. 12.
20: Update qϕ with Eqn. 29.
21: end for
22: end for
23: Return {es,i, ea,i}Ni=1, pe, qϕ, πθ.

Algorithm 2 SMACOT Deployment

Input: initial CTG Ĉ1, environment ID i, Constraint Prioritized Prompt Encoder pe, state action
encoders es,i, ea,i, CPRTG generator qϕ, DT policy πθ, expert trajectory τ∗, DT trajectory
length K, hyperparameters X,βstart, βend.

Initialize: input sequence τ = [].
1: Encode states and actions in τ∗ with es,i and ea,i.
2: Compute the prompt encoding z according to Eqn. 9.
3: for t=1,. . . ,T do
4: Observe current state st.
5: Compute βt according to Eqn. 6.
6: Sample X values in distribution qϕ(·|Ĉt, st, z, i) and select the βt-quantile of it as R̃t.
7: Sample action at from πθ,a(·|τ [−K :], Ĉt, R̃t, st, z, i).
8: Step action at in the task environment to get rt, ct.
9: Compute Ĉt+1 = Ĉt − ct.

10: Append {Ĉt, R̃t, st, at} to τ .
11: end for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Navigation Tasks (b) Velocity Tasks

Figure 5: Tasks used in this paper. (a) Navigation Tasks based on Point and Car robots. (b) Velocity
Tasks based on Ant, HalfCheetah, Hopper, Walker2d, and Swimmer robots.

all N ′ candidate environments, the objective is as follows:

min
i

1

T

T∑
t=1

[(da,i(ea,i(at))−at)
2+(ds,i(es,i(st))−st)

2+(gi(es,i(st), es,i(s
′
t))−ea,i(at))

2], (30)

where the first term is the action reconstruction loss, which aims to ensure consistency in the action
space; the second term is the state reconstruction loss, which aims to ensure consistency in the state
space; and the third term is the inverse dynamics error, which ensures consistency in the dynamics
transition. Once the environment ID is determined, we revert to the previous setup, where the trajec-
tory is passed through the environment-specific state encoder, environment-specific action encoder,
and the Constraint Prioritized Prompt Encoder to obtain the prompt encoding, which serves as the
basis for task identification.

E DETAILED DESCRIPTION OF THE TASKS AND BASELINES

E.1 TASKS AND DATASETS

All pretraining tasks used in this paper are derived from the Safety-Gymnasium’s Navigation Tasks
and Velocity Tasks. In the Navigation Tasks, there are two different types of robots: Point and Car,
which we need to control to navigate through the environment and earn rewards by reaching target
points, pressing the correct buttons, or moving in designated directions. Different tasks also have
varying costs, such as avoiding collisions with specific targets, preventing incorrect button presses,
and staying within designated boundaries.

The Velocity Tasks are built on traditional MuJoCo (Todorov et al., 2012) simulations, requiring
robots such as Ant, HalfCheetah, Swimmer, and Walker2d to move, where higher speeds result in
higher rewards. However, each robot has specific safety velocity thresholds for different tasks, and
exceeding these thresholds leads to unsafe states. For detailed descriptions of each task, refer to the
original Safety-Gymnasium paper (Ji et al., 2023). Besides the mentioned tasks, we designed five
new Velocity tasks for task transfer, which differ from previous ones only in their velocity thresholds,
as detailed in Tab. 2.

The offline datasets used for each task are sourced from OSRL (Liu et al., 2024b). Specifically, the
datasets for the VelocityV0 and VelocityV2 tasks were additionally collected using OSRL’s original
data collection methods.

E.2 BASELINES

We provide a more detailed introduction to the baselines of the experiment in this section.

• BC-Safe is a widely-used Oracle baseline. When given a target safety threshold, it first
filters the dataset to include only trajectories that satisfy this threshold, and then applies
behavior cloning on these safe trajectories. Before, it was the only algorithm that achieved
safe performance in OSRL Safety-Gymnasium tasks even if only evaluated by 3 target
safety thresholds [20, 40, 80].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Detailed velocity thresholds for new designed tasks.
Tasks Velocity Threshold

AntVelocityV2 2.52
HalfCheetahVelocityV2 3.05

HopperVelocityV2 0.56
SwimmerVelocityV2 0.18
Walker2dVelocityV2 2.00

• CPQ is a CMDP-based offline safe RL algorithm built upon the classic offline RL method
CQL (Kumar et al., 2020). It incorporates the conservative regularization operator from
CQL into the cost critic, treating out-of-distribution samples as unsafe. Unlike traditional
methods that use Lagrangian multipliers for policy updates, CPQ directly truncates the
reward critic to 0 for unsafe state-action pairs, preventing unsafe policy execution. This
algorithm has become one of the most common baselines in offline safe algorithms and is
considered state-of-the-art in CMDP-based offline safe algorithms.

