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Abstract
Cognitive diagnosis (CD), the foundation of intelligent education,
aims to assess students’ cognitive levels in knowledge concepts.
Graph-based CD enhances diagnostic performance by incorporat-
ing high-order relations among entities, such as students, exercises,
and knowledge concepts. Recently, self-supervised learning has
been applied to CD to address data sparsity. However, existing con-
trastive learning methods may distort the student-exercise graph
and overlook important semantic heterogeneity between correct
and incorrect response logs. To address these limitations, we pro-
pose the Semantic-tailored Variational-Contrastive Graph Cognitive
Diagnosis (SVGCD) method. First, a semantic-aware GNN is used to
generate entity representations for different semantic environments.
Then, a semantic-specific variational graph reconstruction module
infers representation distributions and reconstructs semantic sub-
graphs while preserving the original graph structure. Additionally,
a semantic-specific contrastive strategy introduces high-quality
self-supervised signals while retaining semantic characteristics, en-
hancing student modeling for CD. Extensive experiments on two
real-world datasets validate the effectiveness of our SVGCD. The
code is available at https://github.com/XChuckie/SVGCD.

CCS Concepts
• Information systems → Information systems applications;
• Applied computing→ Education.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW Companion ’25, Sydney, NSW, Australia.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1331-6/25/04
https://doi.org/10.1145/3701716.3717749

Keywords
Intelligent Education, Cognitive Diagnosis, GraphContrastive Learn-
ing, Student Performance Prediction

ACM Reference Format:
Chenao Xia, Fei Liu, Zihan Wang, Zhuangzhuang He, Pengyang Shao,
Haowei Zhou, and Yonghui Yang. 2025. Semantic-tailored Variational-Contrastive
Graph Learning for Cognitive Diagnosis. In Companion Proceedings of
the ACM Web Conference 2025 (WWW Companion ’25), April 28-May 2,
2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3701716.3717749

1 Introduction
Intelligent education aims to improve the quality and equity of
education through artificial intelligence[25, 28]. As its foundation,
cognitive diagnosis (CD) assesses students’ proficiency level in
knowledge concepts, enabling the realization of AI4Education. As
shown in Figure 1(a), diagnosis results of CD models enable var-
ious applications such as computerized adaptive testing [32] and
exercise recommendation [14, 22]. Over the past decades, signif-
icant progress has been made in advancing cognitive diagnosis.
Traditional models [2, 4, 18] use manually designed interaction
functions to estimate student abilities, while neural network-based
models [23, 24] leverage multi-layer perceptrons for improved gen-
eralizability and interpretability. Building on this, graph neural
networks (GNNs)[12] have emerged to improve the accuracy and
effectiveness of cognitive diagnosis by capturing high-order rela-
tionships between entities[6, 7, 10, 17, 30].

However, these studies overlook an important and rarely ex-
plored issue, data sparsity (i.e., students have very few response
logs). And we carry out a data sparsity experiment using represen-
tative models (IRT [4], NeuralCD [23] and RCD [6]) to illustrate its
harmful effects on CD by dividing student response logs into sparse,
medium and dense groups in the ASSIST dataset [5]. As shown in
Figure 1(b), we observe that all models perform poorly in sparse stu-
dent groups. We attribute that students with fewer response logs are
not adequately trained, resulting in their sub-optimal performance.

https://github.com/XChuckie/SVGCD
https://doi.org/10.1145/3701716.3717749
https://doi.org/10.1145/3701716.3717749
https://doi.org/10.1145/3701716.3717749
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Figure 1: (a) Pipeline of intelligent education system and
(b) Performance comparisons of CD models over different
students’ groups (i.e., sparse, medium and dense groups).

A few recent studies [26, 27, 31] have aimed to embrace the issue of
data sparsity, and these methods are delving into the introduction
of additional self-supervised signals on graph-based CD harnessing
the potential of graph contrastive learning (GCL) [19, 29]. In addi-
tion to the supervised diagnosis task, GCL-based CD models first
construct different contrastive views, and then maximize consis-
tency between multiple view nodes, thus alleviating data sparsity
while improving the performance of cognitive diagnosis.

