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ABSTRACT

This study addresses the challenge of noise in training datasets for Direct Prefer-
ence Optimization (DPO), a method for aligning Large Language Models (LLMs)
with human preferences. We categorize noise into pointwise noise, which includes
low-quality data points, and pairwise noise, which encompasses erroneous data
pair associations that affect preference rankings. Utilizing Distributionally Robust
Optimization (DRO), we enhance DPO’s resilience to these types of noise. Our
theoretical insights reveal that DPO inherently embeds DRO principles, confer-
ring robustness to pointwise noise, with the regularization coefficient β playing a
critical role in its noise resistance. Extending this framework, we introduce Dis-
tributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness
by optimizing against worst-case pairwise scenarios. The novel hyperparameter
β′ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a
strategic balance between exploration and exploitation in noisy training environ-
ments. Empirical evaluations demonstrate that Dr. DPO substantially improves the
quality of generated text and response accuracy in preference datasets, showcasing
enhanced performance in both noisy and noise-free settings. The code is available
at https://github.com/junkangwu/Dr_DPO.

1 INTRODUCTION

Aligning Large Language Models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Anil et al., 2023;
Bubeck et al., 2023) with human preferences is critical for their implementation in real-world
scenarios. Central to the alignment is the fine-tuning of LLMs using human feedback (Ouyang et al.,
2022), ensuring they adhere to human values and mitigate safety risks. Among the alignment methods,
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) is becoming a widely
adopted technology. It initially learns a reward model on pairwise preference data, and optimizes
LLMs using the Proximal Policy Optimization (PPO) (Schulman et al., 2017) method. However,
its inherent reinforcement learning nature poses significant challenges to computational efficiency
and training stability (Rafailov et al., 2023a; Zhao et al., 2023). Addressing these, Direct Preference
Optimization (DPO) (Rafailov et al., 2023a) eschews the explicit reward model learning, using human
preferences to train the LLMs directly. It achieves the same objectives (Azar et al., 2023) as RLHF
by learning an optimal proxy for each pointwise instance and simultaneously ranking preferences in
a pairwise manner, offering greater simplicity and training stability (Ivison et al., 2023).

While offering an effective solution by directly learning a policy from collected data, DPO inevitably
heightens the dependency on the data quality (Liu et al., 2023). However, training data is frequently
marred by noise, potentially posing a significant challenge to DPO. Here we delineate two primary
noise categories based on their origins:
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Figure 1: Left: An example illustrating pointwise and pairwise noise. Right: Comparison of gradients
between DPO and Dr. DPO under varying levels of pairwise noise.
• Pointwise noise (Gunasekar et al., 2023) refers to low-quality data points containing irrelevant

or incoherent information. Taking the movie reviews in Figure 1 (Left) as an example, it might
manifest as reviews filled with meaningless chatter, thus rendering them uninformative.

• Pairwise noise (Sharma et al., 2023; Cui et al., 2023), on the other hand, arises from erroneous
associations between data pairs, leading to misjudged preference rankings. Revisiting the movie
reviews in Figure 1 (Left), it is evident in misranked reviews where an inferior review (yl) is
incorrectly rated higher than a superior one (yw).

The presence of noisy preferences naturally raises a critical question: How robust is DPO against
pointwise and pairwise noise? To answer this, we examine DPO through the lens of Distributionally
Robust Optimization (DRO) (Namkoong & Duchi, 2017; Duchi & Namkoong, 2018). At the core
of DRO is training a model across a distributional family, which is determined by an empirical
distribution within a robust radius η. As a result, DRO endows the model with enhanced robustness
w.r.t. distributional uncertainty, usually caused by the data noise. By incorporating DRO principles,
we can assess the resilience of DPO to the pointwise and pairwise noise. Specifically, our DRO lens
on DPO offers insightful findings as follows:

• DPO is equivalent to applying DRO on the reward function. The principal contribution of
DPO is deriving the optimal policy for PPO in a closed-form expression. This achievement
facilitates the implicit determination of a worst-case distribution for optimization, guided by
the Kullback-Leibler (KL) divergence criterion. Such an approach endows DPO with intrinsic
pointwise robustness, enabling it to explore a better policy model rather than relying solely on the
reference model.

• The DPO’s β and DRO’s η share an inverse relationship, highlighting noise levels in the
reference model. Through DRO theory, we establish that higher noise in the reference model
necessitates a larger search radius, corresponding to a larger η (or equivalently, a smaller β). This
inverse relationship provides a clear measure of the noise level in the reference model.

These findings elucidate the strengths of DPO in ensuring pointwise robustness. Recent effort
(Chowdhury et al., 2024) has started addressing pairwise noise in DPO frameworks; however, this
method relies on explicit noise estimation, a process that is computationally intensive and may
not fully capture noise complexities. Building on these insights, we introduce the Distributionally
Robustifying DPO (Dr. DPO) 1 framework, aiming to incorporate pairwise robustness within the DPO
paradigm. The core idea is optimizing against the worst-case pairwise scenarios, enabling the models
to implicitly adjust the importance of data pairs in the gradient space and eliminate the explicit noise
estimation. Towards the adjustment, Dr. DPO introduces a simple hyperparameter β′ ∈ (0,+∞) to
modulate the loss function, balancing between exploration and exploitation of pairwise preferences.
β′ serves as a pivotal “knob”, allowing the navigation from a conservative strategy that diminishes the
influence of potentially noisy pairs (e.g., β′ = 0.5) to a risk-tolerant stance that leverages such pairs
(e.g., β′ = 2). Consequently, Dr. DPO fosters a more resilient optimization process that effectively
mitigates the influence of both pointwise and pairwise noise.

1The abbreviation “Dr. DPO” not only encapsulates “Distributionally Robustifying DPO” but is playfully
intended to echo the abbreviation for ”Doctor,” adding a quirky element to the naming.
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In a nutshell, our contribution is the development of Dr. DPO, which robustifies DPO with just a
single additional line of code. Empirical evaluations reveal that Dr. DPO significantly enhances
performance across diverse settings, such as controlling the sentiment in generated text and improving
the response quality in single-turn dialogues, under both noisy and noise-free conditions.

2 PRELIMINARIES

Bradley-Terry Model. Given a context x within a finite space of contexts X , we employ the
policy π(y|x) to independently generate a pair of actions (y1, y2). These actions are presented to
human raters, who then indicate their preference, with the preferred action labeled as yw and the less
preferred as yl, satisfying yw ⪰ yl. Although we cannot directly observe the latent reward model
r∗(x, y) that underlies these preferences, the Bradley-Terry (BT) model (Bradley & Terry, 1952)
offers a well-established approach for modeling pairwise comparisons, which is given as:

p∗(y1 ⪰ y2|x) =
exp (r∗(x, y1))

exp(r∗(x, y1) + exp(r∗(x, y2)))
. (1)

Given the dataset O = (x(i), y
(i)
w , y

(i)
l )Ni=1 sampled from p∗, we can parametrize a reward model

rϕ(x, y) and estimate the parameters by optimizing the following logistic regression loss:
LR(rϕ,O) = −E(x,yw,yl)∼O[log σ(rϕ(x, yw)− rϕ(x, yl))], (2)

where σ(·) is the sigmoid function. As the size of dataset O grows, the empirical distribution of the
dataset O converges to the underlying distribution p∗, and the reward model rϕ converges to the true
reward model r∗.

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). The standard
RLHF paradigm is composed of three phases: i) supervised fine-tuning, ii) reward modeling, and iii)
RL fine-tuning. Using the reward model rϕ learned from the reward modeling, we can then fine-tune
the policy πθ by optimizing the following objective:

max
πθ

Ex∼O,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x)||πref(y|x)]. (3)

In practice, both the language model policy πθ and the reference policy πref are typically initialized to
the same supervised fine-tuning (SFT) model πSFT. Here, β is a parameter that controls the strength
of the regularization term, and DKL represents the KL divergence penalty used to regularize the policy
πθ to be close to πref.

Directed Preference Optimization (DPO) (Rafailov et al., 2023a). DPO offers an alternative
approach to the RL paradigm described above. It establishes a functional mapping between the
reward model and the optimal policy under a KL divergence constraint with the following formulation:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (4)

where Z(x) =
∑

y πref(y|x) exp(r(x, y)/β) is the partition function. By incorporating this reward
into the BT model, the DPO objective enables the comparison of response pairs, facilitating the
discrimination between preferred and dispreferred actions, given by:

LDPO(πθ;πref) = −E(x,yw,yl)∼O[log σ(β log
πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]. (5)

Distributionally Robust Optimization (DRO) (Namkoong & Duchi, 2017; Duchi & Namkoong,
2018). DRO provides a strategic framework to effectively mitigate the uncertainty inherent in
training data. It achieves this by optimizing for the worst-case expected loss across a set of potential
distributions Q. These distributions are confined within a robustness radius η anchored around the
empirical training distribution Q0, and are bounded by a prescribed divergence metric Dϕ. The
formal formulation of DRO can be succinctly expressed as follows:

LDRO = max
Q

EQ[L(x; θ)], s.t. Dϕ(Q,Q0) ≤ η, (6)

where L(x; θ) represents the training loss for an input x. Intuitively, models employing DRO exhibit
increased robustness due to the presence of Q that acts as an “adversary”, optimizing the model under
a distribution set with adversarial perturbations instead of a single training distribution.
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3 ANALYZING DPO’S POINTWISE ROBUSTNESS

In this section, we explore DPO’s robustness to pointwise noise, analyzing its response to noise to
identify key strengths and vulnerabilities. We assess how noise degrades performance and leverage
insights from DRO to understand DPO’s underlying resilience mechanisms.