• CDT is the SOTA algorithm under the traditional safe RL setting discussed in this paper.
After incorporating CTG into DT, CDT also seeks to address the conflict between safety
constraints and reward maximization. To tackle this issue, CDT proposes a data augmen-
tation approach, where reward returns for certain safe but low-reward trajectories in the
offline dataset are re-labeled with higher values. However, the effectiveness of this data
augmentation method is still limited by the amount of augmented data and does not funda-
mentally resolve the underlying issue.

• MTCDT is a straightforward multi-task extension of CDT. It addresses the varying state
and action dimensions in cross-domain tasks by utilizing distinct input and output heads for
each environment. Additionally, MTCDT attempts to identify different tasks based solely
on the sequential inputs of DT for multi-task decision-making.

• Prompt-CDT is also a multi-task extension of CDT. Building on MTCDT, Prompt-CDT
utilizes additional expert trajectory segments as prompts to assist in task identification.

F HYPERPARAMETERS

The training and deployment of SMACOT both involve the selection of hyperparameters. To ensure
reproducibility, this section outlines the specific hyperparameters used in our experiments. SMA-
COT is implemented based on CDT within the OSRL framework, and the default parameters from
the framework are retained for any hyperparameters not explicitly mentioned in Tab. F.

For SMACOT (Oracle), the choices of βend in all tasks are as following:

[0.9, 0.6, 0.99, 0.8, 0.99, 0.7, 0.8, 0.5, 0.8, 0.6, 0.5, 0.8, 0.99,

0.8, 0.99, 0.9, 0.7, 0.8, 0.5, 0.5, 0.99, 0.8, 0.8, 0.99, 0.8, 0.99],
(31)

the order corresponds to the order of tasks in the table in the main paper. CDT also utilizes the
values listed in the table for the shared parameters. For Small DT, the DT embedding dim is 128, the
DT num layers is 2, and the DT num heads is 4.

G MORE EXPERIMENTAL RESULTS

G.1 TIME COMPLEXITY ANALYSIS

Time complexity during policy training and deployment is indeed a critical issue in real-world appli-
cations. Therefore, in this section, we provide the analysis of SMACOT’s time complexity. Due to
the use of neural networks, it is not feasible to provide a quantitative analysis. Instead, we first com-
pare SMACOT qualitatively with other baseline algorithms and present the specific results through
actual data.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameter choices of SMACOT.
Hyperparameter Value

environment-specific encoders

state encode dim 32
action encode dim 2

all network hidden layers [128, 128, 128]
update steps 100000
batch size 2048

learning rate 0.0001

prompt encoder pe

prompt encode dim 16
all encoder hidden layers [256, 256, 256]
all decoder hidden layers [128, 128]

update steps 100000
batch size 2048

learning rate 0.0001

RTG generator qϕ

environment-specific state input head output dim 64
environment-specific state input head hidden layers [128, 128, 128]

generator hidden layers [256, 128, 128]
update steps 100000
batch size 2048

learning rate 0.0001

policy learning and deployment

DT embedding dim 512
DT num layers 3
DT num heads 8

DT sequence len 20
environment-specific state input head output dim 64

environment-specific state input head hidden layers [128, 128, 128]
environment-specific action input head output dim 32

environment-specific action input head hidden layers [128, 128, 128]
environment-specific action output head input dim 32

environment-specific action output head hidden layers [128, 128, 128]
update steps 200000
batch size 1024

learning rate 0.0001
λh 0.1
λc 0.02
βstart 0.99
βend 0.8
X 1000

Table 4: Time complexity comparison.
SMACOT (ST) CDT SMACOT (MT) MTCDT Prompt-CDT

Prompt Encoder Training \ \ 1.330 h \ \
DT Policy Training 15.734 h 15.737 h 19.584 h 19.288 h 33.008 h

