
Under review as a conference paper at ICLR 2024

ADV3D: GENERATING 3D ADVERSARIAL EXAMPLES
FOR 3D OBJECT DETECTION IN DRIVING SCENARIOS
WITH NERF

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) have been proven extremely susceptible to adver-
sarial examples, which raises special safety-critical concerns for DNN-based au-
tonomous driving stacks (i.e., 3D object detection). Although there are extensive
works on image-level attacks, most are restricted to 2D pixel spaces, and such at-
tacks are not always physically realistic in our 3D world. Here we present Adv3D,
the first exploration of modeling adversarial examples as Neural Radiance Fields
(NeRFs) in driving scenarios. Advances in NeRF provide photorealistic appear-
ances and 3D accurate generation, yielding a more realistic and realizable adver-
sarial example. We train our adversarial NeRF by minimizing the surrounding
objects’ confidence predicted by 3D detectors on the training set. Then we evalu-
ate Adv3D on the unseen validation set and show that it can cause a large perfor-
mance reduction when rendering NeRF in any sampled pose. To enhance physical
effectiveness, we propose primitive-aware sampling and semantic-guided regu-
larization that enable 3D patch attacks with camouflage adversarial texture. Ex-
perimental results demonstrate that our method surpasses the mesh baseline and
generalizes well to different poses, scenes, and 3D detectors. Finally, we pro-
vide a defense method to our attacks that improves both the robustness and clean
performance of 3D detectors.

1 INTRODUCTION

The perception system of self-driving cars heavily rely on DNNs to process input data and compre-
hend the environment. Although DNNs have exhibited great improvements in performance, they
have been found vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015;
Kurakin et al., 2017; Athalye et al., 2018). These adversarial examples crafted by adding imper-
ceptible perturbations to input data, can lead DNNs to make wrong predictions. Motivated by the
safety-critical nature of self-driving cars, we aim to explore the possibility of generating physically
effective adversarial examples to disrupt 3D detectors in driving scenarios, and further improve the
robustness of 3D detectors through adversarial training.

The 2D pixel perturbations (digital attacks) (Goodfellow et al., 2015; Szegedy et al., 2014) have
been proven effective in attacking DNNs in various computer vision tasks (Xie et al., 2017; Xiang
et al., 2019; Dong et al., 2020). However, these 2D pixel attacks are restricted to digital space and
are difficult to realize in our 3D world. To address this challenge, several works have proposed
physical attacks. For example, Athalye et al. (2018) propose the framework of Expectation Over
Transformation (EOT) to improve the attack robustness over 3D transformation. Other researchers
generate adversarial examples beyond image space through differentiable rendering, as seen in (Xiao
et al., 2019; Zeng et al., 2019). These methods show great promise for advancing the field of 3D
adversarial attacks and defense but are still limited in synthetic environments.

Given the safety-critical demand for self-driving cars, several works have proposed physically realiz-
able attacks and defense methods in driving scenarios. For example, Cao et al. (2019; 2021) propose
to learn 3D adversarial attacks capable of generating adversarial mesh to attack 3D detectors. How-
ever, their works only consider learning a 3D adversarial example for a few specific frames. Thus,
the learned example is not universal and may not transfer to other scenes. To mitigate this problem,
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Methods Transferability Adv. Type Additional Requirements
Cao et al. (2019; 2021) Poses 3D Mesh Model, Annotation
Tu et al. (2020; 2021) Poses, Scenes 3D Mesh Model, Annotation
Xie et al. (2023) Scenes, Categories 2D Patch Model, Annotation

Adv3D Poses, Scenes, Categories 3D NeRF Model

Table 1: Comparison with prior works of adversarial attack in autonomous driving.

Tu et al. (2020; 2021) propose to learn a transferable adversary that is placed on top of a vehicle.
Such an adversary can be used in any scene to hide the attacked object from 3D detectors. However,
reproducing their attack in our physical world can be challenging since their adversary must have
direct contact with the attacked object. We list detailed comparisons of prior works in Tab. 1.

