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Abstract

The objective in eXtreme Classification (XC) is
to find relevant labels for a document from an
exceptionally large label space. Most XC appli-
cation scenarios have rich auxiliary data associ-
ated with the input documents, e.g., frequently
clicked webpages for search queries in sponsored
search. Unfortunately, most of the existing XC
methods do not use any auxiliary data. In this
paper, we propose a novel framework, Online
Auxiliary Knowledge (OAK), which harnesses
auxiliary information linked to the document to
improve XC accuracy. OAK stores information
learnt from the auxiliary data in a knowledge bank
and during a forward pass, retrieves relevant auxil-
iary knowledge embeddings for a given document.
An enriched embedding is obtained by fusing
these auxiliary knowledge embeddings with the
document’s embedding, thereby enabling much
more precise candidate label selection and final
classification. OAK training involves three stages.
(1) Training a linker module to link documents
to relevant auxiliary data points. (2) Learning an
embedding for documents enriched using linked
auxiliary information. (3) Using the enriched
document embeddings to learn the final classi-
fiers. OAK outperforms current state-of-the-art
XC methods by up to ∼ 5% on academic datasets,
and by ∼ 3% on an auxiliary data-augmented vari-
ant of LF-ORCAS-800K dataset in Precision@1.
OAK also demonstrates statistically significant
improvements in sponsored search metrics when
deployed on a large scale search engine.
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Document Plinth Assemblage
Auxiliary
Knowledge
(AK)

Mount Meager massif, Geologic formations of British
Columbia, Volcanism of British Columbia, Pleistocene volcan-
ism, Beaufort Group, Paleontology in South Africa

NGAME (Ig-
nores AK)

Job Assemblage, Assemblage, Pylon Assemblage, Capricorn
Assemblage, Assemblage (art)

OAK (Uses
AK)

Pylon Assemblage, Capricorn Assemblage, Job Assemblage,
List of Cascade volcanoes, List of volcanoes in Canada

Table 1. OAK leverages auxiliary knowledge pieces (AKPs) for
accurate XC. Consider an example from the WikiSeeAlsoTitles
dataset. Given a Wikipedia page title, auxiliary knowledge indi-
cates relevant categories. The related Wikipedia pages predicted
by OAK are more accurate than the state-of-the-art XC algorithm,
NGAME. OAK is able to accurately predict labels related to volca-
noes thanks to the information from auxiliary knowledge. Legend:
Black (correct), Red (incorrect), Green (correct; unique to OAK)

1. Introduction
eXtreme Classification (XC) is the problem of predicting
the most relevant subset of labels for a data point from an
extremely large set of labels. XC methods have proved
to be effective for several applications like product recom-
mendation (Dahiya et al., 2021b; Medini et al., 2019; Mit-
tal et al., 2021a), document tagging (Babbar & Schölkopf,
2017; Chang et al., 2020; You et al., 2019), search and adver-
tisement (Dahiya et al., 2021b; Jain et al., 2016; Prabhu et al.,
2018b), and query recommendation (Chang et al., 2020; Jain
et al., 2019). While earlier XC methods used sparse linear
models (Babbar & Schölkopf, 2017; Prabhu et al., 2018b)
recent ones have been deep-learning based (You et al., 2019;
Dahiya et al., 2021b; Mittal et al., 2021a; Dahiya et al.,
2021a; Kharbanda et al., 2022; Dahiya et al., 2023a; Jain
et al., 2023; Dahiya et al., 2023b; Kharbanda et al., 2023).

For full-text XC datasets such as LF-Wikipedia-500K (Bha-
tia et al., 2016a), documents are represented using a more
detailed description. However, short-text tasks abound in
ranking and recommendation applications where data points
are user queries or products/webpages represented using
only their titles. In such cases, e.g., in the LF-WikiTitles-
500K dataset, documents are represented by a 3-5 word
textual description such as the name of a product or title
of a webpage. The sparse document representation adds
to the complexity of XC tasks on such short-text datasets.
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However, besides the document text, often, a variety of
auxiliary information is available in many domains, e.g.,
frequently clicked webpages for search queries in sponsored
search, previously searched queries for web search query
auto-completion, etc. Auxiliary information available from
disparate but related tasks often have relevant diverse in-
formation that the input document does not, which can be
leveraged to provide better predictions. Surprisingly, none
of the previous XC methods have leveraged this rich aux-
iliary information. In this paper, our goal is to check how
much accuracy improvements can be obtained for XC tasks
by harnessing rich auxiliary information. Table 1 shows
an example where usage of auxiliary information improves
accuracy for the Wikipedia “See Also” prediction XC task.

Given a document x and a set of K related auxiliary knowl-
edge pieces {ak}[1..K], an obvious approach is to concate-
nate the document with each of the knowledge pieces and
compute embedding of this concatenated sequence as the
document representation. If the auxiliary knowledge pieces
(AKP) are not known for a document, popular methods from
retrieval augmented language modeling (Guu et al., 2020)
can be used to first discover relevant auxiliary knowledge
pieces from a large pool. However, such a method has a few
drawbacks: (1) accuracy may suffer if some AKPs are noisy,
and (2) inference latency may increase due to increased
length of the concatenated sequence. Another approach to
use graph neural network methods like GraphFormers (Yang
et al., 2021) and GraphSAGE (Hamilton et al., 2018) to en-
code the document-AKPs linkage information. However,
they involve high storage and computational costs, and can-
not leverage the auxiliary data sourced from disparate tasks
effectively as observed in our experiments.

In this paper, we propose the Online Auxiliary Knowledge
(OAK) classifier to enrich document representations using
auxiliary information. Fig. 1 shows the detailed OAK archi-
tecture. Training for OAK involves three stages: (1) Linker
training (2) OAK pretraining (which involves training the
augmentation block as shown in the figure) (3) OAK finetun-
ing. In the first stage, the linker module in OAK is trained to
link documents with relevant AKPs from a large pool using
an existing XC method. In the second stage, we combine
the document embeddings with relevant AKP embeddings
via attention-based pooling to get an enriched document rep-
resentation. The second stage then trains the augmentation
block (detailed later) in a Siamese fashion. The goal is to
attain higher similarity between enriched document embed-
dings and relevant label embeddings as against non-relevant
label embeddings. The third fine-tuning stage freezes the
augmentation block parameters and learns a per-label refine-
ment vector to fine-tune the label embeddings to obtain the
final label classifiers.

OAK uses trainable embeddings that are completely free
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Figure 1. OAK model architecture. For a given document di, doc-
ument representations xi are obtained using the encoder E with
parameters θE . Linker R returns the indices corresponding to
relevant AKPs, Âi, which correspond to the embeddings in AK
Bank. These embeddings are concatenated and passed through
the Combiner module C to obtain the auxiliary data enriched doc-
ument representation x̂i. We refer to the collection of the three
modules (Encoder E , AK Bank K and Combiner module C with
parameters θE , θK and θC resp) as the Augmentation Block, ψ.
Same encoder E is also used to obtain label representations yj

for a label lj . Augmentation block parameters are frozen when
learning a per-label refinement vector ∆wj to obtain final classifier
wj for label lj .

to move around to represent each AKP. These AKP repre-
sentations are learnt jointly with the document encoder to
optimize for the target XC task.

This ensures that the OAK augmentation block can use
signals from AKPs to get an enriched representation of a
document while still adhering to the semantics imposed by
the XC task. Further, to avoid large changes in encoder
embeddings in stage 2, we introduce encoder regulariza-
tion. Lastly, motivated by Direct Preference Optimization
(DPO) (Rafailov et al., 2023), we add an novel calibration
regularization term to the loss function to learn accurate
enriched document representations.

