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Abstract

Genome Language Models (GLMs) pre-trained on trillions of nucleotides already
exhibit strong zero-shot RNA fitness predictors, yet they cannot be steered toward
a specific assay the way a language model is steered by a prompt. We close this
gap by letting GLMs prompt themselves. Our method, BasePrompt, asks GLMs
to propose short nucleic-acid prefixes and postfixes that maximally activate the
fitness signal for a given sequence. To overcome the causal, forward-only nature
of most GLMs, we exploit reverse-complement symmetry and generate upstream
as well as downstream prompts without ever updating weights or using labeled
variants. For zero-shot RNA fitness prediction on RNAGym, BasePrompt achieves
a 6.0% relative improvement over the SOTA Evo2 7B model and 6.6%—16.4% over
other GLMs, as measured by Spearman correlation. Auxiliary DNA tasks show the
same prompting method compresses native-context information into shorter, model-
aligned tokens, boosting pathogenicity classification and next-k-base prediction.

Q: A juggler can juggle 16 balls.
Half of the balls are golf balls,
and half of the golf balls are
blue. How many blue golf balls
are there?

Let’s think step by step.

(a) Textual Prompting (b) Visual Prompting (c) RNA Prompting

Figure 1: Prompting enhances downstream model performance by guiding within the input space,
such as (a) textual prompting [25] and (b) visual prompting [5]. However, it is challenging to (c)
construct effective prompts for the RNA language.

1 Introduction

Despite impressive zero-shot accuracies on dozens of benchmarks 4], Genome Language
Models (GLMs) still lack a steering mechanism comparable to NLP prompt engineering. In trans-
formers for language or vision a short textual phrase (“Let’s think step by step”) or a handful of
learnt continuous tokens is enough to specialise a model without fine-tuning [23] [5, 210, as
shown in Figure[T} Genome, however, offers no obvious equivalent: human-readable motifs are not
necessarily the primitives that GLMs attend to, and domain-specific fine-tuning violates the zero-shot
desideratum of RNA-related competitions [4]]. We close this gap by enabling GLMs to write their
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Figure 2: Illustration of BasePrompt. Left: It leverages the complementary double-helix structure of
DNA to generate upstream (5") and downstream (3') prompts. Right: Such a bidirectional prompting
has better performance than the pure GLM’s downstream prompting in RNA fitness prediction.

own prompts. Concretely, we ask them to propose short nucleic-acid prefixes. By “speaking” to
themselves in the native genomic language, GLMs expose statistical regularities opaque to humans
yet highly predictive, unlocking specialist behavior in a purely zero-shot regime.

In this paper, we propose a novel mechanism, BasePrompt, for generating both upstream and
downstream prompts for a given RNA sequence. As illustrated in the left part of Figure 2} our
approach first converts the RNA sequence to its corresponding DNA sequence. To address the
unidirectional nature of causal GLMs, which condition only on upstream context, we use the reverse
complement principle of DNA for bidirectional prompting, shown to be more effective in inspiring
GLMs in RNA fitness prediction [4]], as shown in the right panel of Figure[2]

To demonstrate the effectiveness of BasePrompt, we conduct experiments on the RNA fitness
prediction benchmark from RNAGym [4]], which comprises 70 deep mutational scanning assays and
over one million RNA sequences. Our method achieves a relative improvement of 6.0 in Spearman’s
rank correlation compared with previous state-of-the-art results. Furthermore, BasePrompt is highly
efficient, as the short prompting is performed only on the 70 reference RNA sequences, not on each
of the one million variants. Our method shows consistent gains across multiple GLMs, including
Evo2 7B base, Evo2 7B, and Evo2 40B, suggesting robustness to different models.

We conduct additional DNA experiments primarily for analytical purposes. In a zero-shot classifi-
cation task using the ClinVar dataset [20], our generated short prompts outperform native genomic
prompts, particularly under prompt length constraints. It suggests that while native genomic context
may contain redundant information, BasePrompt can generate more condensed and model-aligned
prompts for predictive utility. For the next k-base prediction task [49], our upstream prompts guide
the model to generate base distributions closer to the native genome.