3.1 POINTWISE NOISE IMPAIRS DPO PERFORMANCE
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Figure 2: Impact of pointwise
noise on the expected reward
frontier and KL divergence in
DPO (β = 0.1).

We begin by investigating the impact of pointwise noise on DPO
through experiments on the IMDB sentiment dataset (Maas et al.,
2011). Following the setup in (Havrilla et al., 2023), we fine-tune the
GPT-2-large (Radford et al., 2019) model and use SiEBERT (Hart-
mann et al., 2023), a specialized variant of RoBERTa-large (Liu
et al., 2019), for reward calculation. Pointwise noise is introduced
exclusively during the SFT stage by incorporating responses gener-
ated by the unrefined GPT-2-large model, resulting in lower quality
data for this stage, while the data used in the DPO stage remains
unchanged. To assess DPO’s robustness to this pointwise noise,
we evaluate each algorithm by examining the trade-off between the
achieved reward and the KL divergence from the reference policy.

Figure 2 reveals that beyond a KL(πθ||πref) threshold of 10.0, both models converge in terms of
reward. Notably, the DPO model trained with high-quality data (blue points) significantly outperforms
its low-quality data counterpart (orange points), highlighting the critical impact of data quality on
optimizing model performance.

3.2 POINTWISE ROBUSTNESS IN REWARD MODELING

In Section 3.1, we explore how pointwise noise negatively affects individual instance rewards. To
address this issue and enhance the robustness of LLMs, we propose integrating DRO during the
reward modeling stage. We define the Reward Modeling DRO (RM-DRO) objective, which optimizes
the expected reward under the worst-case noise distribution within a specified ambiguity set:

max
πθ

Ex∼O,y∼πθ(y|x)[rϕ(x, y)] s.t. Dϕ(πθ(y|x), πref(y|x)) ≤ η. (7)

The direct consequence of pointwise noise is the resultant unreliability of the reference model (SFT).
By adopting RM-DRO, we aim to maximize a surrogate objective that accounts for various potential
distributions within a robustness radius η around the reference distribution πref(y|x), measured by
the distance metric Dϕ. With this formulation, we provide a fresh perspective on DPO.

A. DPO is Implicitly a Pointwise DRO.
Theorem 3.1 (Optimal Reward Function under KL Divergence). Let the Kullback-Leibler
(KL) divergence between policy πθ and reference policy πref be defined as: DKL(πθ|πref) =∫
πθ(x) log

(
πθ(x)
πref(x)

)
dx. Optimizing the RM-DRO objective as defined in Equation (7) yields an

optimal reward rKL(x, y) given by:

rKL(x, y) = β∗(η) log
πθ(y|x)
πref(y|x)

− α. (8)

Here, α, β are Lagrange multipliers, β∗(η) denotes the optimal value of β that minimizes Equation
(7), acting as the regularization coefficient in DPO. By deriving the optimal value of α, given by:

α∗ = −β logEx∼O,y∼πref [exp(
rθ(y|x)

β
)], (9)

Equation 8 can be re-expressed to match the ultimate form of the reward function in Equation 4.

Please refer to Appendix B.1 for detailed proofs and Appendix B.2 for the formal proof. For a broader
discussion on optimal reward functions under general ϕ-divergences, see Appendix C.1.

Consistent with the reward function formulation in Rafailov et al. (2023a), Theorem 3.1 not only
reaffirms established results but also introduces several novel insights, as outlined below:
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Figure 3: (a) Comparative analysis of the effect of pointwise noise on the expected reward frontier for
different β values on IMDB dataset. (b) Comparative analysis of the effect of pointwise noise on on
the win rate for different β values on HH dataset. The star (⋆, ⋆, ⋆) indicates the optimal β selection
for the corresponding pointwise noise ratio.

Why DPO is Robust to Pointwise Noise. We propose that the reference distribution closely mirrors
the empirical training distribution, given the pre-training step (SFT) common to both RLHF and DPO
methods. This ensures the reference distribution in the DPO phase accurately reflects the training data
noise. In terms of DRO, while the reference model πref may not be entirely reliable, the implicit robust
framework of DPO counters data perturbations effectively. Specifically, the “worst-case distribution”
is defined as the distribution that maximizes risk within established divergence constraints, analogous
to an adversarial noise model in DRO. Varying β enables DPO to exhibit varying search space for a
better πθ, leading to improved performance. For more discussion about the connection between DPO
and DRO, please refer to Appendix C.2.

Moreover, the incorporation of DRO provides a new interpretation of the coefficient β in DPO,
transforming it from a mere heuristic design into a “noise reflector”. We provide Lemma 3.2 to
disclose the relationship between β and η.

B. The Optimal Value of β Reflects the Noise within the SFT Model.

Lemma 3.2. (Faury et al., 2020, Lemma 5) The optimal β∗(η) in DPO is monotonically decreasing
with respect to η and obeys the following relationship:

β∗(η) =
√
Vπref [r(x, y)]/2η, (10)

where Vπref [r(x, y)] =
∑

y πref(x, y)(r(y|x) −
∑

y πref(y|x)r(x, y))2 denotes the variance of the
reward model r(x, y) under the reference distribution πref.

Lemma 3.2 elucidates the inverse correlation between the parameter β and the robustness radius η.
Specifically, as noise within the model increases, the required search space expands, necessitating a
larger η and consequently a smaller optimal β.

To empirically validate this relationship, we conducted experiments on the IMDB dataset, as outlined
in Section 3.1. In these experiments, the noise ratio is controlled by the proportion of low-quality
pairs (yw, yl) introduced into the training data, generated by the unrefined GPT-2 model. Figure 3a
shows that models trained with lower β values (e.g., 0.01) outperform those with higher β values
(e.g., 0.1) when trained on 100% low-quality data. This is because a lower β allows for a larger
search space to counteract significant pointwise noise in the SFT model.

We also conducted experiments on the HH dataset, injecting pointwise noise during the SFT phase by
incorporating rejected responses into the training samples. Importantly, during the DPO phase, the
positive and negative samples remained consistent, ensuring noise was introduced only during SFT.
The noise ratio is determined by the proportion of rejected responses used as training samples during
SFT. As shown in Figure 3b, the optimal value of β decreases as the noise ratio increases, indicating
that higher noise levels in SFT require a smaller β for optimal performance.

For detailed experimental settings and procedures for both datasets, please refer to Appendix C.3,
where more comprehensive explanations are provided.
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Figure 4: Left: Impact of pairwise noise on the expected reward frontier and KL divergence in
DPO (β = 0.1). Right: Comparative analysis of the effect of pairwise noise on the expected reward
frontier for different β values.

4 DR. DPO: TOWARD PAIRWISE ROBUSTNESS

In this section, we investigate the impact of pairwise noise and introduce Dr. DPO as a mitigation
strategy. We conclude with a theoretical examination of its robustness against such noise.

4.1 PAIRWISE NOISE IMPAIRS DPO CONVERGENCE AND PERFORMANCE

We previously explored DPO’s pointwise robustness, while recent work (Chowdhury et al., 2024) has
examined its resilience to pairwise noise. However, methods that rely on explicit noise estimation may
overlook complex noise behaviors. We thus empirically examine how pairwise noise affects DPO’s
performance. Similar to the experimental settings in Section 3.1, we corrupt the dataset with pairwise
noise by randomly swapping pairs (yw, yl) in the preference dataset O = {x(i), y

(i)
w , y

(i)
l }Ni=1. As

illustrated in Figure 4 (Left), when exposed to elevated levels of pairwise noise (specifically, 10% and
30% label flipping), DPO exhibits a diminished rate of increase in KL(πθ||πref ) over an equivalent
number of training epochs (epoch = 1). This pattern is indicative of a decelerated convergence rate
in terms of reward value, especially when compared to the trend of the model trained on noise-free
data (0% flipped pairs). Thus the overall performance of DPO drops significantly.

Despite its effectiveness in mitigating pointwise noise through the adjustment of β, DPO still suffers
from the issue of pairwise noise. As shown in Figure 4 (Right), the model trained with 40% flipped
data exhibits a significant performance degradation compared to the model trained with noise-free
data (0% flipped). Even when the model is trained with a lower β value, it still fails to achieve the
same level of performance as the model trained with noise-free data. This observation reveals DPO’s
vulnerability to pairwise noise, motivating enhancements to its robustness against such interference.

4.2 DISTRIBUTIONALLY ROBUSTIFYING DPO

Building upon the principles of DRO, we introduce the Distributionally Robustifying DPO (Dr. DPO)
framework, designed to enhance DPO’s resilience to pairwise noise while preserving its inherent
robustness to pointwise noise. The Dr. DPO objective is formulated as follows:

max
O′

E(x,yw,yl)∼O′ [h(x, yw, yl)] s.t. Dϕ(O′,O) ≤ η′. (11)

Here, h(x, yw, yl) = log σ(rϕ(x, yw) − rϕ(x, yl)) denotes the log-likelihood objective of dataset
point. The ϕ-divergence, denoted as Dϕ(O′,O), quantifies the discrepancy between the hypothetical
distribution O′ and the dataset distribution O. Additionally, η′ signifies the robustness radius, which
quantifies the degree to which the model can withstand perturbations.
Theorem 4.1. Consider the scenario where the KL divergence is employed to measure the discrepancy
between the hypothetical distribution O′ and dataset distribution O , we derive the ultimate loss
function for Dr. DPO as follows:

LDr. DPO(πθ;πref) = −β′ logEO[exp(
hDPO(x, yw, yl)

β′ )]. (12)
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where hDPO represents the log-likelihood in the DPO framework, defined as:

hDPO(x, yw, yl) = log σ(β log
πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

), (13)

with β and β′ being regularization coefficient respectively.