Despite the notable performance of GCL-based CD models, we
argue that there are still two limitations. L1) Disrupt intrinsic
nature of the student-exercise response graph. Some mod-
els based on structural disturbances [26] randomly drop edges to
build contrastive views for contrastive learning. Due to the fact
that all nodes in the response graph are interrelated and do not
satisfy the IID assumption, this strategy is easy to disrupt students’
proficiency level on special concepts and intrinsic relationships
among nodes, limiting the potential ability of contrastive learning.
L2) Lack in-depth consideration of semantic heterogeneity
between correct and wrong student-exercise logs. Current
semantic-aware CD models [17, 20, 21] have proven remarkable
performance, which is attributed to the consideration of semantic
heterogeneity. And some GCL-based CD methods [27] attempt to
model node representations of each semantic subgraph, and then
directly adopt contrastive learning to pull the same nodes closer of
both semantic subgraphs. Due to the significant differences of stu-
dents’ proficiency levels between the correct and wrong semantic
environment, pulling the same nodes closer from different semantic
subgraphs together can lead to conflicting information for the same
student on the same knowledge concepts, causing unstable student
ability modeling. Thus, it is crucial to carefully consider semantic
heterogeneity in CD and design a reasonable contrastive strategy.

To address the above limitations, we propose a novel method,
Semantic-tailoredVariational-ContrastiveGraphCognitiveDiagnosis
(SVGCD). First, we design a knowledge-integrated function to initial-
ize student abilities and exercise difficulties by embedding knowl-
edge information. Next, a semantic-aware GNN is employed to
generate node representations from two semantic subgraphs (e.g.,
correct and wrong responses). For L1, we introduce a semantic-
specific variational graph reconstruction module to infer node dis-
tributions for each semantic subgraph and reconstruct them with

the same topology but adjusted edge weights. For L2, we propose a
semantic-specific contrastive learning strategy, which uses multiple
sampling techniques to generate contrastive views based on seman-
tic distributions, preserving semantic characteristics and mitigating
data sparsity. Finally, for the supervised diagnosis task, we fuse
node representations from both semantic environments as inputs to
a cognitive diagnostic module for predicting student performance.
The main contributions of this paper are as follows:

• We propose a novel self-supervised cognitive method SVGCD,
which designs a semantic-specific variational graph reconstruc-
tion module to generate contrastive views without affecting the
original graph structure.

• We design a semantic-specific contrastive strategy, using recon-
structed subgraphs with the same semantics for contrastive learn-
ing to preserve their semantic characteristics.

• Extensive experiments and in-depth analysis on both datasets
demonstrate the effectiveness of our method.

2 The Proposed Model
In this section, we introduce our proposed Semantic-tailored Varia-
tional-Contrastive Graph Cognitive Diagnosis (SVGCD) model. As
illustrated by Figure 2, it aims to enhance graph-based cognitive
diagnosis tasks with self-supervised learning.
Preliminaries. In the fundamental CD task, there are three sets
of entities: students S(|S| = 𝑁 ), exercises V(|V| = 𝑀), and
associated knowledge concepts K(|K| = 𝐶). Exercise-knowledge
mapping matrix Q = {𝑞𝑣𝑘 }𝑀×𝐶 can be regarded as a binary matrix
labeled by domain experts, where 𝑞𝑣𝑘 = 1 if exercise 𝑣 relates
to concept 𝑘 , otherwise 𝑞𝑣𝑘 = 0. The students’ response logs are
a triplet set 𝑅 = {(𝑠, 𝑣, 𝑟𝑠𝑣) |𝑠 ∈ S, 𝑣 ∈ V, 𝑟𝑠𝑣 ∈ {0, 1}}, where
𝑟𝑠𝑣 = 1 means a correct answer while 𝑟𝑠𝑣 = 0 means an wrong
answer. In this paper, we utilize response logs to build a bipartite
graph G = {S ∪ V,A}, where S ∪ V involves all students and
exercises, and A denotes the adjacency matrix defined by training
response logs. Due to both different semantics of response logs, we
segment the original graph into two subgraphs: correct semantic
subgraph G(+) = {S ∪ V,A(+) } and wrong semantic subgraph
G(−) = {S ∪V,A(−) }. Based on this, our goal is to mine students’
cognitive states on specific knowledge concepts by predicting the
scores on related exercises.

