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Abstract

Genome language models (GLMs) have demonstrated exceptional capabilities in
DNA sequence generation and understanding, yet their context-dependent perfor-
mance is limited by the fixed length of input sequences. To address this limitation,
we propose BaseMirror, an inference-time strategy that leverages the symmetry of
DNA’s double strand to expand the effective context. Our method autoregressively
generates tokens along the reverse direction of the reverse-complement strand of
a given DNA sequence, then obtains and prepends their complementary bases to
the original strand, thereby enriching the model’s effective receptive field. We
demonstrate that BaseMirror consistently improves generative and discriminative
tasks’ performance on the GENERator and Evo2 families. For next-base prediction,
progressively extending the input sequence leads to consistent performance gains
across various input lengths, model sizes, and sampling strategies, with accuracy
improvements of up to 4.6%, compared to the original non-extended input. For
variant effect prediction on BRCA1, BaseMirror enhances the AUROC for zero-
shot classification by up to 5.2%. Moreover, we uncover a scaling phenomenon in
which performance increases monotonically with the length of the extended context.
Our results highlight the effectiveness of BaseMirror as a lightweight, robust, and
scalable solution at inference time through API-based GLM generation.

1 Introduction

Genome language models (GLMs), pre-trained on massive nucleotide corpora and comprising
billions of parameters, have demonstrated significant capabilities in modeling DNA sequences,
excelling in both generative and discriminative tasks [6} 16} 49, [744]. These autoregressive models
generate sequences by predicting each nucleotide based on its preceding context. This context-
dependent capability is crucial for producing biologically plausible sequences and modeling complex
genomic structures [[13]]. Notably, recent GLMs like GENERator [44] and Evo2 [7] can now generate
biologically meaningful sequences, such as histones, enhancers, and mitochondrial genomes.

However, a fundamental challenge for GLMs is their reliance on the input sequence during inference,
which can restrict their effective receptive field, particularly with fixed input lengths. Unlike natural
languages, where human-designed prompts or external knowledge can guide model behavior [27, [1],
the inherent intricate nature of genomic sequences makes manual prompt engineering or direct
information injection largely infeasible [20]. These limitations underscore the need for inference-time
strategies that can expand the model’s contextual understanding within the autoregressive framework.

In this work, we introduce BaseMirror, a novel inference-time context expansion method. BaseMirror
enriches the input sequence by leveraging the inherent reverse-complementary symmetry of DNA.
The core principle of our method is rooted in DNA’s double-helical structure: the two strands are
reverse complements, with adenine (A) pairing with thymine (T) and cytosine (C) with guanine

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39

40
41
42
43
44
45
46

47
48
49
50
51
52
53

54
55
56
57
58
59

60

61
62
63

64
65
66

67
68
69

Generative Task: Next-Base Prediction
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Figure 1: We propose BaseMirror, an inference-time context expansion method that leverages the
double-strand symmetry of DNA. Given an input sequence, BaseMirror maps the main DNA strand to
its reverse complement and generates the hidden context of the main strand using a genome language
model. In this paper, we perform two tasks to demonstrate the effectiveness of BaseMirror. The LOF
means that the DNA mutation leads to loss of function, and the Non-LOF means the opposite.

(G) [42]. This complementary pairing ensures that identical genetic information is encoded on both
strands, allowing biological mechanisms to recognize patterns on either [33| 28, 147]. We term the
operation of mapping a sequence to its reverse complement as mirroring.

BaseMirror iteratively leverages this symmetry as illustrated in Figure[I] First, the input sequence
is mirrored to its reverse-complement strand, and then the GLM generates tokens along this new
strand. These generated bases are subsequently mirrored back to the original strand and prepended
to the initial input, effectively serving as expanded context. This process is bidirectional, allowing
generation to proceed along the main chain with an enriched contextual view. By augmenting the
sequence in this biologically-grounded manner, BaseMirror provides the model with a richer, more
informative context without altering model weights and access to task-dependent annotations.

To demonstrate the benefits of expanded context, we conduct experiments on both generative and
discriminative tasks. For next k-base prediction, BaseMirror consistently improves accuracy for
both Evo2 [[7] and GENERator [44] model families, with relative gains up to 4.6%. It also enhances
zero-shot classification performance in variant effect prediction (VEP) on BRCAL, a clinical breast
cancer dataset [[17], with relative gains up to 5.2%. We also demonstrate the generality of BaseMirror
on the ClinVar [22], a much larger VEP dataset. These improvements are robust across diverse
sequence lengths, numbers of bases to predict, model architectures, and sampling strategies.

Furthermore, our analyses reveal an intriguing inference-time scaling phenomenon facilitated by
BaseMirror: downstream performance systematically improves with increased computation at test
time, achieved by using longer context expansions. This strong trend is observed in both next-
base prediction and variant effect prediction tasks. While the absolute improvements from longer
expansions can be moderate, the consistent positive trend highlights BaseMirror’s potential as a
mechanism to unlock further capabilities of GLMs by investing more computation at inference.

In summary, our contributions are:

* We propose BaseMirror, a novel, model-agnostic inference-time context expansion technique
for GLMs that leverages DNA’s reverse-complementary structure. It is lightweight and
requires only logit-level generation API access without the need of model tuning.

* We demonstrate that BaseMirror significantly improves performance on key genomic tasks,
including next-base prediction and zero-shot variant effect prediction Such improvement is
robust across sequence lengths, model architectures, and sampling strategies.

