
Proceedings Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Fuzzy c-Means Clustering in Persistence Diagram Space for
Deep Learning Model Selection

Thomas Davies t.o.m.davies@soton.ac.uk
University of Southampton, UK.

Jack Aspinall jack.aspinall@oriel.ox.ac.uk
University of Oxford, UK.

Bryan Wilder bwilder@andrew.cmu.edu
Carnegie Mellon University, US.

Long Tran-Thanh Long.Tran-Thanh@warwick.ac.uk

University of Warwick, UK.

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

Persistence diagrams concisely capture the structure of data, an ability that is increasingly
being used in the nascent field of topological machine learning. We extend the ubiquitous
Fuzzy c-Means (FCM) clustering algorithm to the space of persistence diagrams, enabling
unsupervised learning in a topological setting. We give theoretical convergence guarantees
that correspond to the Euclidean case and empirically demonstrate the capability of the
clustering to capture topological information via the fuzzy RAND index. We present an
application of our algorithm to a scenario that utilises both the topological and fuzzy nature
of our algorithm: pre-trained model selection in deep learning. As pre-trained models can
perform well on multiple tasks, selecting the best model is a naturally fuzzy problem; we
show that fuzzy clustering persistence diagrams allows for unsupervised model selection
using just the topology of their decision boundaries.

Keywords: Topological Data Analysis, Fuzzy Clustering, Model Selection

1. Introduction

Persistence diagrams, a concise representation of the topology of a point cloud with strong
theoretical guarantees, have emerged as a new tool in the field of data analysis (Edelsbrun-
ner and Harer, 2010). Persistence diagrams have been successfully used to analyse problems
ranging from identifying financial crashes (Gidea and Katz, 2018) to analysing protein bind-
ings (Kovacev-Nikolic et al., 2014), In this paper, we contribute to the increasing number of
topological machine learning techniques by extending the Fuzzy c-Means (FCM) clustering
algorithm (Bezdek, 1980) to the space of persistence diagrams. It is widely accepted that
many real-world datasets are not clearly delineated into hard categories (Campello, 2007).
Thus any algorithm that accounts for this is desirable, as evidenced by the large number
of publications studying and using fuzzy clustering algorithms (Li and Lewis, 2016; Yang
et al., 2019; Pantula et al., 2020). Our algorithm enables practitioners to study the fuzzy
nature of data through a topological lens directly in the space of persistence diagrams.

We perform the convergence analysis for our algorithm, giving the same guarantees as
traditional FCM clustering: that every convergent subsequence of iterates tends to a local

© 2022 T. Davies, J. Aspinall, B. Wilder & L. Tran-Thanh.

Davies Aspinall Wilder Tran-Thanh

minimum or saddle point. As this guarantee could lead to non-convergence in practice, we
empirically evaluate convergence on a total of 825 randomly generated persistence diagrams
and find that the algorithm converges every time. We evaluate the algorithm using a
variety of distances on persistence diagrams with the fuzzy RAND index (Campello, 2007),
a standard measure of cluster quality. We find that we fall into the standard paradigm:
distances that take longer to compute result in higher quality clustering, and approximating
distances leads to lower quality clusters that can be computed faster.

We demonstrate the practical value of fuzzy clustering persistence diagrams with an
application to pre-trained model selection. This application is inspired by the somewhat
surprising previous work showing that pre-trained deep learning models perform better on
tasks if they have topologically similar decision boundaries (Ramamurthy et al., 2019). As
one model can perform well on multiple tasks, this is a naturally fuzzy problem, and so
ideally suited to our algorithm. We use our method to cluster pre-trained models and tasks
(unseen datasets) using only the persistence diagrams of their decision boundaries. Not
only is our algorithm able to successfully cluster models to the task it’s originally trained
on based just on the topology of its decision boundary, but we demonstrate that higher
fuzzy cluster membership values imply better performance on tasks that the model has not
been trained on.

1.1. Related work

Means of persistence diagrams. Before we can cluster in the space of peristence dia-
grams we need to be able to compute means. Mileyko et al. (2011) first showed that means
and expectations are well-defined in the space of persistence diagrams. Specifically, they
showed that the Fréchet mean, an extension of means onto metric spaces, is well-defined
under weak assumptions on the space of persistence diagrams. Turner et al. (2012) then
developed an algorithm to compute the Fréchet mean. However, the combinatoric nature
of their algorithm makes it computationally intense. There is a relevant line of research for
speeding up the computation of means and barycentres. In particular, Lacombe et al. (2018)
framed the computation of means and barycentres in the space of persistence diagram as
an optimal transport problem, allowing them to use the Sinkhorn algorithm Cuturi and
Doucet (2014) for fast computation of approximate solutions. Techniques to speed up the
underlying matching problem fundamental to our computation have also been proposed by
Vidal et al. (2020) and Kerber et al. (2017). Our fuzzy clustering algorithm can integrate
these solutions to further speed up its computing time if necessary.

Learning with persistence-based summaries. Integrating diagrams into machine
learning workflows remained challenging even with well-defined means, as the space is non-
Hilbertian (Turner and Spreemann, 2019). As such, efforts have been made to map diagrams
into a Hilbert space; primarily either by embedding into finite feature vectors (Kalǐsnik,
2018; Fabio and Ferri, 2015; Chepushtanova et al., 2015) or functional summaries (Bubenik,
2015; Rieck et al., 2019), or by defining a positive-definite kernel on diagram space (Rein-
inghaus et al., 2015; Carrière et al., 2017; Le and Yamada, 2018). These vectorisations
have been integrated into deep learning either by learning parameters for the embedding
(Hofer et al., 2017; Carrière et al., 2020; Kim et al., 2020; Zhao and Wang, 2019; Zieliński
et al., 2019), or as part of a topological loss or regulariser (Chen et al., 2018; Gabrielsson

2

Short Title

et al., 2020; Clough et al., 2020; Moor et al., 2019). However, the embeddings used in these
techniques deform the metric structure of persistence diagram space (Bubenik and Wagner,
2019; Wagner, 2019; Carrière and Bauer, 2019), potentially leading to the loss of important
information. In comparison, our algorithm acts in the space of persistence diagrams so it
does not deform the structure of diagram space via embeddings. However, as an unsuper-
vised learning algorithm, our algorithm is intended to complement these techniques, offering
a different approach for practitioners to use, rather than directly competing with them.

Maroulas et al. (2017) gave an algorithm for hard clustering persistence diagrams based
on the algorithm by Turner et al. (2012). As mentioned earlier, many real-world datasets are
not clearly delineated into hard categories (Campello, 2007), and a fuzzy algorithm would
naturally be chosen over a hard clustering algorithm when dealing with such datasets.