Please check Appendix B.3 for detailed proofs. In contrast to the objective function described in
Equation 7, our Dr. DPO method specifically targets the pairwise noise present within the dataset.
Rather than assigning a uniform weight of 1

N to each instance (x(i), y
(i)
w , y

(i)
l ) (Rafailov et al., 2023a),

Dr. DPO seeks to reweight these instances by an optimal distribution O′. This approach is driven
by the intention to capture the incorrect pairs in the data, thereby enhancing the robustness of the
resulting policy.
Theorem 4.2 (Upper Bound for Dr. DPO). Let hDPO ∈ [a, b] and LN

Dr. DPO represents the Dr. DPO
loss on N samples. Given a hypothetical distribution O′ satisfying DKL(O′,O) ≤ η′ to dataset
distribution O, we have that with probability at least 1− δ:

LO′ ≤ LN
Dr. DPO + B(δ,N, β′), (14)

where:

B(δ,N, β′) =
2b exp ((b− a)/β′)

N − 1 + exp ((b− a)/β′)

√
N

2
ln

1

δ
. (15)

Please check Appendix B.4 for detailed proofs. In scenarios involving pairwise noise, consider O′

as the “ideal” distribution that discerns the correct ranking between pairwise instances accurately.
Theorem 4.2 suggests the ideal loss relative to O′ is upper bounded by the proposed Dr. DPO loss.
This bound is achieved when B(δ,N, β′) approaches zero, or in other words, the number of samples
N approaches infinity. Furthermore, this upper bound can offer guidance in real-world applications.
For instance, in conjunction with Lemma 3.2, we infer that increasing the robustness radius results in
a decrease in β′, consequently increasing B(δ,N, β′). In such a case, to ensure a tight upper bound,
it becomes necessary to enlarge the sample size N . This relationship between robustness radius, β′,
and N provides insights for guiding the training of LLM models to achieve desired performance.

4.3 WHY IS DR. DPO ROBUST TO PAIRWISE NOISE?

Our approach extends the analysis presented in Rafailov et al. (2023a). To understand the resilience
of Dr. DPO to pairwise noise, we examine the gradient of its loss function, denoted ∇θLDr. DPO:

∇θLDr. DPO(πθ;πref) = −βE(x,yw,yl)∼O[ w(x, yw, yl) σ(r̂θ(x, yl)− r̂θ(x, yw)) (∇θ,yw
−∇θ,yl

)],

Reduce incorrect pair’s impact.
Boost mismatched pair gradients.

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) represents the reward function implicitly learned by the policy πθ,

relative to a reference policy πref. In this framework, ∇θ,yw
and ∇θ,yl

are gradients increasing the
probability of the “chosen” action yw and decreasing it for the “rejected” action yl, respectively. The
factor σ(r̂θ(x, yl)− r̂θ(x, yw)) serves to amplify the gradient contributions from mismatched action
pairs, which is a principal aspect of the Dr. DPO’s design aimed at enhancing learning from compara-
tive feedback. Conversely, the function w(x, yw, yl), defined as w(x, yw, yl) =

exp(h(x,yw,yl)/β
′)

EO[exp(h(x,yw,yl)/β′)]

(cf. Appendix B.5), acts to mitigate the influence of these incorrect pairings. It achieves this by
preferentially weighting correct action pairs over incorrect ones, thus refining the policy update
mechanism. Moreover, the parameter β′ does not require intensive tuning; setting it to a default value
of 1 typically yields stable enhancements. Remarkably, Dr. DPO is straightforward to implement,
requiring only an additional line of code with negligible computational overhead.

A Toy Example of How Dr. DPO Works. Consider a training set that contains two samples
from both the unperturbed and perturbed datasets. Their corresponding values are assumed to
be [h(x1, y1,w, y1,l), h(x2, y2,w, y2,l)] = [−0.1,−1.0]. According to the formula h(x, yw, yl) =
log σ(r+ − r−), the label flip in the second sample leads to h(x2, y2,w, y2,l) < log σ(0) = −0.6931.
(1) In the case of Empirical Risk Minimization (ERM), the sum is: −0.1 + (−1.0) = −1.1.
(2) Under Distributionally Robust Optimization (DRO), when β′ = 0.1, we have the weights
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Table 1: Preference accuracy and win-rate comparison on the Anthropic HH dataset with various
levels of noise. The columns indicate the performance on both the noise-free dataset and the datasets
with inverted response labels, denoted by their respective flip ratios. The performance improvements
of cDPO, IPO, and Dr. DPO over DPO are also presented.

Models Preference Accuracy Win Rate
0% Flipped 10% Flipped 20% Flipped 30% Flipped 40% Flipped 0% Flipped 40% Flipped

DPO 63.63 62.27 61.28 58.54 55.23 54.36 49.00
cDPO 63.48−0.23% 62.67+0.64% 61.48+0.32% 58.69+0.27% 55.31+0.15% 51.46−5.33% 45.68−6.78%

IPO 65.95+3.64% 64.82+4.10% 63.52+3.65% 61.45+4.98% 56.64+2.55% 50.81−6.53% 54.82+11.88%

rDPO 64.37+1.16% 62.72+0.72% 62.53+2.04% 60.56+3.45% 57.11+3.40% 52.15−4.06% 53.54+9.26%

Dr. DPO 66.22+4.07% 65.38+5.00% 64.19+4.74% 62.65+7.02% 58.83+6.52% 56.67+4.25% 61.65+25.81%

[w(x1, y1,w, y1,l), w(x2, y2,w, y2,l)] ≈ [2.0, 0.0]. Therefore, the outcome is: (−0.1×2.0)+(−1.0×
0.0) = −0.2, which is greater than −1.1. w(x, y) places more emphasis on the unperturbed sample,
making the weight allocation more reasonable and also qualifying as a worst-case distribution.

5 EXPERIMENTS

In this section, we conduct an empirical assessment of Dr. DPO to evaluate its ability to mitigate noise
impacts in preference datasets and to improve performance in noise-free environments. We outline our
experimental design, including the datasets used, evaluation metrics, and comparative benchmarks.
Our results underscore Dr. DPO’s effectiveness, supporting its utility in relevant scenarios.

5.1 HOW WELL CAN DR. DPO RESIST THE PAIRWISE NOISE?

Datasets and Setup. We conduct experiments on two datasets: IMDB (Maas et al., 2011) and
Anthropic HH (Bai et al., 2022). The IMDB dataset is widely utilized for sentiment analysis
tasks. The Anthropic HH dataset consists of approximately 170,000 dialogues between humans
and automated assistants. The objectives of these experiments were twofold: firstly, to evaluate the
robustness of the proposed Dr. DPO against pairwise noise; and secondly, to investigate whether
Dr. DPO exhibits superior performance on noise-free datasets. To achieve the first objective, we
introduce random inversions between selected and rejected responses in the training data at varying
noise levels—specifically, with probabilities of 10%, 20%, 30%, and 40%. For the second objective,
we benchmark Dr. DPO against other DPO-related baselines to discern its relative advantages. Unless
stated otherwise, all experiments in this study were conducted using the Pythia-2.8B model (Biderman
et al., 2023). Please refer to Appendix D for more details.

Baselines. We compare Dr. DPO with four baseline methods: (i) The standard DPO, which is the
state-of-the-art (SOTA) method for directly optimizing the policy and reward model; (ii) Conservative
DPO (cDPO (Rafailov et al., 2023b)), a variant introduced by the authors of DPO to address scenarios
with probabilistically flipped labels by incorporating a binary cross-entropy (BCE) loss; and (iii) IPO
(Azar et al., 2023), an innovative approach that enables learning directly from preferences, bypassing
both the reward modeling phase and reliance on the BT model. (iv) rDPO (Chowdhury et al., 2024)
is a variant of DPO that de-biases the effect of preference noise and makes the policy robust.

Metrics. We adopt two metrics, Preference Accuracy, and Win-Rate, in the experiments. The
Preference Accuracy measures the proportion of test instances from the Anthropic HH dataset where
the model’s predicted reward for the preferred response, r(x, yw), exceeds that of the less preferred
alternative, r(x, yl). We further draw on the evaluation framework introduced by Rafailov et al.
(2023a) to calculate the Win Rate. This metric assesses how often the GPT-4 model selects a response
generated by our model rather than the chosen response within the dataset. The Win-Rate computation
is specifically designed for the single-turn dialogue portion of HH dataset’s test subset.