* We identify a general inference-time scaling phenomenon: performance on downstream
tasks improves with longer context extensions generated by BaseMirror, offering a new
avenue for trading test-time computation for accuracy in genomic applications.
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2 Related Work

2.1 DNA Reverse Complement in Machine Learning

A fundamental property of DNA is its double-helical structure, where the two strands are reverse
complements (RC) of each other (A pairs with T, C pairs with G) [42]]. This inherent symmetry implies
that both strands carry equivalent genetic information, and many biological processes recognize
sequence patterns irrespective of strand orientation [33} 28|, 147]]. However, standard machine learning
architectures, such as conventional Convolutional Neural Networks (CNNs) and Transformers, do not
inherently account for RC symmetry [48] 21131} 24} [12]. Early approaches typically employed data
augmentation by including RC sequences during training [[L0]. More sophisticated methods embed
RC symmetry directly into the model architecture [46]. For example, RC Parameter Sharing (RCPS)
in CNNs uses shared weights for filters recognizing forward and RC patterns [34} 3} [8]], though such
approaches can face optimization difficulties [46]. Recent efforts aim for true RC equivariance, where
the model’s output transforms predictably when the input is reverse-complemented [26]]. Caduceus,
for instance, built on the Mamba architecture, introduces specialized modules to process both forward
and RC sequences using shared parameters [33]. In contrast, our BaseMirror method is a training-free
approach applied, constructing an expanded context at inference time to enhance generation from
existing genome language models without altering their architecture or requiring retraining.

2.2 Data Augmentation for DNA Modeling

Data augmentation has proven to be a powerful technique in computer vision (CV) and natural
language processing, where it helps improve model generalization, mitigate overfitting, and enhance
robustness to distributional shifts [2, 40]]. In CV, augmentations like flipping, cropping, and color
jitter introduce invariance [45]); in NLP, strategies such as back-translation and synonym substitution
introduce semantic diversity without altering meaning [4]]. In genomic modeling, however, only a
limited number of augmentation strategies have been tailored to the properties of DNA sequences.
Reverse complementation is used in training by leveraging the bidirectional nature of DNA strands to
double the training data without introducing noise [10]]. Another method is genomic shifting, which
offsets the input window across the genome to introduce positional variation [14}36]. More recently,
evolution-inspired augmentations such as random point mutations, inversions, and deletions have
been proposed to simulate sequence diversity [23]. However, it disregards the underlying functional
constraints of biological sequences, potentially introducing unrealistic or non-functional variants.
Another method [[15] proposes phylogenetic augmentation, using homologous sequences from other
species as a data augmentation strategy to improve supervised deep learning models for functional
genomics. While it shows promising performance, this method introduces a dependency on external
data sources. In this work, our BaseMirror adopts the reverse complement at test time as its core
augmentation strategy, requiring no downstream labels, additional sequences, or model fine-tuning.

2.3 In-context Learning in Biology

In-context learning (ICL) is a prominent capability of large language models (LLMs), allowing them
to adapt to new tasks based on examples or instructions embedded within the input prompt [27, [1].
This can be achieved with a few examples (few-shot learning) 9, 37], or even without any explicit
examples (zero-shot learning) [39]. Recently, the ICL paradigm has begun to gain attention in
bioinformatics applications [29} [25, [18]]. For example, few-shot ICL has been applied to protein
characterization tasks, where general-purpose LLMs have demonstrated performance comparable
to, or even exceeding, that of specialized models trained on extensive biological datasets [18]. Zero-
shot prediction, where the model leverages its pre-trained knowledge directly with the realistic
input sequence, has also shown particular promise for predicting the functional impact of genetic
variants [[7,15,29]. The success of such approaches hinges on the ability of models pre-trained on large-
scale genomic sequences to implicitly capture signals of biological function and fitness [6]. Besides,
recent studies find that existing ICL methods seem not to work effectively and universally [20), |6]].
A key aspect of ICL in genomic contexts is prompt design: most methods rely on carefully crafted
prompts that include natural language instructions and input-output example pairs to steer the model’s
behavior toward the desired task [19} 41]. In contrast, our BaseMirror proposes an inference-time
manner to leverage the hidden knowledge of genome language models without any manual design,
bypassing the need for natural language instruction or explicit task examples.
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3 Method

In this section, we describe our method, BaseMirror, which builds upon the causal framework of
a genome language model (GLM). We focus on the importance of conditioning and discuss how
BaseMirror overcomes inherent limitations imposed by the context length. In Section [3.1] we
introduce the causal modeling of DNA generation by GLMs and propose the context limitation. In
Section we introduce how our BaseMirror overcomes the inherent context limitation. Finally, we
depict the application of BaseMirror in both generative and discriminative tasks in Appendix [A.2]

3.1 Autoregressive Model for Genome Sequences

An autoregressive model for sequence prediction generates the next element in the sequence based on
the previous elements. In the context of genome sequence generation, let x1, xo, . .., x; denote the
nucleotide sequence up to position ¢, where each nucleotide token x; can be a nucleotide base (e.g.,
A, T, C, G) or k-mer (e.g., ATGTGG for 6-mer). The nucleotide sequence is described from 5’ to 3’
ends by default. The 5" and 3’ ends of a DNA strand refer to the two distinct termini characterized
by their chemical groups. These ends are critical for DNA replication and transcription, where new
nucleotides are added to the 3’ end, extending the chain in the 5’ to 3’ direction.

For autoregressive generation, the model predicts the next nucleotide token x;; conditioned on the
sequence 1, T2, . . . , T¢, formally expressed in Equation ().