Figure 1: On the left we show nine synthetic datasets, consisting of noise, one hole, or two
holes. In the middle we compute the 1-persistence diagrams, which we recall
counts the number of holes. We cluster these persistence diagrams, resulting in
three learnt cluster centres, shown on the right. The cluster centres have zero,
one, and two significantly off-diagonal points: the clustering algorithm has learnt
the topological features of the datasets.

2. Topological preliminaries

Topological Data Analysis emerged from the study of algebraic topology, providing a toolkit
to fully describe the topology of a dataset. We offer a quick summary below; for more com-
prehensive details see Edelsbrunner and Harer (2010). A set of points in Rd are indicative
of the shape of the distribution they are sampled from. By connecting points that are pair-
wise within ϵ > 0 distance of each other, we can create an approximation of the distribution
called the Vietoris-Rips complex (Vietoris, 1927). Specifically, we add the convex hull of
any collection of points that are pairwise at most ϵ apart to the ϵ-Vietoris-Rips complex.
However, choosing an ϵ remains problematic; too low a value and key points can remain
disconnected, too high a value and the points become fully connected. To overcome this

3

Davies Aspinall Wilder Tran-Thanh

we use persistence: we consider the approximation over all values of ϵ simultaneously, and
study how the topology of that approximation evolves as ϵ grows. We call the collection of
complexes for all ϵ a filtration.

For each ϵ, we compute the p-homology group. This tells us the topology of the ϵ-
Vietoris-Rips complex: the 0-homology counts the number of connected components, the
1-homology counts the number of holes, the 2-homology counts the number of voids, and so
on (Edelsbrunner et al., 2000). The p-persistent homology group is created by summing the
p-homology groups over all ϵ. This results in a p-PH group that summarises information
about the topology of the dataset at all granularities. If a topological feature only persists
for a short amount of time, then it’s more likely to be noise (Cohen-Steiner et al., 2007).
We can stably map a p-PH group into a multiset in the extended plane called a persistence
diagram (Chazal et al., 2012). Each topological feature has a birth and death – a feature
is ‘born’ when it enters the filtration and ‘dies’ when it is destroyed. The birth and death
values (i.e., the values of ϵ when a topological feature enters the filtration or is destroyed)
are the axes of the persistence diagram, so each point in the persistence diagram represents
a topological feature. The larger the difference between birth and death values, the longer
a topological feature persists for, and the more likely the feature is to be a feature of the
distribution that the points are sampled from. By computing the birth and death points for
each topological feature in the filtration, we get a complete picture of the topology of the
point cloud at all granularities (Zomorodian and Carlsson, 2005). The persistence diagram
is the collection of birth/death points, along with the diagonal ∆ = {(a, a) : a ∈ R} with
infinite multiplicity, added in order to make the space of persistence diagrams complete
(Mileyko et al., 2011).

Figure 2: Heatmaps showing average number of iterations for fuzzy clustering of persistence
diagrams (left) and the weighted Fréchet mean computation (right) to converge.
Convergence of the FCM algorithm is determined when the cost function is stable
to within ±0.5%. Convergence experiments were carried out on a total of 825
persistence diagrams, including three repeats .

4

Short Title

3. Algorithmic design

3.1. Clustering persistence diagrams

In order to cluster we need a distance on the space of persistence diagrams. We use the 2-
Wasserstein L2 metric as it is stable on persistence diagrams of finite point clouds (Chazal
et al., 2012). The Wasserstein distance is an optimal transport metric that has found
applications across machine learning. In the Euclidean case, it quantifies the smallest
distance between optimally matched points. Given diagrams D1,D2, the distance is

W2(D1,D2) =

 inf
γ:D1→D2

∑
x∈D1

||x− γ(x)||22

1/2

,

where the infimum is taken over all bijections γ : D1 → D2. Note that as we added the
diagonal with infinite multiplicity to each diagram, these bijections exist. If an off-diagonal
point is matched to the diagonal the transportation cost is simply the shortest distance to
the diagonal. In fact, the closer a point is to the diagonal, the more likely it is to be noise
(Cohen-Steiner et al., 2007), so this ensures our distance is not overly affected by noise.

We work in the space DL2 = {D : W2(D,∆) <∞},1 as this leads to a geodesic space with
known structure (Turner et al., 2012). Given a collection of persistence diagrams {Dj}nj=1 ⊂
DL2 and a fixed number of clusters c, we wish to find cluster centres {Mk}ck=1 ⊂ DL2 , along
with membership values rjk ∈ [0, 1] that denote the extent to which Dj is associated with
cluster Mk. We follow probabilistic fuzzy clustering, so that

∑
k rjk = 1 for each j.

We extend the FCM algorithm originally proposed by Bezdek (1980). Our rjk is the
same as traditional FCM clustering, adapted with the Wasserstein distance. That is,

rjk =

(
c∑

l=1

W2(Mk,Dj)

W2(Ml,Dj)

)−1

. (1)

To update Mk, we compute the weighted Fréchet mean D̂ of the persistence diagrams
{Dj}nj=1 with the weights {r2jk}nj=1.

Specifically,

Mk ←− arg min
D̂

n∑
j=1

r2jkW2(D̂,Dj)
2, for k = 1, . . . , c. (2)

As the weighted Fréchet mean extends weighted centroids to general metric spaces, this
gives our fuzzy cluster centres. The computation of the weighted Fréchet mean is covered in
Section 3.2. By alternatively updating (1) and (2) we get a sequence of iterates. Theorem
1, proven in Appendix A, provides the same convergence guarantees as traditional FCM
clustering.

1. To ensure that our persistence diagrams are all in this space, we map points at infinity to a hyper-
parameter T that is much larger than other death values in the diagram. Alternatively, this can be
avoided entirely by computing the diagrams with extended persistence (Cohen-Steiner et al., 2009),
which removes points at infinity.

5

Davies Aspinall Wilder Tran-Thanh

Theorem 1:
Every convergent subsequence of the sequence of iterates obtained by alternatively updating
membership values and cluster centres with (1) and (2) tends to a local minimum or saddle
point of the cost function J(R,M) =

∑n
j=1

∑c
k=1 r

2
jkW2(Mk,Dj)

2.

Observe that we only guarantee the convergence of subsequences of iterates. This is the
same as traditional FCM clustering, so we follow the same approach to a stopping condition
and run our algorithm for a fixed number of iterations.

