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Abstract
We study the problem of training an unbiased
and accurate model given a dataset with multiple
biases. This problem is challenging since the mul-
tiple biases cause multiple undesirable shortcuts
during training, and even worse, mitigating one
may exacerbate the other. We propose a novel
training method to tackle this challenge. Our
method first groups training data so that different
groups induce different shortcuts, and then opti-
mizes a linear combination of group-wise losses
while adjusting their weights dynamically to alle-
viate conflicts between the groups in performance;
this approach, rooted in the multi-objective opti-
mization theory, encourages to achieve the mini-
max Pareto solution. We also present a new bench-
mark with multiple biases, dubbed MultiCelebA,
for evaluating debiased training methods under
realistic and challenging scenarios. Our method
achieved the best on three datasets with multiple
biases, and also showed superior performance on
conventional single-bias datasets.

1. Introduction
Empirical risk minimization (ERM) (Vapnik, 1999) is cur-
rently the gold standard in supervised learning of deep neu-
ral networks. However, recent studies (Sagawa et al., 2019;
Geirhos et al., 2020) revealed that ERM is prone to tak-
ing undesirable shortcuts stemming from spurious corre-
lations between the target labels and irrelevant attributes
arising from subgroup imbalance of training data. For ex-
ample, Sagawa et al. (2019) showed how much a deep neu-
ral network trained to classify bird species relies on the
background rather than the bird itself. Such a spurious cor-
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Figure 1: A example of grouping training data with two bias
types. Each axis represents each bias type, for which bias-
guiding samples make up the majority and bias-conflicting
ones hold the minority. In this example, the name of each
group indicates if samples of the group has a guiding at-
tribute (G) or a conflicting attribute (C) for gender and
age, in respective order.

relation is often hard to mitigate since the data collection
procedure itself is biased towards the correlation.

To resolve this issue, researchers have studied debiased
training algorithm, i.e., algorithms training a model while
mitigating spurious correlations (Arjovsky et al., 2019;
Bahng et al., 2020; Sagawa et al., 2019; Teney et al., 2021;
Tartaglione et al., 2021; Lee et al., 2021; Nam et al., 2020;
Liu et al., 2021a; Kim et al., 2022). They focus on improv-
ing performance on bias-conflicting samples (i.e., samples
that disagree with the spurious correlations) to achieve a
balance of bias-conflicting and bias-guiding samples (i.e.,
those agreeing with the spurious correlations). Although
these algorithms have shown promising results, they have
been evaluated in a limited setting where only a single type
of spurious correlation exists in training data.

We advocate that debiased training algorithms should be
evaluated under more realistic scenarios with multiple bi-
ases. In such scenarios, some samples may align with one
bias but may conflict with another, which makes mitigating
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Figure 2: The concept of between-group conflicts and model
biases. During model parameter updates (θ), the model risks
exploiting spurious correlations as shortcuts for classifica-
tion (red lines). Updating model parameters toward shortcut
results in a reduced group-wise loss in the guiding groups
but amplifies the loss in the conflicting groups (e.g., CG
and CC for shortcut 1), leading to group conflicts. Updating
parameters towards cues directly related to the target classi-
fication, free from spurious correlations (blue line), offers
the only solution to minimize losses across all groups.

spurious correlations more challenging. If one only consid-
ers the intersection of bias-conflicting samples, i.e., clean
samples that disagree with all the spurious correlations, the
resulting group will be extremely small as illustrated in Fig-
ure 1 and result in overfitting consequently. Furthermore,
mitigation of one bias often promote another as empirically
observed by Li et al. (2023). These complexities often lead
existing methods to achieve similar or even worse perfor-
mance compared to simple baselines such as upsampling
and upweighting.

We propose a novel debiased training algorithm to tackle
the aforementioned challenges. Our algorithm first divides
the entire training set into multiple groups where data of the
same group have the same impact on training in terms of
the model bias, i.e., guiding to or conflicting with each bias
type in the same way, as illustrated in Figure 1. With the
grouping strategy, all groups share the same target task (i.e.,
classifying cheekbones), but they have different spurious
correlations. If a model exploits a shortcut, its performance
on the groups that agree with the associated spurious corre-
lation improves, while that on the groups disagreeing with
such a spurious correlation deteriorates, leading to group
conflicts. We consider a between-group conflict to be an in-
dication that a model is biased towards spurious correlations,
which is illustrated in Figure 2.

Then, to mitigate multiple biases during training, our al-
gorithm trains a model by alleviating all between-group
conflicts at once so that it performs well across all groups.
This optimization process, derived from a multi-objective
optimization (MOO) algorithm of Désidéri (2012), aims
for Pareto optimality, i.e., a state where no group can be
further improved without sacrificing others. To be specific,

our algorithm optimizes a linear combination of group-wise
losses while dynamically adjusting group-wise importance
weights so that model parameters converge to the minimax
Pareto solution, which is a Pareto-stationary solution that
minimizes the maximum group loss.

We also introduce a new multi-bias benchmark along with
the new debiased training algorithm. Our benchmark,
dubbed MultiCelebA, is a collection of real facial images
from CelebA (Liu et al., 2015), and incorporates multiple
bias types that are spuriously correlated with target classes.
Compared with existing multi-bias datasets composed of
synthetic images (Li et al., 2022; 2023), it allows to evaluate
debiased training algorithm on more realistic and challeng-
ing scenarios.

We extensively evaluated our method on three multi-bias
benchmarks including MultiCelebA and three single-bias
benchmarks, where it outperformed every prior arts. The
main contribution of this paper is four-fold:

• We present a novel debiased training algorithm based
on MOO for mitigating multiple biases simultaneously.

• We present a new real-image multi-bias benchmark for
evaluating debiased training methods under realistic
and challenging scenarios.

• We benchmarked existing methods for debiased train-
ing and demonstrated that they struggle when training
data exhibit multiple biases.

• Our method achieved the state of the art on three
datasets with multiple biases. In addition, it also
showed superior performance on conventional single-
bias datasets.

2. Related Work
Debiasing in single bias scenarios. A body of research
has addressed the bias issue that arises from spurious cor-
relations between target and latent attributes. A group of
previous work exploits manual labels for bias attributes (Ar-
jovsky et al., 2019; Bahng et al., 2020; Dhar et al., 2021;
Gong et al., 2020; Li & Vasconcelos, 2019; Sagawa et al.,
2019; Teney et al., 2021; Tartaglione et al., 2021; Zhu et al.,
2021; Yao et al., 2022; Zhang et al., 2022; Wang et al., 2018;
Kirichenko et al., 2023). For instance, Sagawa et al. (2019)
presented a robust optimization method that weights groups
of different bias attributes differently, Dhar et al. (2021)
and Gong et al. (2020) employed adversarial training, and
Zhang et al. (2022) proposed using contrastive learning.
Later on, debiased training algorithms that do not require
any bias supervision have been studied to reduce the anno-
tation cost (Darlow et al., 2020; Creager et al., 2021; Kim
et al., 2021; Lee et al., 2021; Nam et al., 2020; Liu et al.,
2021a; Ahmed et al., 2021; Kim et al., 2022; Hwang et al.,
2022; Zhang & Ré, 2022; Yang et al., 2023; Wu et al., 2023).
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However, whether directly using the bias labels or not, these
methods assume that the bias inherent in data is of a single
type. This assumption often does not hold in real-world
scenarios, where data exhibit multiple biases, and in prac-
tice classifiers can be easily biased to multiple independent
biases, as shown in StylEx (Lang et al., 2021).

Debiasing in multiple biases scenarios. Only a few recent
studies (Li et al., 2022; 2023) addressed multiple biases with
new training algorithms and benchmarks. Li et al. (2022)
discovered multiple biases through iterative assignment of
pseudo bias labels, while Li et al. (2023) presented an aug-
mentation method that emulates the generation process of
bias types. However, their methods are dedicated to handle
synthetic images. In contrast, we propose a new algorithm
that trains unbiased models regardless of the number and
types of biases, along with a new natural image benchmark
for evaluating debiased training methods in the presence of
multiple biases.