2.1 Semantic-aware Graph Cognitive Diagnosis
Before predicting students’ scores, we project entities into a 𝑑-
dimensional embedding space. Specifically, letU(S) ∈ R𝑁×𝑑 ,B(V) ∈
R𝑀×𝑑 and D(K) ∈ R𝐶×𝑑 represent the embeddings of students,
exercises and knowledge concepts respectively. We generate em-
bedding vectors 𝒖𝑠 , 𝒃𝑣 and 𝒅𝑘 of size R𝑑 for student 𝑠 , exercise 𝑣
and concept 𝑘 .

2.1.1 Knowledge-Integrated Initialization. To capture interpretable
student and exercise traits on knowledge conceptswithin the student-
exercise bipartite graph, we design a Knowledge-Integrated Func-
tion (KIF), inspired by the success of implicitly modeling intrinsic
knowledge relations [15, 20, 24], as follows:

𝜃0
𝑠𝑘

= 𝒖𝑠 × (𝒅𝑘 )𝑇 , 𝜓0
𝑣𝑘

= 𝒃𝑣 × (𝒅𝑘 )𝑇 , (1)
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Figure 2: The overall structure of our proposed SVGCD.

where 𝜃0
𝑠𝑘
,𝜓0
𝑣𝑘

denote raw proficiency of 𝑠 on 𝑘 and raw difficulty
of 𝑣 on 𝑘 , respectively. We generate the ability vector 𝜽 0𝑠 ∈ R1×𝐶

and the difficulty vector 𝝍0
𝑣 ∈ R1×𝐶 for student 𝑠 and exercise 𝑣 .

And we obtain embedding matrices Θ0 ∈ R𝑁×𝐶 and Ψ0 ∈ R𝑀×𝐶

of all students and exercises.

2.1.2 Semantic-aware GNN Layer. Given both semantic subgraphs
G(+) and G(−) , employing GNNs can capture the high-order re-
lations [6] within entities. At the core is, for initialized node em-
beddings E0 = [Θ0,Ψ0], we use lightweight graph convolutional
networks [9] to update the representation of ego nodes of both
subgraphs G(+) and G(−) :

E𝑙(∗) = D
− 1

2
(∗)A(∗)D

− 1
2

(∗)E
𝑙−1
(∗) , ∗ ∈ {+,−}, (2)

where E𝑙(∗) and E𝑙−1(∗) denote the node representations in 𝑙𝑡ℎ and

(𝑙 − 1)𝑡ℎ graph convolution layer. D(∗) is diagonal degree matrices
of semantic subgraphs. Additionally, we obtain the semantic-aware
fused representation with an intra-layer additive strategy to server
inputs of cognitive diagnosis layer: E𝑙(𝑓 ) = E𝑙(+) + E𝑙(−) . After ob-
taining all representations of 𝐿 layers, the final representations are
obtained with a readout function:

E(∗) = 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡 (E0(∗) , E1(∗) , . . . , E𝐿(∗) ), ∗ ∈ {+,−, 𝑓 }, (3)

where 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡 can be mean, sum, concatenation, or last-layer out-
put. For brevity, we summarize the procedure of semantic-aware
GNN on semantic subgraphs G(∗) to obtain aggregated node repre-
sentations, formulated as:

Θ(∗) ,Ψ(∗) = GNN(∗) (G(∗) |E0
(∗) ), ∗ ∈ {+,−, 𝑓 }, (4)

where Θ(∗) ∈ R𝑁×𝐶 and Ψ(∗) ∈ R𝑀×𝐶 denote different forms of
final student and exercise representations in both semantic envi-
ronments: correct, wrong, and fused semantic embedding.

2.1.3 Cognitive Diagnosis Layer. After obtaining semantic-aware
fused embedding vectors 𝜃𝑠 ∈ Θ𝑓 and 𝜓𝑣 ∈ Ψ𝑓 of student 𝑠 and
exercise 𝑣 , we adopt a single-layer perception with parameter con-
straints, which meet monotonicity conditions [4, 18, 23], to learn
the diagnosis state of 𝑠 and 𝑣 , formulated as:

𝒉𝑠 = 𝜎 (𝑊𝑠 × 𝜽𝑠 + 𝒃𝑠 ), 𝒉𝑣 = 𝜎 (𝑊𝑣 × 𝝍𝑣 + 𝒃𝑣), (5)

where 𝜎 (·) represents the sigmoid activation function.𝑊𝑠 and𝑊𝑣

are the weights of neural networks, which ensure the interpretabil-
ity of diagnosis results. To verify the correctness of the diagnosis,
we use the NeuralCD paradigm [23] to map the diagnosis results
into predicted response logs:

𝑦𝑠𝑣 = 𝜎 (MLPs(Q𝑣 ⊙ (𝒉𝑠 − 𝒉𝑣) × 𝒉𝑑𝑖𝑠𝑐𝑣 )), (6)

where ⊙ denotes the element-wise product. MLPs denotes multi-
layer perceptions with positive constraints and 𝒉𝑑𝑖𝑠𝑐𝑣 denotes exer-
cise discriminations. Finally, we utilize the cross entropy between
predicted score 𝑦𝑠𝑣 and true score 𝑟𝑠𝑣 as the loss function of cogni-
tive diagnosis, defined as:

L𝑐𝑑 = −
∑︁

(𝑠,𝑣,𝑟𝑠𝑣 ) ∈𝑅
(𝑟𝑠𝑣 log𝑦𝑠𝑣 + (1 − 𝑟𝑠𝑣) log(1 − 𝑦𝑠𝑣)), (7)

2.2 Graph Reconstructive-Contrastive Learning
Existing GCL-based CD models [26, 27] can destroy important
intrinsic properties of student-practice graphs and fail to fully
consider semantic heterogeneity, limiting the potential of con-
trastive learning. Therefore, we propose semantics-specific vari-
ational graph reconstruction [13] to customise nodes’ distribu-
tion of each semantic environment, and then generate contrastive
views without damaging the original topology structure. Further,
SVGCD employs semantics-specific contrastive strategy, divide-and-
conquer thinking, which effectively preserves the characteristics of
different semantics while alleviating data sparsity.

2.2.1 Semantic-specific Variational Graph Reconstruction. After ob-
taining the nodes’ representations of the semantic environments
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E(+) and E(−) , we build a variational graph reconstruction mod-
ule that uses probability distributions Z to reconstruct the ori-
gin semantic subgraphs without destroying the original topology:
Ĝ(∗) ∼ 𝑝𝜃 (G(∗) |Z(∗) ), where G(∗) = {G(+) ,G(−) } denotes two
semantic subgraphs. Further, we define the reconstructive distri-
bution as 𝑝 (G(∗) ) =

∫
𝑝𝜃 (G(∗) |Z(∗) )𝑝 (Z(∗) )𝑑Z(∗) . However, in-

tegration on Z is intractable due to unknown probability distri-
butionsZ. Thus, we utilize the reparameterization trick [11] and
apply variational inference to optimize the Evidence Lower Bound
(ELBO):

log 𝑝 (G(∗) ) = log
∫
𝑝𝜃 (G(∗) |Z(∗) )𝑝 (Z(∗) )𝑑Z(∗)

≥ E𝑞𝜙
[
log 𝑝𝜃 (G(∗) |Z(∗) )

]
− 𝐾𝐿

[
𝑞𝜙 (Z(∗) | G(∗) ) | |𝑝 (Z(∗) )

]
, (8)

where 𝑞𝜙 (Z(∗) |G(∗) ) and 𝑝𝜃 (G(∗) |Z(∗) ) denote the variational
inference encoder and graph reconstruction decoder, which are
parameterized by neural networks. 𝐾𝐿 presents KL-divergence be-
tween the approximate posterior 𝑞𝜙 (Z(∗) |G(∗) ) and prior 𝑝 (Z(∗) ).
Then we describe the two neural networks mentioned above.

