
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE STATE OF REINFORCEMENT FINETUNING FOR
TRANSFORMER-BASED GENERATIVE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement finetuning (RFT) has garnered significant attention in recent years,
particularly for enhancing large reasoning models such as OpenAI o1 and Deepseek
R1. The appeal of RFT largely stems from its ability to refine model knowledge,
better align outputs with user intent, and address challenges associated with lim-
ited finetuning data. Despite these advantages, the application of RFT in large
Transformer-based generative agents remains relatively underexplored. Although
these agents are designed to address multiple tasks through large-scale autoregres-
sive pretraining and share many properties with large reasoning models, current
adaptation strategies predominantly rely on supervised finetuning (SFT). In this
work, we conduct a systematic investigation of several RFT techniques across a
variety of finetuning parameter configurations and meta-reinforcement learning
(meta-RL) environments, employing few-shot offline datasets. We provide a com-
prehensive analysis of RFT algorithm performance under diverse experimental
conditions and, based on our empirical findings, introduce a lightweight enhance-
ment to existing RFT methods. This enhancement consistently improves outcomes
by combining the strengths of both SFT and RFT. Our findings provide valuable
insights for advancing the effectiveness of RFT approaches and broadening their
applicability to meta-RL tasks with large Transformer-based generative agents,
motivating further research in broader domains.

1 INTRODUCTION

Large Reasoning Models (LRMs), such as OpenAI o1 (Jaech et al., 2024) and DeepSeek R1 (Guo
et al., 2025), represent the leading edge of artificial intelligence, characterized by advanced reasoning
and extended deliberation capacities. A key development in these models is the adoption of reinforce-
ment finetuning (RFT)(Lambert et al., 2024; Team et al., 2025), which facilitates efficient adaptation
to domain-specific tasks with limited labeled data. Through iterative refinement—particularly in
test-time scaling—RFT enhances reasoning ability, factual accuracy, and alignment with user intent
and ethical standards(Kumar et al., 2025). Consequently, RFT has become integral to both the
advancement and deployment of large-scale AI systems.

The paradigm of leveraging and transferring knowledge from large-scale pretrained models within
LRMs has catalyzed substantial progress across a wide range of domains (Dosovitskiy et al., 2020;
Raffel et al., 2020). Within reinforcement learning (RL), Transformer-based Generative Agents
(TGAs) have demonstrated exceptional efficacy and generalization by formulating decision-making
problems as sequence modeling tasks (Wen et al., 2022; Reed et al., 2022). These agents employ
Transformer-based autoregressive decoders, which facilitate multi-modality, multi-tasking, and
scalable general-purpose decision-making (Chen et al., 2021; Janner et al., 2021). Notably, TGAs
exhibit robust generalization to novel tasks through zero-shot and few-shot trajectory conditioning,
and share many properties with LRMs (Hu et al., 2024c; Agarwal et al., 2023). However, despite
these similarities, the application of RFT for adapting TGAs to new tasks—particularly in the context
of meta-RL—remains underexplored. Current approaches for TGA adaptation predominantly rely
on supervised finetuning (SFT) (Wang et al., 2024; Hu et al., 2023), which may limit generalization
to new tasks. Meanwhile, RL-based finetuning methods have achieved notable success in non-RL
domains, suggesting their potential advantages for RL tasks, especially those with dense rewards
(Schulman et al., 2017). These observations motivate our investigation into whether RL-based

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

finetuning can outperform SFT for adapting TGAs to novel RL tasks, and to systematically evaluate
its effectiveness in this context.

In this paper, we present a systematic study of RFT for TGAs, with a particular emphasis on
two prominent finetuning paradigms: (1) full-model finetuning (FMT), which updates all model
parameters, and (2) parameter-efficient finetuning (PET), which optimizes only a small subset of
(often newly introduced) parameters, such as prompt tuning (Hu et al., 2023), low-rank adaptation
(LoRA)(Hu et al., 2021), and the decorator approach(Yuan et al., 2024). We further investigate a
range of finetuning algorithms, including: (1) supervised methods such as SFT (Wang et al., 2024;
Hu et al., 2023) and DPO (Rafailov et al., 2023), (2) online RL algorithms such as GRPO (Guo
et al., 2025; Shao et al., 2024) and PPO (Schulman et al., 2017), and (3) offline RL methods such as
CQL (Kumar et al., 2020a). Building on our experimental findings, we also propose a lightweight
improvement DP that integrates the advantages of SFT with RFT approaches. To this end, we conduct
extensive experiments to systematically evaluate the interplay between finetuning algorithms and
finetuning parameter configurations, providing a comprehensive analysis of their effectiveness for
adapting TGAs to new RL tasks.

Additionally, we provide in-depth analyses of several key factors that may influence finetuning
performance. Specifically, we examine the impact of (1) the quality of the finetuning dataset, (2) the
quantity of available finetuning trajectories, (3) the prevalence of sparse versus dense reward signals,
and (4) the scale of the pretrained model. By systematically evaluating these variables, we aim to
elucidate how different finetuning algorithms and parameter adaptation strategies perform under
varying conditions, thereby offering comprehensive insights into their robustness and generalization
capabilities across diverse RL scenarios. Our main contributions are summarized below:

• We introduce and rigorously analyze the application of RFT to TGAs in meta-RL settings, evaluat-
ing performance across diverse finetuning parameter configurations and environments.

• We propose a lightweight enhancement to existing RFT methods by integrating SFT with RFT-
based policy updates, resulting in robust and consistent performance improvements.

• We conduct extensive empirical studies across various tasks, systematically investigating factors
affecting finetuning outcomes, including finetuning trajectory quality, finetuning dataset size,
reward sparsity, and pretrained model scale. Our proposed method demonstrates significant
improvements over strong SFT and RFT baselines in all settings.

2 BACKGROUND

2.1 TRANSFORMER-BASED GENERATIVE AGENT

The adoption of Transformer architectures (Vaswani et al., 2017) in offline RL for sequential modeling
(SM) has garnered significant attention in recent years (Hu et al., 2024c). Insights from NLP
demonstrate that Transformers, when pre-trained on large-scale datasets, exhibit remarkable few-shot
and zero-shot learning capabilities within prompt-based frameworks (Liu et al., 2023; Brown et al.,
2020). Inspired by these findings, recent studies have sought to develop sufficiently large agents
capable of tackling diverse tasks (Reed et al., 2022; Wen et al., 2022). Many of these works leverage
the architectural principles of the prompt-based Decision Transformer (DT) (Xu et al., 2022; Hu
et al., 2023), which adapts prompt-based methodologies from NLP to the offline RL setting, thereby
enabling few-shot generalization to novel tasks.

Unlike NLP, where prompts are typically textual and often formatted for blank-filling to adapt to
various tasks, Prompt-DT introduces trajectory prompts. These prompts comprise tuples of state,
action, and return-to-go (s∗,a∗, r̂∗), offering explicit guidance to RL agents through a small number
of demonstration steps. Each element with a superscript ·∗ denotes its association with the trajectory
prompt. Notably, the length of a trajectory prompt is typically much shorter than the full task horizon,
encapsulating only the essential information required for effective task identification, yet insufficient
for complete imitation of the task.