3. Proposed Method
We propose a novel debiased training framework that incor-
porates a grouping strategy to unveil model biases and an
optimization algorithm based on a theory of MOO (Désidéri,
2012), assuming that bias attributes are annotated for train-
ing data. This method effectively addresses one or multiple
spurious correlations by training a model for all the groups
while optimizing importance weights of the groups as well
as the model parameter. The rest of this section first intro-
duces the grouping strategy (Section 3.1) and then describes
the proposed optimization algorithm with group-wise im-
portance weight adjustment in detail (Section 3.2)

3.1. Grouping Strategy

As illustrated in Figure 1(a), we divide training data into
multiple groups so that all data in the same group have the
same impact on training in terms of the model bias. To
be specific, we consider training a classifier on a dataset
X = {(x(m), t(m))}Mm=1, where each sample x(m) is as-
sociated with a target class t(m) and a list of attributes
b(m) = [b

(m)
1 , . . . , b

(m)
D ]⊤, where D is the number of bias

types. We group the samples using a list of binary group
labels g(m) = [g

(m)
1 , . . . , g

(m)
D ] based on whether each at-

tribute b(m)
d is the majority attribute in target class t(m), i.e.,

g
(m)
d = 1 if

b
(m)
d = argmax

bd

∣∣∣{m′|t(m
′) = t(m), b

(m′)
d = bd

}∣∣∣,
and g

(m)
d = 0 otherwise. This results in 2D groups where

samples in the same group share the same group labels.

Our grouping policy differs from prior work that uses the
target classes and the attributes as the group labels (Sagawa

et al., 2019; Kirichenko et al., 2023; Nam et al., 2022;
Sagawa et al., 2020; Zhang et al., 2022): each group in
our method contains samples from all the target classes,
while the existing ones only keep a group of samples with
the same target class and the same attributes. Hence, our
grouping policy enables to conduct the target classification
task on each group. Moreover, since different groups have
different combinations of spurious correlations, a model
should not rely on any spurious correlation to work on every
group; if it is biased to a spurious correlation, its perfor-
mance will deteriorate on the groups disagreeing with the
spurious correlation. Our goal in the following debiased
training step is thus to train a model capable of accurately
classifying samples of all the groups, i.e., its performance
should not be biased towards a certain group.

3.2. Debiased Training with Group Weight Adjustment

Our debiased training algorithm aims to train a model so
that it works for all the groups determined by our grouping
policy described in Section 3.1. To this end, our algorithm
optimizes a linear combination of group-wise losses while
adjusting their importance weights dynamically. In this
section, we first briefly review a theory of multi-objective
optimization, from which our algorithm stems, and deliver
the details of our algorithm.

3.2.1. PRELIMINARY: MULTI-OBJECTIVE OPTIMIZATION

We consider MOO as a problem of optimizing a param-
eter θ with respect to a collection of training objectives
L(θ) = [L1(θ), . . . ,LN (θ)]⊤. To solve such a problem,
MOO frameworks aim at finding a solution that achieves
Pareto optimality, i.e., a state where no objective can be
improved without sacrificing others.

Definition 3.1 (Pareto optimality). A parameter θ∗ is Pareto-
optimal if there exists no other parameter θ such that
Ln(θ) ≤ Ln(θ

∗) for n = 1, . . . , N and L(θ) ̸= L(θ∗).

However, finding the Pareto-optimal parameter is intractable
for non-convex loss functions like training objectives of
deep neural networks. Instead, one may consider using
gradient-based optimization to find a parameter satisfying
Pareto stationarity (Désidéri, 2012), i.e., a state where a con-
vex combination of objective-wise gradients equals a zero-
vector. Pareto stationarity is a necessary condition for Pareto
optimality if the objectives in L(θ) are smooth (Désidéri,
2012).

Definition 3.2 (Pareto stationarity). A parameter θ∗ is
Pareto-stationary if there exists an objective-scaling vec-
tor α = [α1, . . . , αN ]⊤ satisfying the following condition:

α⊤∇θL(θ
∗) = 0, α ≥ 0, α⊤1 = 1, (1)

where 0 = [0, . . . , 0]⊤ ∈ RN and 1 = [1, . . . , 1]⊤ ∈ RN .
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Algorithm 1 Debiased training by MOO
while not converged do

for u← 1 to U − 1 do
Update θ ← θ − η1∇θLθ.

end for
Update parameters:
θ ← θ − η1∇θLθ,
α← α− η2∇αLα,
λ← λ+ η2∇λLα.

end while

Désidéri (2012) proposed the multi-gradient descent algo-
rithm (MGDA) to search for a Pareto-stationary parameter.
MGDA finds an objective-scaling parameter α which com-
bines the objective-wise gradients∇θL to sum to approxi-
mately a zero vector by the following optimization:

min
α

∥∥α⊤∇θL
∥∥2
2
, α ≥ 0, α⊤1 = 1. (2)

Given α, MGDA performs a gradient-based update on the
parameter θ with respect to α⊤L(θ).

3.2.2. PROPOSED TRAINING ALGORITHM

We propose an algorithm to optimize over N = 2D

groups while minimizing the conflicts between group-
wise loss functions, inspired by MGDA. Let L(θ) =
[L1(θ), . . . ,LN (θ)]⊤ denote the list of empirical risk func-
tions on N groups and consider minimizing their convex
combination α⊤L(θ), where α ≥ 0 and α⊤1 = 1. This
is a unique MOO scenario, in which all objectives are of
the same loss function but differ in input distribution (i.e.,
groups). To impose the constraints on α in Eq. (2), we pro-
pose applying the softmax function σ(·) to α. The model
parameter θ is thus optimized by minimizing the weighted
group-wise losses:

Lθ = σ(α)⊤L(θ). (3)

To address between-group conflicts, we propose adjusting
the group-scaling parameter σ(α) so that the training con-
verges to a Pareto-stationary solution. To be specific, our
goal is to minimize the training objective σ(α)⊤L(θ) while
simultaneously adjusting the group-scaling parameter to
minimize the objective in Eq. (2). To this end, we optimize
the following loss function with respect to α:

Lα = σ(α)⊤L(θ) + λ
∥∥σ(α)⊤(∇θL(θ))†

∥∥2
2
, (4)

where (·)† denotes the stop-gradient operator and λ is the
Lagrangian multiplier for the Pareto stationarity objective
in Eq. (2). We update the group-scaling parameter with
gradient descent and the Lagrangian multiplier λ with gra-
dient ascent every U iteration. The learning process of our

method is described in Algorithm 1. Our algorithm encour-
ages a model to achieve the minimax Pareto solution among
Pareto-stationary solutions, which minimizes the maximum
group loss by emphasizing groups with lower accuracy, i.e.,
increasing their scaling parameters. This approach enables
debiased training across groups. Further details are pre-
sented in Section 3.3.1.

We also note that our method can be interpreted as curva-
ture aware training (Li & Gong, 2021), where the group-
scaling parameter α is adjusted for better generalization
on each group. Specifically, Li & Gong (2021) consider
adjusting the training objective

∥∥α⊤(∇θL(θ))
∥∥2
2

so that
gradient-based optimization of the parameter θ converges
to a flat minimum with a small curvature, i.e., a parameter
with a small trace of the Hessian matrix with respect to the
training objective. It has been reported in the literature that
a model converging to such a flat minimum in training has
better generalization capability (Keskar et al., 2017; Dziu-
gaite & Roy, 2017; Jiang et al., 2020). Since the number
of samples that disagree with all the spurious correlations
is extremely small and prone to overfitting, improving gen-
eralization capability is particularly beneficial in multiple
biases scenarios.