3.2. Computing the weighted Fréchet mean

Turner et al. (2012) give an algorithm for the computation of Fréchet means. In this section
we extend their algorithm and proof of convergence to the weighted case. The proof is by
gradient descent, which requires defining a differential structure on the space of persistence
diagrams. Our extension to the proof comes down to proving that given some supporting
vectors of the Fréchet function, the weighted sum of those is also a supporting vector. For
more details see Appendix B.

To give some intuition, start by recalling that when processing the persistence diagrams
we add copies of the diagonal to ensure that each diagram has the same cardinality; denote
this cardinality as m. To compute the weighted Fréchet mean, we need to find Mk =
{y(i)}mi=1 that minimises the Fréchet function in (2). Implicit to the Wasserstein distance is

a bijection γj : y(i) 7→ x
(i)
j for each j. Supposing we know these bijections, we can rearrange

the Fréchet function into the form F (Mk) =
∑n

j=1 r
2
jkW2(Mk,Dj)

2 =
∑m

i=1

∑n
j=1 r

2
jk||y(i)−

x
(i)
j ||2. In this form, the summand is minimised for y(i) by the weighted Euclidean centroid of

the points {x(i)j }nj=1. Therefore to compute the weighted Fréchet mean, we need to find the
correct bijections. We start by using the Hungarian algorithm to find an optimal matching
between Mk and each Dj . Given a Dj , for each point y(i) ∈ Mk, the Hungarian algorithm

will assign an optimally matched point x
(i)
j ∈ Dj . Specifically, we find matched points[

x
(i)
j

]m
i=1
←− Hungarian(Mk,Dj), for each j = 1, . . . , n. (3)

Now, for each y(i) ∈ Mk we need to find the weighted average of the matched points[
x
(i)
j

]n
j=1

. However, some of these points could be copies of the diagonal, so we need to

consider three distinct cases: that each matched point is off-diagonal, that each one is a
copy of the diagonal, or that the points are a mixture of both. We start by partitioning

1, . . . , n into the indices of the off-diagonal points J
(i)
OD =

{
j : x

(i)
j ̸= ∆

}
and the indices of

the diagonal points J
(i)
D =

{
j : x

(i)
j = ∆

}
for each i = 1, . . . ,m. Now, if IOD = ∅ then y(i)

is a copy of the diagonal. If not, let w =
(∑

j∈J
(i)
OD

r2jk

)−1∑
j∈J

(i)
OD

r2jkx
(i)
j be the weighted

mean of the off-diagonal points. If J
(i)
D = ∅, then y(i) = w. Otherwise, let w∆ be the point

on the diagonal closest to w. Then our update is

y(i) ←−

∑
j∈J

(i)
OD

r2jkx
(i)
j +

∑
j∈J

(i)
D

r2jkw∆∑n
j=1 r

2
jk

(4)

6

Short Title

Figure 3: For computational speedups practitioners may wish to use different distances in
the clustering algorithm. We use the fuzzy RAND index (Campello, 2007) to
evaluate cluster quality when using some common distances. The more expen-
sive optimal matching-based distances perform best, whereas approximations and
embedding-based distances are faster but score lower.

for i = 1, . . . ,m. We alternate between (3) and (4) until the matching remains the
same. Theorem 2, proving that this algorithm converges to a local minimum of the Fréchet
function, is proven in Appendix B.

Theorem 2:
Given diagrams Dj , membership values rjk, and the Fréchet function F (D̂) =

∑n
j=1 r

2
jkW2(D̂,Dj)

2,

then Mk = {y(i)}mi=1 is a local minimum of F if and only if there is a unique optimal pairing
from Mk to each of the Dj and each y(i) is updated via (4).

4. Experiments

4.1. Synthetic data

Example clustering. We start by demonstrating our algorithm on a simple synthetic
dataset designed to highlight its ability to cluster based on topology. We produce three
datasets of noise, three datasets of a ring, and three datasets of figure-of-eights, all shown
on the left of Figure 1. In the middle of Figure 1 we show the corresponding 1-PH persistence
diagrams. Note that the persistence diagrams have either zero, one, or two significant off-
diagonal points, corresponding to zero, one, or two holes in the datasets. We then use our
algorithm to cluster the nine persistence diagrams into three clusters. Having only been
given the list of diagrams, the number of clusters, and the maximum number of iterations,
our algorithm successfully clusters the diagrams based on their topology. The right of Figure
1 shows that the cluster centres have zero, one, or two off-diagonal points: our algorithm
has found cluster centres that reflect the topological features of the datasets.

Empirical behaviour. Figure 2 shows the results of experiments run to determine the
empirical performance of our algorithm. We give theoretical guarantees that every conver-

7

Davies Aspinall Wilder Tran-Thanh

gent subsequence will tend to a local minimum, but in practice it remains important that our
algorithm will converge within a reasonable timeframe. To this end we ran experiments on
a total of 825 randomly generated persistence diagrams, recording the number of iterations
and cost functions for both the FCM clustering and the weighted Fréchet mean (WFM)
computation. We considered the FCM to have converged when the cost function remained
within ±0.5%. As explained in Section 3.2, the WFM converges when the matching stays
the same. Our experiments showed that the FCM clustering consistently converges within 5
iterations, regardless of the number of diagrams and points per diagram (note that the time
per iteration increases as the number of points/diagrams increases, even if the number of
iterations remains stable). We had no experiments in which the algorithm did not converge.
The WFM computation requires more iterations as both number of diagrams and number
of points per diagram increases, but we once again experienced no failures to converge.

The use of the Wasserstein distance in the clustering still means that some large-scale
problems are computationally intractable. To explore solutions to this, we investigated
the use of different distances in Equation (1). Specifically, we evaluated the quality of
learnt clusters using the fuzzy RAND index (Campello, 2007) when clustering with the 2-
Wasserstein distance, bottleneck distance, sliced Wasserstein kernel (Carrière et al., 2017),
heat kernel, and L2 distance between persistence images (Chepushtanova et al., 2015).
We find that the more expensive optimal matching-based distances perform best, whereas
approximations and embedding-based distances are faster but score lower. These results
are shown in Figure 3.