During training with offline collected data Di, Prompt-DT utilizes τ inputi,t = (τ∗i , τi,t) as input for
each task Ti. Here, τ inputi,t consists of the K∗-step trajectory prompt τ∗i and the most recent K-step

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

history τi,t, and is formulated as:

τ inputi,t = (r̂∗i,1, s
∗
i,1,a

∗
i,1, . . . , r̂

∗
i,K∗ , s∗i,K∗ ,a∗i,K∗ ,

r̂i,t−K+1, si,t−K+1,ai,t−K+1, . . . , r̂i,t, si,t,ai,t). (1)

The prediction head linked to a state token s is designed to predict the corresponding action a. For
continuous action spaces, the training objective aims to minimize the mean-squared loss:

LDT = Eτ input
i,t ∼Di

[
1

K

t∑
m=t−K+1

(ai,m − π(τ∗i , τi,m))2

]
. (2)

2.2 REINFORCEMENT FINETUNING

With the advent of advanced reasoning models such as OpenAI’s o1 (Jaech et al., 2024), research
on large reasoning models has increasingly focused on enhancing reasoning capabilities through
RL techniques. Recent studies have demonstrated improved performance in reasoning-intensive
tasks, including mathematical problem-solving (Cai et al., 2024; Trung et al., 2024; Shao et al., 2024;
Yang et al., 2024) and code generation (Hui et al., 2024; Jiao et al., 2024; Zhang et al., 2024a;b). A
notable milestone is Deepseek-R1-Zero (Guo et al., 2025), which achieved robust reasoning abilities
using RL alone, entirely omitting the SFT stage. However, most RL-based reasoning research has
been restricted to the language domain, with limited investigation into Transformer-based generative
agents in meta-RL settings, where traditional SFT remains the standard for finetuning. To address
this gap, our work systematically analyzes the efficacy of RFT for such agents.

3 MODEL FINETUNING OVERVIEW

3.1 FINETUNING ALGORITHMS

Given a pretrained agent πθ and corresponding few-shot finetuning datasets Pi for each task
Ti—where |Pi| ≪ |Di| (the dataset used for pretraining)—various strategies can be employed
to further adapt the policy via reinforcement learning. For simplicity, although the transformer-based
policy π typically conditions on full history, i.e., πθ(at|r̂:t, s:t,a:t−1), here we denote it as πθ(at|st).
Note that finetuning need not update all parameters; further details are discussed in Section 3.2. For
brevity, we use θ to denote the set of parameters subject to tuning in this context.

Supervised Fine-Tuning (SFT) is the most straightforward way to adapt a pretrained model. It
minimizes the mean squared error (MSE) between the predicted and ground-truth actions on the
small finetuning dataset P:

LSFT(θ) = E(s,a)∼P

[
|a− πθ(a|s)|2

]
. (3)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) reformulates reinforcement learning
from human feedback (RLHF) as a direct optimization problem. For each state s, preference pairs
(a, ā) are constructed, with ā representing a perturbed version of a. The policy is optimized to
favor preferred actions while maintaining proximity to a reference model πref, with β controlling the
trade-off:

LDPO(θ) = −E(s,a,ā)∼P

[
log σ

(
β log

πθ(a|s)
πref(a|s)

− β log
πθ(ā|s)
πref(ā|s)

)]
, (4)

where σ is the logistic function.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) compares groups
of candidate responses directly, eliminating the need for an additional critic model. Here we consider
the trajectories with the same initial state as a group of candidate responses. The objective encourages

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

higher probabilities for preferred actions, regularized with a KL divergence to the reference policy:

LGRPO(θ) = −E(s,{ak}K
k=1)∼P (5)[

K∑
i=1

(min(
πθ(a

k|s)
πθold(a

k|s))
Ak, clip(

πθ(a
k|s)

πθold((a
k|s))

, 1− ϵ, 1 + ϵ)Ak)− βDKL(πθ||πref))

]
,

(6)

DKL(πθ||πref) =
πref (a

k|s)
πθ(ak|s)

− log
πref (a

k|si)
πθ(ak|si)

− 1, (7)

where ϵ and β are hyper-parameters, and Ak is the advantage, computed using a group of rewards
{r1, r2, . . . , rK} corresponding to the outputs within each group:

Ak =
rk − mean({r1, r2, . . . , rK})

std({r1, r2, . . . , rK})
. (8)

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a widely used policy gradient
algorithm. It maximizes a clipped surrogate objective to ensure stable updates by constraining the
policy within a trust region around the previous policy πold:

LPPO(θ) = −E(s,a)∼P

[
min

(
rθ(a|s)Â, clip (rθ(a|s), 1− ϵ, 1 + ϵ) Â

)]
, (9)

where rθ(a|s) = πθ(a|s)
πold(a|s) is the probability ratio between the current and old policies, and Â denotes

the advantage estimate, which is calculated by the learned critic network with generalized advantage
estimation (Schulman et al., 2015). Note that, as PPO is an on-policy method, its effectiveness is
limited in strictly offline settings, but the PPO loss can still be used for gradient computation.

Conservative Q-Learning (CQL) (Kumar et al., 2020b) is designed for offline RL, mitigating
overestimation by penalizing Q-values for out-of-distribution actions. The loss function combines a
Bellman loss with a conservative regularization term:

LCQL(ϕ) = E(s,a,r,s′)∼P

[
1

2
(Qϕ(s,a)− (r + γEa′∼πθ

Qϕ(s
′,a′)))

2
]

(10)

+ α (Ea∼µ[Qϕ(s,a)]− Ea∼πθ
[Qϕ(s,a)]) , (11)

where µ denotes the random policy and α is the regularization strength. After learning the Q-function,
policy improvement is performed by updating the policy πθ to maximize the expected Q-value, which
can be formulated as:

LCQL(θ) = −Es∼P [Qϕ(s, πθ(s))] . (12)

Here, the policy parameters θ are optimized to select actions that maximize the value predicted by the
learned Q-network, thereby iteratively improving the policy while remaining robust to the limitations
of the offline dataset.

Q-guided Policy Optimization (QP, ours). In RFT methods such as PPO and CQL, a Q-network is
often used to estimate the advantage function. However, in offline RL settings, Q-network estimates
are often unreliable due to distributional shift, necessitating additional constraints or regularization
to prevent divergence from the behavior policy. Conversely, supervised methods can maintain
policy stability but are generally limited to in-distribution actions, which may lead to sub-optimal
performance. Recent studies have demonstrated the potential of extending Q-learning to Transformer-
based agents for offline RL, achieving promising results (Hu et al., 2024a). Building on this line
of research and the detailed results in Sections 5 and 6, we propose Q-guided policy optimization
(QP), which augments the objective of supervised methods by incorporating a learned Q-network.
Specifically, we augment standard supervised training (e.g., SFT or DPO) with a policy improvement
term guided by the Q-network. This approach, denoted as QP-SFT or QP-DPO, aims to combine
the distributional robustness of supervised methods with the policy improvement capabilities of RL,
thereby enhancing both stability and performance in offline settings:

LQP-SFT(θ) = E(s,a)∼P

[
|a− πθ(a|s)|2 − α ·Qϕ(s, πθ(s))

]
, (13)

LQP-DPO(θ) = E(s,a,ā)∼P

[
log σ

(
β log

πθ(a|s)
πref(a|s)

− β log
πθ(ā|s)
πref(ā|s)

)
− α ·Qϕ(s, πθ(s))

]
, (14)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where α controls the regularization strength and Qϕ is trained via a TD-loss with double Q-
learning (Hasselt, 2010):

E(s,a)∼P

∣∣∣∣∣∣Q̂m −Qϕi
(s,a)

∣∣∣∣∣∣2, (15)

where Q̂m = r + γ min
i=1,2

Qϕ′
i
(s, â), (16)

where γ is the discount factor and â denotes the predicted action output by the target model πθ′ .

3.2 FINETUNING PARAMETER CONFIGURATIONS

In the context of finetuning large Transformer-based agents for RL, various parameter-efficient and
full-model adaptation strategies can be considered. Below, we detail several approaches for finetuning
different components of the agent, as illustrated in Figure 6 and further described in Section D.

Prompt Tuning. This approach updates only the prompt parameters—typically initialized from
sampled task trajectories P—while keeping the backbone model fixed (Hu et al., 2023; 2024e).
Prompt tuning enables efficient few-shot adaptation with minimal risk of overfitting.