CPRTG Generator Training 0.250 h \ 1.404 h \ \

Deployment 0.012 s/step 0.008 s/step 0.017 s/step 0.008 s/step 0.014 s/step

First, during the training process in the single-task scenario, the policy training for SMACOT and
CDT is identical, with the only difference being in the CPRTG generator’s training. Since we use
a traditional MLP neural network in the CPRTG, its computational complexity is much lower than
that of the large Transformer networks used in policy training, resulting in minimal additional over-
head for SMACOT during training. In the multi-task scenario, SMACOT, compared to MTCDT
and Prompt-CDT, involves not only the CPRTG generator but also the training of the prompt en-
coder. This training includes both environment-specific encoder training and Constraint Prioritized
Prompt Encoder training. Similar to CPRTG training, the prompt encoder training only involves
MLP networks, so it does not introduce significant additional overhead. The specific data is shown
in Tab. 4. In the single-task scenario, we use the training of a fixed task as the result, and in the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

multi-task scenario, we report the average training time per task. During deployment, both single-
task and multi-task scenarios use the same task for testing. All experiments were conducted on
a single NVIDIA GeForce RTX 4090, and fairness was ensured even in the presence of CPU re-
source contention. The results in the table align with our earlier analysis, showing that the primary
overhead during training comes from the policy training, with the additional MLP network training
overhead being minimal. In contrast, Prompt-CDT incurs higher training overhead due to the use of
sequence-based prompts.

In the policy deployment process, the additional time complexity for SMACOT mainly arises from
the use of the CPRTG generator. By observing the last row of Tab. 4, we can see that in the single-
task scenario, the use of the CPRTG generator does introduce some extra overhead. In the multi-task
scenario, the additional overhead increases, as the use of prompts adds computational complexity
both during policy inference and in the CPRTG generator, but the additional overhead is still within
an acceptable range (smaller than 0.01 second) for real-world deployment. Further analysis of the
additional time complexity introduced by the CPRTG generator is provided in Sec. G.7.

G.2 ZERO-SHOT GENERALIZATION AND THE TRADE-OFF BETWEEN COSTS AND REWARDS

In this section, we further examine the zero-shot generation ability of SMACOT to new tasks with
different constraints and different safety thresholds.

First, we conducted experiments to evaluate the performance of three different multi-task algo-
rithms, including SMACOT, when directly deployed on new tasks with different constraints without
fine-tuning. The results are shown in Tab. 5. It can be observed that none of the methods achieve
satisfactory safety performance when facing new constraints without fine-tuning. We believe this
phenomenon is expected, as in our pre-training tasks, only two tasks are similar to the target gen-
eralization task, making it difficult to acquire the necessary knowledge for generalization from just
these two tasks. In contrast, traditional meta RL, which emphasizes generalization, may require pre-
training on dozens of similar tasks to achieve even limited generalization capability (Rakelly et al.,
2019; Li et al., 2021; Yuan & Lu, 2022). Additionally, we believe that, in safety-critical settings,
fine-tuning is a more appropriate approach when encountering new constraints, as it better ensures
safety performance.

Next, we tested the generalization capability of SMACOT and CDT under ten safety thresholds in
four tasks. The results are shown in Fig. 6. It is shown that SMACOT is able to effectively adapt
under any safety threshold, ensuring the safety performance of the policy. At the same time, both
its cost and reward exhibit a clear increasing trend as the safety threshold rises. Although CDT
shows some advantages in terms of reward, it clearly lags behind in terms of safety. In three of
the environments, it fails to demonstrate adaptability to different safety thresholds, resulting in poor
safety performance when the safety threshold is low. These experimental results validate the strong
generalization capability of SMACOT across different safety thresholds.

Based on the results from Fig. 2, Fig. 3(c), and Fig. 6, we can perform a more comprehensive
analysis of the trade-off between safety and performance. First, from the changes in cost and reward
under different objectives for the CDT algorithm, as shown in Fig. 2, we observe that the trends in
cost and reward are generally consistent. As the reward increases, the cost also rises, leading to a
decrease in safety. We can attribute these identical changes in reward and cost to the same factor,
namely, the conservatism of the policy. Therefore, the core objective in safe RL is to find an optimal
level of conservatism for the policy. In traditional safe RL algorithms, once a policy is learned,
its conservatism is fixed. However, Fig. 3(c) and Fig. 6 demonstrate two ways in which SMACOT
can effectively adjust the conservatism of the policy without altering the parameters of the policy’s
neural network. Fig. 3(c) shows that by adjusting the βend hyperparameter, it is possible to change the
policy’s conservatism effectively while keeping the safety threshold fixed. A higher value of βend
makes the policy more aggressive, leaning towards higher rewards while slightly compromising
safety. Fig. 6 shows that as the safety threshold (i.e., the initial CTG input) increases, SMACOT
also becomes more aggressive and achieves higher rewards. Thus, when the algorithm is applied
in practice, SMACOT can optimize the level of conservatism through the following process. First,
estimate the desired level of conservatism based on the expected safety threshold, then set the initial
CTG and use default parameters for rollout. If the policy turns out to be too conservative and
performance is below expectations, the first step is to decrease conservatism by increasing the βend