On public benchmark datasets for Wikipedia document tag-
ging, suggesting relevant Wikipedia titles and webpage
prediction, OAK provides a gain of up to ∼ 5%, ∼ 1%
and ∼ 3% respectively in Precision@1 metric over strong
XC baselines. On a sponsored search task of matching
user queries to advertiser keywords, OAK outperforms cur-
rent state-of-the-art dense retrievers by 5% in retrieval re-
call@100. OAK adds minimal computational overhead
during training. OAK’s inference is efficient leading to
an inference time of <10 milliseconds, enabling it to be
deployed for a sponsored search task to get enhanced repre-
sentation of a user query in real-time for online serving.

Overall, the main contributions of this work are as follows.
(1) We propose the usage of semantically rich auxiliary
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information associated with documents for diverse and ac-
curate XC. (2) We propose the modular OAK architecture
to leverage the AKPs. OAK can execute the joint training
of AKP representations on top of any encoder, and exploit
the signals from any auxiliary source. We also propose
a 3-stage training scheme for OAK which involves linker
training, OAK pre-training and OAK finetuning. (3) OAK’s
novel insight to efficiently increase model capacity by using
trainable embeddings to represent AKPs ensures optimal
document representation for the target XC task. At the
same time, the novel mutual information calibration loss
term ensures that the potentially orders of magnitude more
parameters can be learnt tractably. (4) OAK leads to state-
of-the-art results on several XC tasks including advertiser
keyword prediction for user queries, Wikipedia categories
and “See Also” prediction, and Webpage prediction by lever-
aging auxiliary information efficiently. The code will be
released publicly upon acceptance of this paper.

2. Related Work
XC: XC is a key paradigm in several areas such as rank-
ing and recommendation. The literature on XC methods is
vast (You et al., 2019; Guo et al., 2019; Dahiya et al., 2021b;
Mittal et al., 2021a; Saini et al., 2021; Gupta et al., 2023).
Early XC methods used fixed (bag-of-words) (Babbar &
Schölkopf, 2017; Prabhu et al., 2018b) or pre-trained (Jain
et al., 2019) features and focused on learning only a classi-
fier architecture. Recent advances have demonstrated signif-
icant gains by using task-specific features obtained from a
variety of deep encoders (You et al., 2019; Jiang et al., 2021;
Dahiya et al., 2023a). Training is scaled to millions of labels
and training points (Dahiya et al., 2021b) by performing
encoder pre-training followed by classifier training. A data
point is trained only on its relevant labels and a select few
irrelevant labels deemed most informative using negative
mining (Dahiya et al., 2023a). However, none of the existing
XC methods make use of any auxiliary information asso-
ciated with documents, except PINA (Chien et al., 2023)
which uses instance correlation signals to learn neighbor-
hood aggregated representations. Our experiments show
that OAK outperforms PINA by large margins.

Retrieval Augmented Language Models: REALM (Guu
et al., 2020) leverages external knowledge sources to en-
hance accuracy using Transformer encoders. Based on the
input text, first, a retriever selects relevant documents or
passages from a large corpus. Then, an encoder concate-
nates the input text and relevant documents and computes
an embedding for the sequence. Retrieval augmentation
has also been extended to generation (RAG (Lewis et al.,
2020)), but we do not discuss RAG in detail since XC is a
classification problem.

Graph Neural Networks in Related Areas: A sizeable

body of work exists on using graph neural networks such as
graph convolutional networks (GCN) for recommendation.
GCN-based methods such as GraphSAGE (Hamilton et al.,
2018) and GraphFormers (Yang et al., 2021) learn node rep-
resentations as functions of node metadata e.g. textual de-
scriptions. This allows the methods to work in zero-shot set-
tings but they still incur the high storage and computational
cost of GCNs. Moreover, diminishing returns are observed
with an increasing number of layers of the GCN (Chiang
et al., 2019; Mittal et al., 2021b). As a baseline method, in
this work, we experiment with enriching document represen-
tations using document-AKP graphs. Our experiments show
that the OAK method offers a far more scalable alternative
to GCNs and other popular graph-based architectures in XC
settings, significantly reducing the overheads of graph-based
learning, yet offering sustained and significant performance
boosts in prediction accuracies.

3. Preliminaries/Background
Notation. Consider a dataset containing a set of documents
D, Auxiliary Knowledge Pieces (AKPs) A and labels L.
Let di, lj ∈ X be the textual descriptions of the document i
and label j respectively. Thus, the training dataset can be
expressed as T = {di, li}Ni=1. For each document di ∈ D,
there exists a positive label set L+

di
⊂ L such that for every

lj ∈ L+
di

, di and lj are relevant. Similarly, the positive
AKP set exists A+

di
for every document di as well. Note

that AKP and label sets are the same across training and
testing, but document-AKP links are not available at test
time.

Task. Before discussing the details of our proposed OAK
framework, we recap the fundamentals of the XC task at
hand. The objective of an XC is, given a document di,
retrieve a set of relevant labels L+

di
from a label set L where

|L+
di
| << |L|.

Siamese Networks. Several existing XC methods follow
a Siamese architecture. Here, a (BERT-based) encoder,
denoted by E : X → SD−1, with trainable parameters
θ, is used to embed both data point and label text onto
the D-dimensional unit sphere SD−1, i.e., the encoder pro-
vides unit norm embeddings. During training, a contrastive
objective (triplet loss in our case) is used to pull the D-
dimensional encoder representations of related documents
and labels close as well as push unrelated documents and la-
bels away. Formally, if we have xi = E(di) and yj = E(lj),
Triplet loss is defined as below.

LTrip(θ)
def
=

1

N

N∑
i=1

∑
j ̸=i

[
xi · y⊤

j − xi · y⊤
i + γ

]
+

(1)

where γ is the margin. Typically training is done in a modu-
lar fashion in 2 stages where encoder E is trained in the first
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stage and frozen. The second stage initializes |L| 1-vs-all
classifiers, each corresponding to a label, with the label text
encoder representations, and refines them using the triplet
loss objective described above. For more details on Siamese
architectures and training, please refer to (Dahiya et al.,
2023a).

Interestingly, there is an equivalence between Siamese train-
ing and the maximization of mutual information between
document and label encoder representations as described
in the theorem below. Please refer to Appendix C.1 for the
proof.
Theorem 1. Siamese training via triplet loss serves to max-
imize mutual information between the distributions cast by
the document and label encoder representations.

4. The OAK Approach for XC
OAK Architecture: As depicted in Fig. 1, OAK consists of
four components as follows. (1) An encoder E : X → SD−1

with trainable parameters θE embeds documents and la-
bels into SD−1 using their textual descriptions. OAK uses
a DistilBERT-base (Sanh et al., 2019) encoder as E . (2)
A linker module R : X → P (A), where P (A) is the
power set of A, has parameters θL. It predicts K relevant
AKPs Âi for a document di. (3) An auxiliary knowledge
bank K consists of |A| trainable embeddings with param-
eters θK . Formally, K ∈ RM×D, where Kj ∈ RD cor-
responds to row j in K for the j-th AKP. The AK bank
stores information learnt from the auxiliary data. It also
helps increase the model capacity via additional learnable
parameters for AKP representations. (4) A combiner mod-
ule C : R(K+1)×D → SD−1 with trainable parameters θC
fuses the encoder’s document representation xi = E(di)
and AKP embeddings {K(a1),K(a1), ...,K(aK)} ⊂ K us-
ing cross attention. Here, K is a model hyperparameter that
corresponds to the maximum number of AKPs the module
can enrich the document representation with. The module
is expected to learn higher weights for relevant AKPs and
lower for noisy ones (see Figure 2). Overall, OAK training
involves learning the set of parameters θ = {θE , θK , θC}.

