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Abstract

Tools have become a mainstay of LLMs, al-001
lowing them to retrieve knowledge not in their002
weights, to perform tasks on the web, and even003
to control robots. However, most ontologies004
and surveys of tool-use have assumed the core005
challenge for LLMs is choosing the tool. In-006
stead, we introduce a framework for tools more007
broadly which guides us to explore a model’s008
ability to detect “silent” tool errors, and reflect009
on how to plan. This more directly aligns with010
the increasingly popular use of models as tools.011
We provide an initial approach to failure re-012
covery with promising results both on a con-013
trolled calculator setting and embodied agent014
planning.015

1 Introduction016

Tools offer a convenient way to augment capa-017

bilities beyond text-based reasoning, from execut-018

ing code to incorporating recent data through web019

search, and even facilitating multimodal interac-020

tions. While the term “tool" is often interpreted021

to mean offloading specific deterministic functions022

to external APIs, as tasks grow more complex, the023

definition is expanding to include learned mod-024

ules such as translators and object detectors, as025

well as heuristics-based policies like search algo-026

rithms and robotic skills. LLMs themselves are027

also being used as tools, particularly as task plan-028

ners in robotics, chained with object detectors and029

robot policies to perform navigation and manipula-030

tion (Ahn et al., 2022; Huang et al., 2022a,b; Liang031

et al., 2022; Singh et al., 2022a; Li et al., 2023; Xu032

et al., 2023; Zeng et al., 2023).033

As tools take on more responsibilities, assessing034

and ensuring their reliability becomes crucial; a035

failure in one tool can trigger a cascade of errors,036

leading to complete task failure. Recent studies037

have suggested recovery mechanisms, such as cor-038

recting inputs based on API error messages (Pan039

et al., 2023a; Zhang et al., 2023; Chen et al., 2023b;040

Figure 1: (a) Tool-use Overview: Starting from an input x, the
LLM generates inputs i for the selected tool, and incorporates
tool outputs o to predict the final task output ŷ. The context c
is used throughout the task. (b) Correct Calculator Incorrect
tool inputs from the LLM leads to tool failure. The error
messages can be leveraged for correction (Refine). (c) Broken
Calculator Tool inputs are correct, but the tool itself silently
produces false outputs. (d) ALFRED The first tool, Object
Detector, misidentifies the Tomato in the image as an Apple,
leading to error cascades in the next tool, the Action Planner.

Pan et al., 2023b). However, most methods rely 041

on two underlying assumptions: that accurate in- 042

puts guarantee flawless outputs, and that errors are 043

accompanied by explicit signals. Yet, real-world 044

scenarios challenge the premises, as failures often 045

arise from unpredictable environmental dynamics 046

and inherent inaccuracies of tools themselves. 047

This paper introduces a taxonomy to categorize 048

sources of errors and recovery methods. We shed 049

light on the often overlooked case of tools that 050

fail. As opposed to input-based errors which are 051

often accompanied by error messages, most tool 052

failures are “silent.” This poses unique reasoning 053

challenges for the LLM, which must actively 1. 054

detect the failure, 2. infer the source, and 3. plan 055

recovery strategies. In this paper, we focus on the 056

first step, detection, as it is the prerequisite for 057

downstream fault assignment and recovery. 058

We investigate tool errors in two distinct set- 059

tings: a controlled environment where an LLM 060

solves arithmetic problems using a broken calcu- 061

lator, and a more natural “broken”-tool setting in- 062
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volving a multimodal instruction-following agent063