P(ziy1 | 21,22, .., 2¢) = softmax(f(z1, 2. .., 7)) (D

Here, f() is a function, typically implemented by a genome language model, that maps the sequence
1, Ts, ..., T to logits over the next possible nucleotide token. The softmax function normalizes
these outputs into valid probabilities. This process continues iteratively to generate the full sequence.

Importantly, the prediction of nucleotide token x;y; relies on the preceding sequence context
T1,Ts,...,Ts The quality of this context is crucial for generating plausible sequences [43} 9} 38} [11]].
However, the utility of the context is constrained by its length: for generating x;. 1, the context is lim-
ited to the sequence x1, o, . . . , Tt, hindering the model’s ability to capture long-range dependencies.

3.2 Reverse Complement and Context Expansion

We propose that the inherent symmetry of DNA, with its double-stranded structure, may help
overcome the context length limitation. In addition to the main strand of DNA, there exists a
complementary reverse strand, oriented in the opposite direction (5 to 3’ opposite to 3’ to 5’) of the
main strand. This complementary and reverse structure offers an opportunity to extend the context
for sequence generation by utilizing the reverse complement strand.

Let 1,2, ..., x; represent the nucleotide sequence of the main strand, from 5’ to 3’. The corre-
sponding reverse complement sequence is denoted as &y, Z;—1, ..., 2Z1. For example, if x; is the
nucleotide at position ¢ in the main strand, then 2, _; is the complementary base in the reverse strand
at the corresponding position, as shown in Table[T] (contents in black color).

Table 1: DNA double strands described in Markov chain.

5 — C T A T G T G G -3
Main Stand T_o Ty Ty o Ty o Ty Tyl Ty
| | | I I |
Reverse Complement Stand Tpvo Tpp1 Ty Tyoy Tyg - I3 To I
33— G A T A C A C c -5

By transforming to the reverse complement, we enable predictions for the downstream sequence (3")
on the reverse complement strand, which corresponds to the upstream (5") sequence on the main
strand. Specifically, the prediction on the reverse complement is P(Z;y1 | @1, 2, ..., ;). This
allows us to predict the nonexistent context on the main strand shown in the contents in blue of
Table|l] We assume that the token before x; is x_1, indicating that zy does not exist.



162
163
164

165
166
167
168

169
170
171

172

173
174
175
176
177

178

179

+
(9]

=] ) —
R} [ #Expansion=6 +4-76(% Q\i

=
% [0 #Expansion=12 £3.7% 4 E
o [ #Expansion=24 — - G.é
i‘; [ #Expansion=48 +2.8% 3 o
% | [ #Expansion=96 2
C.Q [ #Expansion=192 ) g"
bl +1.5% =
¥ 2
3] B
Z | +0.6% +0.6%t1 &
= ©
E |ml. mm | | | | el | <

48 96 192 384 768 1536
: I ~
= [ #Expansion=6 +4.5% +5°\c
2 - +4.2% <
5 [ #Expansion=12 i 4 =
£ [ #Expansion=24 g
5 [ #Expansion=48 o
2] : 50 +3 =
EB [ #Expansion=96 +2.5% ]
i =¥
! [ #Expansion=192
= +1.5% 25
© o
o N
z +1'g
o]
e ‘ ‘ ‘ ‘ e |, ~
48 96 192 384 768 1536

Input Sequence Length

Figure 2: BaseMirror consistently enhances next-base prediction performance across varying input
sequence lengths. As the input length increases, the relative accuracy gain over the baseline (original
input) also grows. Panels (a) / (b) show the relative improvement results using the GENERator 3B
model for predicting the next 6 / 12 bases given the input sequence, respectively.

After generating the downstream of the reverse complement strand, we can map the generated bases
to the main strand. Such new generated part is actually the upstream of the main strand, i.e., the
context. Detailed steps are shown in the Appendix[A.T] We formalize such a process in Equation ().

P(z_1|z1,22,...,2) = P(&441 | 21,22, .., 74)
= P(&41 | T4, B4-1,...,21) 2)
= softmax(f (&1, &a,...,%))

The function f here is the same as in Equation (I}), as genome language models are pre-trained on
both strands [7, 133} 144]. By incorporating the reverse complement strand, we effectively extend
the context window for sequence generation. Let N denote the number of tokens in the context
expansion, and we can now formalize nucleotide sequence generation as Equation (3).

P(mt+1 ‘.'177]\],377(]\[,1),...71'7171'17332,.-.,l’t) (3)

According to the introduction above, we can now leverage the DNA symmetry to expand the context
during inference. Notably, this symmetry is bidirectional, meaning we can start from the reverse
complement strand and, by reversing the process, operate again on the main strand.

4 Experiment

In this section, we evaluate the effectiveness of BaseMirror through experiments on two tasks. First,
we present the experimental setup in Section[d.T]} which includes task definitions, datasets, evaluation,
baselines, models, and hyperparameters. We then provide a detailed analysis of the experiments for
both the generative and discriminative tasks in Section[4.2and Section f.3] respectively. Finally, we
provide an ablation study on generation sampling hyperparameters for the robustness of our method.

4.1 Experimental Settings

We briefly introduce the experimental settings here. The detailed version is shown in Appendix [A.3]
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Table 2: BaseMirror is generally effective on different models. As the number of expanded bases
increases, the performance improvement becomes more pronounced. Besides, a notable scaling effect
is observed in model size for both our method and the baselines. The task is predicting the next 6
bases given a sequence of length 192. The red value represents the delta compared to the baseline.