4.2. Deep Learning Model Selection

Previous initial work has suggested that deep learning models will perform better on un-
seen datasets which have a similar topological complexity to the model’s decision boundary
(Ramamurthy et al., 2019). In fact, there is an increasing amount of work studying the link
between topology and neural network performance (Rieck et al., 2018; Guss and Salakhut-
dinov, 2018). To this end we utilise our algorithm to cluster the topology of the decision
boundaries of pre-trained models and tasks (labelled datasets). Given a task we find the
nearest cluster centre, then select the models nearest to that centre. Even though the only
information utilised for the model selection is the topology of the decision boundaries, we
find that it consistently selects the top performing model as the first choice, and additional
choices perform above average, despite not being trained on the task. This further confirms
that the topology of the decision boundary is indicative of generalisation ability to unseen
tasks. Furthermore, our algorithm is able to exploit this information to learn cluster centres
that consistently select the best performing models on tasks.

Specifically, given a dataset with n classes, we fix one class to define n − 1 tasks: bi-
nary classification of the fixed class vs each of the remaining classes. On each of these
tasks, we train a model. We compute the decision boundary of the model f , defined as
(x1, . . . , xm, f(x)) where f(x) is the model’s prediction for x = (xi)i, and the decision
boundary of the tasks, defined via the labelled dataset as (x1, . . . , xm, y) where y is the true
label. We compute the 1-persistence diagrams of the tasks’ and models’ decision boundaries
and cluster them to obtain membership values and cluster centres. To view task and model
proximity through our clustering, we find the cluster centre with the highest membership

8

Short Title

value for each task, and consider the models closest to that cluster centre. Note that model
selection is naturally a fuzzy task: one model can (and does) perform well on multiple
tasks. Therefore this is a task best suited to fuzzy clustering. We further discuss why hard
clustering does not work here in Appendix C.3.

To assess the ability of our model/task clustering, we performed the above experiment
on three different datasets: MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al., 2017),
and Kuzushiji-MNIST (Clanuwat et al., 2018). We repeat each experiment three times using
sequential seeds, resulting in a total of 81 trained models. Our goal is to evaluate whether
or not the clustering is capturing information about model performance on tasks, so as a
baseline we use the average performance of all models on a fixed task, averaged over all
tasks. We start by verifying what happens if we use the model closest to the cluster centre
associated with the task (i.e., top-1). We see a significant increase in performance, indicating
that the topological fuzzy clustering has selected the model trained on the task, despite only
having information about the topology of the decision boundary. We also compute the top-3
and top-2 performance change over average. We still see a statistically significant increase
in performance over average performance, indicating that the fuzzy clusters are capturing
information about model generalisation to unseen tasks. These results are shown in Figure
4.

Figure 4: Performance increase/decrease over average task performance when using the
fuzzy clustered persistence diagrams of decision boundaries for model selection.
Given a task, we find its nearest cluster centre, and use fuzzy membership values
to select the nearest models. The increase in performance demonstrates that our
fuzzy clustering automatically clusters models near tasks they perform well on,
using just the topology of their decision boundaries.

5. Conclusion

We have extended Fuzzy c-Means clustering to the space of persistence diagrams, adding an
important class of unsupervised learning algorithm to Topological Data Analysis’ toolkit.
We give theoretical and empirical convergence results, and study applications to model se-

9

Davies Aspinall Wilder Tran-Thanh

lection in deep learning. We find the results on decision boundaries particularly interesting:
successfully matching pre-trained models to new tasks by fuzzy clustering a topological
representation of their decision boundaries could be a useful tool in a model marketplace
scenario. Future work should further investigate the ability of the topology of the decision
boundaries to quantify generalisation to unseen tasks in deep learning models.

References

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
Iterative bregman projections for regularized transportation problems. SIAM Journal on
Scientific Computing, 2015. doi: 10.1137/141000439.

J. C. Bezdek. A convergence theorem for the fuzzy isodata clustering algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(1):1–8, Jan 1980.
ISSN 1939-3539. doi: 10.1109/TPAMI.1980.4766964.

J. C. Bezdek, R. J. Hathaway, M. J. Sabin, and W. T. Tucker. Convergence theory for
fuzzy c-means: Counterexamples and repairs. IEEE Transactions on Systems, Man, and
Cybernetics, 17(5):873–877, 1987.

Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(3):77–102, 2015. URL http://jmlr.org/papers/v16/

bubenik15a.html.

Peter Bubenik and Alexander Wagner. Embeddings of persistence diagrams into hilbert
spaces. CoRR, abs/1905.05604, 2019. URL http://arxiv.org/abs/1905.05604.

Ricardo JGB Campello. A fuzzy extension of the rand index and other related indexes
for clustering and classification assessment. Pattern Recognition Letters, 28(7):833–841,
2007.

Mathieu Carrière and Ulrich Bauer. On the metric distortion of embedding persistence
diagrams into separable hilbert spaces. In Symposium on Computational Geometry, 2019.

Mathieu Carrière, Marco Cuturi, and S. Oudot. Sliced wasserstein kernel for persistence
diagrams. In ICML, 2017.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, T. Lacombe, Martin Royer, and Y. Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological
signatures. In AISTATS, 2020.

Frédéric Chazal, Vin Silva, Marc Glisse, and Steve Oudot. The Structure and Stability of
Persistence Modules. 07 2012. doi: 10.1007/978-3-319-42545-0.

Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. Toporeg: A topological regularizer
for classifiers. CoRR, abs/1806.10714, 2018. URL http://arxiv.org/abs/1806.10714.

Sofya Chepushtanova, Tegan Emerson, Eric Hanson, Michael Kirby, Francis Motta, Rachel
Neville, Chris Peterson, Patrick Shipman, and Lori Ziegelmeier. Persistence images: An
alternative persistent homology representation. 07 2015.

10

http://jmlr.org/papers/v16/bubenik15a.html
http://jmlr.org/papers/v16/bubenik15a.html
http://arxiv.org/abs/1905.05604
http://arxiv.org/abs/1806.10714

Short Title

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. Deep learning for classical japanese literature, 2018.

J. Clough, N. Byrne, I. Oksuz, V. A. Zimmer, J. A. Schnabel, and A. King. A topological loss
function for deep-learning based image segmentation using persistent homology. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2020.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persis-
tence diagrams. Discrete & Computational Geometry, 37(1):103–120, Jan 2007.
ISSN 1432-0444. doi: 10.1007/s00454-006-1276-5. URL https://doi.org/10.1007/

s00454-006-1276-5.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincare and lefschetz duality. FOUNDATIONS OF COMPUTATIONAL MATHEMAT-
ICS, page 2009, 2009.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. volume 32
of Proceedings of Machine Learning Research, pages 685–693, Bejing, China, 22–24 Jun
2014. PMLR. URL http://proceedings.mlr.press/v32/cuturi14.html.

Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American
Mathematical Society, 2010. ISBN 978-0-8218-4925-5.