(Fig. 1). We investigate whether LLMs can detect064

incorrect tool outputs without explicit error signals,065

and observe overtrusting of tools. Motivated by066

how humans detect tool failures based on internal067

expectations of correct outputs, we devise three068

in-context interventions. We find that LLMs can069

learn to doubt tools and detect mistakes. Following070

the taxonomy, we further examine how much and071

what type of deviation is necessary to trigger the072

LLM’s recognition of the tool error in each setting.073

2 Related Work074

Tools Text-based tools help compensate for075

LLMs’ relative weakness in world knowledge and076

computational precision (Lewis et al., 2020; Parisi077

et al., 2022; Gao et al., 2023; Schick et al., 2023;078

Yao et al., 2023). Multimodal tools allow LLMs079

to receive inputs from other modalities and gener-080

ate grounded answers (Gupta and Kembhavi, 2023;081

Wu et al., 2023; Yang et al., 2023; Zeng et al.,082

2023). Outputs of Vision-Language models (Rad-083

ford et al., 2021), Object Detectors, OCR models,084

and speech-to-text APIs (Zeng et al., 2023) have085

been added to the prompt, enabling zero-shot infer-086

ence on multimodal tasks.087

Agents Research on LLM agents spans multi-088

step tasks in gaming (Wang et al., 2023a; Wu et al.,089

2024), web navigation (Qin et al., 2023; Shinn et al.,090

2023; Yao et al., 2023), and code generation (Shinn091

et al., 2023; Yao et al., 2023). Most focus on the se-092

lection and utilization of a tool (Wang et al., 2023a;093

Qin et al., 2023; Wu et al., 2024), and enhance-094

ment of reasoning through self-evaluation and feed-095

back (Shinn et al., 2023; Wang et al., 2023a; Chen096

et al., 2023a; Xu et al., 2023; Madaan et al., 2024).097

Adapting LLMs to tool-use Existing works have098

used in-context learning (ICL) (Lu et al., 2023;099

Shen et al., 2024), finetuning (Schick et al., 2023),100

and trials-and-errors (Wang et al., 2024) to adapt101

LLM to tool use. However, the focus has been102

adapting to “newer” tools, from demonstrations or103

documentations, and the question of tool reliability104

and recovering from “unreliable” tools has not been105

actively investigated. While malfunctioning APIs106

are preemptively filtered out in API-centric environ-107

ments (Qin et al., 2023), the strategies for address-108

ing ineffective learned tools, as in games (Wang109

et al., 2023a; Wu et al., 2024) or multimodal tasks110

(Zeng et al., 2022), have been less explored. Over-111

all, existing approaches tend to amalgamate various 112

tool failure modes under the umbrella term “reason- 113

ing,” focusing primarily on the most salient aspect 114

of these failures within their specific domain. In 115

contrast, we distinctly identify and thoroughly an- 116

alyze errors related to tool arguments, the tools 117

themselves, and the alignment with environmental 118

dynamics. 119

3 Background 120

Notation We outline a typical tool-use scenario 121

in Fig. 1a with the following notation (Fig. 1): 122

x ∶ task input i ∶ tool input 123

ŷ ∶ predicted task output o ∶ tool output 124

c ∶ context information tθ ∶ tool 125

126

127

The LLM first selects tools and constructs tool- 128

specific arguments i from the task input x. Based 129

on the tool result o, the final task prediction ŷ is 130

made. Notably, the flexibility of LLMs as an in- 131

terface allows inputs to be enriched with context 132

information c throughout the task. c may include 133

task specifics, API docstrings, any external feed- 134

back like error messages, or even previous action 135

trajectories in interactive tasks. 136

Additionally, we denote the oracle values of the 137

input, output, context as i∗, o∗, and c
∗. The tool 138

input i and output o may contain inaccuracies since 139

they are essentially outputs of preceding LLM/- 140

tool calls. Fig. 1b demonstrates a scenario where 141

i contains a mistake (15 x 58 should be 15 * 142

58). The context c can also be incomprehensive or 143

noisy, as they are approximations of the real world. 144

Moreover, the tool tθ can be suboptimal in multiple 145

dimensions. For deterministic APIs, a suboptimal 146

tool may have been chosen by an LLM (Schick 147

et al., 2023). For learned tools, the tool itself is an 148

inherently imperfect parameterized model, thus tθ. 149

Defining Error The suboptimality of i, c, and 150

tθ manifest as suboptimal tool outputs o, that devi- 151

ate from o
∗. The deviation can be as critical and 152

explicit as the error message in Fig. 1b, or weakly 153

wrong like the Object Detector output in Fig. 1d. 154

In fact, the severity of a tool error depends on how 155

critically the mistake impacts downstream task per- 156

formance. In Fig. 1d, the Object Detector misidenti- 157

fying the Tomato as an Apple, is crucial to the task 158

in hand, but mistaking objects like Bread would 159

not hinder the task as much. As the high-level goal 160

is task success rather than perfect tool utilization, 161
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it is important to rectify critical mistakes, whereas162

harmless mistakes can be disregarded.163

To formalize this notion of “task-critical” tool-164

use mistakes, we introduce an error threshold ϵ to165

define a range of tool outputs that are not “critically”166

wrong. Intervention is only necessary when the167

deviation between the tool output and the oracle,168

d(o, o∗), is larger than ϵ, thereby degrading the169

performance/quality of the final task output ŷ.170

d(o, o∗) > ϵ ⟹ stask(ŷ∣o) < stask(ŷ∣o∗) (1)171

where stask ≔ task performance metric172

This is analogous to how humans approach errors.173

The goal is not a perfect world model but to accom-174

plish a task. As long as we can grab the apple, we175

do not need to know its exact shape or coordinates.176

4 Error sources177

The tool output o is accurate if and only if:178

1. The tool inputs i are accurate.179

2. The context c is correct and sufficient.180

3. The tool tθ makes correct predictions.181

Formally, to obtain o with deviation smaller than ϵ,182

d(o, o∗), is a union of component error bounds:183

d(o, o∗) < ϵ (2)184

⇐ d(i, i∗) < ϵiÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tool input

∧ d(c, c∗) < ϵcÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
context

∧ d(tθ, tθ∗) < ϵtÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
tool correctness