3.3. Discussion

3.3.1. WHY OUR ALGORITHM ACHIEVES THE MINIMAX
PARETO SOLUTION

During training, our algorithm more emphasizes groups
with worse accuracy by increasing their scaling parameters,
which encourages achieving the minimax Pareto solution.
This behavior of our algorithm is attributed to the following
two factors of Lα in Eq. (4).

Regarding the first term of Lα: Minimizing this term
substantially increases the group-scaling parameter of the
CC group that exhibits the worst performance in testing,
consequently improving the worst accuracy. To be specific,
as σ(α) holds the sum-to-one constraint, minimizing the
first term increases the scaling parameter for groups with
lower loss magnitudes while decreasing the parameter for
groups with higher loss magnitudes. Here, the CC group
shows the lowest training loss scale since its cardinality is
extremely small and the model is easily overfitted to the
group (which causes the worst accuracy on the group in
testing). Further empirical analysis on this term is provided
in Appendix A.3.

Regarding the second term of Lα: This term, originated
from MGDA, also increases the scaling parameter for the
CC group. MGDA is known to be biased towards tasks with
low loss magnitudes in multi-task learning, a phenomenon
known as task impartiality (Javaloy & Valera, 2022; Liu
et al., 2021b). In our setting, the task with the lowest loss
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magnitude corresponds to the CC group as discussed above.
Hence, the task impartiality of MGDA leads to the increased
scaling parameter for the CC group, leading to the minimax
Pareto solution.

3.3.2. COMPARISON WITH MULTI-TASK LEARNING

Multi-task learning (MTL) is a research area that aims to
develop a model capable of performing multiple tasks si-
multaneously. Considering that MTL incorporates MOO
to address task conflicts (Sener & Koltun, 2018), MTL ex-
hibits similarities with our method. Nevertheless, our work
is clearly distinct from MTL in multiple aspects. Firstly,
our work addresses a single classification task and thus the
group-wise losses have the same form. However, their input
distributions differ, with each group-wise loss calculated
using samples from its respective group. In contrast, MTL
assumes different loss functions for different tasks. Sec-
ondly, since all the groups aim to solve the same target task,
an optimal solution that fits perfectly across all the groups
exists for our debiased training setting in principle. On the
contrary, MTL rarely has the perfect solution for all the
tasks since task conflicts are almost inevitable. Third, our
method does not employ task-specific network parameters
unlike MTL, which in general distinguishes task-specific
and task-shared parameters. Lastly, we present a novel loss
tailored to the debiased training.

3.3.3. ON THE USE OF BIAS LABELS

Bias attribute labels would be expensive, particularly in the
multi-bias setting. However, regarding that debiasing in
this setting has been rarely studied so far and is extremely
challenging, we believe it is premature to tackle the task in
an unsupervised fashion at this time. As in the single-bias
setting where the society has first developed supervised de-
biasing methods and then unsupervised counterparts, our
algorithm will be a cornerstone of follow-up unsupervised
methods in the multi-bias setting. Moreover, the annotation
cost for bias labels can be substantially reduced by incor-
porating existing techniques for pseudo labeling of bias
attributes (Jung et al., 2022; Nam et al., 2022).

4. MultiCelebA Benchmark
We present a new benchmark, dubbed MultiCelebA, for
evaluating debiased training algorithms under the presence
of multiple biases. Unlike Multi-Color MNIST (Li et al.,
2022) and UrbanCars (Li et al., 2023) built for the same pur-
pose using synthetic images, MultiCelebA is composed of
natural facial images, making it more suitable for simulating
real-world scenarios.

MultiCelebA is built upon CelebA (Liu et al., 2015), a
large-scale collection of facial images each with 40 attribute

Group GG GC CG CC
Freq. 90.82% 4.48% 4.48% 0.22%
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Figure 3: Training set configuration of MultiCelebA in the
two-bias setting.

annotations. Among these attributes, high-cheekbones
is chosen as the target class, while gender, age, and
mouth slightly open are used as bias attributes that
are spuriously correlated with high-cheekbones and
thus cause undesirable shortcuts during training. Note that
these bias attributes are not randomly chosen but identified
by adapting the empirical analysis procedure of Scimeca
et al. (2022) to CelebA, which revealed that these attributes
are strongly correlated with the target class; details of the
analysis are presented in Appendix A.2.

Based on MultiCelebA, we present two different benchmark
settings: one with two bias attributes gender and age,
and the other with all three bias attributes. To simulate
challenging scenarios where training data are extremely
biased, we set the bias-guiding samples for both gender
and age to 95.3% by subsampling from the CelebA training
set, so that only 0.22% of training samples are free from
spurious correlations in the two-bias setting and 0.07% for
the three-bias settings. Example images and the frequency
of each attribute in the two-bias setting are presented in
Figure 3.

5. Experiments
5.1. Setup

Datasets. We adopt three multi-bias benchmarks, Mul-
tiCelebA, UrbanCars (Li et al., 2023), and Multi-Color
MNIST (Li et al., 2022), and three single-bias datasets,
Waterbirds (Sagawa et al., 2019), CelebA (Liu et al., 2015),
and BFFHQ (Lee et al., 2021) for evaluation.

Evaluation metrics. For multi-bias benchmarks, the qual-
ity of debiased training algorithms is measured mainly by
UNBIASED, the average of group average accuracy scores.
For the benchmarks with two bias types, we also adopt aver-
age accuracy for each of the four groups categorized by the
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Table 1: Performance in INDIST, GG, GC, CG, CC, and UNBIASED (%) on MultiCelebA in two-bias setting. The first
element of each of the four combinations {GG, GC, CG, CC} is about the bias type gender, while the second is about the
bias type age. We mark the best and the second-best performance in bold and underline, respectively.

Method Bias label INDIST GG GC CG CC UNBIASED
ERM ✗ 97.0±0.2 98.2±0.7 89.2±2.6 58.2±3.0 19.0±1.8 63.8±1.2
LfF ✗ 81.9±3.1 79.8±2.6 71.7±2.2 80.2±1.7 71.5±3.3 75.8±0.5
JTT ✗ 78.7±6.5 76.1±5.2 60.8±5.2 65.1±10.7 51.9±1.6 64.7±3.2
DebiAN ✗ 66.8±34.1 64.4±30.4 63.6±22.2 49.8±7.6 45.5±13.2 55.8±11.7
Upsampling ✓ 82.6±0.8 79.8±1.5 81.0±1.3 76.7±1.1 75.6±1.2 78.3±0.8
Upweighting ✓ 83.4±5.9 79.0±4.1 79.2±6.0 80.8±0.0 78.7±3.6 79.4±3.4
GroupDRO ✓ 83.5±0.7 81.2±1.0 81.2±1.2 76.7±1.5 74.6±0.4 78.4±0.7
SUBG ✓ 80.3±1.1 77.1±1.0 78.4±0.7 77.5±1.7 78.0±1.2 77.7±0.6
LISA ✓ 84.5±1.7 82.8±1.3 83.2±0.5 79.8±0.8 77.6±2.6 80.9±0.2

DFRtr
tr ✓ 85.5±6.2 91.3±3.5 83.6±4.0 46.7±3.8 28.5±4.6 62.5±0.6

Ours ✓ 84.3±0.9 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2

Table 2: Performance in INDIST, CCC, and UNBIASED (%)
on MultiCelebA in three biases for evaluation two biases
for training setting. We mark the best and the second-best
performance in bold and underline, respectively.

Method INDIST CCC UNBIASED
ERM 96.7±0.2 11.1±2.8 63.8±1.2
LfF 81.8±3.1 60.1±1.7 71.8±0.7
Upsampling 82.6±0.8 63.0±3.5 73.6±0.8
Upweighting 85.4±9.5 63.4±3.5 75.8±4.8
GroupDRO 83.4±0.6 61.4±2.9 73.7±0.7
SUBG 80.3±1.1 65.8±4.0 72.6±1.3
LISA 84.5±1.7 63.1±1.0 75.9±0.6

DFRtr
tr 85.5±6.1 26.2±6.2 61.3±0.6

Ours 84.3±1.0 70.0±0.6 78.4±0.0

Table 3: Performance in INDIST and CC (%) on UrbanCars.
We mark the best and the second-best in bold and underline,
respectively.