Auxiliary Data Enriched Document Representation: The
encoder, AK bank and combiner modules are jointly referred
to as the Augmentation Block ψ : X → SD−1, which aug-
ments the document representation using AKP embeddings
to enrich it. Augmented representations are obtained from
the combiner module which fuses the trainable embeddings
obtained from the AK Bank with the encoder’s document
representation. Since for document di we have xi = E(di)
and K(Âi) = {K(a1),K(a1), ...,K(aK)}, we obtain the
auxiliary data enriched document representation as

ψ(di)
def
= C

(
xi, {K(aj)}j=Kj=1

)
. (2)

Figure 2. Cross Attention score visualization for the document
“Plinth Assemblage” (same as in Table 1). In Table 1, we showed
ground truth AKPs, while here we show 3 most relevant AKPs (all
of which match with the ground truth) as predicted by the linker
module. To demonstrate the combiner’s capacity to filter out noise,
we also add an incorrect AKP, “ethnic groups in south africa”, and
it is scored the lowest out of all AKPs.

4.1. Training OAK

Training of OAK is divided into three stages: (1) training
the Linker Module R, (2) training the Augmentation Block,
and (3) training the label classifiers.

Training the Linker Module. Treating the AKPs as labels,
predicting relevant AKPs for documents at test time can be
modeled as an XC task. Hence, we use a performant XC
method as the linker module, trained on the document to
AKP linkage training data.

Training the Augmentation Block using MI Maximiza-
tion. The Augmentation Block ψ consists of encoder E ,
AK Bank K, combiner module C. To generate enriched
document representations optimized to maximize XC task
accuracy, we need to ensure that both E and ψ provide se-
mantically rich representations, predictive of the labels. This
implies that we need to maximize mutual information (1) be-
tween enriched document representations from ψ and label
representations using E , and (2) between document represen-
tations from E and label representations using E . Formally,
we have random variables X ∼ P[E(d)], XA ∼ P[ψ(d)],
Y ∼ P[E(l)] and we maximize I(XA;Y ) + I(X;Y ). As
elaborated in Theorem 1, Triplet loss serves to maximize
mutual information between the distributions cast by the
two towers of the Siamese network. Hence, we leverage
triplet loss to define the MI maximization requirement.

For a document di, we sample kp ∼ L+
di

. We define L−
di

as the set of negative labels L−
di

obtained using in-batch
sampling from the set of labels which are relevant for other
documents in the current batch but irrelevant to document
di. The triplet loss formulation to maximize I(XA;Y ) for
a batch of N samples then naturally follows.

LTrip,ψ(θ) =

N∑
i=1

∑
ln∈L−

di

[
x̂i · y⊤

n − x̂i · y⊤
p + γ

]
+

(3)

where for clarity, we denote ψ(di) using x̂i, and E(lj) us-
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ing yj . Similarly, to maximize I(X;Y ), the triplet loss
formulation can be written as follows.

LTrip,E(θE) =

N∑
i=1

∑
ln∈L−

di

[
xi · y⊤

n − xi · y⊤
p + γ

]
+

(4)

where xi = E(di). In addition to optimizing I(X;Y ),
LTrip,E(θE) also ensures that the Knowledge Bank param-
eters K don’t overfit the objective and the encoder doesn’t
lose quality during joint training. Please refer to section 5.4
for ablations on this.

Combining Equations 3 and 4, to achieve MI maximization
I(XA;Y ) + I(X;Y ), the loss is as follows.

LMI-Max(θ) = LTrip, ψ(θ) + LTrip, E(θE) (5)

Improving the Augmentation Block training using MI
Calibration. Since ψ represents AK-enriched document
representation, it is expected to have more information that
can predict accurate labels compared to E . That is, we want
to ensure I(XA;Y ) ≥ I(X;Y ). To achieve this, we define
a calibration loss LCalib. Inspired by (Ma et al., 2023), we
define the calibration loss as expected confidence difference
CDij = δij(E(di) · E(lj)⊤ − ψ(di) · E(lj)⊤) where δij is
+1 if di and lj are related, −1 otherwise. This gives

LMI-Calib(θ) =
1

N

N∑
i=1

N∑
j=1

[CDij + γ]+ , (6)

where γ is a margin term and N is the batch size. The intu-
ition is that the model is penalized for being less confident
when scoring a relevant pair with more (auxiliary) infor-
mation at input, thereby ensuring I(XA;Y ) ≥ I(X;Y ).
It also ensures that the model is penalized for being more
confident when scoring a irrelevant pair with more (auxil-
iary) information at input. Please refer to Section 5.4 for
ablations on the contribution and design of this loss.

In the following Theorem 2, we show why using LMI-Calib is
meaningful for OAK training. Please refer to Appendix C.2
for the proof.

Theorem 2. LCalib gradients specifically update the Knowl-
edge Bank parameters to ensure a higher likelihood of posi-
tive labels and a lower likelihood of negative labels.

Overall, Theorem 2 shows that whenever a set of parameters
ψ encourages negative labels getting sampled, the calibra-
tion loss encourages the next update to move away from
those parameters. It is worth noting that recently popular
preference-based learning algorithms for conditional lan-
guage generation (see, e.g., Rafailov et al. (2023)) employ
a similar calibration strategy to train a language model pol-
icy. However, they work with binary cross entropy loss in
contrast to the triplet or hinge loss that we consider here.

Algorithm 1 Augmentation Module Training
Input: Init trainable θ parameters for E , K and C and a
trained R. Additionally, batch size B.
for i = 0 to |D| step B do

Obtain di:i+B and li:i+B
x = E(di:i+B), x̂ = ψ(di:i+B), y = E(li:i+B)
L = LTrip(x̂,y) + LTrip(x,y) + λLMI-Calib(x̂,x,y)
Update parameters θ using L.

end for

The final loss for augmentation block training can be written
by combining Equations 5 and 6 as follows.

LOAK(θ) = LMI-Max(θ) + λLMI-Calib(θ) (7)

Please refer to algorithm 1 for a summary of the overall
training method.

Training the Label Classifiers After the augmentation
block is trained, we freeze its parameters θ. Then per-label
refinement vectors ∆wj are learned to fine-tune the label
embeddings and obtain the final label classifiers wj for each
label lj . For this stage, we follow the same procedure as
module M2 training of NGAME (Dahiya et al., 2023a).

4.2. Inference using OAK

Serving label predictions for a given document di is a four
step procedure. Firstly, the encoder network E generates
the base embeddings x = E(di). In parallel, the linker
R is used to predict the top-k relevant AKPs for di and
the retrieved indices are used to obtain the AKP embed-
dings from K. Thirdly, the combiner module C takes as
input the encoder block embedding x and AKP embeddings
{K(a1),K(a1), ...,K(aK)} obtained from the previous step
and generates the enriched representation x̂ as shown in
Equation 2. Finally, x̂ is used to query ANNS (Approximate
Nearest Neighbor Search) data structure over the one-vs-
all classifiers wj . This helps to retrieve set of labels with
high scores from the ANNS lookup. The final score F for
each label lj is computed as a multiplication of similarity
between x̂ and yj and ANNS lookup score. Labels with a
high final score are returned as relevant labels.

For OAK, the augmentation adds <2ms per document dur-
ing serving. This enables leveraging rich auxiliary infor-
mation with marginal impact on latency, enabling the AK
enriched document representation being generated in aver-
age ∼7ms and 99th percentile ∼11ms end-to-end latency.

5. Experiments and Results
In this section, we evaluate the proposed OAK method for
the Auxiliary Data enhanced XC task in three ways. Firstly,
through comparisons with other leading methods which
employ different ways to leverage auxiliary data we demon-
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Table 2. Dataset statistics summary for benchmark datasets.
Dataset # Train Docs # Labels (L) # Test Docs Avg. Docs/label Avg. labels/Doc AK Types # AKPs (M ) Avg. AKPs/Doc

LF-WikiSeeAlsoTitles-320K 693K 312K 177K 2.11 4.67 category 656K 4.89
LF-WikiSeeAlso-320K 693K 312K 177K 2.11 4.67 category 656K 4.89
LF-WikiTitles-500K 1.8M 501K 783K 4.74 17.15 hyper-link 2.1M 15.95
LF-Wikipedia-500K 1.8M 501K 783K 4.74 17.15 hyper-link 2.1M 15.95
LF-ORCAS-800K 7.4M 797K 2.5M 1.75 16.13 related-query 4.9M 15.76

strate the superiority of OAK’s design choices. Secondly,
via ablations we detail how each component of our architec-
ture is crucial to OAK’s performance. Thirdly, we analyse
our method’s performance on tail data - rare documents and
rare labels.