185

If any condition above is not met output errors will186

lead to task failure. The following sections discuss187

each condition, and a table of corresponding real-188

world tool scenarios is presented in App. A.189

4.1 Input: d(i, i∗) > ϵi190

Imperfect inputs often result from incorrect outputs191

from a prior tool, like errors in LLM-generated192

code or noisy images. For deterministic tools (e.g.,193

code interpreters), most errors are due to tool in-194

puts, and malformed inputs typically trigger an er-195

ror message. However, well-formed inputs with in-196

correct content (e.g., ambiguous queries for search197

APIs) can produce erroneous outputs that inadver-198

tently propagate through subsequent steps.199

4.2 Context: d(c, c∗) > ϵc200

Partial observability of the surrounding environ-201

ment can be another source of tool error, resulting202

in a lack of context for a tool to function properly.203

This is often inevitable early in the planning trajec- 204

tory in interactive task settings. For example, an 205

embodied agent may need to explore hidden ob- 206

jects in closed receptacles through trial-and-error, 207

in order to obtain enough information for the task. 208

4.3 Tool: d(tθ, tθ∗) > ϵt 209

Tools themselves can make mistakes, even when 210

the input or context is perfect. This situation is es- 211

pecially prominent as learnable tools are becoming 212

more widely adopted in practice. LLMs are prone 213

to generating factually incorrect statements even 214

when reference documents are provided through 215

context (Krishna et al., 2024). Search APIs might 216

fail not because of the input query’s clarity, but due 217

to an imperfect database/dense retrieval method. 218

The tool’s precision can also contribute to failure – 219

heuristic-based search/manipulation robot policies 220

can fall apart when they lack the precision needed 221

to address the complexity of real-world scenarios. 222

Due to the absence of explicit error signals, 223

tool-based errors require the tool-using model to 224

reason over indirect cues. In easier cases, errors 225

can be recognized based on well-calibrated con- 226

fidence scores. Much harder cases, however, arise 227

when a tool confidently produces errors. In such 228

cases, a broader context may help identify these 229

hidden errors. Multiple tools presenting conflicting 230

evidence (e.g., fact verification tool vs search API), 231

disagreement between different modalities (Lee 232

et al., 2021), or prediction inconsistencies over 233

multiple trials (Kadavath et al., 2022; Wang et al., 234

2023c) or timesteps (Chaplot et al., 2020), may 235

help surface potential limitations of the tool. 236

5 Recovery behaviors 237

Next, we organize current recovery methods from 238

previous literature into two categories: Refine and 239

Replace and argue for meta-cognitive reasoning. 240

5.1 Refine: i → i
∗, c → c

∗
241

Recovering from tool failures often involves refin- 242

ing the tool input. This is particularly effective 243

when the failure is followed by explicit feedback 244

signals that indicate “what” to fix – inputs can be 245

rewritten guided by API error messages and hu- 246

man/LLM feedback (Madaan et al., 2023; Shinn 247

et al., 2023; Wang et al., 2023b). In the planning 248

literature (e.g., TAMP (Garrett et al., 2021; Ding 249

et al., 2023)), this is referred to as “closed-loop 250

planning,” where plans are continuously updated 251
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by new observations, task progress, or clarification252

questions (Huang et al., 2022b; Singh et al., 2022a;253

Song et al., 2022). Augmenting the context based254

on increased observability changes the input’s inter-255

pretation. Refine methods are well-suited to LLMs256

as they can flexibly accept varying lengths of text-257

based feedback. In contrast, corrections to other258

modalities (e.g. image lighting or non-verbal com-259

munication) remain open challenges for VLMs.260

5.2 Replace: tθ → tθ∗261

When errors originate from the tool itself, our aim262

is to move tθ closer to tθ∗ , aligning it more closely263

with the final task. Mitigation strategies vary based264

on how easily the tool can be fixed at inference time.265

For LLMs, in-context examples are used to elicit266

specific task capabilities from more generic rea-267

soning abilities, a method further enhanced by re-268

trieving samples that are more pertinent to the spe-269

cific test example (Rubin et al., 2022; Song et al.,270

2022). Ensembles over multiple predictions also of-271

fer a non-invasive way to improve tool performance272

(Anil et al., 2023; Wang et al., 2023c; Chen et al.,273

2024). Test-time adaptation methods (Wang et al.,274

2021) can be useful, though application requires275

access to the tool’s internal parameters. The afore-276

mentioned strategies focus on improving the tool’s277

performance in isolation, which may not translate278

to better task performance. In Fig. 1d, better Im-279

ageNet performance does not guarantee detecting280

the Tomato. Understanding the interplay between281

tool(s) and task performance remains an open ques-282

tion of system dynamics and credit assignment.283

When improving the tool is not viable or when284

adjustments are insufficient, the best strategy can be285

to choose a different tool. Research on assistance-286

seeking agents implicitly model this behavior, with287

agents identifying when to delegate the action to288

a human/oracle (Singh et al., 2022b; Xie et al.,289

2022). In NLP, Krishna et al. (2024) introduce a290

fact-checking tool that edits unsupported claims291

in LLM-generated summaries, advocating for the292

strategic use of alternative tools to ensure quality293

and reliability.294

5.3 LLMs as a Meta-Reasoner: ϵi, ϵc, ϵt ↑295

For humans, the tools we employ are not perfect.296

But tools can err because humans can fix incorrect297

outputs – misrecognized card numbers through an298

OCR system are corrected ad-hoc by the user. Sim-299

ilarly, imbuing LLMs with the ability to recognize300

and handle errors flexibly allows for tools to make301

mistakes, effectively increasing the permissible er- 302

ror thresholds of the tool components ϵi, ϵc, ϵt in 303

Eq. 2. An LLM’s meta-cognitive abilities to rea- 304

son over uncertainty and realize its knowledge lim- 305

its have received some attention (Kadavath et al., 306

2022; Kuhn et al., 2023). The next step is to jointly 307

reason over their uncertainty/knowledge and that 308

of another tool or agent. This compounds in multi- 309

tool or multi-LM settings. Existing recovery meth- 310

ods that presuppose the cause and tweak a single 311

knob may not yield overall improvement unless 312

limitations of the right variables are resolved. 313

In summary, we identify three challenges: 314

1. Failure Detection: Recognizing failures and 315

assessing their severity – d(o, o∗) > ϵ ? 316

2. Fault Assignment: Identifying which tool 317

caused the error (in multi-tool settings), with 318

the exact source – i, c, tθ in Eq. 2. 319

3. Recovery Planning: Selecting the most effec- 320

tive recovery strategy. Refine vs Replace. 321

Explicit error signals (though rare) can obviate all 322

three problems. More importantly, silent tool errors 323

are the opposite case, where even detection is not 324

straightforward although the problem is pervasive. 325

In this work, we delve into “silent” tool errors, a 326

relatively overlooked area in tool-error research, 327

focusing on the foremost problem: error detection. 328

6 A broken calculator 329

Humans use tools with a rough expectation of what 330

correct results should look like, allowing them to 331

spot outputs that are obviously wrong. For example, 332

for multiplying 120 by 131, we can expect a result 333

around 10,000 and ending in zero, even if we don’t 334

know the exact answer. If the tool makes arithmetic 335

mistakes, can LLMs also detect faulty outputs? 336

6.1 Task setting 337

We devise a controlled setting where an LLM an- 338

swers simple math problems with an external tool, 339

a calculator. In this case, the calculator is broken 340

and returns incorrect outputs. 341

First, we programmatically generate 300 equa- 342

tions that involve two random operators from 343

{+,−,×} and three random integers (e.g., 9 × 344

(20 + 7)). The equations have three levels of diffi- 345

culty, which is determined by the range that the in- 346

tegers are sampled from: easy [−20, 20], medium 347

[−100, 100], and hard [−1000, 1000]. We give 348

the incorrect tool output to the model, and see 349

whether models are able to recognize the error, 350
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# Task
What is the answer to: (2 + 3) * 5?