Model . Accuracy (%) by #Expansion

0 (Baseline) 6 12 24 48 96
GENERator 1.2B 38.4 38.5+0.1 38.4+0.0 38.7+0.3 39.0+0.6 39.4+1.0
GENERator 3B 40.1 40.3+0.2 40.5+0.4 40.7+0.6 40.9+0.8 41.6+1.5
Evo2 1B base 46.0 46.3+0.3 46.7+0.7 47.0+1.0 47.1+1.1 47.0+1.0
Evo2 7B 52.8 53.1+0.3 53.4+0.6 54.0+1.2 54.2+1.4 54.5+1.7
Evo2 40B 65.4 65.7+0.3 65.8+0.4 66.1+0.7 66.4+1.0 66.6+1.2

Tasks and Dataset The generative task involves predicting the next /N bases of a DNA sequence
from species like fungi, vertebrate_mammalian, vertebrate_other, invertebrate, protozoa, and plant,
similar to next-token prediction [44, 32]. Given a DNA sequence, the model is required to predict
the next IV bases, with accuracy calculated as (N oprect/N) * 100%. For the dataset, we use the
released versimﬂ from [44]], filtering sequences to include only the bases A/G/C/T, resulting in 19,941
sequences for next-base prediction. The discriminative task involves predicting the effect of human
clinical variants. We adopt the experimental setup from the released versiorﬁ of Evo2 [7]], which
includes both coding and noncoding regions of the BRCA1 gene [[17]. The model is tasked with
predicting whether a given variant, represented by the sequence surrounding the SNV variant and
its corresponding reference sequence, is pathogenic. All experiments are conducted in a zero-shot
setting [7] using GLMs without task-specific tuning, depicted in Appendix[A.3]

Models and Hyperparameters We conduct experiments using recently released genome language
models from the GENERator [44] and Evo2 [[7]] families. The Evo2 40B model is accessed through
the NVIDIA AP]E[, while other models are deployed locally (NVIDIA GeForce RTX 4090 GPU,
24G). For the generation process, we employ temperature, top-k, and top-p sampling strategies.
In most experiments, we maintain a fixed sampling strategy to limit randomness. Though Evo2
employs single-nucleotide tokenization and its vocabulary contains 512 tokens in total, only four
of them correspond to valid DNA bases (A, T, C, and G). Therefore, we set the top-k parameter to
1, effectively disabling sampling. For GENERator, which utilizes 6-mer tokenization, we set the
temperature to 1 and top-£ to 4 in the majority of our experiments. Additionally, we demonstrate the
robustness of BaseMirror across various sampling strategies, as detailed in Table 3]

BaseMirror and Baseline Our method, BaseMirror, is an inference-time approach designed to
expand the context of DNA sequences without modifying the underlying pipeline for either the
generative or discriminative tasks. Specifically, we expand the task input sequence by a set number of
additional bases, referred to as #Expansion. Detailed application of BaseMirror in tasks can be found
in Appendix To demonstrate the effectiveness of the expansion, we compare the performance
of our expanded sequences with one using the original input sequence. The baseline corresponds to
the raw input sequence with no context expansion, i.e., #Expansion = 0. For consistency, we use the
same GLM for context expansion of BaseMirror, and the latter detailed task.

4.2 Generation: Next-base Precision

We conduct experiments across a wide range of input sequence lengths for the next-base prediction
task. In the following experiments, we will demonstrate the general effectiveness of our BaseMirror
across various (1) input lengths, (2) genome language models, and (3) sampling strategies.

"https://huggingface.co/datasets/GenerTeam/next-kmer-prediction
Zhttps://github.com/ArcInstitute/evo2/blob/main/notebooks/brcal /brcal_zero_shot_vep.ipynb
*https://build.nvidia.com/arc/evo2-40b
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BaseMirror consistently improves accuracy across different context lengths. As illustrated in
Figure 2] BaseMirror performs well across a range of input sequence lengths and target sequence
lengths. Given the substantial variability in absolute accuracy with respect to input sequence length,

: ACCyEBapansion—ACChaseline 1
we present the accuracy improvement, defined as e G baseline 5 100%, to facilitate
aseline

a direct comparison across different context lengths. The baseline values in Figure 2] corresponds
to the original input sequence, with AC'Cpgseine values of 32.8%, 35.6%, 40.1%, 45.7%, 52.3%,
and 56.6% for increasing #Expansion values, respectively. Notably, the greatest improvements are
observed for mid-range input sequence lengths. This result aligns with expectations, as shorter input
sequences may lack sufficient information to generate accurate context during inference.

BaseMirror demonstrates broad efficacy across diverse model families. We evaluate BaseMirror
on both the Evo2 and GENERator families, tasked with predicting the next 6 bases from a 192-
base sequence, as summarized in Table 2} For both families, sequences utilizing our expanded
contexts consistently outperform their corresponding baselines, defined as raw DNA input. Notably,
BaseMirror ’s effectiveness is evident across a range of model sizes, from 1.2B to 40B parameters,
highlighting its robustness and lack of dependence on a specific model capacity.