To address the above challenges and generate 3D adversarial examples in driving scenarios, we build
Adv3D upon recent advances in NeRF (Mildenhall et al., 2020) that provide both differentiable ren-
dering and realistic synthesis. In order to generate physically effective attacks, we model Adv3D in
a patch-attack (Sharma et al., 2022) manner and use an optimization-based approach that starts with
a realistic NeRF object (Li et al., 2023) to learn its 3D adversarial texture. We optimize the adver-
sarial texture to minimize the predicted confidence of all objects in the scenes, while keeping shape
unchanged. During the evaluation, we render the input agnostic NeRF in randomly sampled poses,
then we paste the rendered patch onto the unseen validation set to evaluate the attack performance.
Owing to the transferability to poses and scenes, our adversarial examples can be executed without
prior knowledge of the scene and do not need direct contact with the attacked objects, thus making
for more feasible attacks compared with (Tu et al., 2020; 2021; Zhu et al., 2023; Xie et al., 2023).
Finally, we provide thorough evaluations of Adv3D on camera-based 3D object detection with the
nuScenes (Caesar et al., 2020) dataset. Our contributions are summarized as follows:

• We introduce Adv3D, the first exploration of formulating adversarial examples as NeRF to
attack 3D detectors in autonomous driving. Adv3D provides photorealistic synthesis and
demonstrates better attack performance than mesh-based adversarial examples.

• Incorporating the proposed primitive-aware sampling and semantic-guided regularization,
Adv3D generates adversarial examples with enhanced physical realism and effectiveness.

• We conduct extensive real-world experiments to validate the transferability of our adversar-
ial examples across unseen environments and detectors. Additionally, the analysis of these
experiments provides valuable insights for developing more robust detectors.

• We show that by employing adversarial training with a trained adversarial NeRF, we can
enhance the robustness and clean performance of 3D detectors.

2 RELATED WORK

2.1 ADVERSARIAL ATTACK

DNNs are known to be vulnerable to adversarial attacks. Szegedy et al. (2014) first discovered
that adversarial examples, generated by adding visually imperceptible perturbations to the original
images, make DNNs predict a wrong category with high confidence. These vulnerabilities were
also discovered in object detection and semantic segmentation (Liu et al., 2018; Xie et al., 2017).
Moreover, DPatch (Liu et al., 2018) proposes transferable patch-based attacks by compositing a
small patch to the input image. However, perturbing image pixels alone does not guarantee that
adversarial examples can be created in the physical world. To address this issue, several works
have performed physical attacks (Chen et al., 2019a; Xu et al., 2020; Brown et al., 2017; Komkov
& Petiushko, 2021; Huang et al., 2020; Wu et al., 2020; Zhang et al., 2019; Wang et al., 2021a;
Athalye et al., 2018) and exposed real-world threats. For example, Cheng et al. (2022) developed an
adversarial patch with physical-oriented transformations to attack a depth estimation network. Ad-
vPC (Hamdi et al., 2020b) investigate adversarial perturbations on 3D point clouds. SADA (Hamdi
et al., 2020a) proposes semantic adversarial diagnostic attacks in various autonomous applications.
ViewFool (Dong et al., 2022) and VIAT (Ruan et al., 2023) evaluate the robustness of DNNs to
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adversarial viewpoints by using NeRF’s differentiability. In our work, we mainly aim to generate
3D adversarial examples for 3D object detection in driving scenarios.

2.2 ROBUSTNESS IN AUTONOMOUS DRIVING

With the safety-critical nature, it is necessary to pay special attention to robustness in autonomous
driving systems (Wang et al., 2021b). LiDAR-Adv (Cao et al., 2019) proposes to learn input-specific
adversarial point clouds to fool LiDAR detectors. Tu et al. (2020) produces generalizable point
clouds that can be placed on a vehicle roof to hide it. Furthermore, several work (Cao et al., 2021;
Abdelfattah et al., 2021; Tu et al., 2021) try to attack a multi-sensor fusion system by optimizing
3D mesh through differentiable rendering. We compare our method with prior works in Tab. 1. Our
method demonstrates stronger transferability and fewer requirements than prior works.

2.3 IMAGE SYNTHESIS USING NERF

NeRF (Mildenhall et al., 2020) enables photorealistic synthesis in a 3D-aware manner. Recent
advances (Zhang et al., 2021) in NeRF allow for control over materials, illumination, and 6D pose
of objects. Additionally, NeRF’s rendering comes directly from real-world reconstruction, providing
more physically accurate and photorealistic synthesis than previous mesh-based methods that relied
on human handicrafts. Moreover, volumetric rendering (Kajiya & Von Herzen, 1984) enables NeRF
to perform accurate and efficient gradient computation compared with dedicated renderers in mesh-
based differentiable rendering (Kato et al., 2018; Chen et al., 2019b; Liu et al., 2019).