5.1. Datasets

There exist numerous datasets for XC benchmarking, but
very few of them offer ground truth auxiliary data. To fix
this, we attach ground truth auxiliary data from the original
dumps to existing XC datasets. Table 2 shows summary of
dataset statistics.

Wikipedia Datasets. The Wikipedia datasets are created
from publicly available Wikipedia dumps1. The task in the
LF-WikiSeeAlsoTitles-320K and LF-WikiSeeAlso-320K
(full text version of the former) datasets is to, given a
Wikipedia article/page, predict the other Wikipedia articles
to be recommended in the ‘See Also’ section. The wikipedia
categories these articles are tagged with are used as auxil-
iary data in this case. Similarly, LF-WikiTitles-500K and
LF-Wikipedia-500K are datasets where the task is to, given
a Wikipedia article/page, predict the Wikipedia categories
the article should be tagged with. Other Wikipedia article
titles connected to the original page via hyperlinks in the
article are used as auxiliary data in this case.

ORCAS Dataset. An XC benchmarking dataset LF-
ORCAS-800K is created from the ORCAS dump (Dahiya
et al., 2023b), which encapsulates the search query to web
URL prediction task. However, this dataset doesn’t have
ground truth auxiliary data attached. Hence, we use GPT-
4 (Achiam et al., 2023) to generate “related user queries”
given a particular search query, which forms the auxiliary
data for this dataset. This related queries dataset used to
train OAK’s linker will be released publicly upon accep-
tance of the paper.

Proprietary Dataset. Experiments are also conducted on
a proprietary large-scale SponsoredSearch-150M dataset
created by mining the logs of a popular search engine. The
central task in this dataset is to predict advertiser keywords
relevant for a user query. The auxiliary data is obtained
by mining the organic search webpages titles clicked in re-
sponse to the query on the search engine. User-typed queries

1https://dumps.wikimedia.org/enwiki/
20220520/

and the bid keyword corresponding to surfaced advertise-
ments yielded query-keyword training pairs. These pairs
were then passed through basic sanity filters based on click-
through rate (CTR), clicks, and impressions to create the
training dataset. Further, the same search engine logs were
mined for webpages clicked by users in response to a query
to obtain the query-webpage AK links. The dataset obtained
has around 500M, 30M, and 150M queries, webpages, and
advertiser keywords respectively.

5.2. Metrics, Baselines and Experimental Setup

In evaluating all methods, we compare on the basis of Pre-
cision@K, nDCG@K and Propensity Scored Precision@K
(to compare performance on tail labels). Detailed explana-
tions of these metrics are provided in Appendix D.

We compare the performance of OAK against exist-
ing competitive methods – ANCE (Xiong et al., 2021),
NGAME (Dahiya et al., 2023a) and PINA (Chien et al.,
2023), graph convolution based methods – GraphForm-
ers (Yang et al., 2021), which employs GNN-Nested trans-
formers layers to aggregate related AKP information within
transformer layers and GraphSAGE, where a GIN (Hamil-
ton et al., 2018) convolution performs node-aggregation
over documents and related AKP embeddings. To prove
the effectiveness of our architecture, we show significant
accuracy gains over NGAME, the current state-of-the-art
Siamese method for XC.

5.3. Results

We clearly see that in Table 3, OAK outperforms every other
method. We see strong improvements of ∼2% in P@1 over
NGAME, which is the closest competitor. This categorically
shows OAK’s benefits in improving the representation of
the documents via augmenting with auxiliary information.

Compared to GraphFormer, OAK demonstrates substantial
gains in accuracy, over 15-20% and compared to Graph-
SAGE, 5-7% higher P@1 across all relevant datasets. This
validates that directly aggregating neighboring AKP fea-
tures leads to intent dilution in other methods. However,
OAK’s jointly trained Augmentation Block with trainable
AKP embeddings mitigates this issue since our the AK
Bank increases the model capacity, allowing it to learn how
to avoid diluting the document’s intent during training to
deliver the best performance. Note that experiments with
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Table 3. Results on public benchmark datasets. OAK offers ∼5% higher P@1 on standard XC benchmark datasets. Metrics for PINA
couldn’t be reproduced, only values for those reported in the original paper are shown.
Method P@1 P@5 N@5 PSP@1 PSP@5 P@1 P@5 N@5 PSP@1 PSP@5 P@1 P@5 N@5 PSP@1 PSP@5 P@1 P@5 N@5 PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K LF-WikiTitles-500K LF-WikiSeeAlso-320K LF-Wikipedia-500K

OAK (Ours) 33.71 17.12 34.35 25.83 30.83 44.82 17.67 33.72 25.79 24.90 48.57 23.28 49.16 33.92 40.44 85.23 50.79 77.26 45.28 60.80
DEXA 32.91 16.77 33.62 24.63 29.55 47.41 17.62 33.64 25.27 24.03 47.11 22.71 47.62 31.81 38.78 84.92 50.51 76.8 42.59 58.33
NGAME 32.64 16.60 33.21 24.41 29.87 39.04 16.08 30.75 23.12 23.03 46.40 18.05 46.64 28.18 33.33 84.01 64.69 75.97 41.25 57.04
ANCE 30.79 15.36 31.45 25.14 28.73 29.68 12.51 25.10 23.18 21.18 45.64 17.32 45.43 29.60 32.83 77.92 40.95 68.70 50.99 57.33
GraphFormers 21.94 11.79 24.02 19.24 22.70 24.53 11.33 20.35 22.04 19.53 18.14 8.81 20.81 16.85 20.98 31.10 14.00 24.87 25.16 21.83
GraphSAGE 23.13 8.26 25.12 17.84 18.73 21.14 18.79 22.61 21.32 11.82 19.30 10.82 22.67 17.56 23.50 32.53 15.50 25.33 22.34 19.14
PINA - - - - - - - - - - 44.54 22.92 - - - 82.83 50.11 - - -

Table 4. OAK offers 5% higher P@1 on LF-ORCAS-800K.
Method P@1 P@5 N@5 PSP@1 PSP@5

OAK (Ours) 75.25 28.18 80.26 59.12 80.30
ANCE 72.47 26.60 76.60 58.70 76.68

Table 5. Ablation for AKP representation.
Method P@1 P@5 N@5 PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K

OAK 32.75 16.64 33.65 25.67 30.51
OAK-AK Bank 31.88 15.97 32.45 25.38 29.38

LF-WikiTitles-500K

OAK 43.80 17.23 32.94 26.00 24.42
OAK-AK Bank 42.64 16.25 31.60 26.39 23.59

GraphFormers and GraphSAGE are provided the ground
truth document-AKP linkages at train as well test time,
whereas our method uses predictions from the Linker Mod-
ule trained on the document-AKP linkages only in the train
set, without assuming they’re available at test time. This
gives the former methods an unfair advantage, which is
why OAK’s performance gains over them conveys an even
stronger argument for our design choices. The consistent
gains over various auxiliary data-based methods like PINA
prove OAK’s capability of effectively incorporating AKPs
to enrich document representations for improved XC.

Similarly, results in Table 4 shows that OAK offers 5%
higher P@1 on LF-ORCAS-800K dataset.

5.4. Ablations

We show ablations on LF-WikiTitles-500K and LF-
WikiSeeAlsoTitles-320K. Models for ablation experiments
on LF-WikiTitles-500K are trained for only 100 epochs (to
save compute) resulting in slightly lower accuracies than
shown in Table 3, but remaining hyperparameters are the
same as before. We run 300 epochs on the other dataset.
Furthermore, ablations are done using label embeddings
from Stage 2.