BaseMirror is robust across diverse sampling  ,p)e 3. BaseMirror is robust under diverse gen-
hyperparameters. We perform a comprehen-  epation sampling hyperparameters. The task is
sive evaluation across various sampling hyper- predicting the next 6 bases given a DNA sequence
parameters, shown in Table[3} Such a sampling  , jength 384 using GENERator-3B. The top is the
process influences both the context expansion  gefaylt setting in our experiments. The red number

of BaseMirror and the next-base prediction task. s the improvement compared with the baseline.
Our method consistently performs well across

a range of temperatures, top-k, and top-p values. Accuracy (%)

Here, the symbol “/” denotes a neutral setting, ~ Temp Top-k Top-p | o (. "5 r o
i.e., no restriction in the sampling process (top-
k = 0 and top-p = 1). As top-k and top-p 1.0 4 10 | 457 47.5+1.8
increase, the sampling flexibility increases, fol- 1.2 / 1.00 37.4 38.9+1.5
lowed by a notable drop in next-base prediction 1.0 / 1.00 39.0 40.5+1.5
accuracy. However, BaseMirror can still steadily 0.8 / 1.00 40.6 42.3+1.7
work on such variable sampling settings, and ef- 0.6 / 1.00 42.6 44.2+1.6
fectively facilitate the generation task.

1.0 100 / 42.7 44.1+1.4

1.0 50 / 434 44.9+1.5

A scaling phenomenon emerges across most 1.0 10 / 45.1 46.2+1.1
context lengths and model sizes: as the num- 1.0 1 / 46.4 48.2+1.8
ber of expanded bases increases, performance -
improves. We hypothesize that BaseMirror 1.0 / 1.00 39.0 40'5““?
creatively exploits an inference-time scaling 1.0 / 0.99 39.2 40.7+1.5
property of genome language models (GLMs) L0 / 0.90 40.4 41.5+1.1
/ 0.70 41.5 43.2+1.7

during the generation process. Furthermore, this 1.0
paradigm operates at test-time, relying solely on

input sequences from downstream tasks. This
universal inference-time scaling law is akin to those observed in large language models [30}(35]. We
also showcase that BaseMirror generates relatively meaningful context in Figure [6]

4.3 Discrimination: Zero-shot Classification

We experiment on the prediction of the pathogenicity of BRCA1 variants, a binary classification task
illustrated in Figure 4] We define the expansion of the original 5’ — sequence — 3’ as 3’ expansion,
and the reverse complement of 5’ < sequence — 3’ as 5’ expansion, details of which are shown
in Figure[7] We expand the reference sequence using BaseMirror and copy the expanded context
to the variant sequence. Notably, expanding the reference and variant sequences independently
can lead to inconsistencies, as discussed in Appendix For our experiments, we perform a
log-scale grid search on the number of expanded bases, denoted as #Expansion, for both the 5 and
3’ directions. As shown in Figure [3| we report the relative improvement in AUROC, defined as

AUROCIL‘(?}%)O_&&?)OC(O’O) x 100%, relative to the baseline, i.e., the original input sequence at (0, 0).
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(a) Evo2 7B
AUROC(0,0)=0.714

Figure 3: BaseMirror improves BRCA1 classification performance. The relative improvement (%) of
AUROOC is reported based on the the number of expanded context (log scale) compared to the original
input. The blue indicates lower than the baseline (0, 0), while red represents higher.

BaseMirror shows an effective improvement in BRCA1 classification on various genome lan-
guage models (BLMs). Figure[3]illustrates the relative improvement in AUROC as we iteratively
expand the input context during inference, with the x-axis indicating the 3’ end context expansion
and the y-axis denoting the 5" end expansion. Across three different models—Evo2 7B, Evo2 40B,
and GENERator 3B—we observe consistent improvements in AUROC up to 5.15%, particularly with
larger context expansions. This supports the idea that BaseMirror ’s context expansion provides a
scalable and efficient approach for improving model performance in DNA sequence tasks.

Imbalanced expansion lengths at 3’ can lead to diminished benefits or even negative effects.
In the BRCAL task, the mutation occurs in the middle of the given sequence, meaning the only
difference between the reference and variant sequences is the nucleotide base at the center. When the
3’ context length is expanded excessively, a hallucination phenomenon arises, where the generated
sequence does not contribute effectively to variant significance classification. In contrast, expanding
the 5" context consistently improves the results. We hypothesize that this difference stems from
the zero-shot classification mechanism [[7]], which captures the influence of upstream mutations on
downstream bases. Consequently, a longer 5’ context, such as z_, ...,z _o,z_1, is more beneficial
than a longer 3’ context, such as x4 1, Zyio,...,TN.

BaseMirror also demonstrates strong performance on the ClinVar variant effect prediction
dataset[22]], extending its effectiveness beyond BRCA1. To assess generalization, we evaluate
our approach on the full ClinVar dataset, comprising 40,976 samples{z_‘fg using the GENERator-3B
model. With a 510-length input expanded by 192 bases, BaseMirror achieve an AUROC of 0.8349,
a notable improvement over the baseline (without context expansion) of 0.8224. These results, on
a dataset over ten times larger than the BRCAT set, confirm that BaseMirror consistently enhances
performance even when the baseline AUROC is already high.

5 Conclusion

In this paper, we introduce a novel context expansion method, BaseMirror, which leverages the
double-strand symmetry of DNA through genome language models (BLMs). By mapping the input
DNA sequence to its reverse complement, BaseMirror generates hidden contexts in an iterative
manner. Notably, this approach operates purely on the input sequence at inference time, requiring
no model parameter tuning, and can be deployed using BLMs’ logits API from cloud servers. Our
experimental results across generative and discriminative tasks demonstrate the broad applicability of
BaseMirror. A key insight is the inference-time scalability: as the context expansion computation
increases, we observe a corresponding improvement in task performance. Additionally, one limitation
of BaseMirror is that the imbalanced usage of the 3’ expansion may negatively impact the task.