Refer to the tool output below.
# Calculator API
result = (2 + 3) * 5
result
25 # broken tool setting -> 21 / 205 / -25

# Format
Return your answer in this format:
Thought: Your reasoning process
Answer:
...

# Answer

Figure 2: Prompt for a math problem using tool outputs.
The result 25 is perturbed in the Broken scenario: Digit
replacement, Magnitude shift, or Sign inversion.

comparing five different models: GPT-3.5 and GPT-351

4, Command-R and Command-R+, Gemini-1.5.352

6.2 Preliminary experiments353

We begin by estimating the models’ capabilities354

to solve math problems on their own, to better un-355

derstand the downstream effects of having a credi-356

ble/broken calculator in the loop. Specifically, we357

query the LLM with five different prompts – three358

non-tool and two tool-use prompts.359

Non-tool setting The non-tool settings serve as a360

proxy to gauge the model’s task capability, provid-361

ing a basis to compare the effects of incorporating362

tools with varying levels of credibility. We ask363

the model to solve the math problems on its own,364

comparing three prompting methods:365

1. Direct: Asking the equation directly (e.g.,366

"What is the answer to (2+3)*5?")367

2. Chain-of-Thought (CoT): Asking to explain its368

reasoning step-by-step prior to answering.369

3. CoT Few-Shot: In addition to reasoning, the370

model is provided five in-context examples.371

Tool-use setting We assume two types of cal-372

culators – Correct and Broken. Fig. 2 shows the373

tool-use prompt, where the model is asked to an-374

swer the question referring to the tool output (bold).375

For Correct tool, the ground truth answer is pro-376

vided as the tool result. For Broken tool, we give a377

perturbed answer using one of the follow three:378

1. Digit replacement: One digit is replaced with a379

different number (e.g., 25 → 21)380

2. Magnitude shift: Digits are inserted/removed,381

resulting in magnitude shifts in the range 10
−2

382

and 10
3 (e.g., 25 → 205)383

3. Sign inversion: The sign is flipped, changing384

positive numbers to negative and negative num-385

bers to positive (e.g., 25 → −25)386

Figure 3: Math accuracy of models. The black bar
indicates the best accuracy without tool-use; upward
orange/downward arrows respectively indicate perfor-
mance with correct/broken tool-use.

Inspired by Wei et al. (2022); Yao et al. (2023), 387

we specify a “Thought” section, to encourage the 388

model to generate its reasoning prior to answering. 389

Results We report the results of the preliminary 390

experiments in App. B and Fig. 3. When the tool 391

is broken, the accuracy drops drastically for all 392

perturbation categories, with the exception of Sign 393

Inversion on GPT-4 and Gemini-1.5. With broken 394

tools, performance drops far below the best no-tool 395

setting’s performance, up to 47%. We find that 396

models tend to overtrust tools – copying the incor- 397

rect output (with hallucinated justification) rather 398

than ignore the tool in favor of its own answer. 399

6.3 In-context intervention strategies 400

Humans leverage various contextual cues like prior 401

tool failures to calibrate the level of trust associ- 402

ated with their tools. Further, AI chatbots include 403

disclaimers like “The model can make mistakes” 404

to ensure answers are scrutinized. Can LLMs also 405

leverage such information effectively? 406

We test three types of contextual cues that can 407

raise the awareness towards potential tool mistakes: 408

a simple disclaimer, prediction confidence scores, 409

and a checklist of criteria to look out for. For each 410

method, we evaluate the prediction accuracy on 411

both perturbed and non-perturbed tool outputs, in 412

ZST, CoT, and FST settings. The prompt... 413

Oblivious (Obl.) does not mention any indications 414

that the tool can cause errors Fig. 2. 415

Disclaimer (Disc.) includes a simple disclaimer: 416

“The tool can sometimes give incorrect answers. 417

Please verify the correctness of the tool output.” 418

Confidence (Conf.) includes the confidence score 419

of the tool’s prediction, in addition to the disclaimer. 420

Since the calculator is not a probabilistic model, we 421

devise a score [0,1] based on the string edit distance 422
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ZST CoT CoT+FST

Model O
bl

.
D

is
c.

C
on

f.
C

he
ck

.

O
bl

.
D

is
c.

C
on

f.
C

he
ck

.

O
bl

.
D

is
c.

C
on

f.

C
he

ck
.

GPT-3.5 23 53 44 46 46 81 79 80 87 89 86 84

GPT-4 76 82 85 85 86 89 89 91 90 91 88 89

Command-R 16 14 16 14 29 42 44 47 11 23 53 46

Command-R+ 57 76 79 81 60 84 82 76 71 82 86 78

Gemini-1.5 84 90 76 87 93 95 95 90 94 94 94 94

Table 1: Accuracy of models on math equations with
in-context intervention methods against broken tools

between the ground truth and the perturbed output.423

For learned tools, model confidence is used.424

Checklist (Check.) is motivated by heuristics that425

humans use, which includes a list of criteria to426

check the tool output, based on the perturbation.427

For the math task, the checklist consists of:428

1. Is the positive or negative sign correct?429

2. Is the magnitude of the number correct?430

3. Is the last digit correct?431

4. Are all the digits correct?432

Results Table 1 shows how effectively each433

method helps the LLM notice and correct mistakes.434

For most models, even a simple disclaimer prevents435

naively believing perturbed answers, boosting ac-436

curacy up to 30%. As humans, LLMs can bet-437

ter detect mistakes when provided the context that438

tools can be wrong. Chain-of-thought prompting439

and in-context examples further help models regain440

performance, nearly to the best no-tool scores.441

7 Detecting tool-based mistakes442

The results in §6 suggest that it is challenging for443

LLMs to simultaneously detect and override faulty444

outputs, even for capabilities that are decently per-445

formed without tools. Thus, next we narrow the446

LLM’s responsibility to “detecting” mistakes.1447

Results The models are often able to identify448

the incorrect outputs (Table 2) despite not being449

able to produce the correct answer – even in condi-450

tions where they would have without a tool present.451

Smaller models (GPT-3.5, Command-R) are more452

sensitive to in-context information. Where in Obliv-453

ious, most small model errors are due to overtrust-454

ing tools, and with in-context intervention, the pre-455

diction skews heavily towards rejecting outputs,456

1We reformulate the calculator setting into a binary Accep-
t/Reject task (Fig. 6). We balance the 300 perturbed equations
in §6.2 with 300 correct samples to account for false positives.