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2 4 6 8 10
0

5

10

15
R

ea
l C

os
t

PointButton1

2 4 6 8 10

Target Cost

0.0

0.2

0.4

0.6

0.8

R
ea

l R
ew

ar
d

2 4 6 8 10
0

2

4

6

8

10

PointCircle1

2 4 6 8 10

Target Cost

0.2

0.4

0.6

0.8

2 4 6 8 10
0

2

4

6

8

10

PointGoal1

2 4 6 8 10

Target Cost

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

2

4

6

8

10

PointPush1

2 4 6 8 10

Target Cost

0.1

0.2

0.3

0.4

SMACOT CDT Real=Target

Figure 6: Performance of SMACOT and CDT under various safety thresholds. Target costs and real
costs are normalized by 10.

0 10 20 30 40 50 60 70 80

CTG

0

5

10

15

20

25

30

R

PointButton1
1.0
0.9
0.8
0.7
0.6
0.5

(a) PointButton1

0 10 20 30 40 50 60 70 80

CTG

250

500

750

1000

1250

1500

1750

2000
R

AntVelocityV0
1.0
0.9
0.8
0.7
0.6
0.5

(b) AntVelV0

Figure 7: Generated R̃t under different Ĉt and βt.

hyperparameter. If the policy is still too conservative even after βend is increased to its maximum
value, the initial CTG input can be adjusted, not strictly relying on the true target safety threshold.
In this way, a better balance between safety and performance can be achieved in the trade-off.

Table 5: Zero-shot generation to tasks with different constraints.
SMACOT (MT) MTCDT Prompt-CDT

Task
reward cost reward cost reward cost

AntV2 0.99 ± 0.01 2.18 ± 0.02 1.11 ± 0.00 3.56 ± 0.07 1.10 ± 0.01 5.16 ± 0.16
HalfCheetahV2 1.02 ± 0.01 0.01 ± 0.00 0.99 ± 0.02 4.02 ± 0.32 1.15 ± 0.01 7.74 ± 0.63

HopperV2 0.52 ± 0.03 9.96 ± 3.06 0.70 ± 0.00 1.56 ± 0.49 0.70 ± 0.10 16.14 ± 10.25
SwimmerV2 1.05 ± 0.02 54.98 ± 0.67 1.01 ± 0.01 31.09 ± 0.43 1.11 ± 0.03 54.21 ± 10.85
Walker2dV2 1.21 ± 0.01 17.60 ± 0.81 0.82 ± 0.05 20.03 ± 0.36 0.63 ± 0.43 16.50 ± 9.77

G.3 VISUALIZATION OF CPRTGS

In this section, we visualize how R̃t changes in response to variations in Ĉt and βt, as shown in
Fig. 7. The results indicate that R̃t increases significantly with higher values of Ĉt and also rises
notably as βt increases. This confirms the rationale behind modeling RTG under CTG conditions
and applying decay to βt, allowing the policy to gradually adjust its conservatism based on potential
future safety violations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 8: Different visualization results. (a) Visualization of state encodings after using the
environment-specific state encoders. (b) Visualization of prompt encodings of the Constraint Priori-
tized Prompt Encoder using expert trajectories as prompts. (c) Visualization of prompt encodings of
the Constraint Prioritized Prompt Encoder using trajectories collected by a same behavior policy for
PointCircle1 and PointCircle2. (d) Visualization of prompt encodings of the simple MLP encoder
using trajectories collected by a same behavior policy for PointCircle1 and PointCircle2.

G.4 VISUALIZATION OF PROMPT ENCODINGS

In this section, we additionally explored the encoding process and properties of the Constraint Priori-
tized Prompt Encoder. First, we visualized the state distributions after encoding each environment’s
state separately using the environment-specific state encoder (Fig. 8(a)). The results reveal clear
separations between different environments, though tasks within the same environment remain in-
distinguishable. Next, we visualized the results after applying the prompt encoder (Fig. 8(b)). At
this stage, tasks within the same environment are also successfully differentiated, confirming the
effectiveness of our design and loss function selection.