*https://huggingface.co/datasets/songlab/clinvar
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A Technical Appendices and Supplementary Material

A.1 Detailed Process of BaseMirror

We describe the detailed process involved in generating the DNA strands based on the Markov
chain model outlined in the main text. This process involves inputting an initial DNA sequence,
generating the reverse complement strand, and mapping generated bases to the main strand using
defined transition rules. The methodology involves simulating both the main and reverse complement
strands as shown in Table [} Table[3] Table [6] and Table 7}

A.2 Application in Tasks

I f s 5’ Expanded Input for
nput tfor i R
GerI:eration FAICIC ATCG AT CG Gen:rz%tl\C/eGTask
ATCG _ 7 TTT1° V
rTTT L 5 LLLls ; Lil1l.: i
TAGC TAGC TAGC | Further Inference
. E  (57+3’ Expansion)
5’ Expansion K AT CG
Ref 5°+3’ Expansion
AT CG on Ref Input ATCG
Inputfor ~TTTT 5 TTTr1 T 5°+3* Expanded T f
Variant Copy < b X?g e 'f'np?t or
Classification ATTG Expansion R ATTG . ariant Classification
) ’ To Var Input .. TTT1
Var N
\\
$13E N Independent Expansions
Xpansion T ~~o_ _ N )
on Var Input > cc ATTG CA x On Refand .Var
o rTr1 N Lead to Inconsistency

Figure 4: We present an overview of the 5’ and 3’ expansion of BaseMirror in downstream applications.
The top section illustrates the 5" context expansion for the generative task. The lower section outlines
the process of variant classification, where both the 5’ and 3’ expansions (5" + 3’) are applied to the
reference sequence (Ref). These expansions are then transferred to the variant sequence (Var).

For detailed application in generation and variant classification tasks, we describe the usage of
BaseMirror in Figure ] And the variant classification mechanism for BRCAL is described in[A3.3]
We define the expansion of the original 5 — sequence — 3’ as 3’ expansion, and the reverse
complement of 5’ < sequence — 3 as 5 expansion, details of which are shown in Figure[7} The
upper section illustrates the 5’ context expansion for the generative task. Additionally, further
inference can facilitate the formulation of a 5’ + 3’ expansion. The lower section depicts the variant
classification process, where both the 5’ + 3’ expansions are applied to the reference sequence. These
expansions are then transferred to the variant sequence.

Notably, independent expansions on the reference and variant sequences may result in inconsistencies
for variant classification. During the development of our method, we observed a decline in the AROC
for zero-shot classification as the expansion length increased. Since the reference sequence serves as
a background, such inconsistencies undermine the measurement of the mutation. In Appendix [A7]
we quantitatively demonstrate the detrimental effect of these inconsistencies.

Step 1: Input DNA Sequence The input DNA sequence is represented as a series of states in a
Markov chain model. The main strand of the DNA sequence is defined in Table ]

Table 4: Input DNA sequence described in Markov chain.
- A T G T G G

Z1 Ti—1 Ty

-3

Main Stand Ty X3 Tyi_g
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This sequence corresponds to the states z, T2, x3, . . ., x; of the Markov chain. The model processes
the sequence by transitioning from one state to the next.

Step 2: DNA Double-Strand Representation Using the initial sequence, the model generates both

the main strand and the reverse complement strand. The reverse complement strand is derived by
replacing each base in the main strand with its complement, shown in Table 3]

Table 5: DNA double strands described in Markov chain.

5— A T G T G G -3
Main Stand T1  To T3 e Ty_g Ti1 T
I I | | I I
Reverse Complement Stand Ty Tp_1 Tp_g -+ I3 To I
33— T A C A c Cc -¥%
The corresponding Markov chain states for both strands are given by x1, o, ..., x; for the main
strand and 1, Zo, . . ., &4 for the reverse complement strand.

Step 3: Generating Downstream of the Reverse Complement Strand To generate the down-
stream sequence of the reverse complement strand, the model applies transitions based on previously
defined transition probabilities. The sequence downstream from the initial reverse complement strand
is generated as shown in Table[d]

Table 6: Generating the downstream of the reverse complement strand.

5 — A T G T G G -%

Main Stand T1 T T3 v Tyo Tyo1 Xy

I | I | I |

Reverse Complement Stand Tiyo Tyl Xy Ty Tyo e+ T3 To I
33— G A T A C A c Cc -¥

Step 4: Mapping the Generated Reverse Complement Bases to the Main Strand Finally, the
model maps the generated bases of the reverse complement strand back to the corresponding bases in
the main strand. This is done using a set of mapping rules derived from the transitions in the Markov
model shown in Table

Table 7: Mapping the generated bases of the reverse complement to the main strand.

5§— C T A T G T G G -3
Main Stand T.o T T1 X T3+ Tp_o Ti_1 Tt
| | | | | |
Reverse Complement Stand Tipo Tpp1 Ty X1 Ty T3 Ty I
33— G A T A C A c Cc -5

According to the introduction above, we can now leverage the DNA symmetry to expand the context
during inference. Notably, this symmetry is bidirectional, meaning we can start from the reverse
complement strand and, by reversing the process, operate again on the main strand. This method
allows for the precise simulation and generation of DNA sequences with both forward and reverse
complement strands modeled using Markov chains.