Dr. DPO Outperforms Across Noise Levels. Table 1 illustrates the effect of noise on preference
accuracy, showing a decrease from 63.63% to 55.23% as the label flip ratio rises from 0% to 40%.
This indicates a deteriorated ability to distinguish between responses with increasing noise. In a
noise-free environment, cDPO achieves a preference accuracy of 63.48%, which falls to 55.31%
at a 40% noise level, highlighting the limited impact of BCE loss adjustments. In comparison, the
IPO method consistently outperforms DPO by an average of 3.78% in accuracy, proving its efficacy.
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Figure 5: MT-Bench evaluates DPO and its variants using GPT-4, showing Win, Tie, and Loss rates
at 0% and 40% pairwise noise levels in Figures 1-2. Figure 3 illustrates Dr. DPO’s win rate across
different ϕ-divergences, while Figure 4 presents its Preference accuracy for varying β′ values.
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Figure 6: Preference accuracy across training steps for different levels of pairwise noise.

rDPO reports a 3% accuracy gain over DPO. Notably, Dr. DPO exhibits outstanding noise resistance,
achieving the highest preference accuracies of 66.22% in the absence of noise and 58.83% with 40%
noise, superior to DPO, cDPO, IPO, and rDPO.

Dr. DPO Surpasses Other Methods. We evaluated the response quality of various models—DPO,
cDPO, IPO, rDPO, and Dr. DPO—across different noise levels. Table 1 shows that in a noiseless
setting, DPO leads with a 56.67% win rate. However, as noise increases, both DPO and cDPO’s
performance declines, whereas Dr. DPO excels, achieving a 61.65% win rate.

Dr. DPO’s Performance in the 0% Flipped Case. The 0% flipped case indicates no intentional label
flips were introduced, representing the original dataset. Nevertheless, this does not mean the dataset
is free of label noise. Dr. DPO continues to outperform DPO and IPO in this scenario, suggesting
the presence of inherent label noise in the dataset. This observation aligns with rDPO’s findings
(Chowdhury et al., 2024), where a default flip rate of 0.1 improved performance on the HH dataset,
further justifying the design of Dr. DPO.

5.2 COMPARING DR. DPO WITH BASELINES ON MT-BENCH

To evaluate the generation quality of DPO and its variants, we conduct pairwise comparisons using
the MT-Bench framework (Zheng et al., 2023). This framework, grounded in GPT-4, reliably aligns
with human evaluative preferences, exhibiting an agreement rate exceeding 80% on the quality of
outputs from LLMs. Adhering to the established MT-Bench guidelines (Zheng et al., 2023) 2, our
approach involves generating model responses at a controlled temperature of 0.7 and restricting the
token count to a maximum of 1024. We systematically compare the outputs from the base DPO
model and its variants, which have been fine-tuned with 0% and 40% flipped pairs on the HH dataset.

Figure 5 (1,2) shows that Dr. DPO consistently outperforms DPO in both noise-free and noisy
datasets, becoming the only method to exceed DPO’s performance in the MT-Bench evaluation.
While IPO slightly improves over DPO in the noise-free dataset, it underperforms in the noisy dataset
where DPO prevails. In contrast, Dr. DPO demonstrates robust, significant enhancements in both
conditions, highlighting its superior ability to generate high-quality responses.

5.3 ABLATION STUDIES ON DR. DPO

We conduct ablation studies to investigate the impact of the ϕ-divergence and β′ on the performance
of Dr. DPO, and provide the convergence analysis. More ablation studies are listed in Appendix D.

2https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/gen_
model_answer.py
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Table 2: Comparison of KL Divergence and Win
Rate of Model Performance at Different Noise Ratios

Noise Ratio Loss Function Win Rate KL β

0% DPO 54.36 19.68 0.1
Dr.DPO 56.67 20.01 0.1

40% DPO 49.00 8.32 0.1
Dr.DPO 61.65 7.96 0.1

Table 3: Comparison of Model Performance via
Win Rate on the LLaMA2-13B.

Loss Function Win Rate

Llama2-13b

DPO 59.05
cDPO 53.52
rDPO 60.54
Dr.DPO 63.67

Evaluating the Impact of ϕ-divergence on Dr. DPO. Figure 5 (3) explores Dr. DPO’s performance
with various ϕ-divergences, including Jensen-Shannon (JS) and α-divergence. Demonstrated results
indicate that Dr. DPO consistently outperforms the baseline DPO when β′ is set to 1.0, serving as
a viable default without requiring further adjustments. This is in contrast to the baseline β = 0.1
setting, where although improvements can be realized by manually tuning β∗, the process becomes
time-consuming and impractical for regular use.

Evaluating the Impact of β′. Figure 5 (4) illustrates how varying β′ across different noise levels
affects preference accuracy. The experimental results reveal a trend wherein increased noise levels
correspond to a reduced optimal value for β′, which is consistent with our theoretical analysis
provided in Section 3. Consequently, we propose a default setting of β′ = 1.0 for balancing accuracy
and robustness in the presence of noise.

Convergence Analysis. Figure 6 shows that Dr. DPO not only converges faster but also surpasses
DPO in the early training stage, attributed to its superior management of flipped noisy pairs. This
enhancement meets our goal of boosting DPO’s robustness in noisy environments.

Dr. DPO does not increase KL divergence. A potential concern is that Dr. DPO might improve
performance by increasing the KL divergence. To address this, we computed the KL divergence
of models trained under two noise ratios: 0% and 40%. As shown in Table 2, the KL divergence
does not increase with DRDPO for the same β settings. This comparison demonstrates that DRDPO
maintains a stable KL divergence, effectively mitigating the concern that performance gains are
achieved through increased divergence.

Comparing Dr. DPO with Baselines on LLaMA2-13B. We further evaluate the performance of Dr.
DPO on the LLaMA2-13B dataset, which is a large-scale language model. Table 3 shows that Dr.
DPO outperforms DPO, cDPO, and rDPO, achieving a win rate of 63.67% compared to 59.05% for
DPO, 53.52% for cDPO, and 60.54% for rDPO. These results demonstrate the superior performance
of Dr. DPO in generating high-quality responses on the LLaMA2-13B dataset.

6 DISCUSSION

Conclusion. In this study, we analyze DPO’s robustness from a DRO perspective, highlighting
its resilience to pointwise noise. We establish a link between DPO’s regularization and DRO’s
robustness, showing that a smaller regularization parameter β enhances stability against uncertain
data. Our experiments confirm the crucial role of β in noise resistance but uncover DPO’s weakness
against pairwise noise. To address this, we introduce a novel Distributionally Robustifying DPO
framework with an additional parameter β′ that balances data pair importance in training to enhance
model robustness. The Dr. DPO’s fine-tuning of exploration and exploitation could markedly improve
the alignment of language models, assuring reliable performance in the presence of real-world noise.

Limitations and future work. The current work introduces Dr. DPO, an enhancement to DPO that
addresses label flipping noise in training datasets through an additional hyperparameter β′. Despite
the robust performance indicated by empirical results with a default β′ value of 1.0, the need for
parameter tuning in different applications remains. The sensitivity of β′ to data and task specifics
may require a search process to fully leverage Dr. DPO’s potential. Additionally, we aim to explore
adaptive mechanisms that allow Dr. DPO to adjust robustness dynamically during training, reducing
the need for manual parameter tuning and enhancing its practical applicability across diverse tasks.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research is supported by the National Science and Technology Major Project (2023ZD0121102),
National Natural Science Foundation of China (92270114, U24B20180, 62121002, 62302321). This
research was also supported by the advanced computing resources provided by the Supercomputing
Center of the USTC.

REFERENCES

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler,
Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka,
Becca Roelofs, Anaı̈s White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran
Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A family of
highly capable multimodal models. CoRR, abs/2312.11805, 2023.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
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A RELATED WORK

Reinforcement Learning from Human Feedback. RLHF (Christiano et al., 2017; Bai et al., 2022;
Touvron et al., 2023; Ouyang et al., 2022) has emerged as a key method for aligning language
models with human values and preferences, mitigating the generation of biased or factually incorrect
outputs. Compared to supervised learning, RLHF is rather complex, less stable, and requires more
memory resources. These challenges have motivated the development of alternatives to the RLHF
pipeline. For example, RAFT (Dong et al., 2023) uses an existing reward model to select the best
set of training samples based on the model outputs, while RRHF (Yuan et al., 2023) leverages a
much simpler ranking loss to align human preferences and retain the performance of PPO. DPO
(Rafailov et al., 2023a) is another alternative to RLHF that uses a preference loss function to directly
optimize the LLMs, and has been shown to be more stable and less computationally intensive than
RLHF. Despite these efforts, all the methods ignore the noise in the training data, which can lead to
suboptimal performance. In a recent advancement, WPO has been introduced as a novel strategy to
simulate on-policy learning with off-policy preference data, effectively addressing the distributional
gap problem and enhancing the optimization process without incurring additional costs (Zhou et al.,
2024).

Distributionally Robust Optimization. DRO differs from traditional robust optimization methods
(Jin et al., 2020; Lian et al., 2020; Wu et al., 2023) by minimizing the worst-case error within
an uncertainty set defined by constraints like ϕ-divergence (Namkoong & Duchi, 2017; Duchi &
Namkoong, 2018), Wasserstein distance (Shafieezadeh-Abadeh et al., 2015; Sinha et al., 2018; Huang
et al., 2022), and shape (Lam et al., 2021; Chen et al., 2021). (Michel et al., 2021; 2022) introduced
parametrization to the uncertainty set for greater architectural flexibility. Separately, (Zhai et al.,
2021) addressed sensitivity to outliers in DRO, diverging from the other studies. And (Oren et al.,
2019) introduced a novel approach to language modeling that enhances robustness by optimizing
against the worst-case topic mixture, aligning with the overarching theme of minimizing maximum
losses within predefined uncertainty sets.