AK Bank. We remove the AK Bank module and obtain
AKP embeddings using the encoder E . This not only results
in deteriorated performances, as can be seen in Table 5, but
also requires upto ∼ 10× more GPU memory and takes

∼ 4× as long to train.

Regularization. Our choice of loss function has three com-
ponents, LTrip, ψ , LTrip, E and LMI-Calib. Table 6 ablates over
this to demonstrate the importance of each loss component.

Table 6. Ablation for regularisation loss.
Method P@1 P@5 N@5 PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K

LTrip,ψ + LTrip, E + λLMI-Calib 32.75 16.64 33.65 25.67 30.51
LTrip,ψ + LTrip, E 31.91 16.16 32.70 24.83 29.48
LTrip,ψ 30.51 15.85 31.70 23.40 28.55

LF-WikiTitles-500K

LTrip,ψ + LTrip, E + λLMI-Calib 43.80 17.23 32.94 26.00 24.42
LTrip,ψ + LTrip, E 42.16 16.93 32.32 25.90 24.34
LTrip,ψ 40.57 16.27 30.81 23.14 22.49

Combiner Module The Combiner module C uses cross-
attention to decide how much weight to give individual AKP
embeddings when fusing with the encoder’s document rep-
resentation to create an enriched representation. In Table 7,
we compare this combiner design against a simple mean
pooling strategy, where every AKP embedding is given the
same weight.

Table 7. Ablation for combiner architecture.
Method P@1 P@5 N@5 PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K

Cross Attention 32.75 16.64 33.65 25.67 30.51
Mean Pooling 27.09 14.49 28.82 19.12 25.49

LF-WikiTitles-500K

Cross Attention 43.80 17.23 32.94 26.00 24.42
Mean Pooling 34.91 14.51 27.34 20.97 20.71

Early concatenation vs late attentive fusion. OAK broadly
does late attentive fusion of the input document and related
auxiliary information. Table 8 shows results on the LF-
WikiSeeAlsoTitles-320K dataset. In the “Early concatena-
tion” approach, similar to REALM, we simply concatenate
the AKP text directly to the document text. The table shows
that OAK provides significantly better results across all met-
rics because of careful fusion of auxiliary information that
helps it ignore noisy AKPs.

7



OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification

Table 8. Ablation for Early concatenation vs late attentive fusion
(LF-WikiSeeAlsoTitles-320K dataset).

Method P@1 P@5 N@5 PSP@1 PSP@5

OAK 33.71 17.12 34.35 25.83 30.83
Early concatenation (simi-
lar to REALM)

28.49 14.52 29.46 22.26 26.52

5.5. Further Analysis

Performance on tail. To check OAK’s predictions for rare
documents as well as rare labels, we compare OAK with
best Siamese baseline (NGAME) and best node aggregation
method (GraphFormers) to see their performances across
five document and label frequency quantiles. Firstly, we
take a look at tail documents, where in Figure 3 (left) we
can clearly see that OAK outperforms NGAME and Graph-
Formers across all quantiles consistently. This is possible
because rare documents have tokens that are uncommon
during training. OAK can effectively leverage associated
auxiliary data to make accurate predictions in such cases,
which NGAME and GraphFormers cannot. Secondly, we
take a look at tail labels as well. Figure 3 (right) shows that
with the help of auxiliary data, OAK has a fuller understand-
ing of the undiluted document intent which enables it to
predict rare labels as well.
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Figure 3. Comparison of OAK, NGAME and GraphFormer P@5
across five document (left)/label (right) frequency quantiles at tail
on LF-WikiSeeAlsoTitles-320K. The leftmost column compares
overall P@5 and subsequent columns compare P@5 at increas-
ing document/label frequency quantiles. Along the x-axis, first
row of brackets denotes how many documents/labels fall into the
given quantile, and the second row denotes average number of la-
bels/documents they are linked to. OAK consistently outperforms
NGAME and GraphFormer, and is able to predict precisely for
rare documents as well as rare labels.

Generalized OAK Framework. Similar to how we built
OAK on top of NGAME, it is evident that incorporat-
ing the OAK framework to a new Siamese XC method
involves simply swapping out the encoder and using the
method’s training methodology, alongside loss functions
specific to OAK. In Table 9 we show how OAK improves
upon DPR (Karpukhin et al., 2020b) as well, a powerful
Siamese dense retrieval method.

Oracle Linker. Table 10 shows results when we use ground

Table 9. OAK’s performance over DPR on LF-WikiSeeAlsoTitles-
320K.

Method P@1 P@5 N@5 PSP@1 PSP@5

OAK+DPR 28.91 14.81 30.32 23.21 28.64
DPR 26.62 13.73 28.21 22.00 25.51

truth AKPs rather than those predicted by the linker. For
short text datasets, as expected, results are better when us-
ing ground truth AKPs. Surprisingly, for full text datasets,
where trained linker quality is better than for short-text
datasets, note that the results with ground truth AKPs are
indeed lower compared to ones with predicted AKPs. We
observe that this is because of missing AKPs in the ground
truth that the linker is able to retrieve.

Table 10. Results using Oracle Linker AKPs.
P@1 P@5 N@5 PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K 38.92 19.35 40.35 29.69 34.85
LF-WikiTitles-500K 52.53 24.25 41.98 30.62 32.26
LF-WikiSeeAlso-320K 47.73 23.04 48.62 33.62 40.06
LF-Wikipedia-500K 83.96 50.12 76.22 46.45 60.86

Training and Inference Time. We observe that OAK brings
a non-trivial but acceptable increment in inference latency
and required training time/compute. In comparison to a
simple NGAME-trained encoder, on a 2xA100 setup we
observe that OAK causes a ∼ 1.5× increment in training
time, and during inference on production infrastructure, it
results in ∼ 2ms average increment in latency.

5.6. Application to Sponsored search

A key challenge in sponsored search is to accurately match
user queries to billions of bid keywords submitted by adver-
tisers to ensure semantic relevance. Furthermore, sponsored
search has strict matching criteria since advertisers bid vary-
ing amounts depending on the relevance and the semantic
relationship of their keyword to the user query2,3. OAK
learns AKP representation as learnable embeddings opti-
mized for the target query to advertiser keyword matching
application, where auxiliary data is obtained from the seem-
ingly disparate application of organic webpages clicked in
response to a user query. This allows OAK to avoid query
intent dilution but still be able to reformulate its represen-
tation with additional contextual information to enhance
retrieval effectiveness.

Offline Results. We compare OAK against several state-of-
the-art dense retrieval encoders currently deployed in the
production system. OAK is trained on the SponsoredSearch-
150M dataset. For a fair evaluation, we sample 1M user

2https://support.google.com/google-ads/
answer/7478529?hl=en

3https://help.ads.microsoft.com/#apex/
ads/en/50822/1
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queries at random from the search engine logs from a time
period distinct from the one during which the train data was
collected. Since a vast majority of queries seen on the search
engine are tail queries, this random sampling ensures that
the test queries in this experiment are tail in nature. The pro-
duction dense retrieval baseline algorithms are anonymized
due to intellectual property restrictions. Results in Table
11 demonstrate that OAK outperforms the best production
system by at least 5% in terms of Recall@100 on this chal-
lenging large-scale setup. Performance is measured in terms
of Recall along with Precision because the retrieval algo-
rithm can be followed by a separate re-ranker to optimize
for precision in some pipelines.

Table 11. Results on offline evaluation for Sponsored Search. We
see that OAK categorically performs better than proprietary varia-
tions of leading dense retrieval algorithms deployed in production.