Adaptor Tuning. Following Huang et al. (2024), this method inserts lightweight LoRA modules,
typically into the MLP layers of the Transformer (Lawson & Qureshi, 2024; Hu et al., 2024f). Only
the adaptor parameters are updated for each new task, allowing efficient and isolated adaptation
without affecting the shared backbone.

Decorator Tuning. Inspired by residual policy learning (Yuan et al., 2024), this strategy introduces a
residual policy πres trained on top of a frozen base policy πbase. The action taken is the sum of both
policies: πbase(s) + πres(s), enabling targeted adaptation while retaining prior knowledge.

Fullmodel Tuning. All parameters of the agent are finetuned jointly. While this maximizes adaptation
capacity, it increases computational cost and overfitting risk in low-data regimes.

4 EXPERIMENTAL SETUP

Environments. We evaluate all proposed methods on two standard meta-RL benchmarks: (i) the
multi-task MuJoCo locomotion suite (Ni et al., 2023; Todorov et al., 2012), which includes the
Cheetah-Dir, Cheetah-Vel, and Ant-Dir; and (ii) the MetaWorld robotic manipulation platform (Yu
et al., 2020), comprising 50 distinct tasks. For the MuJoCo locomotion suite, we follow the protocol
of Wang et al. (2024) by randomly sampling tasks from the overall distribution and partitioning
them into a training set (T train) and a test set (T test). In MetaWorld, 45 tasks are designated for
pretraining, while the remaining 5 tasks are reserved for meta-testing and adaptation. To construct
the datasets, we employ Soft Actor-Critic (SAC)(Haarnoja et al., 2018) to independently train
single-task policies for each training task. We then generate two types of offline datasets—Medium
and Expert—corresponding to different levels of policy proficiency. Further details regarding the
environments and dataset construction are provided in Appendix B.

Training. For each environment, we begin by pretraining a policy using the collected training dataset
D, which comprises multiple distinct tasks. Subsequently, for each finetuning algorithm, we initialize
from the same pretrained policy and apply the four finetuning parameter configurations described
in Section 3.2, utilizing the same finetuning trajectory set P and maintaining identical finetuning
iterations to ensure a fair comparison. Notably, the number of trajectories available for finetuning is
substantially smaller than that used during pretraining (|P| ≪ |D|), thereby establishing a few-shot
adaptation setting that more closely reflects practical, real-world scenarios. For each loss function, all
methods are tuned via grid search over the corresponding hyperparameters to ensure that the reported
results represent their best achievable performance.

5 THE STATE OF REINFORCEMENT FINETUNING

Here, we show the empirical results for reinforcement finetuning in the pretrained transformer-based
generative agents in Table 1 and Figure 8. Additional experimental results, theoretical support, and
extended discussions are provided in Appendix E and Appendix F.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of different finetuning algorithms on meta-RL environments using expert-level
offline datasets. Each method is evaluated with 50 finetuning trajectories, and results are averaged
over three independent runs with different random seeds.

Zero-shot SFT DPO GRPO PPO CQL QP-DPO QP-SFT

Prompt
AntDir 259.61 326.52±3.62 319.45±3.03 323.07±3.11 316.53±2.72 325.93±3.50 325.14±12.77 325.35±3.78

HalfCheetahDir 600.49 631.01±5.46 634.60±1.73 638.38±4.87 629.12±1.12 628.52±1.43 645.24±3.89 639.36±2.04

HalfCheetahVel −138.01 −111.57±2.40 −113.37±0.46 −113.79±3.79 -109.66±2.90 −114.72±0.66 −111.06±1.20 −110.64±2.23

MetaWorld 414.22 414.22±0.00 414.22±0.00 414.22±0.00 414.22±0.00 414.22±0.00 414.22±0.00 414.22±0.00

Average 284.08 315.05 313.73 315.47 312.55 313.49 318.39 317.07

Adaptor
AntDir 259.61 315.06±3.62 325.81±5.62 319.66±3.60 335.57±9.71 332.05±6.45 336.62±2.87 329.36±6.43

HalfCheetahDir 600.49 631.06±1.97 637.39±4.12 632.83±3.37 633.84±0.83 636.30±2.01 631.91±2.47 640.60±2.73

HalfCheetahVel −138.01 −118.98±2.52 −115.32±3.93 -109.74±3.98 −113.51±0.93 −119.11±1.54 −113.22±3.47 −112.19±1.19

MetaWorld 414.21 499.60±24.56 485.63±15.21 490.21±38.21 454.91±22.21 437.28±30.10 502.52±4.76 485.71±5.74

Average 284.08 331.69 333.38 333.24 327.70 321.63 339.46 335.87

Decorator
AntDir 259.61 320.63±2.83 332.66±9.81 317.25±6.65 304.08±17.93 354.51±6.94 323.07±5.36 330.87±3.75

HalfCheetahDir 600.49 632.33±2.80 639.85±4.19 629.89±4.43 636.70±2.47 637.53±4.09 637.10±1.76 640.64±2.33

HalfCheetahVel −138.01 −118.46±3.42 −121.67±2.92 -108.52±3.76 −117.13±5.30 −109.65±2.10 −113.20±2.54 −112.90±3.46

MetaWorld 414.21 452.42±27.06 407.78±5.42 413.52±8.36 468.47±25.46 408.91±2.71 473.35±24.34 478.03±14.92

Average 284.08 321.73 314.66 313.04 323.03 322.83 330.08 334.16

Fullmodel
AntDir 259.61 401.63±12.31 360.96±2.33 319.69±3.22 335.06±10.50 304.95±10.96 370.08±2.45 412.18±16.48

HalfCheetahDir 600.49 634.61±1.28 643.79±3.67 630.08±0.69 634.82±4.20 627.78±3.14 650.84±4.01 642.62±3.96

HalfCheetahVel −138.01 −133.02±4.15 −122.31±4.63 −119.87±4.03 −120.37±4.45 −117.22±3.44 −121.39±1.60 -119.79±0.26

MetaWorld 414.21 441.05±14.92 424.88±27.26 471.02±23.65 468.97±24.53 434.59±13.35 548.98±30.80 553.36±35.35

Average 284.08 336.07 326.83 325.23 329.62 312.53 362.13 372.09

The effect of finetuning parameters. We compare four finetuning parameter configurations—Prompt
(0.76KB), Adaptor (0.19MB), Decorator (0.54MB), and Fullmodel (2.52MB)—to investigate the
impact of parameter count on finetuning efficacy. Experimental results across meta-RL environments
indicate that finetuning performance is highly sensitive to the choice of parameter configurations.
While Fullmodel finetuning—updating the largest parameter set—achieves the highest average
scores for both QP-DPO and QP-SFT, it is not uniformly optimal. Performance exhibits a clear
method-dependent preference: supervised approaches (SFT, DPO) generally benefit from full-model
updates, whereas RL-based methods (e.g., GRPO, CQL) often perform best under parameter-efficient
schemes (Adapters, Decorators). This dichotomy reflects differences in gradient supervision and
signal propagation across learning paradigms. In supervised settings, direct imitation of provided
trajectories or preferences is most effectively achieved through full-model finetuning, which facilitates
comprehensive signal propagation across all network layers and typically yields stronger convergence
and generalization (Mandlekar et al., 2021). Conversely, RL finetuning operates on inherently
noisy, high-variance reward signals, where update errors compound over extended horizons, causing
full-model parameter updates to exhibit unstable oscillatory behavior (Kumar et al., 2022). In
such regimes, parameter-efficient finetuning restricts the update subspace, mitigating overfitting to
stochastic rewards and improving stability and sample efficiency. Moreover, the results suggest
that Prompt-based finetuning, while parameter-efficient, tends to underperform in high-variance or
complex environments (e.g., MetaWorld), likely due to its limited expressive flexibility.