B APPENDIX OF PROOFS

B.1 PROOF OF THEOREM 3.1

Theorem 3.1 (Optimal Reward Function under KL Divergence). Let the Kullback-Leibler
(KL) divergence between policy πθ and reference policy πref be defined as: DKL(πθ|πref) =∫
πθ(x) log

(
πθ(x)
πref(x)

)
dx. Optimizing the RM-DRO objective as defined in Equation (7) yields an

optimal reward rKL(x, y) given by:

rKL(x, y) = β∗(η) log
πθ(y|x)
πref(y|x)

− α. (8)

Here, α, β are Lagrange multipliers, β∗(η) denotes the optimal value of β that minimizes Equation
(7), acting as the regularization coefficient in DPO. By deriving the optimal value of α, given by:

α∗ = −β logEx∼O,y∼πref [exp(
rθ(y|x)

β
)], (9)
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Equation 8 can be re-expressed to match the ultimate form of the reward function in Equation 4.

Proof.

Definition B.1 (ϕ-divergence (Nguyen et al., 2010)). For any convex function ϕ with ϕ(1) = 0, the
ϕ-divergence between Q and Q0 is:

Dϕ(πθ, πref) := Eπref [ϕ(
πθ

πref
)] (16)

where Dϕ(Q,Q0) = ∞ if Q is not absolutely continuous with respect to Q0. Specially, when
ϕ(x) = x log x− x+ 1, ϕ-divergence degenerates to the well-known KL divergence.

Definition B.2 (Convex conjugate (Hiriart-Urruty & Lemaréchal, 2004)). We consider a pair (A,B)
of topological vector spaces and a bilinear form ⟨·, ·⟩ → R such that (A,B, ⟨·, ·⟩) form a dual pair.
For a convex function f : R → R, domf := {x ∈ R : f(x) < ∞} is the effective domain of f . The
convex conjugate, also known as the Legendre-Fenchel transform, of f : A → R is the function
f∗ : B → R defined as

f∗(b) = sup
a
{ab− f(a)}, b ∈ B (17)

Theorem B.3 (Interchange of minimization and integration (Ben-Tal & Teboulle, 2007)). Let (Ω,F)
be a measurable space equipped with σ-algebra F , Lp(Ω,F , P ) be the linear space of measurable
real valued functions f : Ω → R with ||f ||p < ∞, and let X := Lp(Ω,F , P ), p ∈ [1,+∞]. Let
g : R× Ω → R be a normal integrand, and define on X . Then,

min
x∈X

∫
Ω

g(x(ω), ω) dP (ω) =

∫
Ω

min
s∈R

g(s, ω) dP (ω) (18)

To ease the derivation, we denote the likelihood ratio L(y|x) = πθ(y|x)/πref(y|x). Note that the
ϕ-divergence between πθ and πref is constrained, and thus L(.) is well-defined. For brevity, we usually
short L(y|x) as L. And in terms of Definition B.1 of ϕ-divergence, the expression of RM-DRO (cf.
Equation equation 7) becomes:

Lϕ
RM-DRO = max

L
Ex∼D,y∼πref [rθ(y|x)L] s.t. Eπref [ϕ(L(y|x))] ≤ η (19)

Note that Eπref [rθ(y|x)L] and Eπref [ϕ(L(y|x))] are both convex in L. We use the Lagrangian function
solver:

Lϕ
RM-DRO = min

β≥0,α
max
L(y|x)

{Ex∼D,y∼πref [rθ(y|x)L(y|x)]− β[Eπref [ϕ(L(y|x))]− η] + α(Eπref [L(y|x)]− 1)}

= min
α≥0,β

{
βη − α+ β max

L(y|x)
{Ex∼D,y∼πref [

rθ(y|x) + α

β
L(y|x)− ϕ(L(y|x))]}

}
= min

β≥0,α

{
βη − α+ βEx∼D,y∼πref [ max

L(y|x)
{rθ(y|x) + α

β
L(y|x)− ϕ(L(y|x))}]

}
= min

β≥0,α

{
βη − α+ βEx∼D,y∼πref [ϕ

∗(
rθ(y|x) + α

β
)]
}

(20)
The first equality holds due to the strong duality (Boyd & Vandenberghe, 2004). The second equality
is a re-arrangement for optimizing L(y|x). The third equation follows by the Theorem B.3. The
last equality is established based on the definition of convex conjugate B.2. When we choose KL-
divergence, we have ϕKL(x) = x log x− x+ 1. It can be deduced that ϕ∗

KL(x) = ex − 1. Then, we
have:

LKL
RM-DRO = min

β≥0,α

{
βη − α+ βEx∼D,y∼πref [ϕ

∗(
rθ(y|x) + α

β
)]
}

= min
β≥0,α

{
βη − α+ βEx∼D,y∼πref [exp(

rθ(y|x) + α

β
)− 1]

} (21)

and the maximum of term L(y|x) in Equation equation 20 is achieved when

L(y|x) = exp(
rθ(y|x) + α

β
). (22)
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We differentiate the Lagrangian function w.r.t. α and set it to zero:

∂

∂α

{
βη − α+ βEx∼D,y∼πref [exp(

rθ(y|x) + α

β
)− 1]

}
= 0 (23)

Then, we have:

α∗ = −β logEx∼D,y∼πref [exp(
rθ(y|x)

β
)] (24)

Substituting the optimal α∗ into the Lagrangian function equation 21, we have:

LKL
RM-DRO = min

β≥0,α

{
βη − α+ βEx∼D,y∼πref [exp(

rθ(y|x) + α

β
)− 1]

}
= min

β≥0

{
βη + β logEx∼D,y∼πref [exp(

rθ(y|x)
β

)]
}

= β∗(η) logEx∼D,y∼πref [exp(
rDPO(x, y)

β∗(η)
)] + C,

(25)

where β∗(η) signifies the optimal value of β that minimizes the Lagrangian function and C = βη .
Besides, if we plug the optimal α∗ into the optimal L(y|x), we have:

L∗(y|x) = exp(
rθ(y|x) + α∗

β∗ )

= exp(
rθ(y|x)
β∗ )

1

Z(x)

(26)

where Z(x) = Ex∼D,y∼πref [exp(
rθ(y|x)

β )]. Here, we rearrange Equation equation 26 and obtain the
expression of rKL(x, y):

rKL(x, y) = β∗ logL∗(y|x) + β logZ(x) = β∗ log
πθ

πref
+ β logZ(x) (27)

The theorem is proven. In comparison to the proofs presented in DPO (Rafailov et al., 2023a), our
proof is comprehensive and direct, applicable to any ϕ-divergence constraints in the general PPO
objective. DPO (Rafailov et al., 2023a) represents a specific case that employs strategies to construct
an objective in the form of KL-divergence.
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B.2 FORMAL PROOF

Step 1: Definition of ϕ-divergence The ϕ-divergence between πθ and πref is defined as:

Dϕ(πθ, πref) = Eπref

[
ϕ

(
πθ(y|x)
πref(y|x)

)]
,

where ϕ is a convex function with ϕ(1) = 0. For KL-divergence, ϕ(t) = t log t− t+ 1.

Step 2: Reformulating the RM-DRO Objective Using the Lagrangian dual form to incorporate
the robustness constraint, the RM-DRO objective becomes:

min
β≥0,α

max
L(y|x)

{Ex∼D,y∼πref [rθ(y|x)L(y|x)]− β[Eπref [ϕ(L(y|x))]− η] + α(Eπref [L(y|x)]− 1)}

where β, α are the Lagrange multipliers associated with the robustness constraint, L(y|x) =
πθ(y|x)/πref(y|x).

Step 3: Solving for Optimal Policy According to the proof of Theorem 3.1, solving this Lagrange
function with KL-divergence yields:

rϕ(x, y) = β log
πθ(y|x)
πref(y|x)

− α,

where α is a normalization constant ensuring that πθ is a valid probability distribution:

α = −β logEy∼πref

[
exp

(
rϕ(x, y)

β

)]
.

Step 4: Connection to DPO The reward function derived above matches the closed-form expression
for the reward function in DPO:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x),

where Z(x) is the partition function defined as:

Z(x) =
∑
y

πref(y|x) exp
(
r(x, y)

β

)
.

Step 5: Robustness to Pointwise Noise The DRO formulation inherently considers the worst-case
distribution within the robustness radius η. By solving the constrained optimization problem under
KL-divergence, DPO implicitly optimizes for the worst-case distributional perturbation. Thus, DPO
achieves robustness to pointwise noise, as the DRO mechanism mitigates the impact of noisy data
points by optimizing over a family of perturbed distributions.

By aligning the RM-DRO objective with the reward function formulation in DPO, we establish that
DPO implicitly operates as a pointwise DRO framework under KL-divergence. This demonstrates its
inherent robustness to pointwise noise.
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B.3 PROOF OF THEOREM 4.1

Theorem 4.1. Consider the scenario where the KL divergence is employed to measure the discrepancy
between the hypothetical distribution O′ and dataset distribution O , we derive the ultimate loss
function for Dr. DPO as follows:

LDr. DPO(πθ;πref) = −β′ logEO[exp(
hDPO(x, yw, yl)

β′ )]. (12)

where hDPO represents the log-likelihood in the DPO framework, defined as:

hDPO(x, yw, yl) = log σ(β log
πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

), (13)

with β and β′ being regularization coefficient respectively.