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. volume 28, pages 454 – 463, 02 2000. ISBN 0-7695-0850-2. doi: 10.1109/
SFCS.2000.892133.

Barbara Di Fabio and Massimo Ferri. Comparing persistence diagrams through complex
vectors. In Image Analysis and Processing — ICIAP 2015, pages 294–305. Springer
International Publishing, 2015. doi: 10.1007/978-3-319-23231-7 27. URL https://doi.

org/10.1007/978-3-319-23231-7_27.

Rickard Brüel Gabrielsson, Bradley J. Nelson, Anjan Dwaraknath, and Primoz Skraba.
A topology layer for machine learning. volume 108 of Proceedings of Machine Learning
Research, pages 1553–1563, Online, 26–28 Aug 2020. PMLR. URL http://proceedings.

mlr.press/v108/gabrielsson20a.html.

Marian Gidea and Yuri Katz. Topological data analysis of financial time series: Landscapes
of crashes. Physica A: Statistical Mechanics and its Applications, 491:820–834, Febru-
ary 2018. doi: 10.1016/j.physa.2017.09.028. URL https://doi.org/10.1016/j.physa.

2017.09.028.

William H. Guss and R. Salakhutdinov. On characterizing the capacity of neural networks
using algebraic topology. ArXiv, abs/1802.04443, 2018.

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 1634–1644. Curran Associates, Inc., 2017. URL http://papers.nips.

cc/paper/6761-deep-learning-with-topological-signatures.pdf.

11

https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5
http://proceedings.mlr.press/v32/cuturi14.html
https://doi.org/10.1007/978-3-319-23231-7_27
https://doi.org/10.1007/978-3-319-23231-7_27
http://proceedings.mlr.press/v108/gabrielsson20a.html
http://proceedings.mlr.press/v108/gabrielsson20a.html
https://doi.org/10.1016/j.physa.2017.09.028
https://doi.org/10.1016/j.physa.2017.09.028
http://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures.pdf
http://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures.pdf

Davies Aspinall Wilder Tran-Thanh

Sara Kalǐsnik. Tropical coordinates on the space of persistence barcodes. Founda-
tions of Computational Mathematics, 19(1):101–129, January 2018. doi: 10.1007/
s10208-018-9379-y. URL https://doi.org/10.1007/s10208-018-9379-y.

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare per-
sistence diagrams. Journal of Experimental Algorithmics (JEA), 22:1–20, 2017.

Kwangho Kim, Jisu Kim, J. Kim, Frédéric Chazal, and L. Wasserman. Efficient topological
layer based on persistent landscapes. ArXiv, abs/2002.02778, 2020.

Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo. Using persistent
homology and dynamical distances to analyze protein binding. Statistical Applications
in Genetics and Molecular Biology. January 2016, Volume 15, Issue 1, Pages 19-38, 2014.

Theo Lacombe, Marco Cuturi, and Steve Oudot. Large scale computation of means and
clusters for persistence diagrams using optimal transport. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 9770–9780. Curran Associates, Inc., 2018.

Tam Le and Makoto Yamada. Persistence fisher kernel: A riemannian manifold kernel for
persistence diagrams. In NeurIPS, 2018.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

J. Li and H. W. Lewis. Fuzzy clustering algorithms — review of the applications. In 2016
IEEE International Conference on Smart Cloud (SmartCloud), pages 282–288, 2016. doi:
10.1109/SmartCloud.2016.14.

J. Li and J. Z. Wang. Real-time computerized annotation of pictures. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(6):985–1002, 2008.

H. Ling and K. Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5):
840–853, 2007.

Vasileios Maroulas, Joshua Mike, and Andrew Marchese. K-means clustering on the space
of persistence diagrams. In SPIE, page 29, 08 2017. doi: 10.1117/12.2273067.

Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability measures on the space of
persistence diagrams. Inverse Problems - INVERSE PROBL, 27, 12 2011. doi: 10.1088/
0266-5611/27/12/124007.

M. Moor, Max Horn, Bastian Alexander Rieck, and K. Borgwardt. Topological autoen-
coders. ArXiv, abs/1906.00722, 2019.

P. D. Pantula, S. S. Miriyala, L. Giri, and K. Mitra. Synchronicity identification in hip-
pocampal neurons using artificial neural network assisted fuzzy c-means clustering. In
2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1594–1600,
2020. doi: 10.1109/SSCI47803.2020.9308344.

12

https://doi.org/10.1007/s10208-018-9379-y

Short Title

Karthikeyan Natesan Ramamurthy, Kush Varshney, and Krishnan Mody. Topological data
analysis of decision boundaries with application to model selection. volume 97 of Proceed-
ings of Machine Learning Research, pages 5351–5360, Long Beach, California, USA, 09–15
Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/ramamurthy19a.html.

J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for topological
machine learning. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4741–4748, 2015.

Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn, Thomas
Gumbsch, and Karsten M. Borgwardt. Neural persistence: A complexity measure for
deep neural networks using algebraic topology. CoRR, abs/1812.09764, 2018. URL
http://arxiv.org/abs/1812.09764.

Bastian Alexander Rieck, F. Sadlo, and H. Leitte. Topological machine learning with per-
sistence indicator functions. ArXiv, abs/1907.13496, 2019.

Katharine Turner and Gard Spreemann. Same but different: Distance correlations between
topological summaries. arXiv: Algebraic Topology, 2019.

Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for
distributions of persistence diagrams. Discrete & Computational Geometry, 52:44–70,
2012.

J. Vidal, J. Budin, and J. Tierny. Progressive wasserstein barycenters of persistence di-
agrams. IEEE Transactions on Visualization and Computer Graphics, 26(1):151–161,
2020.

L. Vietoris. Über den höheren zusammenhang kompakter röume und eine klasse von zusam-
menhangstreuen abbildungen. Mathematische Annalen, 97(1):454–472, December 1927.
doi: 10.1007/bf01447877. URL https://doi.org/10.1007/bf01447877.

Alexander Wagner. Nonembeddability of persistence diagrams with p¿2 wasserstein metric.
ArXiv, abs/1910.13935, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

H. Yang, Q. Yao, A. Yu, Y. Lee, and J. Zhang. Resource assignment based on dynamic
fuzzy clustering in elastic optical networks with multi-core fibers. IEEE Transactions on
Communications, 67(5):3457–3469, 2019. doi: 10.1109/TCOMM.2019.2894711.

J. Ye and J. Li. Scaling up discrete distribution clustering using admm. In 2014 IEEE
International Conference on Image Processing (ICIP), pages 5267–5271, 2014.