ZST CoT

Model O
bl

.

D
is

c.

C
on

f.

C
he

ck
.

O
bl

.

D
is

c.

C
on

f.

C
he

ck
.

GPT-3.5 79 86 86 83 70 67 83 75

GPT-4 92 95 94 91 96 97 96 94

Command-R 62 64 67 60 59 68 80 71

Command-R+ 83 89 87 77 73 78 81 77

Gemini-1.5 92 94 94 96 95 96 96 89

Table 2: Accuracy of models on the Accept/Reject task
on calculator outputs.

leading to high false positive rates. In contrast, 457

errors occur in similar rates in the larger models. 458

Surprisingly, CoT does not always improve per- 459

formance over Zero-shot. We find that the majority 460

of CoT errors are the model falsely rejecting correct 461

outputs – caused by failure in faithfully copying 462

the original equation’s terms in its reasoning steps. 463

We observe incorrect reasoning cases in the CoT 464

setting more frequently, which contradicts Table 1 465

where CoT outperformed Zero-shot. While more 466

investigation is needed, we speculate that the effec- 467

tiveness of CoT might depend on task complexity 468

– because the model is burdened to both 1. solve 469

the equation and 2. spot the mistake in the current 470

Detection+CoT setting. A two-step process where 471

the LLM first generates its answer, then compares 472

the answer to the tool output in a second call may 473

alleviate this issue, which we leave to future work. 474

7.1 When are mistakes easier to detect? 475

For humans, whether a mistake is detected might 476

depend on the type of mistake (blatant vs subtle), 477

the difficulty of the original question, or the an- 478

swerer’s task proficiency. Are some mistakes, past 479

a certain level of deviation, just more obvious than 480

others? Does the property of the question matter? 481

Or does it relate to the model’s internal knowledge – 482

do you need to “know” the answer to detect errors? 483

In Fig. 4, we analyze the models’ rejection rate on 484

the perturbed outputs with respect to six features: 485

Numeric Difference The absolute difference be- 486

tween the correct and perturbed answer. 487

Symbolic Difference The string edit (Levenshtein) 488

distance. Smaller symbolic deviations are expected 489

to be less noticeable. Symbolic difference only 490

loosely correlate with numeric differences (ρ = 491

0.49), for example 123 to −123 vs 119. 492
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Figure 4: The rejection rate on the perturbed calculator outputs with respect to six features.

Perturbation Type Digit replacement, Magnitude493

shift, and Sign inversion from §6.2. We separate494

last digit replacement as it is easier for humans to495

detect than other digits by mental math.496

Magnitude in Equation Equations are binned into497

three difficulty levels §6.1, based on the magnitude498

of the numbers involved in the equation. Relatedly,499

LLMs have been shown to find larger numbers500

harder to reason over (Nogueira et al., 2021; Lee501

et al., 2023; An et al., 2023; Duan and Shi, 2024).502

Answer Magnitude The magnitude of the correct503

answer, in log scale (log10 ∣x∣). Similar to above,504

but provides more fine-grained measurements.505

Perceived Difficulty This is inferred via the506

model’s ability to answer the equation in §6.2. The507

categories are: The model (1) answered correctly508

with a “Direct” prompt, (2) required CoT or Few-509

Shot examples, and (3) gets the equation wrong510

even after applying these methods. The number of511

samples vary for each bin, depending on the model.512

Numeric/String Difference and Perturbation513

Type attribute the rejection rate to the error’s514

“wrongness.” Magnitude is associated with the515

question itself, and Perceived Difficulty targets the516

model’s internal knowledge.517

7.2 Analysis518

Numeric vs Symbolic Unlike numeric difference,519

symbolic deviations appear highly correlated with520

rejection rates. This aligns with literature that521

LLMs are not performing arithmetic “reasoning,”522

but memorizing strings (Chang and Bisk, 2024).523

Perturbation Types For humans, Sign Inversion524

and Last Digit are likely the easiest to spot. LLMs525

also find some perturbation types more obvious526

than others – Sign Inversion for GPT-4 and Gem- 527

ini, Magnitude for Command-R and GPT-3.5, and 528

Last Digit Replacement for Command-R+. Most 529

models find Last Digit Replacements easier to spot 530

than other digits. Sensitivity is likely attributable to 531

differing representations/tokenization (Nogueira 532

et al., 2021; Liu and Low, 2023). 533

Large Numbers Models struggle with large val- 534

ues in both Numbers in Equation and Magnitude. 535

Equations with large numbers can be easier de- 536

pending on the operations involved. For instance, 537

(1000−998)×2 = 4 is easier than 10×11×12 = 538

1320. Notably, the rejection rate for answers larger 539

than 10
6 drops sharply for all models. 540

Perceived Difficulty Problems that are more easily 541

answered by the model, are also more easily de- 542

tected when exposed to errors. While this might 543

raise a question on the utility of imperfect tools, 544

we find that the larger models (GPT-4, Gemini-1.5- 545

Pro, Command-R+) can “detect” the mistake for 546

the majority of questions that it was not able to 547

answer correctly. This sheds light on the feasibility 548

of using LLMs as a tool planner, that evaluates the 549

credibility of tools and reroutes functions accord- 550

ingly to alternative tools. Smaller models, however, 551

overtrust the tool and allow errors to pass. 552

8 Natural tool errors: ALFRED 553

We now consider a setting where tool-based errors 554

occur more naturally via ALFRED (Shridhar et al., 555

2020), an embodied instruction following bench- 556

mark. Involving language understanding, percep- 557

tion, spatial reasoning, and action planning capabil- 558

ities, a common approach is to incorporate multiple 559

specialized modules (Min et al., 2022; Blukis et al., 560

2022), as opposed to end-to-end training. 561
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Figure 5: Evaluating two tool outputs in ALFRED –
Action Planner (Left) and Object Detector (Right). The
LLM is asked whether to Accept/Reject the tool output,
based on the provided image and task context.