The effect of finetuning algorithms. Empirical results across diverse meta-RL environments and
parameter configurations consistently demonstrate the superiority of QP-based finetuning algorithms
(QP-DPO, QP-SFT) over both supervised methods (SFT, DPO) and RL-based approaches. QP
variants frequently achieve the highest or near-highest performance across various tasks and finetuning
parameters, highlighting their robustness and broad applicability. By optimizing policies with respect
to soft value estimates or preference-guided advantages, QP methods combine the stability and
sample efficiency of supervised learning with the adaptability and asymptotic performance of RL
finetuning. In contrast, pure RL methods such as PPO and CQL, while occasionally competitive,
often exhibit instability and lower average performance. This is likely attributable to the lack of strong
inductive priors and the high variance in gradient estimates, particularly in few-shot demonstration
regimes. Notably, in certain tasks—such as MetaWorld with Adaptor finetuning parameter—the
choice of finetuning algorithm can yield greater performance improvements than merely increasing
finetuning parameter size. For example, with PPO, switching the finetuning parameter from Adaptor
to Decorator results in a modest 3% performance gain, whereas changing the algorithm to QP-DPO

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SFT
DPO

GRPO PPO CQL
QP-DPO

QP-SFT
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Medium Dataset

SFT
DPO

GRPO PPO CQL
QP-DPO

QP-SFT

Expert Dataset
AntDir HalfCheetahDir HalfCheetahVel MetaWorld

Figure 1: Comparison of finetuning dataset quality across different finetuning algorithms in meta-RL
settings. Performance is normalized such that the highest score for each setting is scaled to 1.

320

330

340

350

Pe
rfo

rm
an

ce

AntDir (Medium)

595

600

605

610

615

HalfCheetahDir (Medium)

158

156

154

152

150

148

146

144

142
HalfCheetahVel (Medium)

400

420

440

460

480

MetaWorld (Medium)

20 40 60 80 100
Trajectory Number

320

325

330

335

340

345

350

355

Pe
rfo

rm
an

ce

AntDir (Expert)

20 40 60 80 100
Trajectory Number

630

632

634

636

638

640

HalfCheetahDir (Expert)

20 40 60 80 100
Trajectory Number

118

116

114

112

HalfCheetahVel (Expert)

20 40 60 80 100
Trajectory Number

410

420

430

440

450

460

470

480

MetaWorld (Expert)

SFT DPO GRPO PPO CQL QP-DPO QP-SFT

Figure 2: Impact of the number of finetuning trajectories on different algorithms across various
environments, evaluated with both Medium and Expert datasets. Scores are averaged over multiple
finetuning parameter configurations for each algorithm within each environment.

yields a 10% improvement. These findings underscore the critical importance of algorithm selection
in meta-RL settings.

Takeaway: No single algorithm consistently achieves optimal performance across all finetuning
parameter configurations and environments, underscoring the need for adaptive finetuning
strategies. Moreover, the choice of finetuning algorithm has a substantial impact on overall
performance, often comparable to or greater than the effect of finetuning parameter scale.

6 DISCUSSION

Ablation on finetuning data quality and quantity. We jointly analyze the effects of dataset quality
(Medium vs. Expert) and the number of finetuning trajectories on seven algorithms (as shown in Figure
1 and Figure 2). Two consistent patterns emerge. First, quality: QP-DPO and QP-SFT dominate
across both medium- and expert-quality regimes. RL-based methods (e.g., GRPO, PPO) exhibit
pronounced gains under expert data, suggesting stronger sensitivity to high-quality demonstrations
and effective credit assignment when optimal trajectories are present. In contrast, supervised methods
benefit relatively more from medium-quality datasets that contain a larger proportion of sub-optimal
trajectories, providing a stable imitation-based lower bound on policy performance. Second, quantity:
increasing the number of finetuning trajectories reliably improves performance for all methods,
underscoring the centrality of data availability for policy adaptation. Notably, QP-based methods
sustain superior results even in low-data settings, while purely supervised approaches degrade more
sharply when trajectories are scarce, indicating higher sample sensitivity.

Takeaway: (i) Supervised approaches yield stable, imitation-driven performance—particularly
when data quality is mixed—whereas RL-based methods can surpass them given expert demon-
strations and are comparatively advantageous in low-data regimes; (ii) regardless of the algorith-
mic family, more finetuning trajectories monotonically enhance performance; and (iii) across
regimes of both quality and quantity, QP-based methods (QP-DPO, QP-SFT) exhibit strong
robustness and top-line performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

320

325

330

335

340

345

Pe
rfo

rm
an

ce

AntDir (Medium)

594

596

598

600

602

604

606

HalfCheetahDir (Medium)

160.0

157.5

155.0

152.5

150.0

147.5

145.0

142.5

HalfCheetahVel (Medium)

410

420

430

440

450

460

470

MetaWorld (Medium)

20 40 60 80 100
Trajectory Number

315

320

325

330

335

340

345

350

355

Pe
rfo

rm
an

ce

AntDir (Expert)

20 40 60 80 100
Trajectory Number

630

635

640

645

650
HalfCheetahDir (Expert)

20 40 60 80 100
Trajectory Number

118

116

114

112

110

108
HalfCheetahVel (Expert)

20 40 60 80 100
Trajectory Number

400

420

440

460

480
MetaWorld (Expert)

SFT DPO GRPO PPO CQL QP-DPO QP-SFT

Figure 3: Impact of the number of finetuning trajectories on the performance of various algorithms
across multiple environments, assessed under both Medium and Expert dataset conditions in the
sparse reward setting. Scores are computed as the average across multiple finetuning parameter
configurations for each respective finetuning algorithm within the environment.

SFT

DPO

GRPO

PPO

CQL

QP-DPO

QP-SFT

SFT
0.2

0.4
0.6

0.8
1.0

Dense Reward

SFT

DPO

GRPO

PPO

CQL

QP-DPO

QP-SFT

SFT
0.2

0.4
0.6

0.8
1.0

Sparse Reward

Medium Expert

Figure 4: Performance comparison of various methods under both sparse and dense reward conditions.
Each method is evaluated with 50 finetuning trajectories, and results are averaged across multiple
environments and a range of finetuning parameter configurations.

Ablation study of the sparse reward setting. To assess the robustness of learning algorithms under
challenging feedback conditions, we evaluate model performance in sparse reward environments,
where agents receive only a cumulative reward at the final timestep—mirroring recent RL finetuning
practices in LLM reasoning (Guo et al., 2025; Swamy et al., 2025). As shown in Figure 3, sparse re-
wards significantly widen performance disparities both across algorithms and data regimes. QP-DPO
and QP-SFT exhibit greater robustness, maintaining stable performance with minimal degradation,
which we attribute to their policy optimization mechanisms that effectively combine the strengths of
SFT and RFT. In contrast, GRPO suffers from persistent underperformance, likely due to optimization
challenges and insufficient sample efficiency in offline settings.

Data quality proves particularly critical in the sparse regime: models trained on expert data con-
sistently incur less performance loss than those trained on medium data, highlighting the value
of optimal demonstrations when reward signals are limited. Moreover, while the relative trends
between supervised and RL-based approaches are similar to those observed in dense reward settings,
their magnitudes diverge. In low-data sparse settings, RL-based methods (e.g., PPO) demonstrate
smaller improvements as the number of trajectories increases, indicating that the absence of dense
feedback impedes effective Q-function learning and constrains policy improvement. Conversely,
supervised approaches show more stable and monotonic gains, as their objective is insensitive to
reward sparsity. In high-quality settings, however, RFT methods continue to achieve comparable
asymptotic performance, reflecting their capacity to exploit optimal trajectories more effectively.