Method Bias label INDIST CC GAP
ERM ✗ 97.6 28.4 -69.2
Upsampling ✓ 92.8 76.0 -16.8
Upweighting ✓ 93.4 80.0 -13.4
GroupDRO ✓ 91.6 75.2 -16.4
SUBG ✓ 71.1 64.8 -6.3
LISA ✓ 94.6 80.8 -13.8
DFRtr

tr ✓ 89.7 44.5 -45.2
Ours ✓ 91.8 87.6 -4.2

guiding or conflicting nature of the biases: {GG, GC, CG,
CC}, where G and C indicate whether a group includes
bias-guiding or bias-conflicting samples for each bias type,
respectively. Conceptually, the GG metric can be high re-
gardless of whether a model is biased or not. However,
the CC metric can be high only when a model is debiased
from all spurious correlations. Similarly, the GC accuracy
can be high only when a model is debiased from the spu-
rious correlation of the second bias type. We also report
INDIST, the weighted average of group accuracy scores
where the weights are proportional to group sizes of training
data (Sagawa et al., 2019). For Waterbirds and CelebA,
we adopt WORST, the minimum of group accuracy scores,
following Sagawa et al. (2019).

Baselines. We compare our algorithm with a large body of
existing debiased training algorithms. Among them, Group-
DRO (Sagawa et al., 2019), EnD (Tartaglione et al., 2021),
SUBG (Sagawa et al., 2020), LISA (Yao et al., 2022), and
DFR (Kirichenko et al., 2023) as well as simple upsam-
pling and upweighting strategies demand true bias labels of
training data like ours, while HEX (Wang et al., 2019), Re-
Bias (Bahng et al., 2020), LfF (Nam et al., 2020), JTT (Liu
et al., 2021a), EIIL (Creager et al., 2021), PGI (Ahmed et al.,
2021), DisEnt (Lee et al., 2021), LWBC (Kim et al., 2022),

SelecMix (Hwang et al., 2022), CNC (Zhang et al., 2022),
and DebiAN (Li et al., 2022) do not.

Implementation details. Following previous work, we con-
duct experiments using different neural network architec-
tures for different datasets: a three-layered MLP for Multi-
Color MNIST and ResNet18 for MultiCelebA and BFFHQ,
ResNet50 for UrbanCars, Waterbirds, and CelebA. The
group-scaling parameter α is initialized to 1

N 1 where N is
the number of groups, and the Lagrangian multiplier λ is
initialized to 0. For mini-batch construction during training,
group-balanced sampling is used to compute each loss for
multiple groups. For MultiCelebA, we tuned hyperparame-
ters in the two-bias setting and performed both training and
evaluation in the two-bias setting, and conducted evaluation
only in the three-bias setting without training. We report
the average and standard deviation of each metric calcu-
lated from three runs with different random seeds. More
implementation details are provided in Appendix A.4.

5.2. Quantitative Results

MultiCelebA in two-bias setting. In Table 1, we present
the results of our experiments evaluating the performance
of various baselines and existing debiased training methods
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Table 4: Performance in GG, GC, CG, CC, and UNBIASED (%) on Multi-Color MNIST. The first element of each of
the four combinations {GG, GC, CG, CC} is about the bias type left-color, while the second is about the bias type
right-color. We mark the best and the second-best performance in bold and underline, respectively.

Method Bias label GG GC CG CC UNBIASED
ERM ✗ 100.0±0.0 96.5±1.2 79.5±2.5 20.8±1.1 74.2±1.1
LfF ✗ 99.6±0.5 4.7±0.5 98.6±0.4 5.1±0.4 52.0±0.1
EIIL ✗ 100.0±0.0 97.2±1.5 70.8±4.9 10.9±0.8 69.7±1.0
PGI ✗ 98.6±2.3 82.6±19.6 26.6±5.5 9.5±3.2 54.3±4.0
DebiAN ✗ 100.0±0.0 95.6±0.8 76.5±0.7 16.0±1.8 72.0±0.8
Upsampling ✓ 99.4±0.6 89.8±1.4 81.3±2.6 42.0±1.7 78.1±1.4
Upweighting ✓ 100.0±0.0 90.0±2.5 83.4±2.1 37.1±2.8 77.6±1.0
GroupDRO ✓ 98.0±0.0 87.2±4.3 77.3±7.5 52.3±2.6 78.7±2.7
Ours ✓ 99.7±0.6 90.4±3.4 81.8±4.0 48.1±0.3 80.0±2.0

Table 5: WORST and INDIST metrics (%) evaluated on Waterbirds, and CelebA.
We mark the best and the second-best performance of WORST in bold and
underline, respectively.

Bias Waterbirds CelebA
Method label WORST INDIST WORST INDIST
ERM ✗ 63.7±1.9 97.0±0.2 47.8±3.7 94.9±0.2
LfF ✗ 78.0 91.2 70.6 86.0
EIIL ✗ 77.2±1.0 96.5±0.2 81.7±0.8 85.7±0.1
JTT ✗ 83.8±1.2 89.3±0.7 81.5±1.7 88.1±0.3
LWBC ✗ - - 85.5±1.4 88.9±1.6
CNC ✗ 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5
Upweighting ✓ 88.0±1.3 95.1±0.3 83.3±2.8 92.9±0.2
GroupDRO ✓ 89.9±0.6 92.0±0.6 88.9±1.3 93.9±0.1
SUBG ✓ 89.1±1.1 - 85.6±2.3 -
SSA ✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1
LISA ✓ 89.2±0.6 91.8±0.3 89.3±1.1 92.4±0.4

DFRtr
tr ✓ 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7

Ours ✓ 91.8±0.3 95.6±0.3 89.8±1.3 91.4±1.2

Table 6: UNBIASED metric (%) evalu-
ated on BFFHQ. We mark the best and
the second-best performance in bold
and underline, respectively.

Bias BFFHQ
Method label UNBIASED
ERM ✗ 56.2±0.4
HEX ✗ 52.8±0.9
ReBias ✗ 56.8±1.6
LfF ✗ 65.6±1.4
DisEnt ✗ 61.6±2.0
SelecMix ✗ 71.6±1.9
SelecMix ✓ 75.0±0.5
EnD ✓ 56.5±0.6
LISA ✓ 65.2±0.5
GroupDRO ✓ 85.1±0.9
Ours ✓ 85.7±0.3

on MultiCelebA. One can observe how our method outper-
forms the baselines by a significant margin in UNBIASED,
CG, and CC metrics. Our method even achieves a second-
best accuracy in the GC metric and a moderate accuracy in
the GG metric. This highlights how our method success-
fully prevents performance degradation by simultaneously
removing multiple spurious correlations. Intriguingly, we
observe that algorithms like JTT, DebiAN, and DFR exhibit
UNBIASED metric similar to or even lower than the vanilla
ERM algorithm. Our hypothesis is that this performance
degradation stems from conflicts between the removal of
different spurious correlations. To be specific, JTT (Liu
et al., 2021a) exhibits varying accuracy across the GG, GC,
CG, and CC groups, indicating that the model is biased
towards both gender and age biases. DebiAN (Li et al.,
2022) shows high accuracy in the GG and GC groups, but
low accuracy in the CG and CC groups, indicating that the
algorithm partially mitigates age bias but still suffers from
gender bias. We also observe that DFR (Kirichenko et al.,
2023) achieves lower CC and CG metrics than ERM, sug-
gesting that an ERM-based feature representation alone is
insufficient in multi-bias setting. The remaining algorithms,

e.g., Upsampling, GroupDRO (Sagawa et al., 2019), and
LISA (Yao et al., 2022) show overall decent performance,
but the GG and GC metrics are slightly higher than that in
CG and CC groups, indicating that the model is still biased
towards the gender attribute. Surprisingly, the upweight-
ing baseline achieved the second-best performance in CG
and CC metrics on MultiCelebA, surpassing all the existing
debiased training methods.