Multiple modules, or tools collaborating with562

each other in ALFRED offer a unique opportunity563

to study the robustness of LLMs to various tool564

errors. As in Fig. 1d, the object detector’s mistakes565

are silently passed on to subsequent tools, leading566

to error cascades in the Action Planner. In such567

scenarios, LLMs that can detect tool errors help im-568

prove the system’s robustness, by correcting some569

obvious semantic anomalies (Elhafsi et al., 2023)570

or delegating operations to other tools or humans.571

In this section, we investigate whether LLMs572

can detect these realistic, multimodal tool errors573

arising from individual modules used in the FILM574

architecture (Min et al., 2022). Specifically, we test575

the LLM’s fault detection capability on two distinct576

tools – the object detector and the action planner.2577

8.1 Multimodal tool-error detection dataset578

We create a classification task where the model Ac-579

cept/Rejects the tool output, based on the current580

context. The model has to assess the feasibility of581

the predicted action, and reject actions that are to582

fail (e.g., facing an obstacle for MoveAhead, Fig. 5)583

For the object detector, the LLM evaluates the cor-584

rectness of the result with respect to the image, and585

reject outputs that mistakens important task objects.586

We note that outputs containing only task-irrelevant587

mistakes are still labeled as “Accept.”588

We collect agent trajectories from the validation589

set with actions and API responses whether the590

action succeeded/failed. For the object detector, we591

gather RGB images with detection predictions and592

the groundtruth object information. We provide593

detailed statistics of each dataset in App. C.1.594

2Object detection uses a finetuned MaskRCNN model. Ac-
tion planning is done by the Fast Marching Method (Sethian,
1996), a heuristic-based algorithm.

VLM ZST CoT

O
bl

.

D
is

c.

C
on

f.

C
he

ck
.

O
bl

.

D
is

c.

C
on

f.

C
he

ck
.

Action
Planner

GPT-4o 43 42 40 44 57 55 52 60

Gemini 49 55 50 63 64 64 62 65

Object
Detector

GPT-4o 68 68 66 67 68 69 66 68

Gemini 60 60 56 62 67 66 65 66

Table 3: F1 score on the Accept/Reject task on two
tool outputs in ALFRED. We compare interventions
(Disclaimer, Confidence, Checklist) with“Oblivious”.

8.2 Experimental setting 595

Models We test tool evaluation accuracy against 596

the two best closed-source Vision-Language Mod- 597

els: GPT-4o and Gemini-1.5-Pro-latest. As in the 598

calculator, we evaluate models on Zero-Shot (ZST) 599

and Chain-of-Thought (CoT) settings. The prompt 600

includes the task state (e.g., current subgoal, steps 601

taken), tool docstrings (e.g., possible actions, ob- 602

ject categories), and the current tool output. We 603

provide example prompts in the Appendix: Action 604

Planner (C.2), Object Detector (C.3). 605

8.3 Results 606

Models are able to reach 60-70 F1 scores with 607

raised awareness through ICL and CoT prompt- 608

ing (Tab. 3). In particular, specifying the potential 609

failure modes in the Checklist prompt is effective 610

for evaluating the action planner, where the error 611

modes are more diverse than the Object Detector. 612

In contrast, giving the raw confidence scores is not 613

as helpful, as it demands additional interpretation. 614

As these results are all zero-shot evaluations, we 615

expect further improvements in few-shot or fine- 616

tuning scenarios. Details of the Action Planner and 617

Object Detector along with analysis are presented 618

in Appendix C. 619

9 Conclusion 620

We characterize the trust dynamics of modern 621

LLMs with respect to tool usage. By establish- 622

ing an extensive taxonomy of tool-related errors 623

and recovery strategies, we identify fundamental 624

challenges associated with integrating learned tools. 625

Our experiments span both synthetic and natural 626

tool failures, and affirms current LLMs’ ability to 627

identify silent tool failures. This work paves the 628

way for future research on harnessing LLMs as 629

sophisticated tool-reasoners. 630
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10 Limitations631

This study, while comprehensive in its scope,632

has certain limitations regarding the diversity and633

breadth of the models and datasets used. Firstly,634

for the calculator experiments, we employ five635

LLMs, mostly closed-source. Including smaller,636

open-source models, and models specifically fine-637

tuned for tool-use would have offered more in-638

sights into the models’ tool trusting behavior. In639

the experiments involving embodied agents, we640

limited our focus to only two API-based Vision-641

Language Models (VLMs). Incorporating smaller,642

open-source VLMs would have offered opportuni-643

ties to explore into the models’ internal workings,644

revealing additional nuances in how models handle645

unreliable tools.646

Secondly, the action planner and object detec-647

tion dataset we constructed based on ALFRED648

trajectories is fairly small in size – Action Planner649

(490) and Object Detector (214). In terms of diver-650

sity, running multiple models/agents in addition to651

FILM would have enabled collecting a wider array652

of failure modes. Moreover, the action’s success653

or failure is highly dependent on the affordances654

provided by the AI2-THOR framework which may655

not accurately reflect real-world scenarios. For ex-656

ample, a ‘Put’ action might fail due to the system657

perceiving a surface as cluttered, even when there658

is visibly sufficient space available. A dataset en-659

compassing a wider variety of scenarios and higher660

diversity would potentially provide deeper insights661

into the practical applications and limitations of662

current AI systems in navigating real-world envi-663

ronments.664
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# Task
You are given the equation: (2 + 3) * 5. The
task is to evaluate the result of the
equation provided by the tool.