A.3 Detailed Experimental Settings

A.3.1 Generative Task: Next k-Base Prediction

The generative task involves predicting the next IV bases of a DNA sequence from fungal species.
This task is similar to next-token prediction [44,[32], but due to varying tokenization units in genome
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language models (GLMs), we modify it to a next-base prediction task for fair comparison. Given
a DNA sequence, the model is required to predict the next N bases, with accuracy calculated as
(Neorreet/N)*100%. We set N to 6 or 12, as some models in our experiments use 6-mer tokenization.
For the dataset, we use the released VersiorE] from [44]], filtering sequences to include only the bases
ATCQG, resulting in 19,941 sequences for next-base prediction. It is important to note that the length of
the input sequence varies across different experiments. This variability will be clarified independently
for each experiment as needed.

A.3.2 Discriminative Task: Variant Effect Prediction

The discriminative task involves predicting the effect of human clinical variants, specifically binary
classification for biologically significant sequence variations. The ClinVar [22] dataset comprises
40,976 samples. For BRCA1 [17] dataset, We adopt the experimental setup from the released Versiorﬁ
of Evo2 [7]], which includes both coding and noncoding regions of the BRCA1 gene. The dataset
consists of 3,893 pairs of variant and reference sequences, with 3,070 labeled as loss of function
(LOF) and 823 as function/intermediate (Non-LOF). The model is tasked with predicting whether
a given variant, represented by the sequence surrounding the SNV variant and its corresponding
reference sequence, is pathogenic. All experiments are conducted in a zero-shot setting [7]] using
GLMs without task-specific fine-tuning. Specifically, the GLMs predict the logits for both the mutant
and reference sequences. The variant significance is then determined by computing the delta between
the predicted log-likelihoods of the mutant and reference sequences. Zero-shot details are shown in
Appendix [A.3.3] We use a sequence length of 512 and report the AUROC score.

A.3.3 Zero-shot Mechanism of Variant Effect Prediction

In this section, we introduce the detailed mechanism of zero-shot implementation on variant classifi-
cation. In a zero-shot setting, the model is not explicitly trained on labeled variant effect data but
instead leverages its pretrained knowledge of genomic sequences to assess mutation impact directly
from sequence likelihoods. The input to the model consists of a pair of sequences: a reference
sequence (ref) and a variant sequence (var), differing by a single nucleotide variant (SNV).

Here, the reference sequence x™ represents the wild-type (non-mutated) version of a genomic region,

while x"" is an otherwise identical sequence that contains a SNV at a specific position. The task is
to predict whether the variant results in loss of function (LoF) or the opposite (Non-LOF). Given
a reference sequence x™' and a variant sequence x'*", we compute a log-likelihood score for each
sequence by averaging the model’s log-probabilities over all positions:

1 L
logp(x) = 7 > _logp(at | x<1) @
t=1

Here, L is the sequence length, and p(z; | x<;) is the probability assigned to the true nucleotide
at position ¢ under the model’s autoregressive output. In practice, this is computed by applying a
log-softmax over the model’s output logits at each position and gathering the value corresponding to
the ground-truth token. Then the delta likelihood score between the reference and variant is calculated
as:

AL = log p(x™") — log p(x"™) 3)

This score serves as a proxy for mutation impact, with higher values indicating greater disrup-
tion under the model’s learned distribution. To evaluate the classification performance of this
approach, the Area Under the Receiver Operating Characteristic (AUROC) is computed based on
the delta likelihood score. Note that the AUROC is calculated on —score: roc_auc_score(y_true,
-brcal_df[’evoZ_delta_score’]ﬂ

Shttps://huggingface.co/datasets/GenerTeam/next-kmer-prediction

Shttps://github.com/ArcInstitute/evo2/blob/main/notebooks/brcal/brcal_zero_shot_vep.ipynb

"https://github. com/ArcInstitute/evo2/blob/main/notebooks/brecal/brcal_zero_shot_
vep.ipynb
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A.3.4 Models and Hyperparameters

We conduct experiments using recently released genome language models from the GENERator [44]
and Evo2 [7] families. Specifically, our experiments involve five models, Evo2 1B base, Evo2 7B,
Evo2 40B, GENERator 1.2B, and GENERator 3B, for a general conclusion. The Evo2 40B model is
accessed through the NVIDIA AP]EL while other models are deployed locally. For the generation
process, we employ temperature, top-k, and top-p sampling strategies. The temperature controls the
flexibility of the sampling, with higher temperatures promoting greater variability. Top-k restricts the
sampling to the k tokens with the highest probabilities, while top-p selects tokens whose cumulative
probability is less than or equal to p.

In most experiments, we maintain a fixed sampling strategy to limit randomness. Since Evo2
employs single-nucleotide tokenization and has a vocabulary size of 512, restricting the task to
four valid tokens, we set the top-k parameter to 1, effectively disabling sampling. For GENERator,
which utilizes 6-mer tokenization, we set the temperature to 1 and top-k to 4 in the majority of our
experiments. Additionally, we assess the impact of different sampling hyperparameters, as detailed in
Table 3] demonstrating the robustness of BaseMirror across various sampling strategies.

A.3.5 BaseMirror and Baseline

Our method, BaseMirror, is an inference-time approach designed to expand the context of DNA
sequences without modifying the underlying pipeline for either the generative or discriminative tasks.
Specifically, we expand the task input sequence by a set number of additional bases, referred to as
#Expansion. The baseline corresponds to the raw input sequence with no context expansion, i.e.,
#Expansion = 0. For consistency, we use the same GLM for context expansion of BaseMirror, and
the latter detailed task.