MultiCelebA in three-bias setting. Results of the evalu-
ation with three bias types are reported in Table 2, where
only gender and age labels are visible during training.
ERM exhibits lower CCC accuracy in the three-bias set-
ting compared to the two-bias setting. This arises as the
number of bias types increases, resulting in a substantially
reduced size of the smallest group, demonstrating a more
challenging setting. In contrast, our method substantially
outperformed existing methods and baselines in UNBIASED
and CCC. This demonstrates the scalability of our method
to more than two bias types.

UrbanCars. In Table 3, we present the results of debiased
training algorithms that exploit bias labels and share the
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Table 7: Comparisons among different strategies for adjusting the group-scaling parameter α on MultiCelebA in two biases
setting. (a) Fixing σ(α) by 1

N 1. (b) Minimizing σ(α)⊤L(θ). (c) MGDA. (d) GradNorm. (e) MoCo, the latest MOO
method. (f) Ours minimizing Lα.

INDIST GG GC CG CC UNBIASED
(a) No optimization 78.5±5.7 79.6±2.9 80.0±2.2 79.0±1.9 78.4±1.3 79.2±1.4
(b) Minimizing group losses 81.3±3.6 76.4±2.2 77.8±0.4 77.1±2.2 78.0±1.7 77.3±0.6
(c) MGDA 82.7±3.7 81.6±3.5 85.1±2.1 80.1±1.3 82.3±3.2 82.3±0.4
(d) GradNorm 86.5±5.4 85.9±5.8 86.9±2.4 78.1±3.5 76.6±6.5 81.9±0.6
(e) MoCo 83.8±1.6 81.7±1.3 81.8±2.6 77.2±0.9 74.9±1.2 78.9±1.5
(f) Ours 84.3±0.9 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2

Training iteration Training iteration

Figure 4: Change of the group-scaling parameter over
time on MultiCelebA in two-bias settings. In the case of
GroupDRO, (H) and (L) denote High-cheekbones and
Low-cheekbones, respectively.

(a) Group by ! (b) Group by !, # (c) Group by $

Figure 5: Group-wise test accuracy of three different group-
ing strategies. Lines indicate UNBIASED performance, and
shaded regions show the lowest and the highest accuracy
among the group-wise scores. To ensure fair comparison, the
test data are grouped by b and t.

identical network structure. Our method achieved signifi-
cantly superior CC accuracy when compared to methods
using bias labels, demonstrating a substantial difference.

Multi-Color MNIST. In Table 4, we report the evaluation
results for the Multi-Color MNIST dataset. Note that we re-
use the performance of LfF (Nam et al., 2020), EIIL (Crea-
ger et al., 2021), PGI (Ahmed et al., 2021), and DebiAN (Li
et al., 2022) reported by Li et al. (2022). Overall, our method
demonstrates the best performance along with GroupDRO.
In particular, our algorithm exhibits the highest UNBIASED
accuracy and the second-best CC accuracy.

Single-bias datasets. In Table 5 and 6, our method achieves
the best WORST accuracy on Waterbirds and CelebA, and
the best UNBIASED on BFFHQ, indicating that our method
is effective not only for multi-bias settings but also for single-
bias settings.

5.3. In-depth Analysis

Comparisons among different strategies for adjusting
the group-scaling parameter. We first verify the impact
of our strategy for adjusting the group-scaling parameter.
In Table 7, we compare our training strategy with five
alternatives: (a) Using a fixed uniform group-scaling pa-
rameter σ(α) = 1

N 1 (i.e., no optimization), (b) minimiz-

ing group losses σ(α)⊤L(θ), (c) MGDA that minimizes∥∥σ(α)⊤(∇θL(θ))†
∥∥2
2
, (d) GradNorm (Chen et al., 2018),

(e) MoCo, the latest technique for MOO method (Fernando
et al., 2023), and (f) our method that minimizes Lα in
Eq. (4). Intriguingly, (b) leads to worse performance com-
pared to (a) that uses a fixed value for α. We found that
utilizing a learnable group-scaling parameter based solely
on the weighted sum of group-wise losses resulted in worse
performance in all metrics except INDIST when compared
with training without it. The results in (c), (d), and (e)
demonstrate that blindly applying an existing MOO method
as-is with our grouping strategy falls short of the desired
level of unbiased performance during training on a biased
dataset. This highlights the superiority of our method in
scenarios involving multiple spurious correlations.

Change of the group-scaling parameter over time. We
compare the trend of the group-scaling parameter in our
method with that of GroupDRO (Sagawa et al., 2019) on
MultiCelebA in the two-bias setting, as illustrated in Fig-
ure 4. Our method shows an increasing trend for the weight
of the CC group, while those of the other groups decrease
during training. This indicates that the model initially learns
a shared representation that incorporates information from
all the groups, but later focuses more on the minority group.
On the other hand, GroupDRO exhibits a decreasing weight
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Table 8: Ablation study on the grouping strategy on MultiCelebA in two biases setting: Grouping by bias attribute b,
grouping by both bias attribute and target class (b, t), and our strategy using the list of binary group labels g. SUBG and
GroupDRO with our grouping strategy are indicated by †.

Method Group by INDIST GG GC CG CC UNBIASED
ERM - 97.0±0.2 98.2±0.7 89.2±2.6 58.2±3.0 19.0±1.8 63.8±1.2

SUBG b, t 80.3±1.1 77.1±1.0 78.4±0.7 77.5±1.7 78.0±1.2 77.7±0.6

SUBG† g 80.4±2.7 78.5±4.3 75.9±3.3 71.9±2.2 67.0±2.3 73.3±1.7

GroupDRO b, t 83.5±0.7 81.2±1.0 81.2±1.2 76.7±1.5 74.6±0.4 78.4±0.7

GroupDRO† g 85.8±1.5 83.1±1.9 79.5±2.4 80.7±1.2 71.8±1.1 78.8±1.4

Ours b 79.2±0.7 79.5±4.6 79.8±3.5 78.1±2.1 77.0±1.6 78.6±2.0
Ours b, t 78.5±5.5 79.4±2.9 80.0±2.2 79.0±1.9 78.5±1.3 79.2±1.4
Ours g 84.3±0.9 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2

Table 9: Impact of the update period U of the group-scaling
parameter on MultiCelebA in two biases setting.

U GG GC CG CC UNBIASED
1 84.2±0.5 86.0±0.5 80.8±0.5 80.8±0.5 82.9±0.3
5 83.3±0.4 85.8±0.7 81.2±0.4 81.7±0.1 83.0±0.1
10 82.4±0.6 85.1±0.4 81.7±0.3 82.6±0.9 82.9±0.2
20 81.9±0.5 84.9±0.5 81.8±0.5 83.0±0.9 82.9±0.3
30 79.3±1.3 84.0±0.2 82.6±0.3 85.0±0.8 82.7±0.2

trend for the minority groups (CC (L) and CC (H) in Fig-
ure 4). This trend occurs because the minority groups have
lower training losses in the early stages of training, leading
to lower weights in GroupDRO. As a consequence, it tends
to ignore minority groups and exacerbate the bias issue, re-
sulting in inferior performance compared to the upweigthing
baseline as shown in Table 1.