Jianbo Ye, Panruo Wu, James Wang, and Jia Li. Fast discrete distribution clustering using
wasserstein barycenter with sparse support. IEEE Transactions on Signal Processing,
PP:1–1, 01 2017. doi: 10.1109/TSP.2017.2659647.

13

http://proceedings.mlr.press/v97/ramamurthy19a.html
http://arxiv.org/abs/1812.09764
https://doi.org/10.1007/bf01447877

Davies Aspinall Wilder Tran-Thanh

W.I. Zangwill. Nonlinear programming: a unified approach. Prentice-Hall international
series in management. Prentice-Hall, 1969. URL https://books.google.co.uk/books?

id=TWhxLcApH9sC.

Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 9859–9870. Curran Associates, Inc., 2019.

Bartosz Zieliński, Micha l Lipiński, Mateusz Juda, Matthias Zeppelzauer, and Pawe l D lotko.
Persistence bag-of-words for topological data analysis. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 4489–
4495. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/624. URL https://doi.org/10.24963/ijcai.2019/624.

Afra Zomorodian and Gunnar Carlsson. Computing Persistent Homology. Discrete
& Computational Geometry, 33(2):249–274, 2005. ISSN 1432-0444. doi: 10.1007/
s00454-004-1146-y. URL https://doi.org/10.1007/s00454-004-1146-y.

Appendix A. Convergence of the FCM clustering algorithm

We first need to consider the update steps (1) and (2) as a single update procedure. Let
F : M 7→ R be defined by (1) and G : R 7→ M be defined by (2), and for R = {rjk} and
M = {Mk} consider the sequence{

T (l)(R,M) : l = 0, 1, . . .
}

where T (R,M) = (F ◦ G(R), G(R)). We wish to show convergence of the iterates of T to
a local minimum or saddle point of the cost function

J(R,M) =
n∑

j=1

c∑
k=1

r2jkW2(Mk,Dj)
2.

The two stage update process of T is too complicated to use standard fixed point theorems,
so following Bezdek (1980) we shall use the following result, which is proven by Zangwill
(1969).

Theorem 3 (Zangwill’s Convergence Theorem):
Let A : X → 2X be a point-to-set algorithm acting on X. Given x0 ∈ X, generate a
sequence {xk}∞k=1 such that xk+1 ∈ A(xk) for every k. Let Γ ⊂ X be a solution set, and
suppose that the following hold.

(i) The sequence {xk} ⊂ S ⊂ X for a compact set S.

(ii) There exists a continuous function Z on X such that if x ̸∈ Γ then Z(y) < Z(x) for
all y ∈ A(x), and if x ∈ Γ then Z(y) ≤ Z(x) for all y ∈ A(x). The function Z is called
a descent function.

14

https://books.google.co.uk/books?id=TWhxLcApH9sC
https://books.google.co.uk/books?id=TWhxLcApH9sC
https://doi.org/10.24963/ijcai.2019/624
https://doi.org/10.1007/s00454-004-1146-y

Short Title

(iii) The algorithm A is closed on X \ Γ.

Then every convergent subsequence of {xk} tends to a point in the solution set Γ.

Our algorithm is the update function T . We define our solution set as

Γ =
{

(R,M) : J(R,M) < J(R̂, M̂)

∀ (R̂, M̂) ∈ B((R,M), r)
}

for some r > 0, where the ball surrounding R is the Euclidean ball in Rnc and the ball
surrounding M is ∪ck=1BW2(Mk, r). This set contains the local minima and saddle points
of the cost function (Bezdek et al., 1987). We wish to show that our cost function J(R,M)
is the descent function Z. We proceed by verifying each of the requirements for Zangwill’s
Convergence Theorem.

Lemma 1 Every iterate T (l)(R,M) ∈ [0, 1]nc × conv(D)c, where

conv(D) =
c⋃

k=1

⋃
γj

m⋃
i=1

conv{γj(y(i)) : j = 1, . . . , n},

with γj a bijection Mk → Dj and conv{γj(y(i)) : j = 1, . . . , n} the ordinary convex hull in
the plane. Furthermore, [0, 1]nc × conv(D)c is compact.

Proof By construction, every rjk ∈ [0, 1]. Since j = 1, . . . , n and k = 1, . . . , c, we can
view R as a point in [0, 1]nc, and so every iterate of R is in [0, 1]nc. We shall show that
for a fixed k and a fixed bijection γj : Mk → Dj , each updated y(i) is contained in a
convex combination of {γj(y(i)) : j = 1, . . . , n}. Where γj(y

(i)) = ∆, let γj(y
(i)) = w∆ as

defined in (4), as this is the update point we use for the diagonal. Since there are a finite
number of off-diagonal points, each updated Mk is therefore contained in the union over
all bijections and all points y(i) of the convex combination of {γj(y(i)) : j = 1, . . . , n}. By
also taking the union over each k, we show that every iterate of M must be contained in
the finite triple-union of the convex combination of each possible bijection. To show that
each updated y(i) is contained in a convex combination of {γj(y(i)) : j = 1, . . . , n}, recall

that y(i) =
(∑n

j=1 r
2
jk

)−1∑n
j=1 r

2
jkγj(y

(i)). Letting t
(i)
j = r2jk

(∑n
j=1 r

2
jk

)−1
, clearly each

t
(i)
j > 0 and

∑n
j=1 t

(i)
j = 1. Since y(i) =

∑n
j=1 t

(i)
j γj(y

(i)), each y(i) is contained in the

convex combination. Therefore T (l)(R,M) ∈ [0, 1]nc × conv(D)c for each l = 0, 1,

Now, [0, 1] is closed and bounded, so is compact. The convex hull of points in the plane
is closed and bounded, so conv{γj(y(i)) : j = 1, . . . , n} is compact. Since finite unions and
finite direct products of compact sets are compact, [0, 1]nc × conv(D)c is also compact.

Lemma 2 The cost function J(R,M) is a descent function, as defined in Theorem 3(ii).

15

Davies Aspinall Wilder Tran-Thanh

Proof The cost function J is continuous, as it’s a sum, product and composition of contin-
uous functions. Furthermore, we have that for any (R,M) ̸∈ Γ,

J(T (R,M)) = J(F ◦G(R), G(R))

< J(R,G(R))

< J(R,M),

where the first inequality is due to Proposition 1 in Bezdek (1980), and the second inequality
comes from the definition of the Fréchet mean. If (R,M) ∈ Γ then the strict inequalities
include equality throughout.