Recently, there has been tremendous progress in driving scene simulation using NeRF. Block-
NeRF (Tancik et al., 2022) achieves city-scale reconstruction by modeling the blocks of cities with
several isolated NeRFs to increase capacity. FEGR (Wang et al., 2023) learns to intrinsically de-
compose the driving scene for applications such as relighting. Lift3D (Li et al., 2023) use NeRF to
generate new objects and augment them to driving datasets, demonstrating the capability of NeRF
to improve downstream task performance. The driving scene simulation provides a perfect test bed
to evaluate the effectiveness of self-driving cars.

3 PRELIMINARY

3.1 CAMERA-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING

Camera-based 3D object detection is the fundamental task in autonomous driving. Without loss of
generality, we focus on evaluating the robustness of camera-based 3D detectors.

The 3D detectors process image data and aim to predict 3D bounding boxes of all surrounding
objects. The parameterization of a 3D bounding box can be written as b = {R, t, s, c}, where R ∈
SO(3) is the rotation of the box, t = (x, y, z) indicate translation of the box center, s = (l, w, h)
represent the size (length, width, and height) of the box, and c is the confidence of the predicted box.

The network structure of camera-based 3D object detectors can be roughly categorized into FoV-
based (front of view) and BEV-based (bird’s eye view). FoV-based methods (Wang et al., 2021c;e;d)
can be easily built by adding 3D attribute branches to 2D detectors. BEV-based methods (Philion &
Fidler, 2020; Reading et al., 2021) typically convert 2D image feature to BEV feature using camera
parameters, then directly detect objects on BEV planes. We refer readers to recent surveys (Ma
et al., 2022; Li et al., 2022a) for more detail.

3.2 DIFFERENTIABLE RENDERING USING NERF

Our method leverages the differentiable rendering scheme proposed by NeRF. NeRF parameterizes
the volumetric density and color as a function of input coordinates. NeRF uses multi-layer per-
ceptron (MLP) or hybrid neural representations (Fridovich-Keil et al., 2022; Müller et al., 2022) to
represent this function. For each pixel on an image, a ray r(t) = ro + rd · t is cast from the cam-
era’s origin ro and passes through the direction of the pixel rd at distance t. In a ray, we uniformly
sample K points from the near plane tnear to the far plane tfar, the kth distance is thus calculated
as tk = tnear + (tfar − tnear) · k/K. For any queried point r(tk) on the ray, the network takes its
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position r (tk) and predicts the per-point color ck and density τk with:

(ck, τk) = Network (r (tk)) . (1)

Note that we omit the direction term as suggested by (Gu et al., 2022). The final predicted color
of each pixel C(r) is computed by approximating the volume rendering integral using numerical
quadrature (Max, 1995):

C(r) =

K−1∑
k=0

Tk (1− exp (−τk (tk+1 − tk))) ck,

with Tk = exp

(
−
∑
k′<k

τk′ (tk′+1 − tk′)

)
.

(2)

We build our NeRF upon Lift3D (Li et al., 2023). Lift3D is a 3D generation framework that gener-
ates photorealistic objects by fitting multi-view images synthesized by 2D generative modes (Karras
et al., 2020) using NeRF. The network of Lift3D is a conditional NeRF with additional latent code
input, which controls the shape and texture of the rendered object. The conditional NeRF in Lift3D
is a tri-plane parameterized (Chan et al., 2022) generator. With its realistic generation and 3D con-
trollability, Lift3D has demonstrated that the training data generated by NeRF can help to improve
downstream task performance. To further explore and exploit the satisfactory property of NeRF, we
present a valuable and important application in this work: we leverage the NeRF-generated data to
investigate and improve the robustness of the perception system in self-driving cars.