Method P@1 P@5 R@20 R@50 R@100

OAK 36.27 20.74 46.28 58.74 68.80
M1 34.26 19.39 42.07 52.62 60.98
M2 23.09 12.32 25.76 31.96 36.88
M3 25.15 14.57 37.61 51.21 63.16

Online Results. We conduct extensive online A/B testing
of OAK on live traffic sampled from Bing. OAK is thus not
only compared to leading dense retrieval algorithms, but also
leading XC, graph-based, and generative language models.
The key metrics tracked are: (1) Click-Through Rate (CTR):
Ratio of clicks to query impressions, indicates ad relevance.
(2) Impression Yield (IY) and Click Yield (CY): Average
number of ad impressions and clicks per user query search.
(3) Keyword Density (KD): Fraction of predicted keywords
passing relevance filters, assesses prediction quality. All
metrics are reported after reaching statistically significant
p-value of < 0.001. OAK led to a 0.84% increase in CTR
demonstrating OAK’s ability to retrieve more relevant ads,
thereby improving user experience. The KD improved by
2.7% with OAK, validating the predictive power of AKP-
enriched query representations. Additionally, Fig. 4 shows
the IY and CY improvements in different query quantiles,
where it can be observed that OAK shows disproportionately
more gains for tail user queries. OAK could effectively use
webpages as AKPs to retrieve keywords like “genealogist
services” for the user query “ancestry com”, which none
of the previous ensemble of algorithms including state-of-
the-art dense retrievers could. Table 12 shows more such
examples obtained by infusing the query with auxiliary
knowledge in OAK. In labeling by expert judges, OAK was
found to increase the percentage of excellent predictions to
21.6% as against 19.7% for the leading in-production denser
retriever (M1 in Table 11).

The gains on these key metrics clearly highlight OAK’s ben-
efits in a real-world production setting. The large-scale live
A/B test provides strong statistically significant results, with
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Figure 4. Plotting IY and CY gains versus query frequency deciles.
Here we can clearly see that OAK brings diverse and accurate
predictions to the ensemble of algorithms it is deployed with,
thereby demonstrating gains in Impression Yields and Click Yields.
These statistics are calculated against a performant ensemble of
algorithms in an A/B testing scenario, after achieving p < 0.001
for statistical significance. OAK provides yield gains across all
frequency deciles and notably, disproportionately larger gains for
tail user queries.

metrics computed over millions of user searches and ad im-
pressions. Overall, OAK substantially improves sponsored
search ad retrieval through enhanced query representations.

Table 12. Advertiser keywords predicted for a user query by OAK
which were missed by the production ensemble of leading dense
retrieval, graph-based, XC, and generative language models. OAK
can go beyond just text similarly by enriching the query represen-
tation with auxiliary knowledge made available from webpages
clicked when the query is asked by a representative user on the
search engine.

User Query Advertiser Keyword

12 month online dnp programs nursing practical program
zoho crm software

godaddy website builder
comcast internet xfinity

euro to dollar oanda
deflector mower replacement lawn mower parts

internet explorer ms browser

6. Conclusion
We introduced OAK, a novel framework for enriching docu-
ment representations using relevant auxiliary information.
OAK strategically expands model capacity by learning an
AK Bank, while preserving the original document intent
preservation through joint training with the main XC task.
OAK’s modular architecture enables seamlessly improv-
ing existing XC methods. The representations learned for
AKPs are optimized directly for the target XC task, making
OAK robust to noisy AKPs. The calibration loss ensures
that the AK bank adds useful information to the enriched
document representations. Through extensive experiments
on a leading sponsored search engine and public datasets,
we demonstrated OAK’s effectiveness in improving XC
accuracy, especially for rare documents and labels.
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Impact Statement
Our usage of data and terms of providing service to peo-
ple around the world has been approved by our legal and
ethical boards. In terms of social relevance, our research is
helping millions of people find the goods and services that
they are looking for online with increased efficiency and
a significantly improved user experience. This facilitates
purchase and delivery without any physical contact which
is important given today’s social constraints. Furthermore,
our research is increasing the revenue of many small and
medium businesses including mom and pop stores while
also helping them grow their market and reduce the cost of
reaching new customers.
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T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Liu, J., Chang, W., Wu, Y., and Yang, Y. Deep Learning for
Extreme Multi-label Text Classification. In SIGIR, 2017.

Luan, Y., Eisenstein, J., Toutanova, K., and Collins, M.
Sparse, Dense, and Attentional Representations for Text
Retrieval. In TACL, 2020.

Ma, H., Zhang, Q., Zhang, C., Wu, B., Fu, H., Zhou, J. T.,
and Hu, Q. Calibrating multimodal learning. In Inter-
national Conference on Machine Learning, pp. 23429–
23450. PMLR, 2023.

Medini, T. K. R., Huang, Q., Wang, Y., Mohan, V., and Shri-
vastava, A. Extreme Classification in Log Memory using
Count-Min Sketch: A Case Study of Amazon Search with
50M Products. In NeurIPS, 2019.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. Distributed Representations of Words and Phrases and
Their Compositionality. In NIPS, 2013.

11



OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification

Mineiro, P. and Karampatziakis, N. Fast Label Embeddings
via Randomized Linear Algebra. In ECML/PKDD, 2015.

Mittal, A., Dahiya, K., Agrawal, S., Saini, D., Agarwal, S.,
Kar, P., and Varma, M. DECAF: Deep Extreme Classifi-
cation with Label Features. In WSDM, 2021a.

Mittal, A., Sachdeva, N., Agrawal, S., Agarwal, S., Kar, P.,
and Varma, M. ECLARE: Extreme Classification with
Label Graph Correlations. In WWW, 2021b.

Prabhu, Y., Kag, A., Gopinath, S., Dahiya, K., Harsola, S.,
Agrawal, R., and Varma, M. Extreme multi-label learning
with label features for warm-start tagging, ranking and
recommendation. In WSDM, 2018a.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., and Varma, M.
Parabel: Partitioned label trees for extreme classification
with application to dynamic search advertising. In WWW,
2018b.

Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, W. X.,
Dong, D., Wu, H., and Wang, H. Rocketqa: An optimized
training approach to dense passage retrieval for open-
domain question answering, 2021.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Saini, D., Jain, A., Dave, K., Jiao, J., Singh, A., Zhang, R.,
and Varma, M. GalaXC: Graph Neural Networks with
Labelwise Attention for Extreme Classification. In WWW,
2021.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. DistilBERT,
a distilled version of BERT: smaller, faster, cheaper and
lighter. ArXiv, 2019.

Siblini, W., Kuntz, P., and Meyer, F. CRAFTML, an Effi-
cient Clustering-based Random Forest for Extreme Multi-
label Learning. In ICML, 2018.

Sohn, K. Improved deep metric learning with multi-class
n-pair loss objective. Advances in neural information
processing systems, 29, 2016.

Tagami, Y. AnnexML: Approximate Nearest Neighbor
Search for Extreme Multi-label Classification. In KDD,
2017.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. arXiv preprint arXiv:1907.13625,
2019.

van den Oord, A., Kalchbrenner, N., Espeholt, L.,
kavukcuoglu, k., Vinyals, O., and Graves, A. Condi-
tional image generation with pixelcnn decoders. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
b1301141feffabac455e1f90a7de2054-Paper.
pdf.

Wei, T., Tu, W. W., and Li, Y. F. Learning for Tail Label
Data: A Label-Specific Feature Approach. In IJCAI,
2019.

Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete,
R., and Dembczynski, K. A no-regret generalization of
hierarchical softmax to extreme multi-label classification.
In NIPS, 2018.

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett, P.,
Ahmed, J., and Overwijk, A. Approximate nearest neigh-
bor negative contrastive learning for dense text retrieval.
In ICLR, 2021.

Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S.,
Singh, A., Sun, G., and Xie, X. Graphformers: Gnn-
nested transformers for representation learning on textual
graph. NeurIPS, 34:28798–28810, 2021.

Yang, Y., Huang, C., Xia, L., and Li, C. Knowledge
graph contrastive learning for recommendation. In SI-
GIR Conference, pp. 1434–1443, 2022. URL https:
//github.com/yuh-yang/KGCL-SIGIR22.