Ablation study on the grouping strategy. To verify the
contribution of our grouping strategy, we compare ours with
two alternatives: grouping samples by the same bias at-
tribute b, and grouping those with the same pair of bias
attribute b and target class t. Figure 5 demonstrates per-
formance variations by different grouping policies. To en-
sure a fair comparison, the test data are grouped by b and
t, which is the same as the conventional grouping strat-
egy. Figure 5(a) shows that the test accuracy gap between
groups enlarges as training progresses when using the bias
attribute grouping. We conjecture that this problem arises
from class imbalance within the groups categorized solely
by bias attributes. Specifically, the number of samples be-
longing to a target class that is spuriously correlated with
the bias attribute becomes dominant, leading to an imbal-
anced representation of target classes within the group. In
Figure 5(b), we applied the commonly used strategy: group-
ing by both target classes and bias attributes. Compared
with the conventional grouping, our method demonstrates
a smaller performance gap between groups and higher the
lowest group accuracy, as shown in Figure 5(c). Finally,
we also report the performance metrics in Table 8, which
demonstrates that our grouping strategy outperforms the

others in all metrics.

Applying our grouping strategy to GroupDRO and
SUBG. We also compare our method with GroupDRO and
SUBG using the proposed grouping strategy. Results in
Table 8 suggest that applying our grouping strategy alone to
existing debiased training methods failed to achieve perfor-
mance comparable to ours. This highlights the contribution
of both our debiased training algorithm and grouping strat-
egy to performance improvement.

Impact of the update period U . We conducted experiments
to examine how hyperparameter U affects the performance
of our method. Table 9 reports the performance in GG, GC,
CG, CC and UNBIASED metrics on MultiCelebA using
five different values of U . To disregard the influence of the
learning rate η2, we adjusted the learning rate η2 inversely
proportional to the increase in the value of U . We found that
the UNBIASED remained consistent across all U values we
examined, which suggests that our algorithm is not sensitive
to U .

6. Conclusion
We have presented a novel debiased training algorithm that
addresses the challenges posed by multiple biases in training
data, inspired by multi-objective optimization (MOO). In
addition, we have introduced a new real-image multi-bias
benchmark, dubbed MultCelebA. Our method surpassed
existing algorithms for debaised training in both multi-bias
and single-bias settings on six benchmarks in total.
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Appendices
A.1. Explaining spurious correlation in machine learning
Spurious correlation refers to a relationship between variables that appears to be statistically significant but is actually caused
by some other factor. For example, if most samples of class a have an attribute i and most samples of class b have an attribute
j, where a ̸= b and i ̸= j, and neither attribute i nor j is not the actual cause of the target classes, then a trained model can
rely on the bias attributes to classify most training samples. In this case, the bias attributes i and j can be considered as
spuriously correlated with the target class, and each bias attribute is the bias-guiding attribute for its respective class.

A.2. The construction process of MultiCelebA
In this section, we explain the construction of the two-bias setting of MultiCelebA, including the selection of the target class
and bias types (Section A.2.1). We then describe two additional evaluation settings: the three-bias setting and the four-bias
setting (Section A.2.2).

Figure A1: Unbiased accuracy for predicting
each attribute
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Table A1: Configuration of MultiCelebA in two biases setting

Group {Target class, Bias type 1, Bias type 2} # of training
samples

GG {High Cheekbones, Female, Young} 44582
{Low Cheekbones, Male, Old} 16220

GC {High Cheekbones, Female, Old} 2200
{Low Cheekbones, Male, Young} 800

CG {High Cheekbones, Male, Young} 2200
{Low Cheekbones, Female, Old} 800

CC {High Cheekbones, Male, Old} 110
{Low Cheekbones, Female, Young} 40

A.2.1. Two-bias setting of MultiCelebA

We first selected gender and age as bias types among the 40 attributes of CelebA. We then chose high-cheekbones
as the target class and verified whether the target class and both bias types exhibit spurious correlations and invoke shortcut
learning for ERM.

Scimeca et al. (2022) examined how deep neural networks exhibit a preference for attributes based on their ease of learning.
Following Scimeca et al. (2022), we assessed the preference of ResNet18 for the target class (high-cheekbones) and
biases (gender and age) by evaluating a model trained on diagonal set (GG group in the main paper), where all samples
are spuriously correlated with all biases, as shown in Figure A1. Each line on Figure A1 represents unbiased accuracy
of a testing attribute, which we used to evaluate the model’s ability to predict each testing attribute. ResNet18 exhibited
higher unbiased accuracy for gender and age compared to that of high-cheekbones, indicating that the model
tends to exploit gender and age as shortcuts when learning high-cheekbones classification task on MultiCelebA.
With high-cheekbones, gender, and age labels, we subsampled the training set of CelebA to simulate challenging
scenarios where training data are extremely biased. The configurations of MultiCelebA in the two-bias setting are shown in
Table A1.

Table A2: Performance in CCCC and UNBIASED (%) on MultiCelebA in four biases for evaluation two biases for training
setting.

Method CCCC UNBIASED
ERM 6.0±0.9 59.0±0.7
GroupDRO 29.6±3.7 62.3±0.9
Ours 43.1±1.5 65.8±0.2
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A.2.2. three-bias and four-bias settings of MultiCelebA

Next, we extend our MultiCelebA dataset with two bias types by adding extra bias types for further evaluation settings.
To this end, we explain which attributes can be considered as bias types. For evaluating debiased training algorithms, the
training set should be designed in such a way that ERM exploits undesirable shortcuts stemming from spurious correlations
between the target labels and predefined bias types (i.e., the ERM solution trained on the set is biased). To this end, the
selected bias types have to hold the two conditions below:

• The bias types are all spuriously correlated to the target class.

• Not every sample in the training set has the same labels for a pair of the bias types.

The first condition is trivial, and the second is required to reject bias-type candidates redundant to those previously chosen.

Among the 37 attributes of CelebA, we identified mouth slightly open as a third bias type, and then we chose
smiling as a fourth bias type, both of which satisfy the two conditions. We demonstrated the superior results on the
three-bias setting and the four-bias setting, as shown in Table 2 and Table A2, respectively.

A.2.3. Considerations on exceeding four bias types

We empirically found that it is difficult to identify more than five attributes (i.e., bias types) that satisfy the two conditions
at once in existing natural image datasets, even for CelebA with 40 attributes. Furthermore, some groups often become
empty sets when the number of bias types increases; this is a critical issue particularly for test data as some groups with zero
cardinality are never used for evaluation.
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Figure A2: Group losses of (a) model with ERM (b) model with the averaged group losses.

A.3. Empirical analysis of the objective for optimizing the group-scaling parameter
When training a model by ERM, the training loss for the small group is larger than that for the large group, and a similar
trend is observed in the test loss, as shown in Figure A2(a). Thus, increasing the weight of groups with a larger training loss
can be beneficial in giving more weight to the minority group.

However, when we compute the objective by averaging group-wise losses, the gap between training loss and test loss for
each group varies depending on group size, as shown in Figure A2(b). This phenomenon arises because smaller groups are
more susceptible to memorization effects.

To mitigate the gap between training loss and test loss resulting from the memorization effect, Sagawa et al. (2019) proposed
the use of strong regularization on model parameters and an increase in the weight of group with large training loss. This
approach of increasing the weight of groups or samples with large train loss has evolved into a standard practice within
debiased training methods.

However, in scenarios involving multiple biases, a trained model easily overfits minor groups (e.g., the CC group) that have
a small number of samples, leading to decreased loss scales for such groups and consequently neglecting them in training,
resulting in a biased model. Applying a strong ℓ2 regularizer to model parameters was successful in the single bias settings,
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but we empirically found that it does not work as desired in multi-bias settings. This is particularly due to minor groups,
e.g., the CC group in the two-bias setting, having an extremely small number of samples. That is the underlying cause of
the inferior performance of GroupDRO in multiple biases settings compared to Upweighting.

In contrast, our algorithm optimizes the group-scaling parameter based on MOO. In a nutshell, it increases the weights of
groups with low loss magnitudes. Since minor groups usually exhibit low loss scales as a model easily overfits them due to
their small cardinality, our algorithm emphasizes the impact of minor groups in training.