4 METHOD

We illustrate the pipeline of Adv3D in Fig. 1. We aim to learn a transferable adversarial example
in 3D detection that, when rendered in any pose (i.e., location and rotation), can effectively hide
surrounding objects from 3D detectors in any scenes by lowering their confidence. In Sec. 4.1, to
improve the physical realizability of adversarial examples, we propose (1) Primitive-aware sam-
pling to enable 3D patch attacks. (2) Disentangle NeRF that provides feasible geometry, and (3)
Semantic-guided regularization that enables camouflage adversarial texture. To enhance the trans-
ferability across poses and scenes, we formulate the learning paradigm of Adv3D within the EOT
framework (Athalye et al., 2018) in Sec. 4.3.

4.1 3D ADVERSARIAL EXAMPLE GENERATION

We use a gradient-based method to train our adversarial examples. The training pipeline involves 4
steps: (i) randomly sampling the pose of an adversarial example, (ii) rendering the example in the
sampled pose, (iii) pasting the rendered patch into the original image of the training set, and finally,
(iv) computing the loss and optimizing the latent codes. During inference, we discard the (iv) step.

4.1.1 POSE SAMPLING

To achieve adversarial attack in arbitrary object poses, we apply Expectation of Transformation
(EOT) (Athalye et al., 2018) by randomly sampling object poses. The poses of adversarial examples
are parameterized as 3D boxes b that are restricted to a predefined ground plane in front of the
camera. We model the ground plane as a uniform distribution B in a specific range that is detailed
in the supplement. During training, we independently sample the rendering poses of adversarial
examples, and approximate the expectation by taking the average loss over the whole batch.

4.1.2 PRIMITIVE-AWARE SAMPLING

We model the primitive of adversarial examples as NeRF tightly bound by 3D boxes, in order to
enable non-contact and physically realistic attacks. During volume rendering, we compute the inter-
section of rays r(t) with the sampled pose b = {R, t, s} ∈ B, finding the first hit point and the last
hit point of box (tnear, tfar) by the AABB-ray intersection algorithm (Majercik et al., 2018). We
then sample our points inside the range (tnear, tfar) to reduce large unnecessary samples and avoid
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Figure 1: Adv3D aims to generate 3D adversarial examples that consistently perform attacks under
different poses during rendering. We initialize adversarial examples from Lift3D (Li et al., 2023).
During training, we optimize the texture latent codes of NeRF to minimize the detection confidence
of all surrounding objects. During inference, we evaluate the performance reduction of pasting the
adversarial patch rendered using randomly sampled poses on the validation set.

contact with the environment.

(tnear, tfar) = Intersect(r,b), (3)

r′(tk) = r̃(tnear) + (r̃(tfar)− r̃(tnear)) · k/K, (4)
r̃(t) = Transform(r(t),b), (5)

where r̃(t) is the sampled points with additional global to local transformation. Specifically, we use
a 3D affine transformation to map original sampled points r(t) = ro + rd · t into a canonical space
r̃ = {x, y, z} ∈ [−1, 1]. This ensures that all the sampled points regardless of their distance from
the origin, are transformed to the range [−1, 1], thus providing a compact input representation for
NeRF network. The transformation is given by:

Transform(r,b) = s−1 · (R−1 · r− t), (6)

where b = {R, t, s}, R ∈ SO(3) is rotation matrix of the box, t, s ∈ R3 indicate translation and
scale vector that move and scale the unit cube to desired location and size. The parameters of b are
sampled from a pre-defined distribution B detailed in the supplement.

Then, the points lied in [−1, 1] are projected to exactly cover the tri-plane features z for interpolation.
Finally, a small MLP takes the interpolated features as input and predicts RGB and density:

(ck, τk) = MLP(Interpolate(z, r′ (tk))). (7)

The primitive-aware sampling enables patch attacks (Sharma et al., 2022) in a 3D-aware manner by
lifting the 2D patch to a 3D box, enhancing the physical realizability by ensuring that the adversarial
example only has a small modification to the original 3D environment.