Proof. To solve the optimization problem in Equation equation 11, we first introduce the Lagrangian
function:

O(O′, β′, α′) = E(x,yw,yl)∼O′ [h(x, yw, yl)]

+ β′(Dϕ(O′,O)− η′) + α′(EO[
O′

O
]− 1).

(28)

Then, we can obtain the optimal distribution O′,∗ by solving the following saddle-point problem:

O′,∗ = argmax
O′

min
β′,α′

O(Q, β′, α′). (29)

Specifically, when the KL divergence is selected as the measure of ϕ-divergence, that is, KL(O′,O) =∑N
i=1 O′

i log(O′
i/Oi), the optimal distribution O′,∗

KL can be derived as follows:

O′,∗
KL =

1

Z∗ exp

(
h(x, yw, yl)

β′

)
, (30)

where Z∗ = E(x,yw,yl)∼O[exp(h(x, yw, yl)/β
′)] denotes the partition function. In this case, we can

derive a closed-form expression of the ultimate objective O(O′,∗
KL, λ

′) as follows:

O(O′,∗
KL, β

′) = β′ logEO[exp(
h(x, yw, yl)

β′ )] (31)

In order to attain a Distributionally Robustifying DRO objective that encompasses both pointwise
and pairwise robustness, we consider the previously established fact that the DPO approach confers
pointwise robustness. Consequently, by substituting the term h(x, yw, yl) in Equation equation 31
with the DPO objective from Equation equation 5, we can derive a comprehensive objective that
integrates the strengths of both methods:

LDr. DPO(πθ;πref) = −β′ logEO[exp(hDPO(x, yw, yl)/β
′)]. (32)

Here hDPO = log σ(β log πθ(yw|x)
πref(yw|x) − β log πθ(yl|x)

πref(yl|x) ) denotes the optimal policy using in DPO.
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B.4 PROOF OF THEOREM 4.2

Theorem 4.2 (Upper Bound for Dr. DPO). Let hDPO ∈ [a, b] and LN
Dr. DPO represents the Dr. DPO

loss on N samples. Given a hypothetical distribution O′ satisfying DKL(O′,O) ≤ η′ to dataset
distribution O, we have that with probability at least 1− δ:

LO′ ≤ LN
Dr. DPO + B(δ,N, β′), (14)

where:

B(δ,N, β′) =
2b exp ((b− a)/β′)

N − 1 + exp ((b− a)/β′)

√
N

2
ln

1

δ
. (15)

Proof. Firstly, we assume that the optimal policy O′ satisfies the following constraint:
O′ ∈ {Q | DKL(O′,O) ≤ η′} (33)

Under this assumption, the loss function LO′ can be bounded as:
LO′ = EO′ [h(x, yw, yl)]

≤ max
DKL(O′,O)≤η′

EO′ [h(x, yw, yl)]

= β′ logEO

[
exp

(
h(x, yw, yl)

β′

)]
= LDr. DPO.

(34)

We now introduce McDiarmid’s inequality as a foundational result:

Theorem B.4 (McDiarmid’s Inequality). Let X1, ..., XN ∈ XN be a set of N ≥ 1 independent
random variables and assume that there exists c1, ..., cN > 0 such that f : XN → R satisfies:

|f(x1, ..., xi, ..., xN )− f(x1, ..., x
′
i, ..., xN )| ≤ ci. (35)

For all i ∈ 1, 2, ...N and any points x1, ...xN , x′
i ∈ X . Let f(S) denote f(X1, ..., XN ), then for all

ϵ > 0, the following inequalities hold:

P[f(S)− E{f(S)} ≥ ϵ] ≤ exp

(
−2ϵ2∑N
i=1 c

2
i

)
. (36)

Given a dataset with N samples, for any pair of samples: (x, yw, yl), (x′, y′w, y
′
l), we have:

|w(x, yw, yl)h((x, yw, yl))− w(x′, y′w, y
′
l)h((x

′, y′w, y
′
l))|

≤2 sup
O

|w(x, yw, yl)h(x, yw, yl)|

≤ 2b exp ((b− a)/β′)

N − 1 + exp ((b− a)/β′)
,

(37)

where the second inequality holds as w(x, yw, yl) =
exp(h(x,yw,yl)/β

′)
EO[exp(h(x,yw,yl)/β′)] and hDPO ∈ [a, b].

By applying McDiarmid’s inequality, we obtain:

P
(
LDr. DPO − LN

Dr. DPO ≥ ε
)
≤ exp

(
−2ε2

N

(
N − 1 + exp ((b− a)/β′)

2b exp ((b− a)/β′)

)2
)
. (38)

Setting:

δ = exp

(
−2ε2

N

(
N − 1 + exp ((b− a)/β′)

2b exp ((b− a)/β′)

)2
)
, (39)

we can solve for ε as:

ε =
2b exp ((b− a)/β′)

N − 1 + exp ((b− a)/β′)

√
N

2
ln

1

δ
. (40)

Thus, for any δ ∈ (0, 1), we conclude that with probability at least 1− δ:

LO′ ≤ LDr. DPO ≤ LN
Dr. DPO +

2b exp ((b− a)/β′)

N − 1 + exp ((b− a)/β′)

√
N

2
ln

1

δ
. (41)
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B.5 PROOF OF w(x, yw, yl)

In this section, we present the derivation of the gradient for the Dr. DPO objective function as follows:

∇θLDr. DPO(πθ;πref) = −∇θβ
′ logEO

[
exp

(
hDPO(x, yw, yl)

β′

)]
. (42)

The right-hand side of Equation equation 42 can be rewritten as:

∇θβ
′ logEO

[
exp

(
hDPO(x, yw, yl)

β′

)]
= ∇hDPO(x,yw,yl)

[
β′ logEO

[
exp

(
hDPO(x, yw, yl)

β′

)]]
∇θhDPO.

(43)

Considering the gradient with respect to the function hDPO(x, yw, yl) yields:

∇hDPO(x,yw,yl)

[
β′ logEO

[
exp

(
hDPO(x, yw, yl)

β′

)]]
=

exp
(

hDPO(x,yw,yl)
β′

)
EO

[
exp

(
hDPO(x,yw,yl)

β′

)] . (44)

Focusing on the gradient with respect to θ, we have:

∇θhDPO = ∇θ log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
=

σ′(u)

σ(u)
∇θu, (45)

where u = β log πθ(yw|x)
πref(yw|x) −β log πθ(yl|x)

πref(yl|x) . Leveraging the properties of the sigmoid function, where
σ′(x) = σ(x)(1− σ(x)) and σ′(−x) = 1− σ(x), we derive the final gradient expression:

−∇θβ
′ logEO

[
exp

(
hDPO(x, yw, yl)

β′

)]

=−
exp

(
hDPO(x,yw,yl)

β′

)
EO

[
exp

(
hDPO(x,yw,yl)

β′

)] [βσ(β log
πθ(yl|x)

πref
(yl|x)

)
− β log

πθ(yw|x)
πref(yw|x)

]
· [∇θ log πθ(yw|x)−∇θ log πθ(yl|x)] .

(46)

Here, a crucial indicator that distinguishes Dr. DPO from traditional DPO is encapsulated by the
weight term:

w(x, yw, yl) =
exp

(
hDPO(x,yw,yl)

β′

)
EO

[
exp

(
hDPO(x,yw,yl)

β′

)] , (47)

which gravitates towards a uniform distribution as the parameter β′ approaches infinity. In such a
scenario, the gradient of Dr. DPO aligns with that of the standard DPO. This relationship furnishes a
deeper insight into how Dr. DPO can be linked and differentiated from DPO through the incorporation
of a dynamic tuning parameter β′, enhancing the adaptability of policy optimization in varied
environments.
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C ANALYSIS

C.1 ANALYSIS ABOUT GENERAL ϕ-DIVERGENCE.

Lemma C.1 (Optimal Reward Function under General ϕ-Divergence). (Wang et al., 2024, Theorem
1) Given a ϕ-divergence Dϕ with corresponding derivative ϕ′, the optimal reward function rϕ(x, y)
under the RM-DRO framework is defined by:

rϕ(x, y) = β∗(η)ϕ′(
πθ(y|x)
πref(y|x)

)− α, (48)

where α is Lagrange multiplier.

Proof. To determine the optimal expression for rϕ(x, y), one must identify the optimal L(y|x). As
established in Theorem 3.1, the optimal L(y|x) is given by:

β argmax
L(y|x)

Ex∼D,y∼πref

[
rθ(y|x) + α

β
L(y|x)− ϕ(L(y|x))

]

=βEx∼D,y∼πref

[
argmax
L(y|x)

{
rθ(y|x) + α

β
L(y|x)− ϕ(L(y|x))

}]

=βEx∼D,y∼πref

[
ϕ∗
(
rθ(y|x) + α

β

)]
.

(49)

To find this maximum, we differentiate the convex function w.r.t. L(y|x) and equate the derivative to
zero:

∂

∂L

{
rθ(y|x) + α

β
L(y|x)− ϕ(L(y|x))

}
= 0. (50)

Solving for rθ(y|x) yields the optimal expression:

rθ(y|x) = βϕ′(L(y|x))− α. (51)

Given that α is a constant, the critical component of the expression is βϕ′(L(y|x)). While this result
aligns with Theorem 1 from (Wang et al., 2024), our approach is grounded in a comprehensive
DRO framework, providing a more direct and complete theoretical justification. Thus, the lemma is
substantiated.