Theorem 4:
For any (R,M), every convergent subsequence of {T (l)(R,M) : l = 0, 1, . . . } tends to a local
minimum or saddle point of the cost function J .

Proof We proceed with Zangwill’s Convergence Theorem. Our algorithm is the update
function T , our solution set is Γ, and our descent function is the cost function J(R,M). By
Lemma 4, every iterate is contained within a compact set. By Lemma 5, J is a descent
function. Finally, since our function T only maps points in the plane to points in the plane,
it is a closed map. The theorem follows by applying Theorem 3.

Appendix B. Convergence of the Fréchet mean algorithm

Recall that the Fréchet mean is computed by finding the arg min of

F (D̂) =
n∑

j=1

r2jkFj(D̂), with Fj(D̂) = W2(D̂,Dj)
2, (5)

for fixed k. We start by recounting work by Turner et al. (2012), which this section adapts
for the weighted Fréchet mean.2 The proofs we’re adapting use a gradient descent technique
to prove local convergence. In order to use their techniques, we need to define a differential
structure on the space of persistence diagrams.

By Theorem 2.5 from Turner et al. (2012), the space of persistence diagrams DL2 =
{D : W2(D,∆) <∞} is a non-negatively curved Alexandrov space. An optimal bijection
γ : D1 → D2 induces a unit-speed geodesic ϕ(t) = {(1 − t)x + tγ(x) : x ∈ D1, 0 ≤ t ≤ 1}.
For a point D ∈ DL2 we define the tangent cone TD. Define Σ̂D as the set of all non-trivial
unit-speed geodesics emanating from D. Let ϕ, η ∈ Σ̂D and define the angle between them
as

∠D(ϕ, η) = arccos

(
lim
s,t↓0

s2 + t2 −W2(ϕ(s), η(t))2

2st

)
2. In Turner et al. (2012), the Fréchet mean is defined as the arg min of the Fréchet function F (D̂) =∫

W2(D̂,Dj)
2dρ(D̂) with the empirical measure ρ = n−1 ∑n

j=1 δDj . We are using the empirical measure

ρ =
(∑n

j=1 r
2
jk

)−1 ∑n
j=1 r

2
jkδDj , but for ease we drop the scalar

(∑n
j=1 r

2
jk

)−1

as it is positive, so it does

not affect the minimum of the function.

16

Short Title

in [0, π] when the limit exists. Then the space of directions (ΣD,∠D) is the completion of
Σ̂D/ ∼ with respect to ∠D, with ϕ ∼ η ⇐⇒ ∠D(ϕ, η) = 0. We now define the tangent cone
as

TD = (ΣD × [0,∞))/(ΣD × {0}).
Given u = (ϕ, s), v = (η, t), we define an inner product on the tangent cone by

⟨u, v⟩ = st cos∠D(ϕ, η).

Now, for α > 0 denote the space (DL2 , αW2) as αDL2 and define the map iα : αDL2 → DL2 .
For an open set Ω ⊂ DL2 and a function f : Ω→ R, the differential of f at D ∈ Ω is defined
by dDf = limα→∞ α(f ◦ iD − f(D)). Finally, we say that s ∈ TD is a supporting vector of f
at D if dDf(x) ≤ −⟨s, x⟩ for all x ∈ TD.

Lemma 3 The following two results are proven in Turner et al. (2012).

(i) Let D ∈ DL2. Let Fj(D̂) = W2(D̂,Dj)
2. Then if ϕ is a distance-achieving geodesic

from D to D̂, then the tangent vector to ϕ at D of length 2W2(D̂,D) is a supporting
vector at D of f .

(ii) If D is a local minimum of f and s is a supporting vector of f at D, then s = 0.

If there is a unique optimal matching γD3
D1

: D1 → D3, we say that it is induced by an

optimal matching γD2
D1

: D1 → D2 if there exists a unique optimal matching γD3
D2

: D2 → D3

such that γD3
D1

= γD3
D2
◦ γD2

D1
. Proposition 3.2 from Turner et al. (2012) states that an optimal

matching at a point is also locally optimal. In particular, it states the following.

Lemma 4 Let D1,D2 ∈ DL2 such that there is a unique optimal matching from D1 to D2.
Then there exists an r > 0 such that for every D3 ∈ BW2(D2, r), there is a unique optimal
pairing from D2 to D3 that is induced by the matching from D1 to D2.

The following theorem proves that our algorithm converges to a local minimum of the
Fréchet function.

Theorem 5:
Given diagrams Dj , membership values rjk, and the Fréchet function F defined in (5), then
Mk = {y(i)}mi=1 is a local minimum of F if and only if there is a unique optimal pairing from
Mk to each of the Dj , denoted γj , and each y(i) is updated via (4).

Proof First assume that γj are optimal pairings from Mk to each Dj , and let sj be the
vectors in TMk

that are tangent to the geodesics induced by γj and are distance-achieving.
Then by Lemma 7(i), each 2sj is a supporting vector for the function Fj . Furthermore,

2
∑n

j=1 r
2
jksj is a supporting vector for F , as for any D̂,

dMk
F (D̂) = dMk

 n∑
j=1

r2jkFj(D̂)

 =
n∑

j=1

r2jkdMk
Fj(D̂)

≤
n∑

j=1

−r2jk⟨2sj , D̂⟩ = −

〈
2

n∑
j=1

r2jksj , D̂

〉
.

17

Davies Aspinall Wilder Tran-Thanh

By Lemma 7(ii), 2
∑n

j=1 r
2
jksj = 0. Putting sj = γj(y

(i))−y(i) and rearranging gives that y(i)

updates via (4), as required. Note that when γj(y
(i)) = ∆, we let γj(y

(i)) = w∆ as defined in
(4), because this minimises the transportation cost to the diagonal. Now suppose that γj and
γ̃j are both optimal pairings. Then by the above argument

∑n
j=1 r

2
jksj =

∑n
j=1 r

2
jks̃j = 0,

implying that sj = s̃j and so γj = γ̃j . Therefore the optimal pairing is unique.

To prove the opposite direction, assume that Mk = {y(i)} locally minimises the Fréchet
function F . Observe that for a fixed bijection γj , we have that

F (Mk) =
n∑

j=1

r2jkW2(Mk,Dj)
2

=
n∑

j=1

r2jk

 inf
γj :M̂→Dj

∑
y∈Mk

||y − γj(y)||2

=
n∑

j=1

r2jk

m∑
i=1

||y(i) − x
(i)
j ||

2

=
m∑
i=1

 n∑
j=1

r2jk||y(i) − x
(i)
j ||

2

 .