Refer to the tool output below.
# Calculator API
result = (2 + 3) * 5
result
-25 # broken tool setting -> 21 / 205 / -25

# Format
Return your answer in this format:
Thought: Your reasoning process
Evaluation: Accept/Reject
...

# Answer

Figure 6: Example Accept/Reject prompt for the output
of the calculator. The modified Fig. 2 instructions are in
bold. We color-code the three perturbation methods as:
Digit replacement, Magnitude shift, Sign inversion.

1001

Appendix1002

A Overview of Errors1003

Table 4: Different real-world scenarios where var-1004

ious tool errors occur. We categorize specific sce-1005

narios to different sources of failure.1006

B Math problems1007

Table 5: Accuracy of models on “answering” math1008

equations. The numbers in the parentheses indicate1009

the relative gain/loss compared to the best no-tool1010

setting (in bold)1011

Figure 6: Prompt example for Accept/Reject task1012

C ALFRED1013

C.1 Dataset1014

Figure 10: Histogram of actions and task types in1015

the action planner evaluation dataset1016

Figure 11: Histogram describing object frequen-1017

cies in the object detector evaluation dataset1018

C.2 Action1019

Figure 9: Example prompt1020

Analysis In Figure 7, we analyze the tool evalu-1021

ation accuracy per different action type. Actions1022

require different preconditions to succeed. For in-1023

stance, successful Pickup, demands target object in1024
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Figure 7: Tool evaluation accuracy on the action planner
output binned by action types. We plot the baseline
(Zero-shot+Oblivious) with the best performing setting
(CoT+Checklist) of the two models.
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Figure 8: Tool evaluation accuracy on the object detec-
tor output binned by the number of detector mistakes on
all objects (Left) and task-relevant objects (Right)

the agent’s view, within reachable distance, while 1025

the agent’s hand is empty. Thus, different actions 1026

require varying levels of spatial reasoning, objec- 1027

t/scene detection, and task understanding for as- 1028

sessing feasibility. Compared to interaction actions 1029

that may require all the aforementioned capabil- 1030

ities, navigation actions like MoveAhead might 1031

be expected as the easiest to infer feasibility, as 1032

it mostly relies on spatial reasoning of obstacles. 1033

Surprisingly, we find that this is not the case – be- 1034

cause evaluating MoveAhead solely depends on 1035

spatial information, it is in fact harder to evaluate 1036

compared to other interaction actions, the model 1037

having less hints to utilize. For interaction actions, 1038

models were able to predict tool success based on 1039

objects, which compensates their limited spatial 1040

reasoning capability. 1041

C.3 Perception 1042

Figure 12: Example prompt 1043

Analysis In Figure 8, we plot the LLM’s evalu- 1044

ation accuracy with respect to the number of mis- 1045

takes made by the detector, which is one indication 1046

of the deviation, d(o, o∗). As the number of de- 1047

tection mistakes increase, it is indeed easier for 1048
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A robot is working on household tasks in a simulator environment. The robot follows a series of
low-level actions to accomplish the task. The robot uses an external tool, a low-level action
planner, which predicts the next action to follow. The provided image is a first-person view from
the robot's perspective. Refer to the tool suggested action below and decide whether to accept or
reject the tool output, based on your judgement of whether the action would succeed/fail.

The tool can sometimes give incorrect answers. Please cross-check the output based on the image
and robot state, to verify the correctness and feasiblity of the planner's output.
The tool's prediction confidence (between 0 and 1) is also provided, which may hint the
correctness of the output. Confidence is based on previous action attempts and success/failure.

The following are some scenarios where the Planner action might fail.
1. Interaction actions might fail if the object is too far from you. In this case, you need to
approach closer to the object.
2. Interaction actions might fail when you do not have a good view of the object.
3. If another object is in your path, MoveAhead will fail due to collision. In this case, you
need to walk around the obstacle.
4. If a receptacle is occupied with another object, Put will fail.

# Tool: Planner API
The Planner API provides a function that takes the task_state, observed_state as input and
returns the next suggested action. The action is computed based on the agent and target object's
location, based on the robot's internal spatial map.

## Task
possible_actions = ['MoveAhead', 'Open(Receptacle)', 'Close(Receptacle)', 'Pickup(Object)',
'Put(Object, Receptacle)', 'ToggleOn(Object)', 'ToggleOff(Object)', 'Slice(Object)']

## Robot state
task_state = {

'task_description': "Pick up a pillow and turn a lamp on.",
'completed_subgoals': [],
'current_subgoal': "Pickup Pillow",
'num_steps_taken': 56

}
print(observed_state)
Current room has: Bed, Pillow on a Bed, Cabinet, Drawer, Dresser, GarbageCan, Shelf, SideTable,
Sofa, Pillow on a Sofa.
Previous action attempts: [(MoveAhead, Success), (MoveAhead, Success), (MoveAhead, Success),
(MoveAhead, Success)]

## Planner output at current step
output = Planner(task_state, observed_state)
print(output)
Pickup(Pillow), 0.8

# Format
Return your answer in this format:
Tool output: [ACTION]
Thought: Your reasoning process
Evaluation: Accept/Reject

The evaluation is a single word indicating whether you accept or reject the tool output. Do not
provide any reasoning in the evaluation. Provide your reasoning in the thought section.