4.1.3 DISENTANGLED NERF PARAMETERIZATION

The original parameterization of NeRF combines the shape and texture into a single MLP, resulting
in an entangled shape and texture generation. Since shape variation is challenging to reproduce in
the real world, we disentangle shape and texture generation and only set the texture as adversarial
examples. We obtain texture latents ztex. and shape latents zshape from the Lift3D. During volume
rendering, we disentangle shape and texture generation by separately predicting RGB and density:

ck = Network(ztex., r
′ (tk)), τk = Network(zshape, r

′ (tk)), (8)

where zshape is fixed and ztexture is being optimized. Our disentangled parametrization can also
be seen as a geometry regularization in (Tu et al., 2021; 2020) but keeps geometry unchanged as a
usual vehicle, leading to a more realizable adversarial example.
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(a) (b) (c) (d) (e)

Figure 2: Rendered results of our adversarial examples. (a) Image and semantic label of an instance
predicted by NeRF. (b) Top: our example without semantic-guided regularization. Bottom: our
example with semantic-guided regularization. (c) Multi-view consistent synthesis of our examples.
(d,e) The texture transfer results of side and back part adversary to other vehicles.

4.1.4 SEMANTIC-GUIDED REGULARIZATION

Setting the full part of the vehicle as adversarial textures is straightforward, but not always feasible
in the real world. To improve the physical realizability, we propose to optimize individual semantic
parts, such as doors and windows of a vehicle. Specifically, as shown in Fig. 2 (d, e)), we only
set a specific part of the vehicle as adversarial texture while maintaining others unchanged. This
semantic-guided regularization leads to a camouflage adversarial texture that is less likely spotted in
the real world and improves physical effectiveness.

To achieve this, we add a semantic branch to Lift3D to predict semantic part labels of the sampled
points. We re-train Lift3D by fitting multi-view images and semantic labels generated by Edit-
GAN (Ling et al., 2021). Using semantic-guided regularization, we maintain the original texture
and adversarial part texture at the same time but only optimize the adversarial part texture while
leaving the original texture unchanged. This approach allows us to preserve a large majority of parts
as usual, but to alter only the specific parts that are adversarial (see Fig. 2 (b, c)). In our imple-
mentation, we query the NeRF network twice, one for the adversarial texture and the other for the
original texture. Then, we replace the part of original texture with the adversarial texture indexed by
semantic labels in the point space.

Owing to this property, these adversarial textures can be printed and pasted on certain parts of
vehicles to perform attacks. We provide real-world reproduction in the supplementary materials.

4.2 GRADIENT PROPAGATION

After rendering the adversarial examples, we paste the adversarial patch into the original image
through image composition. The attacked image can be expressed as I1 × M + I2 × (1 − M)
where I1 and I2 are the patch and original image, M is foreground mask predicted by NeRF. Next,
the attacked images are fed to pretrained and fixed 3D detectors to compute the objective and back-
propagate the gradients. Since both the rendering and detection pipelines are differentiable, Adv3D
allows gradients from the objective to flow into the texture latent codes during optimization.

4.3 LEARNING PARADIGM

We formulate our learning paradigm as EOT (Athalye et al., 2018) that finds adversarial texture
codes by minimizing the expectation of a binary cross-entropy loss over sampled poses and scenes:

ztex. = arg min
ztex.

Eb∼BEx∼X [− log(1− P (I(x,b, ztex.))], (9)

where b is the rendering pose sampled from the predefined distribution of ground plane B, x is the
original image sampled from the training set X , I(x,b, ztex.) is the attacked image that composited
by the original image x and the adversarial patch rendered using pose b and texture latent code
ztex., and P (I(·)) represents the confidence of all proposals predicted by detectors. We approximate
the expectation by averaging the objective of the independently sampled batch. The objective is a
binary cross-entropy loss that minimizes the confidence of all predicted bounding boxes, including
adversarial objects and normal objects.
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Figure 3: Visualization of BEVDet prediction on nuScenes validation set under our attacks. The
visualization threshold is set at 0.6. The adversarial NeRF can hide surrounding objects by mini-
mizing their predicted confidence in a non-contact manner (making the yellow boxes disappear).

Built within the framework of EOT, Adv3D helps to improve the transferability and robustness of
adversarial examples over the sampling parameters (poses and scenes here). This means that the
attack can be performed without prior knowledge of the scene and are able to disrupt models across
different poses and times in a non-contact manner.

4.4 ADVERSARIAL DEFENSE BY DATA AUGMENTATION

Toward defenses against our adversarial attack, we also study adversarial training to improve the
robustness of 3D detectors. Adversarial training is typically performed by adding image perturba-
tions using a few PGD steps (Madry et al., 2017; Xie et al., 2020) during the training of networks.
However, our adversarial example is too expensive to generate for the bi-level loop of the min-max
optimization objective. Thus, instead of generating adversarial examples from scratch at every it-
eration, we directly leverage the transferable adversarial examples to augment the training set. We
use the trained adversarial example to locally store a large number of rendered images to avoid re-
peated computation. During adversarial training, we randomly paste the rendered adversarial patch
into the training images with a probability of 30%, while remaining others unchanged. We provide
experimental results in Sec. 5.4.