RandomBase

40.0 _F awlnput, o AN R R RandomSeq

*  AAAAAA
GGGGGG
CCcccecee
TTTTTT
Repeat

@® BaseMirror

Accuracy(%)

0 6 12 24 48 96 192
#Expansion (log scale)

Figure 5: BaseMirror indicates generating positively meaningful context, rather than just random
expansion. The task is to predict the next 6 bases given a sequence of length 192. For baselines,
the RandomBase represents expanding context randomly, while the RandomSeq means randomly
selecting bases from the input sequence as context. The other four use the fixed A/T/C/G sequences.
The Repeat mode copies the end of the given sequence to serve as the expanded context.

A4 Context Expansion Modes

BaseMirror effectively generates positively meaningful context for given input sequences. In
Figure[6] we compare our method with different context expansion modes, the Python code of which
is shown in the Appendix We randomly generate #Expansion bases and add such context to the
original input, termed as RandomBase. Since the base distribution of sequences might be different,
we slightly change the setting by selecting bases from the input sequence randomly, resulting in
RandomSeq. Furthermore, we also experiment with fixed sequences such as all A/G/C/T for context
expansion. In Figure[5|of Appendix[A.4] we also experiment with the “Repeat” mode, which copies
the end of the given sequence as the expanded context. BaseMirror is the only method that could keep
growing by the number of expanded contexts, demonstrating its generation of meaningful context.

The result of all modes is shown in Figure[5} As the performance of the Repeat mode drops sharply,
we only leave the other seven modes in the main text in Figure[6] Notably, the context generated

8https://build.nvidia.com/arc/evo2-40b
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Figure 6: BaseMirror indicates generating positively meaningful context, rather than just random
expansion. The task is to predict the next 6 bases given a sequence of length 192. For baselines,
the RandomBase represents expanding context randomly, while the RandomSeq means randomly
selecting bases from the input sequence as context. The other four use the fixed A/G/C/T sequences.

by BaseMirror can help the further next-base generation, while the copy of a piece of biologically
meaningful context fails. Shown in Figure 5] the orange line, “Repeat” mode, copies the end of the
given sequence as the expanded context, code of which is shown in the Appendix[A.5] Both the
RandomSeq and Repeat modes make the prediction accuracy drop sharply as the length of the repeat
increases. We reckon that even biologically meaningful contexts can be harmful to the next-base
prediction. Instead, BaseMirror leverages genome language models’ general knowledge gained from
large-scale pre-training and can generate positively meaningful content.

A.5 Python Implementation of Baseline Context Modes

The Python implementation of baseline context modes is shown as follows:

def generate_context(mode:str, sequences: List[str], new_length: int):
if mode == "RandomSeq":
expanded_sequences = [
"". join(random.choice(seq) for _ in range(new_length))
for seq in sequences
]
elif mode == "RandomBase":
expanded_sequences = [
"", join(random.choice (’TAGC’) for
for _ in range(len(sequences))

_ in range(new_length))
]
elif mode == "Repeat":
expanded_sequences = []
for seq in sequences:
expanded_seq = ""
while len(expanded_seq) < new_length:
expanded_seq = expanded_seq + seql[-new_length:]
expanded_sequences.append (expanded_seq[-new_length:])
elif mode in [IIAII’ IITII’ IICII’ IIGII]:
expanded_sequences = [

mode * new_length for in range(len(sequences))

1
else:

raise ValueError (f"Invalid mode: {model}")
return expanded_sequences

A.6 Details of BRCA1 Variant Classification
In this section, we elaborate on some experimental details and results for the BRCA1 variant

classification task owing to limited space. As shown in Figure[/] we perform a detailed analysis to
assess the impact of varying context lengths on the BRCAL task. The experiment focuses on the
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Figure 7: We perform detailed experiments on the context lengths on the BRCA1 task. We design the
5" and 3’ expansion shown on the left. On the right, the relative improvement (%) of AUROC matrix
is reported using a log scale, compared with the original input at (0, 0). Experiments are conducted
on the Evo2 7B model with a baseline AUROC of 0.714 at (0, 0).

effects of both 5" and 3’ expansions of the reference input sequences. To facilitate our investigation,
we vary the context lengths by adjusting the number of bases considered on both ends of the reference
sequence.
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Figure 8: BaseMirror consistently improves on the BRCA1 classification. Relative improvement (%)
on AUROC at the original input is reported by the the number of expanded context (log scale).

For each input sequence, we generate multiple expansions by modifying the context around the
reference sequence, shown in Figure We test several configurations, where the 5" and 3’ context
lengths are expanded in increments of 4 base pairs (with the values ranging from 0 to 16 for both
ends). For each configuration, we use a model to compute the area under the receiver operating
characteristic curve (AUROC) to evaluate performance. The relative improvements (%) of AUROC
values are reported as differences compared to the baseline model performance using the original
input (at 0,0 expansion).

These findings indicate that larger context expansions on both ends of the sequence are beneficial for
the model’s performance on the BRCA1 task, with diminishing returns as the expansion exceeds a
certain threshold. The log scale representation of the AUROC values provides a clear visual indication
of the improvements achieved with various context lengths, reinforcing the importance of proper
sequence context in tasks requiring DNA sequence analysis.

A.7 Consistency in Variant Classification

As mentioned in the lower section of Figure[d] the consistency of context expansion is crucial for
multi-input tasks, such as the BRCAT1 variant classification, since the reference sequence serves as the
background to compare and measure the significance of the mutation in the variant sequence. Once
both the reference sequence and the variant sequence expand the context independently, the resulting
expanded sequences will have more differences than the original base mutation. The influence of
context expansion inconsistency is shown in Figure[9]
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Figure 9: Independent context expansions of the reference sequence and the variant sequence lead to
failures. Relative improvement (%) on AUROC at the original input is reported by the the number of

expanded context (log scale).
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