A comparative summary across dense and sparse reward conditions (Figure 4) reinforces these
observations. QP-based methods remain consistently superior and robust across feedback structures,
with their performance margin over alternative approaches more pronounced in the sparse than in
the dense setting. By contrast, GRPO attains competitive results primarily under dense rewards but
degrades markedly under sparse supervision, a decline plausibly attributable to inaccurate group-
advantage estimation in the absence of frequent intermediate feedback.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

9.16KB 0.5M 1M 2M 4M 6M 0.54M 6.61M 12.66M 49.32M 97.52M 145.73M
Finetuning Parameters

300

400

500

600

700

800

Pe
rfo

rm
an

ce

Prompt (Medium)
Prompt (Expert)
Adaptor (Medium)
Adaptor (Expert)
Decorator (Medium)
Decorator (Expert)
Fullmodel (Medium)
Fullmodel (Expert)

Figure 5: Performance of QP-DPO under various finetuning parameter configurations across different
pretrained agent sizes in the MetaWorld benchmark. For certain configurations (e.g., Adaptor,
Fullmodel), the number of trainable parameters increases with the size of the pretrained agent, while
for others, the parameter count remains constant.

Takeaway: In sparse reward environments, (i) data quality plays a pivotal role—expert trajecto-
ries substantially mitigate performance degradation; (ii) RFT methods achieve higher asymptotic
returns given high-quality data, reflecting their ability to exploit optimal demonstrations; (iii)
supervised approaches provide more stable gains across data regimes, being less sensitive to
reward sparsity; and (iv) QP-based methods demonstrate superior robustness across both dense
and sparse settings, confirming their adaptability to different feedback structures.

Ablation study of scaling pretrained agents. We examine the effect of model scaling on downstream
finetuning performance in the MetaWorld benchmark by systematically comparing four finetuning
parameter configurations under both Medium and Expert data regimes. In certain configurations,
such as Adaptor and Fullmodel, the number of trainable parameters increases proportionally with the
size of the pretrained agent, whereas in others, such as Prompt and Decorator, the parameter count
remains constant regardless of model size. Additional details are provided in Appendix F.

Empirical results in Figure 5 indicate that most finetuning strategies benefit from larger pretrained
agent sizes, exhibiting consistent performance improvements as model capacity increases. However,
in the case of Fullmodel finetuning, the substantial rise in trainable parameters associated with
larger models—combined with limited finetuning data—often results in performance plateaus or
even degradation. These findings underscore the necessity of balancing model capacity with the
availability of high-quality supervision when developing scalable finetuning strategies.

Takeaway: Training instability and overfitting can arise when the parameter space is expanded
without sufficient data, as the resulting optimization problem becomes increasingly challenging
to solve effectively.

7 CONCLUSION

In this work, we investigate the state of RFT for TGAs in meta-RL settings. From an empirical
perspective, we evaluated the performance of various RFT methods across a range of finetuning
parameter configurations within meta-RL environments. Furthermore, we systematically examined
the impact of key factors—including the quality and quantity of finetuning data, reward sparsity,
and pretrained model scale—on downstream performance. Additionally, we introduce a lightweight
extension that integrates SFT with RFT-based policy improvement. This approach consistently
demonstrated superior results across all evaluated scenarios. We hope that this work provides a strong
foundation for future research into RFT algorithms for generative transformer agents.

Limitation. Although this work investigates RFT for pretrained GTAs, the largest models evaluated
have up to 40 million parameters—considerably smaller than contemporary large language models
with hundreds of millions or billions of parameters. While sizable relative to traditional RL agents,
this scale may not fully capture the behaviors of larger models. Future work incorporating larger
agents may yield different insights into the effectiveness of RFT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pranav Agarwal, Aamer Abdul Rahman, Pierre-Luc St-Charles, Simon JD Prince, and
Samira Ebrahimi Kahou. Transformers in reinforcement learning: a survey. arXiv preprint
arXiv:2307.05979, 2023.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022a.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022b.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
does return-conditioned supervised learning work for offline reinforcement learning? Advances in
Neural Information Processing Systems, 35:1542–1553, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Yunkai Gao, Rui Zhang, Jiaming Guo, Fan Wu, Qi Yi, Shaohui Peng, Siming Lan, Ruizhi Chen,
Zidong Du, Xing Hu, et al. Context shift reduction for offline meta-reinforcement learning.
Advances in Neural Information Processing Systems, 36:80024–80043, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Prompt-tuning decision transformer with
preference ranking. arXiv preprint arXiv:2305.09648, 2023.

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao.
Q-value regularized transformer for offline reinforcement learning. In International Conference on
Machine Learning, pp. 19165–19181. PMLR, 2024a.

Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt: Harmony
multi-task decision transformer for offline reinforcement learning. In International Conference on
Machine Learning, pp. 19182–19197. PMLR, 2024b.

Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforcement
learning with transformers: The development trajectory. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(12):8580–8599, 2024c.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from
graph modeling perspective. In The Twelfth International Conference on Learning Representations,
2024d.

Shengchao Hu, Wanru Zhao, Weixiong Lin, Li Shen, Ya Zhang, and Dacheng Tao. Prompt tuning
with diffusion for few-shot pre-trained policy generalization. arXiv preprint arXiv:2411.01168,
2024e.

Shengchao Hu, Yuhang Zhou, Ziqing Fan, Jifeng Hu, Li Shen, Ya Zhang, and Dacheng Tao. Continual
task learning through adaptive policy self-composition. arXiv preprint arXiv:2411.11364, 2024f.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Graph decision transformer for offline
reinforcement learning. SCIENCE CHINA-INFORMATION SCIENCES, 68(6), 2025.

Kaixin Huang, Li Shen, Chen Zhao, Chun Yuan, and Dacheng Tao. Solving continual offline
reinforcement learning with decision transformer. arXiv preprint arXiv:2401.08478, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F Chen, Shafiq Joty, and Furu Wei. Preference
optimization for reasoning with pseudo feedback. arXiv preprint arXiv:2411.16345, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020b.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm
post-training: A deep dive into reasoning large language models. arXiv preprint arXiv:2502.21321,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Daniel Lawson and Ahmed H Qureshi. Merging decision transformers: Weight averaging for forming
multi-task policies. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 12942–12948. IEEE, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Yang Yu, Junqiao Zhao, and Pheng-Ann Heng.
Towards an information theoretic framework of context-based offline meta-reinforcement learning.
arXiv preprint arXiv:2402.02429, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying
Wen, Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision
transformer. Machine Intelligence Research, 2023.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
Diffusion model as conditional planner for offline meta-rl. In International Conference on Machine
Learning, pp. 26087–26105. PMLR, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All
roads lead to likelihood: The value of reinforcement learning in fine-tuning. arXiv preprint
arXiv:2503.01067, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601–7614, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Zhi Wang, Chunlin Chen, and Daoyi Dong. Lifelong incremental reinforcement learning with
online bayesian inference. IEEE Transactions on Neural Networks and Learning Systems, 33(8):
4003–4016, 2021.

Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, and Chunlin Chen. Meta-dt:
Offline meta-rl as conditional sequence modeling with world model disentanglement. Advances in
Neural Information Processing Systems, 37:44845–44870, 2024.

Ying Wen, Ziyu Wan, Ming Zhou, Shufang Hou, Zhe Cao, Chenyang Le, Jingxiao Chen, Zheng Tian,
Weinan Zhang, and Jun Wang. On realization of intelligent decision-making in the real world: A
foundation decision model perspective. arXiv preprint arXiv:2212.12669, 2022.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631–24645. PMLR, 2022.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning.
Advances in neural information processing systems, 31, 2018.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In International
Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun Zhang, Jing Su, Yongfei Liu, and Zhi Jin.
Codedpo: Aligning code models with self generated and verified source code. arXiv preprint
arXiv:2410.05605, 2024a.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
o1-coder: an o1 replication for coding. arXiv preprint arXiv:2412.00154, 2024b.