A.4. Implementation details
A.4.1. Datasets

To evaluate our framework, we consider three multi-bias datasets, i.e., MultiCelebA, Multi-Color MNIST, and UrbanCars
and three single-bias datasets, i.e., Waterbirds, CelebA, and BFFHQ. In what follows, we provide details of each dataset.

MultiCelebA. First, we mainly consider MultiCelebA in two biases setting as the dataset to evaluate debiased training
algorithms. As introduced in Section 4, this dataset requires training a model to predict whether if a given face image
has high-cheekbones or not. Each image is additionally annotated with gender and age attributes which are
spuriously correlated with the target high-cheekbones. For MultiCelebA in three biases setting, each image is
annotated with gender, age, and mouth slightly open attributes which are spuriously correlated with the target
high-cheekbones.

UrbanCars. UrbanCars (Li et al., 2023) is a dataset created by synthesizing background, co-occurring object,
and car to generate multi-biased images. Its task involves classifying whether an image contains urbancars or not.

Multi-Color MNIST. We consider Multi-Color MNIST dataset proposed by Li et al. (2022). Its task is to predict the
digit number from an image. The digit numbers are spuriously correlated with left and right background colors, coined
left-color and right-color, respectively. As proposed by Li et al., we set the proportion of bias-guiding attributes
to be 99% and 95% for left-color and right-color, respectively.

Waterbirds. Waterbirds (Sagawa et al., 2019) is a single-bias dataset consisting of bird images. Given an image, the target
is bird-type, i.e., whether if the bird is “landbird” or a “waterbird.” The biased attribute is background-type, i.e.,
whether if the image contains “land” or “water.” The proportion of biased attribute is set to 95%.

CelebA. CelebA (Liu et al., 2015) is a face recognition dataset where each sample is labeled with 40 attributes. Following
the previous settings (Sagawa et al., 2019; Yao et al., 2022), we use HairColor as the target and gender as the bias
attribute.

BFFHQ. BFFHQ (Lee et al., 2021) is a real-world face image dataset curated from FFHQ. Its task is to predict the age from
an image. the age is spuriously correlated with gender attributes. The proportion of bias-guiding attributes is 99.5%.

A.4.2. Baselines

We extensively compare our algorithm against the existing debiased training algorithms. In particular, one can categorize
a baseline by whether it explicitly uses the supervision on biased attributes, i.e., bias labels, or not. To this end, compare
our method with nine training algorithms, consisting of five that do not use the bias label and six that do. Algorithms that
do not require using the bias label are as follows: (1) training with vanilla ERM, (2) LfF (Nam et al., 2020) employs a
reweighting scheme where samples that are more likely to be misclassified by a biased model are assigned higher weights,
(3) JTT (Liu et al., 2021a) retrains a model using different weights for each group, where the groups are categorized as
either bias-guiding or bias-conflicting based on an ERM model, (4) EIIL (Creager et al., 2021) conducts domain-invariant
learning, (5) PGI (Ahmed et al., 2021) matches the class-conditional distribution of groups by introducing predictive group
invariance, and (6) DebiAN (Li et al., 2022) utilizes a pair of alternate networks to discover and mitigate unknown biases
sequentially. We consider debiased training methods using bias attribute labels as follows: (1) Upsampling assigns higher
sampling probability to minority groups, (2) Upweighting assigns scales the sample-wise loss to be higher for minority
groups; group weight = (# of training samples)/(# of group samples), (3) GroupDRO (Sagawa et al., 2019) computes
group-scaling weights using group-wise training loss to upweight the worst-case group samples. (4) SUBG (Sagawa et al.,
2020) proposes a group-balanced sampling scheme by undersampling the majority groups. (5) LISA (Yao et al., 2022)
performs group mixing (mixup) augmentation to learn from both intra- and inter-group information. (6) DFR (Kirichenko
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et al., 2023) retrains the last layer of an ERM model using a balanced set obtained through undersampling.

Table A3: The search spaces of hyperparameters.

Hyperparameter Search space

Learning rate η1, η2
{5e−4, 2e−4, 1e−4,
5e−3, 2e−3, 1e−3,
5e−2, 2e−2, 1e−2}

Weight decay {0, 1e−4, 1e−2, 1e−1, 1}
Update frequency U {1, 5, 10, 50}

Table A4: Hyperparameters of our method.

MultiCelebA Multi-Color MNIST UrbanCars Waterbirds CelebA BFFHQ
Batch size 512 512 128 128 128 64
Learning rate η1 2e−4 2e−2 1e−2 1e−3 2e−3 2e−3
Learning rate η2 1e−2 2e−3 1e−3 1e−3 1e−4 5e−4
Update frequency U 10 50 10 5 1 1
Optimizer SGD Adam SGD SGD Adam Adam

A.4.3. Hyperparameters

We tune all hyperparameters, as well as early stopping, based on highest WORST for MultiCelebA, UrbanCars, Waterbirds,
and CelebA on validation set, except for ERM. For Multi-Color MNIST and BFFHQ, we tune hyperparemters based on
highest UNBIASED on test set, following the previous work (Li et al., 2022; Lee et al., 2021). We use a single GPU (RTX
3090) for training. Following the previous work (Lee et al., 2021; Hwang et al., 2022), we conduct experiments on BFFHQ
using ResNet18 with random initialization as the neural network architecture. For remaining datasets, we initialized the
model with parameters pretrained on ImageNet. The hyperparameter search spaces used in all experiments conducted
in this paper are summarized in Table A3. The selected hyperparameters for our method are represented in Table A4.
Furthermore, the search space for the upweight value λup in JTT is {5, 10, 20, 30, 40, 50, 100}. JTT (Liu et al., 2021a) and
DFR (Kirichenko et al., 2023) utilize the ERM model as a pseudo labeler and frozen backbone network, respectively. We
used the ERM model as reported in the literature for our implementation of these methods. We did not use a learning rate
scheduler in any of the experiments.

Given that the proportion of samples from minority groups can impact the performance of debiased training, we trained
DFR exclusively on the training set to ensure a fair comparison, which is denoted as DFRtr

tr.

A.4.4. Training existing methods on multi-bias setting

When training a model using SUBG (Sagawa et al., 2020), GroupDRO (Sagawa et al., 2019) and DFR (Kirichenko et al.,
2023), we grouped the training set based on the same pair of bias attribute b and target class t and followed the approach
outlined in the original paper.

LISA (Yao et al., 2022) adopts the two kinds of selective augmentation strategies, Intra-label LISA and Intra-domain LISA.
In the multi-bias setting, Intra-label LISA (LISA-L) interpolates samples with the same target label but different all bias
labels (t(m) = t(m

′), b(m)
d ̸= b

(m′)
d ∀d). Intra-domain LISA (LISA-D) interpolates samples with the same bias labels but

different target label (t(m) ̸= t(m
′), b(m) = b(m

′)).

When training a model using biased training methods that do not require bias labels, such as LfF (Nam et al., 2020), JTT (Liu
et al., 2021a), and DebiAN (Li et al., 2022), we followed the approach outlined in the original paper without modification,
regardless of the number of bias types presented in the dataset.

A.4.5. Evaluation metrics

We consider various metrics to evaluate whether if the trained model is biased towards a certain group in the dataset. We
remark that no metric is universally preferred over others, e.g., worst-group and average-group accuracy reflects different
aspects of a debiased training algorithm.
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For the multi-bias datasets, we evaluate algorithms using the average accuracy for each of the four groups categorized by
the guiding or conflicting nature of the biases: {GG, GC, CG, CC}. Here, G and C describes whether a group contains
bias-guiding or bias-conflicting samples for each bias type, respectively. For example, GC group for MultiCelebA is
an intersection of bias-guiding samples with respect to the first bias type, i.e., gender, and bias-conflicting samples
with respect to the second bias type, i.e., age. We also report the average of these four metrics, denoted as UNBIASED.
Conceptually, the GG metric can be high regardless of whether a model is biased or not. However, the CC metric can be
high only when a model is debiased from all spurious correlations. Similarly, the GC accuracy can be high only when a
model is debiased from the spurious correlation of the second bias type. Meanwhile, the InDist accuracy measures the
average accuracy on biased data. A biased model will achieve high scores in InDist and GG metrics, but low scores in
Unbiased and CC metrics. This also means that huge performance variations among GG, GC, CG, and CC groups suggest
model bias to spurious correlations (as shown in the scores of ERM). The effectiveness of debiased training algorithms can
be assessed by examining the Unbiased accuracy first (higher is better) and in turn the CC/Worst accuracy (higher is better);
the GC, CG, and GG accuracies also have to be sufficiently high compared to the CC accuracy.