Ye, H., Chen, Z., Wang, D.-H., and Davison, B. D. Pre-
trained Generalized Autoregressive Model with Adaptive
Probabilistic Label Clusters for Extreme Multi-label Text
Classification. In ICML, 2020.

Yen, E. I., Huang, X., Dai, W., Ravikumar, P., Dhillon, I.,
and Xing, E. PPDSparse: A Parallel Primal-Dual Sparse
Method for Extreme Classification. In KDD, 2017.

You, R., Dai, S., Zhang, Z., Mamitsuka, H., and Zhu, S.
AttentionXML: Extreme Multi-Label Text Classification
with Multi-Label Attention Based Recurrent Neural Net-
works. In NeurIPS, 2019.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph Sampling Based In-
ductive Learning Method. In ICLR, 2020.

Zhang, J., Chang, W.-c., Yu, H.-f., and Dhillon, I. Fast multi-
resolution transformer fine-tuning for extreme multi-label
text classification. In NeurIPS, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://github.com/yuh-yang/KGCL-SIGIR22
https://github.com/yuh-yang/KGCL-SIGIR22


OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification

Zhang, W., Wang, L., Yan, J., Wang, X., and Zha, H. Deep
Extreme Multi-label Learning. ICMR, 2018.

Zhu, J., Cui, Y., Liu, Y., Sun, H., Li, X., Pelger, M., Yang, T.,
Zhang, L., Zhang, R., and Zhao, H. Textgnn: Improving
text encoder via graph neural network in sponsored search.
In theWebConf, pp. 2848–2857, 2021.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu,
Q. Layer-Dependent Importance Sampling for Training
Deep and Large Graph Convolutional Networks, 2019.

13



OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification

A. Implementation details and Hyper-parameters
In this section we detail the training strategy used, important hyperparameters and experiment design for baselines. For our
Encoder Module, we use a DistilBERT-base encoder and for the combiner module we use a single cross-attention layer with
pooling. For the AK Bank K, we use a 768 dimensional trainable embedding for every AKP’s trainable embedding. We
jointly train everything together using AdamW (Kingma & Ba, 2014) for dense parameters and SparseAdam4 for the AK
Bank. We train this model for 300 epochs on 2xNVidia A100-80GB GPUs for all datasets, with a batch size of 1024 and a
linear LR scheduler with warmup. We use top 3 predicted AKPs from the linker during inference. At train time, we use all
the ground truth AKPs. We use the same hyperparameters (wherever applicable) for training all other methods as well.

B. Detailed Related Work
XC: XC is a key paradigm in several areas such as ranking and recommendation. The literature on XC methods is
vast (Dahiya et al., 2021b; Guo et al., 2019; Wydmuch et al., 2018; Zhang et al., 2018; Medini et al., 2019; Mittal et al.,
2021a;b; Saini et al., 2021; Liu et al., 2017; You et al., 2019; Jiang et al., 2021; Chalkidis et al., 2019; Ye et al., 2020; Zhang
et al., 2021; Mineiro & Karampatziakis, 2015; Babbar & Schölkopf, 2017; Jasinska et al., 2016; Khandagale et al., 2020;
Jain et al., 2016; Prabhu et al., 2018b; Tagami, 2017; Yen et al., 2017; Wei et al., 2019; Siblini et al., 2018; Barezi et al.,
2019; Jain et al., 2019; Gupta et al., 2019; 2023). Early XC methods used fixed (bag-of-words) (Mineiro & Karampatziakis,
2015; Babbar & Schölkopf, 2017; Jasinska et al., 2016; Khandagale et al., 2020; Jain et al., 2016; Prabhu et al., 2018b;
Tagami, 2017; Yen et al., 2017; Wei et al., 2019; Siblini et al., 2018; Barezi et al., 2019) or pre-trained (Jain et al., 2019)
features and focused on learning only a classifier architecture. Recent advances have demonstrated significant gains by using
task-specific features obtained from a variety of deep encoders such as bag-of-embeddings (Dahiya et al., 2021b; 2023a),
CNNs (Liu et al., 2017), LSTMs (You et al., 2019), and transformers (Jiang et al., 2021; Chalkidis et al., 2019; Ye et al.,
2020; Zhang et al., 2021). Training is scaled to millions of labels and training points (Dahiya et al., 2021b) by performing
encoder pre-training followed by classifier training. A data point is trained only on its relevant labels (that are usually few in
number) and a select few irrelevant labels deemed most informative using negative mining (Mikolov et al., 2013; Dahiya
et al., 2021a; Guo et al., 2019; Faghri et al., 2018; Chen et al., 2020; He et al., 2020a; Karpukhin et al., 2020a; Lee et al.,
2019; Luan et al., 2020; Hofstätter et al., 2021; Xiong et al., 2021; Qu et al., 2021; Dahiya et al., 2023a). None of these XC
methods make use of any auxiliary information associated with documents, except PINA (Chien et al., 2023) which uses
instance correlation signals to learn neighborhood aggregated representations. Our experiments show that OAK outperforms
PINA by large margins.

Retrieval Augmented Language Models: Retrieval Augmented Language Models are a class of models that leverage
external knowledge sources to enhance accuracy using Transformer encoders (Guu et al., 2020). Such models typically
consist of two main components: a retriever and a knowledge-augmented encoder. The retriever selects relevant documents
or passages from a large corpus based on the input query. The encoder concatenates query and relevant documents and
computes an embedding for the sequence. Retrieval augmentation has also been extended to generation (RAG (Lewis et al.,
2020)), but we not discuss RAG in detail since XC is a classification problem.

Graph Neural Networks in Related Areas: A sizeable body of work exists on using graph neural networks such as graph
convolutional networks (GCN) for recommendation (Hamilton et al., 2018; Chen et al., 2018; Zou et al., 2019; Huang et al.,
2018; Chiang et al., 2019; Zeng et al., 2020; Yang et al., 2021; Zhu et al., 2021; He et al., 2020b; Yang et al., 2022). Certain
methods e.g., FastGCN (Chen et al., 2018), KGCL (Yang et al., 2022), LightGCN (He et al., 2020b) learn label embeddings
as (functions of) learnable parameter embeddings. This makes it difficult for these methods to ingest novel labels and
their use is restricted to warm-start scenarios. Other GCN-based methods such as GraphSAGE (Hamilton et al., 2018)
and GraphFormers (Yang et al., 2021) learn node representations as functions of node metadata e.g. textual descriptions.
This allows the methods to work in zero-shot settings but they still incur the high storage and computational cost of GCNs.
Moreover, diminishing returns are observed with increasing number of layers of the GCN (Chiang et al., 2019; Mittal et al.,
2021b). As a baseline method, in this work, we experiment with enriching document representations using document-AKP
graphs. Our experiments show that the OAK method offers a far more scalable alternative to GCNs and other popular
graph-based architectures in XC settings, significantly reducing the overheads of graph-based learning, yet offering sustained
and significant performance boosts in prediction accuracies.

4https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
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C. Theoretical Analyses
C.1. Equivalence between Siamese training and Triplet Loss

Theorem 3. Siamese training via triplet loss serves to maximize mutual information between the distributions cast by the
document and label encoder representations.

Proof. Formally, given random variables X ∼ P[E(d)] and Y ∼ P[E(l)], we observe that the Mutual Information between
X and Y is intractable. However, the InfoNCE (van den Oord et al., 2016) objective is a tractable lower bound on it, i.e.,
I(X;Y ) ≥ INCE (Tschannen et al., 2019). Here, for some scale parameter τ > 0, the InfoNCE objective is defined as
follows:

INCE
def
= E

[
1

N

N∑
i=1

log
exp(xi · y⊤

i /τ)
1
N

∑N
j=1 exp(xi · y⊤

j /τ)

]
,

where the expectation is over i.i.d. random draws of (xi,yi) from the joint distribution P[E(d)]× P[E(l)].