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

A RELATED WORK

Offline Reinforcement Learning. Offline RL trains policies solely from static datasets, without
further environment interaction (Levine et al., 2020). This is especially valuable when interactions
are costly or risky. However, offline RL faces challenges from distribution shift between the behavior
and learned policies, often leading to performance drops (Fujimoto et al., 2019). Approaches such
as constrained or regularized dynamic programming help mitigate this issue (Fujimoto & Gu, 2021;
Kumar et al., 2020a; Kostrikov et al., 2021). Conditional sequence modeling offers a supervised
alternative, predicting actions from past state-action-reward sequences and keeping the learned
policy close to the data distribution (Chen et al., 2021; Hu et al., 2025; 2024a; Yamagata et al.,
2023; Hu et al., 2023; 2024d; Meng et al., 2023). This LLM-inspired paradigm enables scalable
RL with large data and compute. Diffusion models have also been adopted for offline RL, using
generative modeling techniques to represent policies or dynamics and achieving strong empirical
results (Janner et al., 2022; Ajay et al., 2022a; Chen et al., 2022; Wang et al., 2022). Related work
by Kumar et al. (2022) examines when offline RL outperforms behavioral cloning (supervised fine-
tuning), addressing a question closely aligned in our motivation. Their focus is standard offline RL
benchmarks and conditions under which policy improvement surpasses imitation, whereas our focus
is meta-RL: a pretrained, Transformer-based generative agent must adapt to unseen tasks using only
few-shot, offline data. The two perspectives are therefore complementary—ours emphasizes rapid
cross-task adaptation under strict data constraints, while theirs characterizes the policy-improvement
vs. imitation trade-off within a single-task offline regime.

Offline Meta-Reinforcement Learning. Offline meta-RL seeks to generalize to new tasks by training
on a distribution of offline tasks (Gao et al., 2023; Ni et al., 2023). Optimization-based methods (Finn
et al., 2017; Xu et al., 2018; Mitchell et al., 2021) and context-based approaches (Rakelly et al., 2019;
Zintgraf et al., 2021; Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2023; Li et al., 2024) have both
been explored, typically relying on temporal difference learning. However, these methods often
face instability due to the “deadly triad” and depend on hand-crafted heuristics to remain within the
offline dataset distribution (Brandfonbrener et al., 2022; Wang et al., 2021; Ajay et al., 2022b). In this
work, we focus on RFT for pretrained transformer-based generative agents in meta-reinforcement
learning tasks. This approach contrasts with previous studies that primarily seek to modify model
architectures or introduce novel optimization methods.

B ENVIRONMENTS AND DATASETS

In this section, we show details of evaluation environments over a variety of testbeds, as well as the
offline dataset collection process conducted on these environments.

Following established practice in offline meta-RL (Yuan & Lu, 2022; Mitchell et al., 2021; Wang et al.,
2024), we adopt two classical benchmarks: multi-task MuJoCo control (Ni et al., 2023; Todorov et al.,
2012) and MetaWorld (Yu et al., 2020). All methods are evaluated on the following environments:

• MuJoCo Multi-Task Control: We use Cheetah-Vel, Cheetah-Dir, and Ant-Dir, where task
variations arise from differing reward functions.

– Cheetah-Vel requires a planar cheetah to achieve target velocities sampled uniformly from
U [0.075, 3.0], with rewards based on proximity to the goal velocity.

– Cheetah-Dir and Ant-Dir involve controlling a cheetah or quadruped ant to move in specific
directions, with rewards proportional to the cosine similarity between the velocity and goal
direction (sampled from U [0, 2π] for Ant-Dir and limited to forward/backward for Cheetah-
Dir). Each episode is limited to 200 steps.

• MetaWorld: MetaWorld comprises 50 diverse robotic manipulation tasks with shared dynamics,
where a Sawyer robot interacts with objects of varying shapes and mechanisms. Tasks differ in
state and reward structures, requiring the robot to achieve different goals using a 4-dimensional
action space (3D end-effector position and gripper control). Performance is measured by the
average success rate across all tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For both MuJoCo and MetaWorld, we use 45 tasks for training and 5 held-out tasks for evaluation.

For the MuJoCo benchmark, we generate offline datasets by training a separate policy for each
task using the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018). Policy checkpoints are
periodically saved to produce different dataset types:

• Medium: Trajectories generated by a policy achieving between one-third and one-half of expert
performance.

• Expert: Trajectories generated by the final, converged expert policy.

We collect 100 trajectories per task for each dataset type.

For MetaWorld, we follow the procedure of Hu et al. (2024b), training task-specific SAC policies
to convergence. Offline datasets are constructed by sampling 1 million transitions per task from
the SAC replay buffer, capturing the training process up to convergence. We consider two dataset
compositions:

• Medium: Consists of the first 50% of trajectories (50 million transitions), representing early-stage
learning with reduced expert-level behavior.

• Expert: Consists of 100 million transitions per task, spanning from random initialization to
expert-level performance.

We collect 2,000 expert trajectories and 1,000 medium trajectories per task.

C IMPLEMENTATION DETAILS

Pretrained Generative Agents. We build our policy as a Transformer-based model, which is based
on minGPT open-source code 1. We vary the number of Transformer layers, hidden dimensions, and
attention heads depending on the scale of the pretrained (from (3, 128, 1) to (48, 256, 16)) model.

Q-networks. For finetuning algorithms that require state–action value estimation, we instantiate the
Q-function as a three-layer multilayer perceptron with Mish activations and a hidden width of 256
units per hidden layer.

Compute setup. All finetuning experiments are conducted on a single NVIDIA RTX 4090 GPU.
For pretraining, we use four RTX 4090 GPUs in parallel to accelerate training as the scale of the
pre-trained agents increases.

D FINETUNING PARAMETER CONFIGURATIONS

In Section 3.2, we introduce four distinct finetuning parameter configurations. Here, we elaborate on
these approaches in greater detail, as illustrated in Figure 6.

Prompt Tuning. Prompt tuning involves updating only a small set of prompt parameters, which are
typically initialized from sampled task trajectories P , while keeping the underlying model backbone
fixed (Hu et al., 2023; 2024e). This approach enables highly efficient adaptation to new tasks,
particularly in few-shot learning scenarios, with minimal risk of overfitting due to the limited number
of trainable parameters. Prompt tuning is especially advantageous when computational resources or
labeled data are scarce.

Adapter Tuning. Following the methodology of Huang et al. (2024), adapter tuning inserts
lightweight parameter-efficient modules—such as LoRA modules—primarily into the MLP lay-
ers of the Transformer architecture (Lawson & Qureshi, 2024; Hu et al., 2024f). The number and
placement of these adapters are typically determined by the structure of the backbone model, e.g.,
one adapter per MLP layer. During finetuning, only the adapter parameters are updated for each new
task, leaving the shared backbone parameters unchanged. This configuration allows for efficient,
isolated task adaptation and facilitates continual learning without catastrophic forgetting.