Next, we aim to further explore the properties of the Constraint Prioritized Prompt Encoder, specif-
ically whether it focuses more on differences in state-action distribution driven by varying cost
information, rather than on the state-action distribution itself. To test this, we specifically selected
tasks where the cost function significantly affects the state-action distribution (e.g., PointCircle1 and
PointCircle2). Using the policy of PointCircle1, we collected data in both tasks to ensure consis-
tency in state-action distribution for the prompts. The results, as shown in Fig. 8(c) and Fig. 8(d),
reveal that the Constraint Prioritized Prompt Encoder effectively distinguishes tasks based on cost
information, while the traditional MLP encoder suffers from task confusion. This highlights the
robust cost information extraction capability of the Constraint Prioritized Prompt Encoder.

G.5 COMPARISON WITH TRAJECTORY TRANSFORMER

Table 6: Comparison with TT.
TT SMACOT (ST)

Task
reward cost reward cost

PointButton1 0.05 0.86 0.05 0.66
PointButton2 0.15 1.90 0.14 1.41
PointGoal1 0.24 0.61 0.36 0.56
PointGoal2 0.27 1.13 0.31 1.02

Trajectory Transformer (TT) (Janner et al., 2021) is a similar Transformer-based baseline to DT.
Therefore, we further compare our method with TT in the Single-task setting, and the results are
shown in Tab. 6. In the safe RL problem, we treat cost and reward in the same way, adding an addi-
tional step cost token as a prediction target of TT. From the results, we can observe that SMACOT
consistently outperforms TT across all experimental tasks, further demonstrating its effectiveness in
solving offline safe RL problems. However, on the other hand, it is evident that TT performs better
than CDT in terms of safety (see results before). We believe that this occurs primarily because TT
uses a training approach similar to BC, which does not incorporate RTG and CTG as inputs, but as
selection criteria for beam search, thus avoiding the conflict between RTG and CTG.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 7: Comparison with FISOR in both Single-Task and Oracle settings.
Oracle Single-Task

FISOR SMACOT FISOR SMACOTTask
r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓

PointButton1 -0.01 0.28 0.09 0.91 0.08 1.30 0.06 0.66
PointButton2 0.05 0.43 0.08 0.92 0.11 1.41 0.14 1.41
PointCircle1 0.05 0.06 0.54 0.62 0.44 5.54 0.5 0.63
PointCircle2 0.20 0.00 0.61 0.98 0.71 6.21 0.61 0.98
PointGoal1 0.03 0.01 0.51 0.87 0.66 2.14 0.36 0.56
PointGoal2 0.05 0.08 0.29 0.91 0.29 1.28 0.31 1.02
PointPush1 0.31 0.89 0.19 0.88 0.31 0.89 0.19 0.88
PointPush2 0.09 0.29 0.13 0.63 0.24 1.40 0.19 1.47

Average 0.10 0.26 0.31 0.84 0.36 2.52 0.30 0.95

100 500 1000 2000
X

0.32

0.36

0.40

R
ew

ar
d

0.377
0.379 0.379

0.377

Performance with different X
reward

1.32

1.38

1.44

1.50

C
os

t

1.48 1.483

1.446 1.447

cost

(a)
W/o CP X 100 X 500 X 1000 X 20000.000

0.010

0.020

Ti
m

e
P

er
 S

te
p 0.013

0.017 0.017 0.017 0.017

Time Complexity Analysis of SMACOT

(b)
Ours (MT) W/o IDM

0.12

0.16

0.20

R
ew

ar
d 0.155

0.165

Ablation on g
reward

0.54

0.60

0.66

C
os

t

0.623

0.645

cost

(c)

Figure 9: (a) Performance ablation on X . (b) Time complexity analysis of X . (c) Performance
ablation on whether using the inverse dynamics model g in 4 tasks.