The final term in brackets is non-negative, and minimised exactly when y(i) is updated
via (4). Furthermore, the unique optimal pairing from Mk to each of the Dj ’s is the same

for every M̂ within the ball BW2(Mk, r) for some r > 0, by Lemma 8. Therefore, if Mk is
a local minimum of F , then the y(i)’s are equal to the values found by taking the optimal
pairings γj and calculating the weighted means of γj(y

(i)) with the weights r2jk, as required.
It will remain a minimum as long as the matching stays the same, which happens in the
ball BW2(Mk, r), so we are done.

Appendix C. Experimental details

C.1. Synthetic data

Membership values. The membership values for the synthetic datasets are in Table 1.
Datasets 1-3 are the datasets of noise, datasets 4-6 are the datasets with one ring, and
datasets 7-9 are the datasets with two rings. We ran our algorithm for 20 iterations. The
code to generate the dataset is available in the supplementary materials.

Table 1: Membership values for the synthetic dataset

Dataset 1 2 3 4 5 6 7 8 9

Cluster 1 0.6336 0.5730 0.5205 0.2760 0.2503 0.1974 0.2921 0.2128 0.2292
Cluster 2 0.1768 0.2057 0.2327 0.5361 0.5329 0.6371 0.2452 0.2291 0.1822
Cluster 3 0.1900 0.2212 0.2468 0.1879 0.2169 0.1655 0.4627 0.5580 0.5885

18

Short Title

Table 2: Seconds per clustering iteration

Points 100 200 300 400 500 600 700 800 900 1000

FPDCluster 0.01552 0.1975 0.9358 2.229 5.694 12.29 19.27 34.50 53.20 77.81
ADMM 5.622 34.86 161.3 617.6 - - - - - -
BADMM 0.2020 2.188 26.38 112.6 - - - - - -
SubGD 0.4217 2.273 22.17 103.4 - - - - - -
IterBP 0.3825 2.226 21.57 108.9 - - - - - -
LP 0.3922 2.031 22.32 117.3 - - - - - -

Timing experiments. For the timing experiments we divide the total number of points
equally between four distributions, two of which are noise and two of which are shaped in a
ring. Each clustering algorithm was run for five iterations on one core of a 2018 MacBook
Pro with a 1.4GHz Intel Core i5. We included the time taken to compute the persistence
diagrams in the running times for our algorithm.

We also use synthetic data to empirically compare the running time of our algorithm
to other dataset clustering algorithms available. Computing the Wasserstein distance has
super-cubic time complexity Ling and Okada (2007), so is a significant bottleneck both for
our algorithm and comparable Wasserstein barycentre clustering algorithms Benamou et al.
(2015); Cuturi and Doucet (2014); Li and Wang (2008); Ye and Li (2014); Ye et al. (2017).
Persistence diagrams generally reduce both the dimensionality and number of points in a
dataset,3 so we in turn reduce the computational bottleneck. To demonstrate this, we eval-
uated the average time per iteration of our persistence diagram clustering algorithm, as well
as the average iteration time for comparable Wasserstein barycentre clustering algorithms.
We included the time taken to compute the persistence diagrams from the datasets when
timing our clustering algorithm. We give the results in Table 2, leaving an entry blank
where it became unpractical to run a test (e.g. it takes too long to return a solution and
the algorithm becomes unresponsive). We show at least an order of magnitude improvement
in performance over comparable Wasserstein barycentre clustering algorithms.

Empirical performance experiments. We get empirical results on the convergence
of a total of 825 randomly generated persistence diagrams. Following Euclidean fuzzy
clustering, we denote convergence when the cost function is stable to within ±0.5%. The
WFM converges when the matching remains stable, which we proves does happen. We use
the seeds 0, 1, and 2 respectively for our repeats.

We implement the Fuzzy RAND index (Campello, 2007), available in the supplementary
materials. We use the same synthetic dataset as before to evaluate our cluster quality, with
the origin of the data (noise, one hole, or two holes) as a reference partition. We used
Persim4 to compute the additional distances.

3. Persistence diagrams are always planar, so if the data is in Rd, d > 2, then there is a dimensionality
reduction. For p > 0, the persistence diagram of p-PH always has less points than the dataset when
computed with the Vietoris-Rips complex.

4. https://persim.scikit-tda.org/en/latest/

19

https://persim.scikit-tda.org/en/latest/

Davies Aspinall Wilder Tran-Thanh

Figure 5: With hard clustering, we cannot always find a path from a task to a model.

C.2. Decision boundaries

Why hard clustering does not work. In order to assign each task to the top-ranked
models, we need to have a path from a task to the nearest cluster centre, then from that
cluster centre to the k-nearest models (note that when we refer to models/tasks, we’re im-
plicitly referring to the persistence diagram of their decision boundary). We can always find
that route when fuzzy clustering, as the fractional membership values mean that we have
information about the proximity of every model/task with every cluster centre. However,
with hard clustering we cannot always find that route. Firstly, the hard labelling means
that you lose a lot of information about the proximity of models/tasks to cluster centres.
Therefore, in order to find a route, we need a every task to be assigned to a cluster centre
that also has a model assigned to it. However, there are no guarantees that will happen.
We show an example where no path exists in Figure 5.

Experimental details. All code used for computation is available in the supplemen-
tary materials. For models, we trained the standard Pytorch CNN available at https:

//github.com/pytorch/examples/blob/master/mnist/main.py. We trained them on
MNIST, FashionMNIST, and KMNIST, each obtained using the Torchvision.datasets pack-
age. We split the data into 9 binary datasets for classification, class 0 vs each of the
remaining classes. We trained three of each model, seeded with 0, 1, and 2 respectively.
MNIST and KMNIST were each trained for five epochs, FashionMNIST was trained for 14
epochs. Our train:test split was 6:1, as is standard for MNIST structured datasets. We
used Ripser to compute the 1-persistence diagrams using default settings. We limited the
number of points in the diagram to the 25 most persistent when clustering. Our percent-
age improvement values use the membership values after 16 iterations. We compute the
standard error bounds when calculating the percentage improvement.

20

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py

	Introduction
	Related work

	Topological preliminaries
	Algorithmic design
	Clustering persistence diagrams
	Computing the weighted Fréchet mean

	Experiments
	Synthetic data
	Deep Learning Model Selection

	Conclusion
	Convergence of the FCM clustering algorithm
	Convergence of the Fréchet mean algorithm
	Experimental details
	Synthetic data
	Decision boundaries