5 EXPERIMENTS

In this section, we first describe the training details of our adversarial attacks, and provide com-
parison with the mesh baseline in Sec. 5.1. Then we present the experiments of semantic-guided
regularization in Sec. 5.2, the analysis of 3D attack in Sec. 5.3, and our adversarial defense method
in Sec. 5.4. We evaluate the transferability across different detectors in the supplementary materials.

Models Backbone Type Clean NDS Adv NDS Clean mAP Adv mAP
FCOS3D (Wang et al., 2021c) ResNet101 FoV 0.3770 0.2674 0.2980 0.1272
PGD-Det (Wang et al., 2021d) ResNet101 FoV 0.3934 0.2694 0.3174 0.1321
DETR3D (Wang et al., 2021e) ResNet101 FoV 0.4220 0.2755 0.3470 0.1336
BEVDet (Huang et al., 2021) ResNet50 BEV 0.3822 0.2247 0.3076 0.1325
BEVFormer-Tiny (Li et al., 2022b) ResNet50 BEV 0.3540 0.2264 0.2524 0.1217
BEVFormer-Base (Li et al., 2022b) ResNet101 BEV 0.5176 0.3800 0.4167 0.2376

Table 2: Comparison of different detectors under our attack. Clean NDS and mAP denote evaluation
using original validation data. Adv NDS and mAP denote evaluation using attacked data.
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Semantic Part NDS mAP
Clean 0.382 0.307
No Part 0.302 0.234
Full Parts 0.224 0.132
Part of Front 0.267 0.148
Part of Side 0.265 0.149
Part of Rear 0.268 0.151

Table 3: Ablations of semantic parts.

Data Adv train NDS mAP
Clean val ✗ 0.304 0.248
Clean val ✓ 0.311 0.255
Adv val † ✗ 0.224 0.132
Adv val † ✓ 0.264 0.181
Adv val § ✓ 0.228 0.130

Table 4: Results of adversarial training.

Dataset We conduct our experiments on the nuScenes dataset (Caesar et al., 2020). This dataset
is collected using 6 surrounded-view cameras that cover the full 360° field of view around the ego-
vehicle. It contains 700 scenes for training and 150 scenes for validation. In our work, we train our
adversarial examples on the training set and evaluate performance drop on the validation set.

Target Detectors and Metrics As shown in Tab. 2, we evaluate the robustness of six represen-
tative detectors. Three are FoV-based, and three are BEV-based. Following prior work (Xie et al.,
2023), we evaluate the performance drop on the validation set after the attack. Specifically, we use
the Mean Average Precision (mAP) and nuScenes Detection Score (NDS) (Caesar et al., 2020) to
evaluate the performance of 3D detectors.

Quantitative Results We provide the experimental results of adversarial attacks in Tab. 2. The
attacks are conducted in a full-part manner without semantic-guided regularization to investigate the
upper limit of attack performance. We found that, in spite of FoV-based or BEV-based, they display
similar robustness. Meanwhile, we see a huge improvement of robustness by utilizing a stronger
backbone (ResNet101 versus ResNet50) when comparing BEVFormer-Base with BEVFormer-Tiny.
We hope these results will inspire researchers to develop 3D detectors with enhanced robustness.

Rendering Results We visualize our attack results with semantic-guided regularization in Fig. 3
(a,b), and without regularization in Fig. 3 (c). The disappearance of detected objects is caused by
their lower confidence scores. For example, the confidence predicted by detectors in Fig. 3 (a) have
declined from 0.6 to 0.4, and are therefore filtered out by the threshold of 0.6. In Fig. 3 (a), we find
that our adversarial NeRF is realistic enough to be detected by a 3D detector if it doesn’t display
much of the adversarial texture. However, once the vehicle shows a larger area of the adversarial
texture as seen in Fig. 3 (b), it will hide all objects including itself due to our untargeted objective.