G.6 COMPARISON WITH FISOR

To further demonstrate the benefits of using CPRTG in SMACOT for improving policy safety per-
formance, we additionally compared it with the latest SOTA offline safe RL method, FISOR (Zheng
et al., 2024). FISOR uses a diffusion model (Yang et al., 2023) to identify the feasible region and
solve the hard constraint problem. When the policy is in an unsafe region, FISOR guides the policy
towards a safe region, and when the policy is in the safe region, it seeks the behavior that maximizes
reward while keeping the policy within the safe region. We conducted the comparison in two differ-
ent settings: Oracle and Single-Task. In the Single-Task setting, FISOR was trained using the hyper-
parameters proposed in the original paper for all tasks. In the Oracle setting, we adjusted FISOR’s
reverse expectile parameter τ for each task, [0.8, 0.8, 0.7, 0.7, 0.8, 0.8, 0.9, 0.8] for the 8 test tasks
specifically. According to the ablation results in FISOR, τ is positively correlated with the conserva-
tiveness of the policy. The results are shown in Table 7. First, in the Single-Task setting, SMACOT
demonstrates significantly better safety performance than FISOR, highlighting the effectiveness of
CPRTG in resolving the conflict between reward and safety. In the Oracle setting, while both meth-
ods are able to meet safety constraints for all tasks, SMACOT achieves significantly better reward
performance, which underscores the higher flexibility of CPRTG in adjusting the conservativeness
of the policy. Another clear advantage of SMACOT in the Oracle setting is that the hyperparameter
βend is a test-phase-only parameter. This means that adjusting this parameter does not require retrain-
ing the policy, making it extremely convenient to fine-tune. In contrast, FISOR’s hyperparameter
τ is a training-phase parameter, so adjusting it requires retraining the policy. Overall, these results
clearly demonstrate the effectiveness of CPRTG in handling the reward-safety trade-off, which is a
core challenge in safe RL.

G.7 ABLATION ON CPRTG SAMPLE NUMBER X

In this section, we first conducted an ablation study on different choices of the CPRTG sample
number X to investigate the impact of this hyperparameter on policy performance. The results are

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10

0.40

0.60

0.80

1.00

R
ew

ar
d

AntV2

0 2 4 6 8 10

Step (1e4)

0.0

1.0

2.0

3.0

4.0

C
os

t

0 2 4 6 8 10
0.00

0.20

0.40

0.60

0.80

1.00

HalfCheetahV2

0 2 4 6 8 10

Step (1e4)

2.0

4.0

6.0

0 2 4 6 8 10

0.40

0.60

0.80

HopperV2

0 2 4 6 8 10

Step (1e4)

0.0

5.0

10.0

15.0

0 2 4 6 8 10

0.40

0.60

0.80

1.00

AntCircleV1

0 2 4 6 8 10

Step (1e4)

0.0

5.0

10.0

15.0

20.0

25.0

from_scratch
SMACOT_FFT

SMACOT_LoRA
Prompt-CDT_FFT

Prompt-CDT_LoRA
cost bound

Figure 10: Transfer comparison with Prompt-CDT and transfer results in a dissimilar task.

shown in Fig. 9(a). It can be observed that as X increases from 100 to 2000, there is almost no
significant change in the policy’s reward, but a noticeable reduction in the policy’s cost. This result
confirms that as the CPRTG sample number increases, the sampled values are closer to the desired
quantile points, leading to better performance and a certain improvement in safety.

Additionally, we performed a further analysis of the time complexity of the CPRTG generation
process in SMACOT, with the results presented in Fig. 9(b). From the figure, we can draw two
conclusions. First, when CPRTG is used, the time consumption does indeed increase compared to
not using CPRTG, indicating that the CPRTG generation process introduces additional computa-
tional overhead. Second, when X increases from 100 to 2000, the time overhead remains almost
unchanged, suggesting that the additional cost brought by CPRTG mainly comes from the inference
of the CPRTG generator’s neural network, rather than the sampling of quantile points. Therefore,
in practice, we can increase X as much as possible to achieve better policy performance without
introducing significant additional computational cost.

G.8 DISCUSSION AND ABLATION ON INVERSE DYNAMICS MODEL g

In Sec. 4.2, we introduced an additional inverse dynamics model g to compute the inverse dynam-
ics error for training the environment-specific state encoders. The primary motivation for using the
inverse dynamics model is to address tasks with identical state and action spaces but different dy-
namics transitions. While such tasks have not appeared in our main experiments, they are still quite
common (Nagabandi et al., 2019; Eysenbach et al., 2021; Zhang et al., 2024). In these cases, the
inverse dynamics error based on the inverse dynamics model can effectively produce different state
representations during the environment-specific state encoder learning phase, thereby reducing the
learning difficulty for the Constraint Prioritized Prompt Encoder. Moreover, as described in Sec. D,
when the environment ID is unknown, the inverse dynamics error based on the inverse dynamics
model becomes the core method for distinguishing these tasks, making it an essential component.
We also conducted an additional ablation study to ensure that the use of the inverse dynamics model
does not negatively impact the policy performance, with results shown in Fig. 9(c), which aligns
with our expectations.