Variational Inference Encoder. To understand the intrinsic distri-
bution of each node and customize contrastive views of each seman-
tic environment, we use a variational encoder to estimate the distri-
butions of the nodes of each semantic subgraph: 𝑞𝜙 (Z(∗) |G(∗) ) =∏𝑁+𝑀−1
𝑖=0 𝑞𝜙 (Z(∗),𝑖 |G(∗) ). Futher, we encode each node 𝑖 of the

semantic subgraphs G(∗) into the multi-variate Gaussian distribu-
tions: 𝑞𝜙 (z(∗),𝑖 |G(∗) ) = N

(
z(∗),𝑖 |𝝁 (∗),𝜙 (𝑖), 𝑑𝑖𝑎𝑔(𝝈2

(∗),𝜙 (𝑖))
)
, where

𝝁 (∗),𝜙 (𝑖) and 𝝈2
(∗),𝜙 (𝑖) denote the mean and variance of the node

𝑖 distribution. Considering the implicit correlation between the
nodes on each semantic subgraph, we use outputs of semantic sub-
graphs G(∗) : E(∗) = [E0(∗) , E

1
(∗) , ..., E

𝐿
(∗) ], to evaluate the means and

variances of each node, formulated as:

𝝁 (∗) =
1
𝐿

𝐿∑︁
𝑙=1

E𝑙(∗) , 𝝈(∗) = MLPs(𝝁 (∗) ), (9)

whereMLPs represents two linear transformation functions. After
obtaining the mean and variance of the approximate posterior distri-
bution, we sample a latent representation z(∗),𝑖 , which followed the
isotropic Gaussian distribution 𝑝 (Z(∗) ) ∼ N (𝝁 (∗) ,𝝈

2
(∗) 𝐼 ), for each

node 𝑖 of G(∗) . However, direct sampling makes it difficult to calcu-
late gradients for the entire model, as the sampling process is non-
differentiable. Thus, we adopt the reparameterization trick [11] as
an alternative to sampling from the distribution N(𝝁 (∗),𝑖 ,𝝈

2
(∗),𝑖 𝐼 ),

formulated as follows:

z(∗),𝑖 = 𝝁 (∗),𝑖 ∗ 𝝈 (∗),𝑖 ⊙ 𝜺, (10)

where 𝜺 ∼ N(0, I) is a standard Gaussian distribution.
Graph Reconstruction Decoder. After estimating latent probabil-

ity distribution of nodes of various semantic subgraphs G(+) and
G(−) :Z(∗) = {Z(+) ,Z(−) }, we obtain reconstructive distributions
of origin semantic subgraphs: 𝑝𝜃 (G(+) |Z(+) ) and 𝑝𝜃 (G(−) |Z(−) ).
Thus reconstructed subgraphs Ĝ(∗) can be formulated as follows:

𝑝𝜃 (G(∗) |Z(∗) ) =
𝑁 ∗𝑀−1∏
𝑖=0

𝑁 ∗𝑀−1∏
𝑗=0

𝑝𝜃 (A(∗),𝑖 𝑗 |z(∗),𝑖 , z(∗), 𝑗 ), (11)

Considering the specificity of CD, that is, the difference between
the student’s ability and the difficulty of the exercise reflects the

student’s mastery of the exercise, we use the difference between
reconstructed student 𝑖 and exercise 𝑗 to present the propensity
score that student 𝑖 interacted with exercise 𝑗 , as follows:

𝑝𝜃 (A(∗),𝑖 𝑗 |z(∗),𝑖 , z(∗), 𝑗 ) = 𝜎
(
𝑓𝜃 (z(∗),𝑖 − z(∗), 𝑗 )

)
, (12)

herein, 𝑓𝜃 (·) is a simple but effective multi-layer perceptions pa-
rameterized by 𝜃 .

2.2.2 Semantic-specific Contrastive Learning. After getting con-
trastive views of G(+) by multiple samplings of the estimated dis-
tributions: Ĝ′

(+) and Ĝ′′

(+) , according to Eq. (10) and Eq. (11). We
utilize GNN(+) (·) like Eq. (4), to obtain students and exercises rep-
resentations of two correct semantic reconstruction views:

Θ
′

(+) ,Ψ
′

(+) = GNN(+) (Ĝ
′

(+) |Ω),

Θ
′′

(+) ,Ψ
′′

(+) = GNN(+) (Ĝ
′′

(+) |Ω),
(13)

FollowingGCL-based CDparadigms [26], we adopt the InfoNCE [16]
loss as an auxiliary objective to maximize the mutual information
lower bound. This encourages consistency between representations
of the same nodes across viewswhile distinguishing representations
of different nodes.