5.1 COMPARE WITH MESH ATTACK

Method NDS mAP
Clean 0.382 0.307
Mesh 0.301 0.218
NeRF 0.264 0.189

Table 5: Comparison with Mesh.

We compare our method with the mesh baseline, which uses
a randomly picked ShapeNet car model (Chang et al., 2015)
as an adversarial example. We use PyTorch3D’s differentiable
renderer (Ravi et al., 2020) and optimize the vertex color as an
adversarial example to attack BEVDet. Similar to the setting
of the NeRF counterpart, we randomly render the single mesh
model and paste the patch onto the original images. In Tab. 5,
we show that our method achieves better attack performance
than the mesh baseline. This improvement can be attributed
to the latent space of NeRF weights having a higher dimensional representation than vertex color
and providing much more solutions for attacking, which results in a better attack performance.

5.2 SEMANTIC PARTS ANALYSIS

In Tab. 3, we provide experiments on the impact of different semantic parts on attack performance.
Specifically, we focused on three salient parts of the vehicle: the front, side, and rear. Our results
show that compared with adversarial attacks using full parts, the semantic-guided regularization
leads to a slightly lower performance drop, but remains a realistic appearance and less likely spotted
adversarial texture as illustrated in Fig. 2 (b).

Since we do not have access to annotation during training, we additionally conduct ”No Part” exper-
iment that no part of the texture is adversarial, to evaluate the impact of the collision and occlusion.
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Figure 4: To examine the 3D-aware property of our adversarial examples, we ablate the relative
performance drop by sampling adversarial examples within different bins of location and rotation.

We acknowledge that part of performance degradation can be attributed to the occlusion to original
objects and the false positive prediction of adversarial objects (see Fig. 3 (a)), since we do not update
the ground truth of adversarial objects to the validation set.

5.3 EFFECTIVENESS OF 3D-AWARE ATTACK

To validate the effectiveness of our 3D attacks, we ablate the impact of different poses on the attack
performance. In Fig. 4 (a), we divide the BEV plane into 10×10 bins ranging from x ∈ [−5m, 5m]
and z ∈ [10m, 15m]. We then evaluate the relative mAP drop (percentage) of BEVDet (Huang
et al., 2021) by sampling one adversarial example inside the bin per image, while keeping rotation
randomly sampled. Similarly, we conduct experiments of 30 uniform rotation bins ranging from
[0, 2π] in Fig. 4 (b). The experimental results demonstrate that all aspects of location and rotation
achieve a valid attack (performance drop > 30%), thereby proving the transferability of poses in our
3D-aware attack.

A finding that contrasts with prior work (Tu et al., 2020) is the impact of near and far locations in
z axis. Our adversarial example is more effective in the near region compared with the far region,
while Tu et al. (2020) display a roughly uniform distribution in all regions. We hypothesize that the
attack performance is proportional to the area of the rendered patch, which is highly related to the
location of objects. Similar findings are also displayed in rotation. The vehicle that poses vertically
to the ego vehicle results in a larger rendered area, thus better attack performance.

5.4 ADVERSARIAL DEFENSE BY DATA AUGMENTATION

We present the results of adversarial training in Tab. 4. The symbol † indicates attacks using the same
adversarial example used in adversarial training, while § indicates a different example. We observe
that incorporating adversarial training improves not only the robustness against the seen adversarial
examples, but also the clean performance. However, we also note that our adversarial training is
not capable of transferring to unseen adversarial examples trained in the same way, mainly due to
the fixed adversarial example during adversarial training. Furthermore, we hope that future work
can conduct in-depth investigations and consider handling the bi-level loop of adversarial training
in order to better defend against adversarial attacks.

6 CONCLUSION

In this paper, we propose Adv3D, the first attempt to model adversarial examples as NeRF in driv-
ing scenarios. Adv3D enhances the physical realizability of attacks through our proposed primitive-
aware sampling and semantic-guided regularization. Compared with prior works of adversarial
examples in autonomous driving, our examples are more threatening in practice as we carry non-
contact attacks, have feasible 3D shapes as usual vehicles, and display camouflage adversarial tex-
ture. Extensive experimental results also demonstrate that Adv3D achieves better attack perfor-
mance and transfers well to different poses, scenes, and detectors. We hope our work provides
valuable insights for creating more realistic evaluations to investigate and improve the robustness of
autonomous driving systems.
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