G.9 MORE TASK TRANSFER RESULTS

In this section, to demonstrate that our prompt encoder design can include more effective infor-
mation than directly inputting sequence prompts during task transfer, we compare the results with
Prompt-CDT under two fine-tuning methods: FFT and LoRA. Additionally, we introduce a new
environment, AntCircle, which has a lower similarity to the pretraining task. In AntCircle, the state
space, action space, and dynamics transition are consistent with AntVelocity, but both the reward

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0
1.00

1.01

1.02

1.03

1.04

1.05

1.06
R

ew
ar

d

AntV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.5

0.8

1.0

1.2

1.5

1.8

C
os

t

0.0 2.5 5.0 7.5 10.0
0.98

0.99

1.00

1.01

1.02

HalfCheetahV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

1.0

2.0

3.0

4.0

0.0 2.5 5.0 7.5 10.0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

HopperV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.5 5.0 7.5 10.0

0.85

0.90

0.95

1.00

SwimmerV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.5 5.0 7.5 10.0
0.70

0.80

0.90

1.00

1.10

Walker2dV2

0.0 2.5 5.0 7.5 10.0

Step (1e4)

2.0

4.0

6.0

8.0

10.0

12.0

rank 4 rank 8 rank 16 rank 32 cost bound

Figure 11: Ablation on different LoRA ranks.

function and cost function undergo significant changes. The reward function is modified to repre-
sent the speed at which the Ant robot moves along a circle, while the cost function now penalizes
the robot’s x-coordinate rather than its speed. The results are shown in Fig. 10.

First, by observing the results in similar tasks, we see that Prompt-CDT’s multitask pretraining also
provides a certain level of improvement in task transfer in environments other than HalfCheetah.
However, compared to SMACOT, Prompt-CDT still exhibits inferior task transfer performance. In
HalfCheetah, it leads to a significantly higher violation of safety constraints. In Hopper, FFT shows
a noticeable drop in performance, while LoRA causes instability in safety. This clearly indicates that
SMACOT’s use of the prompt encoder provides more effective information for knowledge transfer
than directly using sequence prompts.

Next, by observing the results in dissimilar tasks, we find that even in scenarios with low task sim-
ilarity, SMACOT’s pretraining still provides some performance improvement compared to learning
from scratch. However, due to the limited amount of transferable knowledge, this improvement is
less significant than in similar tasks. In contrast, Prompt-CDT’s pretraining results in a noticeable
decline in safety performance. This indicates that the sequential prompts used in Prompt-CDT do
not always bring additional information gain and may sometimes interfere with the extraction of
effective information. Furthermore, these results suggest that in low-similarity scenarios, few-shot
adaptation may not always yield stable results, and using larger datasets for training might be a bet-
ter alternative. Additionally, increasing the diversity of tasks during pretraining is an effective way
to enhance the policy’s transferability.

G.10 ABLATION ON LORA RANK

In LoRA, performance is mainly influenced by the LoRA rank r and the LoRA α (Hu et al., 2022).
Following standard practice, we set α to twice the value of r and conducted experiments on task
transfer with various r values. The results, shown in Fig. 11, indicate that performance generally
improves as r increases, except in the HalfCheetah task, where an anomaly occurred, consistent
with previous findings. These results suggest that when the model has relatively few parameters,
increasing the number of fine-tuned parameters positively impacts performance.

G.11 DETAILED MAIN ABLATION RESULTS

In this section, we also provide the detailed results of the ablation studies, as shown in Tab. 8.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 8: Detailed results of the ablation studies done in the multi-task setting.
Ours (MT) W/o CP Det CP W/o CD W/o PE Simp PE Small DT

Task
r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓ r↑ c↓

PointButton1 0.04 0.55 0.49 3.94 0.03 0.62 0.09 1.14 0.08 0.94 0.02 0.60 0.07 0.73
PointButton2 0.08 0.98 0.32 3.31 0.03 0.95 0.11 1.41 0.07 1.01 0.10 1.21 0.11 1.19

PointCircle1 0.55 1.09 0.57 0.93 0.52 1.05 0.55 1.05 0.48 0.70 0.53 0.86 0.53 0.71
PointCircle2 0.57 1.75 0.60 1.92 0.55 1.85 0.57 1.85 0.57 2.59 0.55 1.51 0.53 1.46

PointGoal1 0.24 0.30 0.62 1.44 0.20 0.35 0.33 0.53 0.22 0.32 0.26 0.36 0.28 0.48
PointGoal2 0.26 0.66 0.49 2.33 0.23 0.63 0.30 0.89 0.22 0.79 0.22 0.77 0.27 0.99
PointPush1 0.12 0.69 0.25 1.40 0.10 0.57 0.17 0.7 0.13 0.52 0.12 0.56 0.17 0.69
PointPush2 0.11 0.83 0.15 1.25 0.10 0.78 0.10 0.94 0.11 0.77 0.11 0.80 0.14 1.20