1https://github.com/karpathy/minGPT

16

https://github.com/karpathy/minGPT

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Causal Transformer

𝒔𝒕"𝟏𝒓#𝒕"𝟏

𝒂𝒕"𝟏 𝒂𝒕

𝒔𝒕𝒓$𝒕𝒂𝒕"𝟏 𝒂𝒕

𝒔∗𝟏𝒓#∗𝟏 𝒔∗𝑲∗𝒓$∗𝑲∗𝒂∗𝟏 𝒂∗𝑲∗

Prompt

𝒂∗𝑲∗

𝒂∗𝑲∗#𝟏𝒓#∗𝟐

Transformer-based Generative Agents

Prompt Update

Initial trajectory

Updated trajectory

Prompt Tuning

Causal
Transformer

Layer A

Input

Output

Adaptor Tuning

Causal
Transform

er

Input

Output

Residual
Policy

Decorator Tuning

Causal Transformer

Input

Output

Fullmodel Tuning

🔥

🔥

🔥

B 🔥 🔥

Figure 6: Finetuning parameter configurations. The left panel depicts the Transformer-based Gen-
erative Agents, while the four panels on the right illustrate the configurations for Prompt Tuning,
Adapter Tuning, Decorator Tuning, and Fullmodel Tuning, respectively.

Decorator Tuning. Decorator tuning draws inspiration from residual policy learning (Yuan et al.,
2024). In this approach, a residual policy πres is trained on top of a frozen base policy πbase. The
agent’s action at each state s is computed as the sum of the outputs from both policies: πbase(s) +
πres(s). This setup enables targeted adaptation to new tasks while preserving the knowledge encoded
in the base policy, thereby supporting both stability and flexibility in policy improvement.

Fullmodel Tuning. Fullmodel tuning entails updating all parameters of the agent jointly during
finetuning. Although this approach offers the greatest capacity for adaptation and optimization, it
also carries a significantly higher risk of overfitting, particularly in low-data regimes. Additionally,
full-model tuning substantially increases computational requirements, as all model weights are subject
to optimization.

E THEORETICAL SUPPORT

We provide theoretical insights to support the observed performance gains of QP-SFT over standard
SFT based on Hu et al. (2024a). Specifically, we derive a performance guarantee under a well-defined
set of assumptions in the sequential decision-making setting.

Consider a Markov Decision Process (MDP) M = (S,A, T ,R, µ0), where S is the state space, A is
the action space, T : S ×A×S → [0, 1] is the state transition probability function, R : S ×A → R
defines the reward function, and µ0 : S → [0, 1] is the initial state distribution. We now state the
following lemma.

Lemma E.1 (Alignment with respect to the conditioning function (Brandfonbrener et al., 2022)).
Consider an MDP, behavior β and conditioning function fr. Let Jr(π) = Eτ∼π[g

r(τ)], where
gr(τ) =

∑H
t=1 rt. Assume the following:

1. Return coverage: Pβ(g
r(τ) = fr(s1)|s1) ≥ αfr for all initial states s1.

2. Near determinism: P (r ̸= R(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s, a for some functions
T and R. Note that this does not constrain the stochasticity of the initial state.

3. Consistency of fr: fr(s) = fr(s′) + r for all s. 2

Then

Jr(π∗)− Jr(π) ≤ ϵ

(
1

αfr

+ 3

)
H2, (17)

where π is derived from Equation 3, π∗ is the optimal policy, and H is the horizon length of episode.
Moreover, there exist problems where the bound is tight up to constant factors.

Corollary E.2. If αfr > 0, ϵ = 0, and fr(s1) = V r∗(s1) for all initial states s1, then Jr(π∗) =
Jr(π).

Remark E.3. The behavior policy β specifies the data-generating distribution of the collected dataset,
while the conditioning function fr corresponds to the return-to-go token r̂ used in Transformer-based

2Note this can be exactly enforced (as in prior work) by augmenting the state space to include the cumulative
reward observed so far.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

generative agents. The lemma and corollary imply that, in nearly deterministic environments, and
given appropriate conditioning and sufficient data coverage (i.e., the behavior distribution places
support on near-optimal trajectories), SFT can recover policies that are near-optimal.

Based on Lemma E.1, we now give the following Theorem:
Theorem E.4. Consider an MDP with binary rewards and costs, behavior policy β, and conditioning
function fr. Let gr(τ) =

∑H
t=1 rt, H is the horizon length of episode. Assume the following:

1. Return coverage: Pβ(g
r(τ) = fr(s1)|s1) ≥ αfr for all initial states s1.

2. Near determinism: P (r ̸= R(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s,a for some functions
T and R.

3. Consistency of fr: fr(s) = fr(s′) + r for all s.

For timestep i, the probabilities of selecting actions with maximum reward satisfy:

Reward Selection: P{P̂ r
i − P r

i ≥ σr, ∀ i} ≥ 1− δr, where P r
i and P̂ r

i are probabilities under the
policies updated by Equation 3 and Equation 13, respectively. With probability at least (1− δr):

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[g
r(τ)] ≤ ϵ(

1

αfr

+ 3)H2 −Hσr.

where π̂ is derived from Equation 13.

Proof. We begin with:

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[g
r(τ)] (18)

= Eτ∼π∗ [gr(τ)]− Eτ∼π[g
r(τ)] + Eτ∼π[g

r(τ)]− Eτ∼π̂[g
r(τ)] (19)

= Jr(π∗)− Jr(π) + Jr(π)− Eτ∼π̂[g
r(τ)] (20)

≤ ϵ

(
1

αfr

+ 3

)
H2 + Jr(π)− Eτ∼π̂[g

r(τ)]. (21)

Next, for the second term in Equation 21:

Jr(π)− Eτ∼π̂[g
r(τ)] (22)

= Eτ∼π[g
r(τ)]− Eτ∼π̂[g

r(τ)] (23)

= Eτ∼π[

H∑
t=1

(rt)]− Eτ∼π̂[

H∑
t=1

(rt)] (24)

= Es1

H∑
t=1

(P r
t · rt)− Es1

H∑
t=1

(P̂ r
t · rt), (25)

(26)

where P r
t and P̂ r

t represent the probabilities of selecting the maximum-reward actions under policies
derived from Equation 3 and Equation 13, respectively. Since rewards are binary and by the condition
P{P̂ r

i − P r
i ≥ σr, ∀ i} ≥ 1− δr, we have:

Es1

H∑
t=1

(P r
t · rt)− Es1

H∑
t=1

(P̂ r
t · rt) (27)

= Es1

H∑
t=1

[(P r
t − P̂ r

t)rt] (28)

≤ Es1

H∑
t=1

(−σr) · rt (29)

≤ −Hσr. (30)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.001
0.01 0.1 1 2

327.5

330.0

332.5

335.0

337.5

340.0

342.5

345.0

347.5

P
er

fo
rm

an
ce

AntDir

0.001
0.01 0.1 1 2

600

605

610

615

620

625

630

635

HalfCheetahDir

0.001
0.01 0.1 1 2

160

150

140

130

120

HalfCheetahVel

0.001
0.01 0.1 1 2

430

440

450

460

470

MetaWorld

QP-DPO (Medium) QP-DPO (Expert) QP-SFT (Medium) QP-SFT (Expert)

Figure 7: Performance of QP-DPO and QP-SFT algorithms across various tasks under different
values of the hyperparameter α.

Substituting Equation 30 into Equation 21, we get:

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[g
r(τ)] (31)

≤ ϵ

(
1

αfr

+ 3

)
H2 −Hσr. (32)

Corollary E.5. If αfr > 0, ϵ = 0, and fr(s1) = V r∗(s1) for all initial states s1, then Jr(π∗) =

Jr(π) = Jr(π̂) under P̂ r
i = P r

i and σr = 0.
Remark E.6. Because the corollary’s conditions are stringent and seldom satisfied in practice, it is
informative to compare against Lemma E.1. Relative to the standard SFT objective in Eq. 3, our
framework (QP-SFT) achieves an additive improvement of H σr, thereby tightening the objective
and yielding superior policies compared with SFT baselines.

F MORE DISCUSSION

Ablation study of hyperparameter sensitivity. We present a comprehensive analysis of the impact
of the hyperparameter α on the performance of two algorithms, QP-DPO and QP-SFT, across four
continuous control environments in Figure 7. Experiments are conducted under both Medium and
Expert data regimes, evaluating five values of α (0.001, 0.01, 0.1, 1, and 2).