L𝑖𝑛𝑣(+),𝑆 =
∑︁

𝑎∈B(+),𝑠

− log
exp(𝜽 ′

(+),𝑎
𝑇
𝜽

′′

(+),𝑎/𝜏)∑
𝑏∈B(+),𝑠

exp(𝜽 ′
(+),𝑎

𝑇
𝜽

′′
(+),𝑏/𝜏)

,

L𝑖𝑛𝑣(+),𝐸 =
∑︁

𝑖∈B(+),𝑒

− log
exp(𝝍 ′

(+),𝑖
𝑇
𝝍

′′

(+),𝑖/𝜏)∑
𝑗∈B(+),𝑒

exp(𝝍 ′
(+),𝑖

𝑇
𝝍

′′
(+), 𝑗/𝜏)

,

(14)

where hyper-parameter 𝜏 is the temperature coefficient, B(+),𝑠 and
B(+),𝑒 denote students and exercises from correct responses in
batch training data. By combining two losses, we obtain the objec-
tive of contrastive learning of G(+) , denoted as L𝑖𝑛𝑣(+) = L𝑖𝑛𝑣(+),𝑆 +
L𝑖𝑛𝑣(+),𝐸 . Analogously, we compute the contrastive loss within the
wrong response side as L (−) = L𝑖𝑛𝑣(−),𝑆 + L𝑖𝑛𝑣(−),𝐸 . Consequently,
the final objective of contrastive learning task can represent the
cumulative loss mentioned above: L𝑐𝑙 = L+ + L− .

2.3 Model Optimization for SVGCD
For semantic-specific variational graph reconstruction part, we
use ELBO loss mentioned in Eq. (8) to optimize the parameters of
variational inference encoder and graph reconstruction decoder for
various semantic reconstructed subgraphs Ĝ(+) and Ĝ(−) :

L (∗),𝐸𝐿𝐵𝑂 = −E𝑞𝜙
[
log 𝑝𝜃 (G(∗) |Z(∗) )

]
+𝐾𝐿

[
𝑞𝜙 (Z(∗) | G(∗) ) | |𝑝 (Z(∗) )

]
,

(15)
Then, we get the final variational graph reconstruction lossL𝐸𝐿𝐵𝑂 =

L (+),𝐸𝐿𝐵𝑂+L (−),𝐸𝐿𝐵𝑂 . Overall, the training of the proposed SVGCD
adopts multi-task learning, consisting of three subparts as follows:

min L = L𝑐𝑑 + 𝜆L𝑐𝑙 + 𝛽L𝐸𝐿𝐵𝑂 . (16)

where 𝜆 and 𝛽 are hyperparameters that control the strengths of
auxiliary tasks. During inference, we use Eq. (4) to compute the
representations Θ and Ψ without variational graph reconstruction.
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Table 1: Performance comparison at different train/test split ratios. The best performance is highlighted in bold, and the
runner-ups are with underlines. ↑ (↓) denotes the higher (lower) score the better (worse) performance. By t-test, the bold result
is statistically significantly better than others for each metric, with a significant level of 𝛼 = 5%.

Metrics AUC ↑ RMSE ↓ ACC ↑
Datasets Methods 5:5 6:4 7:3 8:2 5:5 6:4 7:3 8:2 5:5 6:4 7:3 8:2

ASSIST

IRT 0.7225 0.7333 0.7415 0.7480 0.4472 0.4434 0.4412 0.4390 0.7062 0.7100 0.7153 0.7175
NeuralCD 0.7340 0.7413 0.7508 0.7558 0.4440 0.4408 0.4386 0.4372 0.7131 0.7155 0.7151 0.7186
KaNCD 0.7412 0.7499 0.7584 0.7640 0.4468 0.4399 0.4340 0.4304 0.7126 0.7214 0.7269 0.7315
RCD 0.7563 0.7612 0.7644 0.7685 0.4287 0.4257 0.4255 0.4231 0.7256 0.7293 0.7305 0.7330
SCD 0.7543 0.7602 0.7668 0.7701 0.4304 0.4276 0.4245 0.4233 0.7222 0.7262 0.7330 0.7321

ASG-CD 0.7545 0.7631 0.7697 0.7736 0.4331 0.4268 0.4244 0.4219 0.7259 0.7313 0.7360 0.7371

SVGCD (Ours) 0.7640 0.7713 0.7775 0.7832 0.4251 0.4213 0.4188 0.4158 0.7325 0.7362 0.7413 0.7434