Next, for the single-bias datasets, the minimum group average accuracy is reported as WORST, and the weighted average
accuracy with weights corresponding to the relative proportion of each group in the training set as INDIST (in-distribution)
following Sagawa et al. (2019).

In calculating the GG, GC, CG, CC accuracies on the MultiCelebA dataset, we excluded the impact of class imbalance
within each group by first computing the mean accuracy for each class within the group, and then taking the average of the
class accuracies to obtain the group accuracy.

A.4.6. Interpretation of the results on MultiCelebA

In Table 1, we analyzed whether a model is biased toward the two bias types based on the difference between GG, GC,
CG, CC, while also evaluating the UNBIASED accuracy. Let G* denote the combination of GG and GC, and similarly
for C* and others. A model is biased toward gender attribute if there is a significant difference between the G* and C*
combinations, whereas a significant difference between the *G and *C combinations indicates bias toward age attribute.

Table A5: The number of groups for training on Multi-
Color MNIST, UrbanCars, MultiCelebA, Waterbirds,
CelebA, and BFFHQ.

Benchmark GroupDRO Ours
Multi-Color MNIST 40 4
UrbanCars 8 4
MultiCelebA 8 4
Waterbirds 4 2
CelebA 4 2
BFFHQ 4 2

Figure A3: Local loss curvature of the loss landscape of
model parameter.
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A.5. Impact of the loss function on local curvature

According to Li & Gong (2021), the second term in Eq. (4),
∥∥σ(α)⊤(∇θL(θ))

∥∥2
2
, serves as an approximation for the local

curvature of the loss landscape associated with the model parameter θ. Although this term is minimized by updating α, the
local curvature of loss landscape of model parameter is reduced. To verify this, we conducted an ablation study by adjusting
the relative weight of the second term in Eq. (4) using constant c. The objective formula for this experiment is presented as:

L̂α = σ(α)⊤L(θ) + cλ
∥∥σ(α)⊤(∇θL(θ))†

∥∥2
2
. (5)

We updated α and λ by minimizing L̂α and θ by minimizing Eq. (3). Figure A3 demonstrates how the loss curvature
evolves over training iterations. We observed that as the value of c decreases, there is a corresponding increase in loss
curvature. Hence, minimizing the second term in Eq. (4) contributes to improving model generalization.
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A.6. Comparison of the number of groups in previous methods and our method
We compared the number of groups for training with GroupDRO on all the benchmarks we used. For all experiments
in our paper, the same annotations have been used across ours and the other methods using bias labels, i.e., upsampling,
upweighting, SUBG, GroupDRO, LISA, and DFR. For example, on multiple bias settings with two bias types, all the
aforementioned methods including ours utilize labels for two bias types for group division. As shown in Table A5, our
method defines a smaller number of groups compared with GroupDRO for debiased training. The number of groups of
GroupDRO, denoted as NGroupDRO, and that of ours, denoted as NOurs, are calculated as follows:

NGroupDRO = C × (#of attributes in bias type 1)× . . . × (#of attributes in bias type D) ≥ 2D × C, (6)

NOurs = 2× 2× . . . × 2 = 2D, (7)

where C is the number of classes, D is the number of bias types, and 2D × C is the lower bound of NGroupDRO. Since the
number of classes C is greater than 1, NOurs is always smaller than NGroupDRO. The number of groups for each dataset is
presented in Table A5.

A.7. Analysis of the limitation of CivilComments as a multi-bias setting
CivilComments has been used to benchmark debiased training algorithms in a single spurious correlation setting (Borkan
et al., 2019; Koh et al., 2021). Its target task is to classify an online comment into toxic or non-toxic, and the class label is
spuriously correlated with certain demographic identities (e.g., male, female, White, Black, LGBTQ, Muslim, Christian, and
other religions) mentioned in the comment.

To investigate whether CivilComments involves multiple spurious correlations, we first categorized the demographic labels
into 3 types: Gender: {male, female, LGBTQ}, Race: {White, Black}, Religions: {Muslim, Christian, and other religions}.
We then examined if these 3 types are spuriously correlated with the target class (i.e., toxic). If most samples of class a have
a bias attribute i and most samples of class b have a bias attribute j (a ̸= b and i ̸= j), then a trained model can rely on the
bias attributes to classify most training samples, and the bias attributes i and j can be considered as spuriously correlated
with the target class in this case. Based on this notion, we investigated the type-wise data population of the dataset as shown
in Table A6, and found that none of the three bias types are spuriously correlated with the toxic class.

Table A6: Training data population of non-toxic and toxic comments based on identity presence across gender, race, and
religion.

Gender Race Religion
no identities has identities no identities has identities no identities has identities

non-toxic 188585 (70%) 49938 (19%) 202071 (75%) 36452 (14%) 222348 (83%) 16175 (6%)
toxic 21207 (8%) 9308 (3%) 24852 (9%) 5663 (2%) 24000 (9%) 6515 (2%)

A.8. Computational complexity
To demonstrate the scalability of our algorithm, we show that the overall computational complexity of our algorithm grows
slower than the number of groups 2D by the proof below.

Preliminary:

There are six factors contributing to the total computational complexity of our debiased training algorithm, as enumerated
below:

• D: the number of bias types (the number of groups is then 2D)
• U : the update period of α (e.g., U = 10 means α is updated every 10 iterations.)
• a: the computational complexity for forward process per epoch
• b: the computational complexity for backward process per epoch
• c: the computational complexity for model parameter update per epoch
• d: the computational complexity for α update per epoch
• e: the computational complexity for λ update per epoch
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The overall computation complexity of our algorithm with D bias types for each epoch is then denoted and defined by
CD := a+ b+ c+ 2D × b/U + d/U + e/U .

Proposition: The overall complexity (CD) grows slower than the number of groups (2D).

Proof by Contradiction: We first assume a negation of the proposition: “The overall complexity increases at least linearly
with the number of groups.”

Under this assumption, CD+1 ≥ 2 · CD, where D ≥ 1.

Then, regarding CD := a+ b+ c+ 2D × b/U + d/U + e/U ,

CD+1 ≥ 2 · CD

⇔ a+ b+ c+ 2D+1 × b/U + d/U + e/U ≥ 2a+ 2b+ 2c+ 2D+1 × b/U + 2d/U + 2e/U

⇔ 0 ≥ a+ b+ c+ d/U + e/U ,

which is a contradiction since the right-hand side is always greater than 0. Therefore, the assumption is false and the
proposition holds.

The proposition suggests that the total time complexity of training in our algorithm grows slower than the number of groups
(i.e., 2D); a simple analysis reveals that O(CD) = 2D when D goes to the infinity.

To empirically verify this conclusion, we further increased the number of bias types of MultiCelebA up to four and estimated
the wall-clock time of our training algorithm versus the number of bias types. As demonstrated in Table A7, the wall-clock
time does not increase exponentially, even the number of groups N is exponentially increased in the number of bias types D.

Table A7: Comparison of time complexity according to the number of bias types

# of # of Training time Relative training time Relative training time
bias types (D) groups (N) per 1 epoch (compare to D=2) (compare to D=3)

2 4 67s - -
3 8 82s 1.22 times -
4 16 113s 1.69 times 1.37 times
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