Our findings reveal several notable trends regarding the sensitivity of QP-DPO and QP-SFT to
the hyperparameter α. In the HalfCheetahDir and HalfCheetahVel environments, both algorithms
demonstrate stable performance across the evaluated range of α, indicating a relative insensitivity to
this hyperparameter. Nevertheless, at higher values of α (e.g., α = 2), QP-SFT exhibits a modest
decline in performance, suggesting that excessive weighting may hinder effective policy optimization.
In contrast, the AntDir environment displays greater sensitivity to α. For QP-DPO, higher α values
(0.1–1) correspond to improved performance, whereas QP-SFT experiences marked performance
deterioration as α increases, particularly when utilizing expert datasets. Within the MetaWorld
benchmark, QP-DPO achieves optimal performance at α = 1 under the Medium data regime, while
QP-SFT attains its best results at α = 0.1. Both algorithms exhibit reduced stability at extreme values
of α (i.e., α = 0.01 and α = 2), indicating that moderate values promote more stable and effective
learning in complex, multi-task scenarios. Overall, moderate values of α (specifically, α = 0.1 to
α = 1) yield more robust and consistent performance across the majority of environments and data
regimes. In contrast, very small (α = 0.001) or very large (α = 2) values tend to introduce instability
or lead to underfitting and overfitting effects.

Ablation study on scaling pretrained agents. As discussed in Section 6, we present a figure illus-
trating the performance implications of scaling pretrained agents. To provide a more comprehensive
understanding, Table 2 offers a detailed quantitative analysis of these effects. The pretrained agents
in our study are instantiated as Transformer-based generative agents, with model scale primarily
controlled by varying the number of attention layers and attention heads. This approach allows us to
systematically investigate the impact of model size on downstream performance. As shown in Table 2,
increasing the size of the pretrained agents generally leads to improved performance across a variety

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 2: Performance of QP-DPO under various finetuning parameter configurations across different
pretrained agent sizes in the MetaWorld benchmark. For certain configurations (e.g., Adaptor,
Fullmodel), the number of trainable parameters increases with the size of the pretrained agent, while
for others, the parameter count remains constant. The table reports both the finetuning parameter count
and corresponding performance, providing a comprehensive comparison of algorithmic scalability
and efficiency.

Medium
Size 9.16KB 9.16KB 9.16KB 9.16KB 9.16KB
Prompt 410.88± 1.2 419.78± 1.3 368.83± 2.5 591.68± 5.0 675.39± 3.2

Size 0.5M 1MB 2MB 4MB 6MB
Adaptor 572.81± 2.4 460.43± 3.3 298.20± 5.2 593.51± 3.5 675.39± 3.6

Size 0.54M 0.54M 0.54M 0.54M 0.54M
Decorator 449.68± 20.2 476.23± 10.3 277.14± 24.4 590.00± 23.2 672.58± 10.2

Size 6.61M 12.66M 49.32M 97.52M 145.73Mb
Fullmodel 504.42± 30.8 694.87± 20.3 375.22± 34.2 650.33± 23.5 756.41± 26.7

Expert
Size 9.16KB 9.16KB 9.16KB 9.16KB 9.16KB
Prompt 410.88± 1.1 419.78± 1.1 368.83± 1.7 591.68± 2.4 675.39± 3.0

Size 0.5M 1MB 2MB 4MB 6MB
Adaptor 505.46± 2.0 481.93± 2.5 349.31± 4.2 592.53± 4.2 675.39± 3.0

Size 0.54M 0.54M 0.54M 0.54M 0.54M
Decorator 488.06± 10.4 475.68± 14.5 278.57± 13.5 588.15± 14.7 672.75± 16.2

Size 6.61M 12.66M 49.32M 97.52M 145.73Mb
Fullmodel 504.49± 20.5 539.49± 23.1 393.38± 25.2 732.14± 26.4 691.17± 28.3

Table 3: Runtime comparison across pretrained agent scales and finetuning algorithms.

Runtime Comparison Across Pretrained Agent Scales (QP Algorithm)
Pretrained agents scale 5.83M 14.61M 65.32M 129.52M 193.73M

Prompt 143.13 min 236.29 min 323.47 min 592.63 min 665.86 min
Adaptor 162.16 min 260.91 min 367.86 min 699.91 min 745.77 min
Decorator 158.43 min 241.62 min 336.59 min 601.83 min 666.47 min
Fullmodel 147.39 min 238.11 min 327.34 min 602.61 min 670.85 min

Runtime Comparison Across Fine-Tuning Algorithms (Fixed Model Size)
Algorithms SFT DPO GRPO PPO CQL QP

Prompt 130.55 min 136.30 min 144.10 min 143.80 min 144.53 min 143.13 min
Adaptor 139.91 min 144.31 min 150.37 min 151.51 min 159.35 min 162.16 min
Decorator 141.36 min 147.62 min 150.29 min 152.01 min 157.46 min 158.43 min
Fullmodel 135.14 min 138.35 min 142.70 min 142.29 min 145.38 min 147.39 min

of finetuning parameter configurations and finetuning dataset qualities. However, for Fullmodel
finetuning, the substantial increase in trainable parameters introduced by larger architectures, when
coupled with limited finetuning data, can result in performance saturation or even degradation. These
results highlight the importance of balancing model capacity with the availability of high-quality
supervision when designing scalable finetuning strategies. Careful consideration of this trade-off is
crucial for maximizing performance gains while mitigating the risk of overfitting or inefficiency.

Ablation study of computational cost. We compare relative wall-clock time across algorithms
and pretrained agent scales (Table 3). Because absolute runtime is hardware-dependent, our focus
is on relative comparisons across algorithms and pretrained agent scales under a fixed setup. Two
factors primarily drive runtime differences: (i) the size of the pretrained model, which governs
forward/backward compute; and (ii) the complexity of the optimization objective, which varies
modestly across finetuning strategies but remains of the same order of magnitude. Empirically, our
method attains substantially higher performance at runtime comparable to strong baselines, indicating
favorable efficiency at similar computational cost.

Ablation study of main results. To complement Table 1, Figure 8 presents a task-specific visualiza-
tion that elucidates the relative performance across methodologies through normalized performance
metrics. Error bars convey variability across random seeds, and per-task rankings make effect sizes
more apparent than in tabular form. Across finetuning parameter configurations and environments,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Pr
om

pt

AntDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahVel

0.0 0.2 0.4 0.6 0.8 1.0

MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0

Ad
ap

to
r

AntDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahVel

0.0 0.2 0.4 0.6 0.8 1.0

MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0

D
ec

or
at

or

AntDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahVel

0.0 0.2 0.4 0.6 0.8 1.0

MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0

Fu
llm

od
el

AntDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahDir

0.0 0.2 0.4 0.6 0.8 1.0

HalfCheetahVel

0.0 0.2 0.4 0.6 0.8 1.0

MetaWorld

SFT DPO GRPO PPO CQL QP-DPO QP-SFT

Figure 8: Normalized performance of different finetuning algorithms on meta-RL environments using
expert-level offline datasets. Each method is evaluated with 50 finetuning trajectories, and results are
averaged over three independent runs with different random seeds.

our proposed methods consistently deliver competitive performance, typically ranking within the top
half of methods on most tasks.

21

	Introduction
	Background
	Transformer-based Generative Agent
	Reinforcement Finetuning

	Model Finetuning Overview
	Finetuning Algorithms
	Finetuning Parameter Configurations

	Experimental Setup
	The State of Reinforcement Finetuning
	Discussion
	Conclusion
	Related Work
	Environments and Datasets
	Implementation Details
	Finetuning Parameter Configurations
	Theoretical Support
	More Discussion