Comparison with Wang et al. (2024). Since α is a constant that does not affect the optimization
process, Lemma C.1 reveals that the reward function r(x, y) is influenced not only by the choice
of ϕ-divergence but also by the parameter β. This observation suggests an intuitive understanding
that various ϕ-divergences enforce constraints with unique geometric characteristics, which, in
turn, dictate the optimal value of β∗(η) within DRO. Interestingly, our findings contradict the
conclusions presented in Wang et al. (2024), which suggest that various ϕ-divergences lead to
different alignment accuracy. Instead, our results demonstrate that by fine-tuning the parameter β,
comparable performance can be achieved across different divergences (cf. Table 4). This underscores
the critical role of the robust radius in determining the efficacy of DRO frameworks. For detailed
experimental settings, please refer to Section 5.1. Moreover, a thorough analysis of the behavior of
diverse ϕ-divergences can be found in Appendix D.

We compute the gradients w.r.t. the chosen likelihood ratios, πθ(yw|x)
πref(yw|x) , and the rejected ratios,

πθ(yl|x)
πref(yl|x) . As depicted in Figure 7, the choice of ϕ-divergence influences the gradient update rules

Table 4: Comparison of win rates across various ϕ-divergences with adjustments to β.

ϕ-divergence win rate β win rate β

KL 54.36 0.1 55.40 0.15
JSD 54.36 0.1 54.75 5e-2
α = 0.3 45.02 0.1 54.59 1e-4
α = 0.5 44.06 0.1 56.60 1e-6
α = 0.7 41.17 0.1 58.45 1e-6
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in a consistent manner, though the performance varies with the scaling parameter β. With an
optimal selection of β, the disparities between the performances of different ϕ-divergences diminish
significantly (refer to Table 4 for a comparative analysis).
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Figure 7: Gradient analysis with respective to different ϕ-divergence.

C.2 COMPARISON BETWEEN DPO AND DRO

The fundamental principle of the DRO framework is to guard against the worst possible distribution
within a defined ambiguity set. Notably, the “min” operation manifests implicitly outside of the loss
function LDPO. To provide a more insightful examination of the min-max component, it is instructive
to trace DPO’s genesis back to its roots in RLHF. A two-phase process within RLHF elucidates this
mechanism:

1. Reward Modeling Phase: In this phase, we integrate human preferences via a negative log-
likelihood loss:

min
rϕ

L(r,O) = min
rϕ

− E(x,yw,yl)∼O[log σ(rϕ(x, yw)− rϕ(x, yl))]

It optimizes for a reward function rϕ by minimizing the predicted disparity in preferences between
winning and losing outcomes yw and yl, as determined through interaction instances (x, yw, yl)
gathered from the training set O.

2. Reinforcement Learning (RL) Fine-Tuning Phase: This stage leverages the learned reward
function to generate feedback for the language model, adopting a policy improvement step that
embodies our ’max’ operation perceived during the fine-tuning phase:

max
πθ

Ex∼O,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x)||πref(y|x)].

As elucidated in the introduction of DPO in preliminaries,

This allows for the direct optimization of the policy by reparameterizing the
reward function using the policy (i.e., the language model) in a supervised manner.

Subsequently, the closed-form solution from the RL phase is substituted into the Reward Modeling
Phase, and the reparameterization of rϕ into πθ yields:

min
πθ

LDPO(πθ;πref) = min
πθ

− E(x,yw,yl)∼O[log σ(β log
πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]. (52)

Comparing DPO and DRO enhances understanding:

DPO

• Motivation: Suboptimal initial distribution of SFT model (reference model).

• Max Part: Explore maximization criterion around the reference model, here aiming for maximal
reward.
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• Min Part: Optimize the BT model on the novel reward function.

DRO

• Motivation: Suboptimal initial training set distribution.
• Max Part: Explore maximization criterion around the initial training set distribution, traditionally a

loss, but varies in different applications.
• Min Part: Optimize the model on this novel distribution.

In conclusion, our methodology faithfully embodies the essence of DRO by instituting a protective
mechanism against the distribution determined by a select ambiguity set and a specific criterion.
The “min” operation, though indirectly represented in Equation equation 5, is an integral part of our
model’s optimization process, fitting well within the DRO framework’s intent.

C.3 SETUP IN POINTWISE NOISE

To introduce the concept of pointwise noise, we first clarify the stages of DPO training:

• SFT Stage: Prior to alignment, both DPO and RLHF require supervised fine-tuning (SFT).
Typically, in the SFT stage, a prompt x is paired with a chosen response yw.

• DPO Stage: DPO uses the model trained in the SFT stage as both the initialization and reference
model. Training samples consist of a prompt x paired with a chosen response yw and a rejected
response yl. In most cases, the chosen response remains consistent with that of the SFT stage.

The term “pointwise noise” in this context refers to the impact of poor data quality. In the IMDB
dataset, we generate training data of varying quality by using samples from a fine-tuned GPT-2-large
(Radford et al., 2019) as high-quality samples and from an unfine-tuned GPT-2-large as low-quality
samples. By adjusting the ratio of these two sets, we create different noise ratios (e.g., a 20%
noise ratio indicates that 20% of the training data consists of low-quality samples generated by the
unfine-tuned GPT-2-large).

In the HH scenario, positive and negative samples are predetermined. To create an unreliable
reference model πref, we replace the chosen responses in the SFT stage with their corresponding
rejected responses. The DPO stage pairs remain unchanged, affecting only the SFT distribution,
aligning with the intent described in Section 3.1.

SFT DPO

Prompt x
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response 𝒚𝒘

rejected 
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Prompt x

Response generated by an 
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⋮
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⋮
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⋮
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⋮
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⋮
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⋮
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Figure 8: Pointwise Noise Data Construction in IMDB and HH
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Note: In our experiments, we ensure that the data used during the DPO phase remains consistent
across both datasets. This consistency ensures that the only variable influencing the outcomes is the
noise introduced to the SFT model. By maintaining the DPO data unchanged, we isolate the effect of
noise on the SFT model’s performance, allowing for a clear analysis of its impact.

D APPENDIX OF EXPERIMENTS

1 # pi_logps : policy logprobs, shape (B,)
2 # ref_logps : reference model logprobs, shape (B,)
3 # yw_idxs : preferred completion indices in [0, B-1], shape (T,)
4 # yl_idxs : dispreferred completion indices in [0, B-1], shape (T,)
5 # beta : regularization coefficient
6 # beta_1 : regularization coefficient for pairwise robustness
7
8 pi_yw_logps, pi_yl_logps = pi_logps[yw_idxs], pi_logps[yl_idxs]
9 ref_yw_logps, ref_yl_logps = ref_logps[yw_idxs], ref_logps[yl_idxs]

10 pi_logratios = pi_yw_logps - pi_yl_logps
11 ref_logratios = ref_yw_logps - ref_yl_logps
12 losses = -F.logsigmoid( beta * ( pi_logratios - ref_logratios))
13
14 #DPO
15 DPO_loss = losses.mean()
16
17 #Dr. DPO
18 DrDPO_loss = - beta_1 * torch.log(torch.mean(torch.exp( - losses / beta_1)))

Figure 9: Pseudocode for our proposed Dr. DPO, as well as the original DPO objective.

Figure 9 presents a PyTorch-style pseudocode comparison between the standard objective and our
proposed Dr. DPO objective. The implementation simplicity of the Dr. DPO loss is highlighted, as
it necessitates no additional lines of code beyond what is required for the standard objective. This
ease of integration underscores the practicality of adopting Dr. DPO in existing machine learning
workflows without the need for extensive code modifications.

D.1 EXPERIMENTS SETUP ON HH

For our preliminary research, we conducted experiments on the Anthropic HH dataset (Bai et al.,
2022), which comprises 170,000 human-automated assistant dialogues. Each dialogue concludes
with two large language model-generated responses and an accompanying preference label denoting
the human’s favored choice. Our training regimen was in line with the DPO-established protocol
(Rafailov et al., 2023a). We built upon the Pythia 2.8B model, as described in (Biderman et al.,
2023), to develop our Supervised Fine-Tuning (SFT) model. The SFT model was fine-tuned on the
Anthropic HH dataset over the course of one epoch, employing a batch size of 64 and a learning rate
of 5× 10−7. In addition, we further refined the model using the Anthropic HH dataset and the DPO
loss function (or other baseline approaches) through an additional epoch of fine-tuning. To test the
model’s resilience to noise, we introduced random inversions between selected and rejected responses
in the training data with probabilities of 10%, 20%, 30%, and 40%. Throughout these experiments,
we consistently set the β parameter to 0.1 and adopted the Kullback-Leibler (KL) divergence as the
metric for ϕ-divergence. We carried out all computational tasks on a suite of four 80GB A100 GPUs.

D.2 EXPERIMENTS ON REDDIT TL;DR DATASET

For a fair comparison with DPO, we maintained the parameters β = 0.5 and lr = 1e− 6, and chose
β′ = 1.0 without extensive tuning. This approach ensures that our evaluation of the proposed Dr.
DPO framework is consistent and comparable to the existing baseline.

Finally, the table below presents the win-rate comparison on the TL;DR dataset under various
sampling temperatures, further supporting our claims:
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Table 5: Comparison of DPO and Dr. DPO across various sampling temperatures.

Sampling Temperature 0.0 0.25 0.5 0.75 1.0
DPO 45.06 46.74 46.70 39.50 21.28
Dr. DPO 62.36 67.34 71.29 63.91 27.75

As evidenced by Table 5, Dr. DPO consistently outperforms DPO across different sampling tempera-
tures, particularly at lower temperatures which are crucial for complex tasks such as summarization.