Simple algebra shows that maximizing InfoNCE is equivalent to minimizing the expected multi-class N -pair loss (Sohn,
2016) LN -pair-mc(θ), given by

1

N

N∑
i=1

log
(
1 +

∑
j ̸=i

exp(xi · y⊤
j /τ − xi · y⊤

i /τ)
)
.

Now, under the simple setting of only one negative label yj per document xi and also setting τ = 1/2, the above N -pair
multi class loss can be approximated as follows (Bai et al., 2022).

1

N

N∑
i=1

log
(
1 + exp(2xi · y⊤

j − 2xi · y⊤
i )

)
≈ 1

N

N∑
i=1

(
1+2xi · y⊤

j −2xi · y⊤
i

)
,

It is easy to see that this is twice of the triplet loss (Eq. 1) where margin=1/2. Thus, under the above assumptions, one can
show that a Siamese encoder θ minimizes the triplet loss for margin γ = 1/2 iff it minimizes the N -pair-mc loss for N = 1,
i.e., the two loss functions are equivalent.

C.2. Impact of LCalib gradients on the Knowledge Bank parameters

Theorem 4. LCalib gradients specifically update the Knowledge Bank parameters to ensure a higher likelihood of positive
labels and a lower likelihood of negative labels.

Proof. We analyse a degenerate case of LCalib for one positive and one negative label per document to prove this. Formally,
we have for our calibration loss:

LCalib = Ed,lp,ln

[
E(d) · E(lp)⊤ − ψ(d) · E(lp)⊤

+ ψ(d) · E(ln)⊤ − E(d) · E(ln)⊤
]
+
.

Under the softmax distribution on labels l given a document d, we have for a fixed function f : X → SD−1:

Pf [l|d] =
exp(f(d) · E(l)⊤)∑

l′∈L exp(f(d) · E(l′)⊤)
.

For a positive label lp and a negative label ln, it holds that

log
Pf [lp|d]
Pf [ln|d]

= f(d) · E(lp)⊤ − f(d) · E(ln)⊤ .
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Then, the calibration loss can be rewritten as

LCalib = Ed,lp,ln

[
log

PE [lp|d]
PE [ln|d]

− log
Pψ[lp|d]
Pψ[ln|d]

]
+

= Ed,lp,ln

[
log

Pψ[ln|d]
PE [ln|d]

− log
Pψ[lp|d]
PE [lp|d]

]
+

= Ed,lp,ln [rψ(ln,d)− rψ(lp,d)]+ ,

where rψ(l,d) = log
Pψ[l|d]
PE [l|d] denotes the log-likelihood ratio between Pψ and PE for a label l given a document d. We omit

dependence on the encoder E for brevity.

Now, we compute (sub)gradients of the calibration loss w.r.t. the knowledge bank paramteres (Augmentation Block)
parameters ψ and keeping the encoder E fixed. The gradients take the form:

∇θKLCalib = E
[
I{rψ(ln,d)>rψ(lp,d)}∇θK log

Pψ[ln|d]
Pψ[lp|d]

]
,

where I denotes the indicator function. Thus, the knowledge bank parameter updates (using negative gradients of the
calibration loss) increase likelihood of positive labels being sampled and decrease that of negative labels. Importantly,
the updates take place only when the likelihood ratio of negative labels are higher than that of positive labels at current
knowledge bank parameters.

D. Evaluation metrics
Performance has been evaluated using propensity scored precision@k and nDCG@k, which are unbiased and more suitable
metric in the XC setting (Jain et al., 2016; Babbar & Schölkopf, 2019; Prabhu et al., 2018a;b). The propensity model and
values available on The Extreme Classification Repository (Bhatia et al., 2016b) were used. Performance has also been
evaluated using vanilla precision@k and nDCG@k (with k = 1, 3 and 5) for extreme classification.

Let ŷ ∈ RL denote the predicted score vector and y ∈ {0, 1}L denote the ground truth vector (with {0, 1} entries this time
instead of ±1 entries, for sake of convenience). The notation rankk(ŷ) ⊂ [L] denotes the set of k labels with highest scores
in the prediction score vector ŷ and ∥y∥1 denotes the number of relevant labels in the ground truth vector. Then we have:

P@k =
1

k

∑
l∈rankk(ŷ)

yl

PSP@k =
1

k

∑
l∈rankk(ŷ)

yl
pl

DCG@k =
1

k

∑
l∈rankk(ŷ)

yl
log(l + 1)

PSDCG@k =
1

k

∑
l∈rankk(ŷ)

yl
pl log(l + 1)

nDCG@k =
DCG@k∑min(k,||y||0)

l=1
1

log(l+1)

PSnDCG@k =
PSDCG@k∑k
l=1

1
log l+1

FN@k = 1−
∑
l∈rankk(ŷ)yl

∥y∥1
Here, pl is propensity score of the label l calculated as described in Jain et al. (2016).
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E. Qualitative Analysis
Table 13 shows a few sample predictions from OAK, NGAME and GraphFormer along with ground truth labels. OAK
provides more accurate and diverse label predictions.

Table 13. Sample predictions from OAK, NGAME and GraphFormer along with ground truth labels. OAK provides more accurate and
diverse label predictions. Legend: Black (ground truth), Red (incorrect), Green (correct)

Document Predicted AKPs Ground truth labels OAK predictions NGAME predictions GraphFormer Predictions

Cerastes (genus) Snake Genera, Viperi-
nae, Reptiles of Western
Sahara

Snakebite, List of viperine
species and subspecies,
Viperinae by common name,
Viperinae by taxonomic
synonyms

Viperinae by common
name, Viperinae by taxo-
nomic synonyms, List of
viperine species and sub-
species, Snakebite, List
of crambid genera

List of prehistoric car-
tilaginous fish, List of
Greek mythological figures,
Snakebite, List of snake
genera, List of prehistoric
echinoid genera

Penaeus monodon, Choro-
rapithecus, Heracleidae, Li-
tuites, Pachyrhachis

Beachcomber 25 Keelboats, Sailing
Yachts, Trailer Sailers

List of sailing boat types, US
Yachts US 25, Catalina 250,
Tanzer 25, MacGregor 25,
Bayfield 25, Cal 25, Cal 2-25,
Capri 25, Catalina 25, Dufour
1800, Hunter 25.5, O’Day 25,
Merit 25, Northern 25

Bayfield 25, List of sail-
ing boat types, O’Day
25, Cal 25, Cal 2-25

Mirage 25, Focke-Wulf A
17, MacGregor 25, Lock
Crowther, Stout 2-AT Pull-
man

Sea Sprite 27, Shark 24,
Bowman 48, San Juan 24,
Searunner 34

West Nakdong River Nakdong River, Rivers
of North Gyeongsang,
Rivers of Busan

List of Korea-related top-
ics, Geography of South Ko-
rea, List of rivers of Asia,
Nakdong River

Nakdong River, List of
rivers of Asia, List of
Korea-related topics, Ge-
ography of South Korea,
Han River

Nakdong River, List of
rivers of Asia, Stung Sen
River, River systems of
Thailand, Yellow Sea

Nakdong River, Rivers of
Korea, Yangjaecheon, Seo-
raksan, List of rivers of Ko-
rea

List of rap rock bands Lists of rock musicians
by subgenre, List of
bands, Lists of musicians
by genre, Lists of heavy
metal bands

List of nu metal bands, List of
funk rock bands, List of alter-
native metal artists, Rap rock,
Rap metal

Rap rock, Rap metal,
List of funk rock bands,
List of groove metal
bands, List of nu metal
bands

List of hip hop groups, List
of alternative-rock bands,
List of nu metal bands, List
of funk rock bands, List of
hip hop musicians

Rap rock, List of hip hop
groups, Gangsta rap, Rap
metal, List of hardcore punk
bands
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