Junyi

IRT 0.7867 0.7901 0.7927 0.7858 0.4171 0.4131 0.4103 0.4075 0.7281 0.7390 0.7454 0.7508
NeuralCD 0.7803 0.7804 0.7806 0.7811 0.4129 0.4125 0.4122 0.4126 0.7473 0.7479 0.7476 0.7473
KaNCD 0.7850 0.7859 0.7869 0.7885 0.4092 0.4091 0.4089 0.4083 0.7504 0.7509 0.7516 0.7556
RCD 0.8035 0.8056 0.8066 0.8087 0.3997 0.3998 0.3984 0.3972 0.7666 0.7675 0.7673 0.7689
SCD 0.8026 0.8073 0.8099 0.8134 0.4003 0.3981 0.3968 0.3949 0.7646 0.7676 0.7687 0.7726

ASG-CD 0.8079 0.8105 0.8128 0.8156 0.3980 0.3964 0.3957 0.3938 0.7718 0.7725 0.7732 0.7754

SVGCD (Ours) 0.8162 0.8189 0.8205 0.8233 0.3932 0.3924 0.3908 0.3892 0.7755 0.7759 0.7780 0.7804

Table 2: Statistics of two real-world datasets for experiments.

Dataset ASSIST Junyi

# Students 2,493 10,000
# Exercises 17,676 734
# Knowledge concepts 123 734
# Response logs 267,423 408,057
# Avg logs per student 107.240 40.806
# Sparsity in student-exercise logs 99.394% 94.441%

3 Experiments
3.1 Experimental Settings
To evaluate the cognitive performance of SVGCD, we conduct ex-
periments on two public datasets: the ASSISTments 2009-2010 skill
builder dataset 1 [5] and Junyi Academy Math Practicing Log 2 [1],
containing student-exercise response logs and exercise-knowledge
relational matrices. Following prior work [6, 26], we retain only the
first attempt per question and filter out students with fewer than 15
responses. For the Junyi dataset, we randomly select 10,000 response
logs. Finally, we evaluate our method using various train/test splits.
The dataset statistics are summarized in Table 2.

We evaluate the effectiveness of SVGCD by comparing it with
six well-known CD models, IRT [4], NeuralCD [23], KaNCD [24],
RCD [6], SCD [26], ASG-CD [20]. Performance is measured using
three metrics: ACC, RMSE, and AUC. All models, including SVGCD,
are implemented in PyTorch. Model parameters are initialized with
Xavier initialization [8], embedding size is set to 128, and training

1https://sites.google.com/site/assistmentsdata/feng2009
2https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198

Table 3: Ablation study of SVGCD on two datasets.

Datasets ASSIST Junyi

Metrics AUC RMSE ACC AUC RMSE ACC

SVGCD 0.7832 0.4158 0.7434 0.8233 0.3892 0.7804
w/o VG+w/ R 0.7782 0.4199 0.7402 0.8188 0.3920 0.7768
w/o DCL+w/ P 0.7754 0.4201 0.7395 0.8182 0.3956 0.7763
w/o SCL 0.7702 0.4262 0.7349 0.8037 0.4033 0.7664

uses Adam [3] with a learning rate of 0.0001 and batch size of 1024.
For SVGCD, we tune key hyperparameters: contrastive temperature
𝜏 (0.3–1.0), GNN layers (1–5), contrastive loss 𝛽 , and variational loss
𝜆 (0.1–1.0). Baseline parameters are selected as per their respective
papers. All experiments are repeated five times, and average results
are reported, using a GeForce RTX 3090 GPU.

3.2 Experimental Results
Overall Comparison. To demonstrate the superiority of SVGCD,
we compare it with well-known methods on two popular datasets
using three standard metrics. Table 1 summarizes the results of
all models, and the variance of each metric is less than 0.05. First:
SVGCD consistently outperforms all baselines. Across both datasets,
it achieves significantly better results (𝛼 = 5%) for all metrics, re-
gardless of train/test split ratios, confirming its effectiveness and
the importance of well-designed contrastive views in graph cogni-
tive diagnosis. Second: SVGCD shows notable improvement over
GCL-based CD models. Compared to SCD, which employs struc-
tural augmentation for contrastive views, SVGCD demonstrates
substantial gains, thanks to its semantic-specific variational graph
reconstruction and novel contrastive strategy. These modules infer
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Figure 3: Performance𝑤.𝑟 .𝑡 . different student groups.