CarButton1 0.04 0.89 0.23 4.70 0.02 0.66 0.07 0.77 0.02 0.65 0.04 0.67 0.02 0.60
CarButton2 -0.02 0.94 0.17 4.77 -0.02 0.77 -0.05 1.56 0.01 1.07 -0.01 1.05 -0.04 1.14

CarCircle1 0.50 2.89 0.52 4.10 0.49 2.87 0.50 3.17 0.42 2.44 0.51 3.27 0.56 4.53

CarCircle2 0.34 1.67 0.55 4.61 0.31 1.40 0.35 2.05 0.46 4.06 0.32 1.37 0.38 2.41

CarGoal1 0.22 0.32 0.50 1.32 0.19 0.29 0.24 0.37 0.19 0.28 0.21 0.34 0.26 0.45
CarGoal2 0.13 0.91 0.32 1.83 0.15 0.94 0.20 1.01 0.15 0.76 0.14 0.94 0.19 1.06

CarPush1 0.18 0.48 0.24 0.73 0.16 0.43 0.20 0.45 0.17 0.33 0.18 0.35 0.19 0.38
CarPush2 0.06 0.62 0.16 2.25 0.04 0.46 0.07 1.15 0.04 0.54 0.05 0.61 0.06 0.81

SwimmerVelocityV0 0.69 0.84 0.72 0.72 0.53 0.64 0.72 0.82 0.67 5.79 0.70 1.93 0.67 3.12

SwimmerVelocityV1 0.61 0.74 0.66 0.65 0.43 1.38 0.66 0.69 0.56 0.51 0.59 0.74 0.56 0.76
HopperVelocityV0 0.57 4.28 0.83 2.31 0.41 3.77 0.60 4.13 0.55 2.69 0.55 3.25 0.37 1.85

HopperVelocityV1 0.27 1.09 0.64 3.53 0.23 0.96 0.37 1.60 0.44 0.52 0.28 1.43 0.16 2.08

HalfCheetahVelocityV0 0.70 0.36 0.95 0.78 0.67 0.31 0.76 0.40 0.75 13.77 0.7 0.38 0.78 0.17
HalfCheetahVelocityV1 0.75 1.22 0.95 0.27 0.73 1.06 0.80 1.13 0.73 0.65 0.88 0.49 0.67 0.69

Walker2dVelocityV0 0.35 4.44 0.28 2.47 0.36 4.51 0.36 4.49 1.44 27.45 0.40 5.57 0.36 4.64

Walker2dVelocityV1 0.66 0.73 0.74 0.09 0.66 0.72 0.67 0.72 0.69 0.71 0.72 0.59 0.58 2.28

AntVelocityV0 0.95 4.89 0.94 1.65 0.96 5.01 0.96 4.99 0.85 7.02 0.98 8.45 0.99 10.13

AntVelocityV1 0.92 3.42 0.98 0.71 0.91 3.80 0.95 3.13 0.92 5.24 0.96 3.44 0.96 3.29

Average 0.38 1.45 0.53 2.08 0.35 1.42 0.41 1.58 0.42 3.16 0.39 1.60 0.38 1.84

29

	Introduction
	Related Work
	Preliminaries
	Safe RL and Multi-task Safe RL
	Safe RL via Decision Transformer

	Method
	CPRTG Token Generation
	Constraint Prioritized Prompt Encoder Learning
	Overall Algorithm

	Experiments
	Baselines and Tasks
	Case Study: When RTG conflicts with CTG
	Competitive Results and Ablations
	Policy Transfer

	Final Remarks
	Additional Interpretations of CPRTG from The Perspective of Offline RL
	More Details About Related Work
	Algorithms
	Distinguish Tasks in Unknown Environments
	Detailed Description of the Tasks and Baselines
	Tasks and Datasets
	Baselines

	Hyperparameters
	More Experimental Results
	Time Complexity Analysis
	Zero-shot Generalization and the Trade-off between Costs and Rewards
	Visualization of CPRTGs
	Visualization of Prompt Encodings
	Comparison with Trajectory Transformer
	Comparison with FISOR
	Ablation on CPRTG sample number X
	Discussion and Ablation on inverse dynamics model g
	More Task Transfer Results
	Ablation on LoRA Rank
	Detailed Main Ablation Results