# Answer

Figure 9: Example Prompt for Planner Error Detection The model is provided instructions to evaluate the output
of the Planner and decide whether to Accept or Reject. We denote the instructions specific to the different types of
in-context interventions as Disclaimer Confidence, and Checklist).
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Source of failure

Modality Capability Tool Tool input Tool itself Context

Text Mathematical
computation

Calculator
Code interpreter

- API syntax error
- Incorrect content

NA NA

Code
validation

Code interpreter - Code syntax error
- Version updates (e.g.,
deprecated functions)
- Incorrect content

NA NA

World
knowledge

Search API - Ambiguous query - Incomplete DB
- Irrelevant results
(e.g., different word
sense)

Task planning LLM/VLM - Prompt includes non-
existent objects due to
previous perception
errors

- API call failure
- Plan includes unsup-
ported actions/objects
- Incorrect steps

- Invalid plan due to
partial observability
(e.g., closed recepta-
cles)

Image Text recognition OCR model - Blurry/noisy image - Parsing mistakes

Visual
perception

Vision-Language
Models (CLIP)
Semantic segmenta-
tion (Fast-RCNN)
Object detectors
(M-DETR)

- Camera noise
- Poor lighting

- Unknown object
- Detection failure
- Hallucination
- Wrong categories
- Bad segmentation
mask

Depth estimators - Estimation errors

Sensory Perception Pose Estimation,
Map building

SLAM Sensor Drift Algorithmic Error Environmental Inter-
ference (e.g. moving
humans, key object
change)

Audio Auditory
perception

Speech-to-text API
(Socratic Models)

- Audio noise - Recognition errors

Action Navigation Path-planning algo-
rithms (A*, Fast
Marching Method)

- Collision
- Circling with no
progress

- Change in obstacle
locations

Manipulation Skills - Grip failure

Table 4: Overview of Tool Errors. API syntax errors are a shared case of input-based failures across tools.
Similarly, network issues are shared across tools as environmental failures.
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Model Direct CoT CoT-FS Correct tool Broken tool

GPT-3.5 61.0 79.7 85.3 98.7 (+13.4) 22.7 (-62.6)

GPT-4 64.0 89.0 89.7 97.7 (+8.0) 76.0 (-13.7)

Command-R 34.3 52.3 63.3 86.3 (+23.0) 16.0 (-47.3)

Command-R+ 62.0 75.7 77.3 93.7 (+16.4) 56.7 (-20.6)

Gemini-1.5 86.7 90.3 88.7 98.3 (+8.0) 83.7 (-6.6)

Table 5: Average accuracy of models on math equations
based on various prompting methods.

models to evaluate tool correctness. However, we1049

find that models tend to reject even many accept-1050

able tool outputs where the mistake is not crucial,1051

with the accuracy being extremely low when the1052

number of mistakes are zero in both plots. The1053

models seem to understand when the tool is wrong,1054

but struggles with telling apart task-critical vs tol-1055

erable tool mistakes.1056

1057
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A robot is working on household tasks in a simulator environment. The provided image is a
first-person view from the robot's perspective. The robot uses an external tool, an object
detector to identify which objects are in the current scene. Refer to the tool output below and
evaluate the correctness of the detector with respect to the provided image, and decide whether
to accept or reject the tool output. If objects important to the task are ignored by the detector,
the tool output should be rejected. Mistakes with regard to task-irrelevant mistakes are
acceptable.

The tool can sometimes give incorrect answers. Please cross-check the output based on the image
and robot state, to verify the correctness of the detector's output.

The following are common examples where the detector mistakes may hinder the robot's ability to
accomplish the task. Consider these cases in your reasoning steps.
1. Missing task-relevant objects in the scene. In particular, small objects (e.g., keys, credit
card) are prone to be missed.
2. Hallucinating task-relevant objects that are not in the scene. For example, objects that are
similar in shape or color (e.g., apple vs tomato) may be mistaken.

# Tool: Object Detector API
The Detector API provides a function that takes the current_image as input and returns the list
of objects detected in the image. The obj_categories and receptacles are predefined as below. The
prediction consists of two parts: the predicted objects and the filtered objects. The 'filtered'
objects are object detections ignored as the detection confidence was lower than the threshold.
Only the 'detected' objects will be passed on.

Detector.obj_categories = ['AlarmClock', 'Apple', 'AppleSliced', 'BaseballBat', 'BasketBall',
'Book', 'Bowl', 'Box', 'Bread', 'BreadSliced', 'ButterKnife', 'CD', 'Candle', 'CellPhone', ... ]
Detector.receptacles = ['ArmChair', 'BathtubBasin', 'Bed', 'Cabinet', 'Cart', 'CoffeeMachine',
'CoffeeTable', 'CounterTop', 'Desk', 'DiningTable', 'Drawer', 'Dresser', 'Fridge', ... ]

## Robot state
task_state = {

'task_description': "Place a cooked apple into the sink.",
'completed_subgoals': [('Pickup', 'Apple')],
'remaining_subgoals': [('Open', 'Microwave'), ('Put', 'Microwave'), ('Close', 'Microwave'),
('ToggleOn', 'Microwave'), ('ToggleOff', 'Microwave'), ('Open', 'Microwave'), ('Pickup',
'Apple'), ('Close', 'Microwave'), ('Put', 'SinkBasin')],
'num_steps_taken': 235

}

## Detector output on current image
Detector(current_image)
# {'Apple': 3.09, 'Knife': 0.55, 'CounterTop': 63.31, 'DiningTable': 47.09} for Confidence
# other prompting methods:
{

'detected': {'CounterTop'},
'filtered': {'DiningTable', 'Apple', 'Knife'}

}

# Format
Return your answer in this format:
Thought: Your reasoning process on the provided information (image, task_state and tool_output)
Evaluation: Accept/Reject

The evaluation is a single word indicating whether you accept or reject the tool output. Do not
provide any reasoning in the evaluation. Provide your reasoning in the thought section.

# Answer

Figure 12: Example Prompt for Object Detector Error Detection The model is provided instructions to evaluate
the output of the Object Detector and decide whether to Accept or Reject. We denote the instructions specific to the
different types of in-context interventions as Disclaimer Confidence, and Checklist.
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