node distributions and generate rational contrastive views, pre-
serving both structural integrity and the unique characteristics of
distinct semantic environments.
Ablation Studies. The experiments above demonstrate the overall
performance of SVGCD. To further analyze its components, we eval-
uate SVGCD on both datasets using an 8:2 train/test split (Table 3).
Our model outperforms the variant "w/o VG + w/ R", where the vari-
ational module is replaced with random augmentation, confirming
that the variational module generates superior contrastive views
without structural distortion. To assess the importance of semantic
heterogeneity, we replace the proposed divide-and-conquer con-
trastive learning (DCL) strategy with a simpler approach that pulls
the same nodes of both semantic subgraphs (variant "w/o DCL +
w/ P") [27]. This variant performs significantly worse, highlighting
the impact of proficiency differences between correct and wrong
semantic environments. Finally, by removing semantic-specific con-
trastive learning (variant "w/o SCL"), the performance sudden drop
can be attributed to the fact that contrastive learning can learn
the invariant characteristic by maximizing the mutual information
of different contrastive views. Thus, all components of SVGCD
contribute to the final superior performance.
Model Robustness to Data Sparsity. We investigate the effec-
tiveness of our method in mitigating data sparsity by comparing
it with optimal baseline ASG-CD and SVGCD-R (used structural
augmentation to generate contrastive views). Specifically, we split
all students into five groups according to the ascending number of
response logs in the training set in both datasets. Figure 3 illustrates
the performance of various groups, we find that GCL-based CD
methods significantly improve compared to ASG-CD in all student
groups, especially in sparse student groups. This indicates that the
introduction of auxiliary self-supervised signals facilitates the data
sparsity issue. Further, our SVGCD consistently outperforms two
methods in each group of students, better validating the effective-
ness of the proposed contrastive strategy.
Hyper-Parameter Sensitivities. As shown in Figure 4, we ex-
perimentally analyze the sensitivity of SVGCD to four main hyper-
parameters on ASSIST dataset. First: GNN Layer 𝐿. We explore the
parameter 𝐿 within the range of {1, 2, 3, 4, 5} as shown in Figure 4(a),
the diagnosis performances initially improve with an increase of
GNN layers, but slightly decrease when the number of layers ex-
ceeds two. It indicates that shallow layers fail to capture high-order
relations among nodes, while overly deep layers also lead to the
over-smoothing issue, thereby diminishing performance. Second:
Temperature coefficient 𝜏 . In Figure 4(b), we observe that an ex-
cessively high 𝜏 leads to poor performance, as the model fails to

(a) 𝐿 on ASSIST (b) 𝜏 on ASSIST

(c) 𝜆 on ASSIST (d) 𝛽 on ASSIST

Figure 4: Performance of different hyperparameters.

effectively mine hard negative samples. Conversely, a too-low 𝜏

also hampers performance by making the model focus on false neg-
ative samples. Three: Contrastive learning weight 𝜆 and variational
reconstructive weight weight 𝛽 . As illustrated in Figure 4(c) and
Figure 4(d), we carefully tune the weight 𝜆 and 𝛽 , and then observe
that our model shows a trend of first upward and then falling. Note
that our method achieves optimal performance with 𝜆 = 0.5 and
𝛽 = 0.4 on the ASSIST dataset. Thus, appropriate parameters can ef-
fectively mitigate data sparsity issues; in turn, improper parameter
settings would lead to suboptimal diagnosis performance.

4 Conclusion
In this work, we proposed a novel semantic-tailored graph con-
trastive cognitive diagnosis method SVGCD. Specifically, we recon-
struct specific semantic subgraphs without distorting the original
graph structure by inferring the distribution of nodes with the same
semantic information based on variational graph reconstruction
techniques. Then we propose a divide-and-conquer strategy tai-
lored for contrastive learning in the field of cognitive diagnosis,
which generates multiple contrastive views with multiple sam-
plings for each semantic environment based on estimated semantic
distributions, thus preserving their semantic characteristics. Ex-
tensive experimental results on both datasets demonstrated the
effectiveness of our proposed SVGCD.
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