D.3 EXPERIMENTS ON AMBIGUOUS DATASETS

To incorporate the feedback regarding the evaluation of our approach on datasets with ambiguity-
induced noise, we conducted additional experiments. These were aimed at understanding how
performs under varying conditions of data perturbation, specifically through token masking and
substitution. The comparative analysis between the traditional DPO and Dr. DPO was carried out
under consistent experimental conditions to ensure the validity and reliability of the results.

Experimental Setup. To simulate ambiguous datasets, we introduced randomness in the form of
token masking and substitution at different ratios, thereby increasing the difficulty of the dataset. The
intention was to assess the resilience and adaptability of our Dr. DPO method under challenging
conditions that are akin to real-world scenarios. The experiments were conducted using the HH
dataset, known for its complexity and relevance in evaluating data processing algorithms.

The configurations for both DPO and Dr. DPO were kept consistent with previous experiments
to maintain comparability. Specifically, we set β = 0.1 and the learning rate lr = 5e − 7 for
both approaches. For Dr. DPO, an additional hyperparameter, β′, was introduced and set to 1.0.
Notably, we did not undertake extensive hyperparameter tuning, opting instead for a straightforward
comparison.

Experimental Results. The results of our experiments are summarized in the table below, illustrating
preference accuracies under varying noise conditions:

Table 6: Preference Accuracy on the HH Dataset with Varying Noise Ratios

Masking Ratio 0.05 0.10 0.15
DPO 58.77 56.64 54.39

Dr. DPO 59.21 58.44 56.10

Replacing Ratio 0.05 0.10 0.15
DPO 57.84 54.43 52.40

Dr. DPO 58.45 55.60 53.37

Discussion. The results indicate that Dr. DPO consistently outperforms DPO across different levels of
induced noise, whether through masking or replacing tokens. Notably, the improvement in preference
accuracy becomes more pronounced as the noise ratio increases, suggesting that Dr. DPO is more
robust to ambiguity-induced noise compared to DPO. These findings validate our hypothesis that Dr.
DPO can better handle the complexities and uncertainties inherent in real-world datasets.

It is also important to note that these results were obtained without extensive tuning of the Dr. DPO-
specific hyperparameter, β′. Future work could involve a more detailed exploration of hyperparameter
settings to potentially unlock further improvements in performance.

In conclusion, the additional experiments conducted in response to feedback have not only rein-
forced the effectiveness of our Dr. DPO approach but also opened avenues for future research into
optimization strategies for processing ambiguous datasets.

D.4 REWARD

Reward. The reward metric is computed on the IMDB dataset, which is selected for the availability
of a ground-truth reward function provided by a sentiment classifier. Figure 10 demonstrates that
the Dr. DPO algorithm achieves enhanced stability and superior reward performance under varying
pairwise noise and different β. Additionally, by setting β′ to a fixed value of 1, we address the issue
of DPO’s sensitivity to the parameter β. This consistent setting of β′ eliminates the need for extensive
parameter tuning, which significantly benefits practical applications.
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Figure 10: Evaluation of IMDB at 0% and 40% flipped pair ratios.
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Figure 11: Preference accuracy across varying β for different levels of pairwise noise on the Anthropic
HH dataset.

D.5 IMPACT OF VARYING β

Concomitantly, we have carried out an evaluation of the performance enhancement of Dr. DPO
relative to DPO under diverse beta values, as shown in Figure 11. The aforementioned Dr. DPO
assures a stable performance augmentation regardless of beta selection, further attesting to the efficacy
of the Dr. DPO methodology. Notably, the attained results are based on the default value of β′, set at
1.0, negating the necessity of additional parameter adjustments to β′ for a steady performance uplift.

D.6 IMPACT OF DIFFERENT TEMPERATURE

Ultimately, we ventured to experiment with the temperature coefficient evaluation for GPT-4 (cf. Table
7), where, at a value of 0.7, the Dr. DPO method consistently outperforms its baseline counterparts,
henceforth, reaffirming the method’s validity and effectiveness.

Table 7: Comparison of Win Rate Performance on the Anthropic HH Dataset at 0% and 40% Flipped
Pair Ratios (Temperature=0.7).

Models 0% Flipped 40% Flipped Improv.
DPO 48.30 48.49 +0.39
cDPO 47.96 46.14 −3.79
IPO 51.20 52.39 +2.32

Dr. DPO 53.62 56.71 +5.76

D.7 DISCUSSION

Comparison with LDR Zhu et al. (2023): Unlike LDR, which applies DRO for robust multi-
class classification, Dr. DPO is tailored for preference learning tasks. While LDR offers pointwise
robustness by adjusting weights for individual class labels per instance x, Dr. DPO provides pairwise
robustness by optimizing weights for each pair of responses (yw, yl) within dataset O. Furthermore,
LDR seeks to reduce overfitting by decreasing the weights of selected instances, whereas Dr. DPO
counters mismatched pair effects by up-weighting chosen response pairs.
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E GENERATED SAMPLES FROM DPO-TRAINED MODELS AND DR.
DPO-TRAINED MODELS

In this section, we present some examples to showcase the pairwise comparison between DPO-
trained models and Dr. DPO-trained ones. Some comparisons on Anthropic HH and Reddit TL;DR
summarization dataset come with reference answers, to save space, we omit the reference answers
here.

Table 8: A qualitative pairwise comparison of samples generated by DPO and Dr. DPO, where Dr.
DPO wins.

Prompt What are some easy to make Christmas decorations I can make for inside the house?

DPO There are so many easy Christmas decorations to make, here are some ideas -
ornaments to hang on the Christmas tree, lights to hang on the light fixtures in
the house, ornaments to put on the doors and windows. You can make these
decorations from a selection of holiday-themed objects, such as silver Christmas
balls, crystal Christmas balls, mini glass Christmas figures, Christmas ornaments,
paper Christmas trees, Christmas banners, silver tinsel, mini silver lights.
Some ideas for decorations to put up on the Christmas tree - Christmas trees with
mini Christmas lights, Christmas ornaments - mini Christmas trees, mini Christmas
lights, Christmas banners, paper Christmas trees, mini tinsel garlands.
If you add a Christmas tree to your house decorations, there are also many different
types of Christmas trees to choose from, you can choose from Christmas trees with
lighted branches, Christmas trees with hanging lights, Christmas trees with mini
lights on the top, Christmas trees decorated with tiny ornaments.

Dr. DPO You want to make holiday decorations inside the house, for Christmas? Would these
be OK for you? What I have available would make for a fun experience: - garland
- candles - pine cones - Christmas lights I can also offer to help you choose what
kind of decoration you like best, to give you specific ideas for what you want to
make. If you have any questions about materials or decorating, or about the process,
feel free to ask. I will help you make the decorations, but also provide suggestions
and ideas for you.
- pine cone garland - easy and fun decoration, to hang on your door, or inside your
windows, and include some small pieces for each guest, or you can make them
from whole pinecones and some string to attach them to. Decorate the sides of your
home with a green garland on a wooden stick. For the garland, you could:
- make pine cone garland from a whole pinecone and string. To make each pinecone:
- Cut a pinecone in half.
- Cut each half in half.
- Take the center of one half, and put the other half on top of it. Repeat with all the
pinecones. If the pinecones are large, you can stack them, then use extra pinecones
to “tie” them all together.
- Cut a few small circles out of the center of each pinecone for heads and arms. I
recommend using pinewood sticks, such as Christmas tree ornaments. Attach them
to the pinecone by sticking them into the center of each cone. You may need to add
string to attach each stick to the pinecone by wrapping it around and through the
center of the cone. Practice making garland before you start, to get used to how the
pinecones and sticks are arranged, to make sure you have the hang of it.
- Cut green grass cutouts to put on the garland, to decorate your doors.

Judgment Response of DPO provides a couple of simple decoration ideas, while Response of
Dr. DPO offers a detailed step-by-step guide on how to make a specific decoration,
along with offering further assistance.

Verdict results DR. DPO wins.
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Table 9: A qualitative pairwise comparison of samples generated by DPO and Dr. DPO, where Dr.
DPO wins.

Prompt SUBREDDIT: r/personalfinance TITLE: Helping empty nesting parents, what to
do? POST: xpost from /r/legaladvice as they suggest /r/personalfinance would have
good insights
I’m at a phase in life where I’m helping take care of many matters for my parents. I
need to find who would be the right set of people to consult with (tax attorney? real
estate attorney? cfa?) in Chicago, IL. Regarding my parents situation:
- Only social security income (addl: help with everything i can) - 50-75k in credit
card debt - Owe 300k on primary home (unable to sell, been trying) - Inherited
175k property (rented it out in past - no remaining mortgage - very sellable)
I need to understand the best way for them to sell both properties (tax and other
implications) and protect $ from rental property sale to use towards general debt +
retirement. Thank you so much!!!

DPO Parents are empty nesters with a lot of debt and a property to sell. Need to
understand what the best way to proceed is.

Dr. DPO parents are struggling with huge debt, need to understand best way to utilize their
assets and income streams to pay off debt. They are empty nesters and have no
retirement savings. What should they do?

Judgment Dr. DPO does a better job of summarizing the post because it includes more details
about the parents’ financial situation and the need for advice on how to manage
their assets and debts.

Verdict results DR. DPO wins.
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