In summary, our contributions are:

* We introduce BasePrompt, a novel and efficient framework for RNA prompting that leverages
GLMs to generate contextual prompts tailored to RNA sequences, significantly improving
downstream task performance without requiring additional model training or labeled data.

e Our method establishes a new state-of-the-art in RNA fitness prediction, achieving ro-
bust zero-shot improvements on the comprehensive RNAGym benchmark, with consistent
performance gains across multiple GLMs in a computationally efficient manner.

* Through auxiliary DNA benchmarks, we demonstrate that prompts generated by BasePrompt
are not only highly informationally efficient, but also consistently effective in generative
tasks, highlighting their versatility and robustness in biological applications.



2 Related Work

2.1 DNA Reverse Complement in Machine Learning

DNA’s inherent double-helical structure [48]] implies that both strands carry equivalent genetic
information [41},132] |52]]. However, standard machine learning architectures do not inherently account
for the reverse complement (RC) symmetry [53] 24} [39, 28|, [16]]. Existing works employed data
augmentation [14]] or embed RC symmetry directly into the model architecture [42 |6, 12 [30],
though such approaches can face optimization difficulties [51]. In contrast, our BasePrompt method
utilizes the reverse complement principle and GLMs for both the upstream and downstream prompt
generation for RNA.

2.2 Data Augmentation for DNA

Data augmentation has proven to be a powerful technique in computer vision (CV) and natural
language processing to improve model generalization [2,46]. Augmentations like flipping in CV [50]
and synonym substitution in NLP introduce diversity owing to invariance [7]. In genomic modeling,
augmentation strategies have been tailored to model training, such as reverse complementation [14],
genomic shifting [18| 144], random point mutation [27], and phylogenetic augmentation [19]]. In
contrast, our BasePrompt adopts the reverse complement and GLMs at test time, requiring no
downstream labels, external data, or model tuning.

2.3 In-context Learning in Biology

In-context learning (ICL) is a prominent capability of large language models [31L[1]. Recently, the ICL
paradigm has begun to gain attention in bioinformatics applications [33} 29, 20]. Zero-shot prediction
has shown particular promise for predicting the functional impact of genetic variants [[L1} 8} [33]].
Some works use crafted natural language instructions and input-output example pairs to steer the
model’s behavior [22] 47]. Other works tune the model with motif-oriented pretraining [3] or
soft prompting [35)]. However, existing ICL methods seem not to work universally with model
frozen [23}[10]. In contrast, our BasePrompt leverages the pre-trained GLMs for RNA prompting,
bypassing the need for natural language instruction or task examples.

3 Method

In this section, we describe our RNA prompting method, BasePrompt, which builds upon the causal
framework of a genome language model (GLM), as illustrated in Figure 2] In Section [3.1] we discuss
the first tackling when given an RNA sequence and the motivation behind it. In Section we
introduce the causal modeling of DNA generation by GLMs. In Section[3.3] we introduce how our
BasePrompt overcomes the inherent direction limitation.

3.1 Converting RNA to DNA

To construct a meaningful prompt for a given RNA sequence, we first map it back to the genome,
where contextual information can be naturally derived by Genome Language Models (GLMs). This
step is analogous to inverse transcription [43], enabling the RNA to be localized within its genomic
coordinates. Since RNA can be directly processed by DNA-based GLMs after a simple substitution
of uracil (U) with thymine (T), we hereafter use DNA as the canonical representation for generality.
Building on this formulation, we then analyze an autoregressive model’s intrinsic reliance on upstream
input and explain how BasePrompt generates bidirectional prompts.

3.2 Autoregressive Model for Genome Sequences

Autoregressive sequence modeling operates on the principle of predicting the next element conditioned
on its preceding context. When applied to genome generation, this involves modeling a nucleotide
sequence, denoted as x1, zo, . . . , T+, Where each token x; represents a single nucleotide base (e.g., A,
T, C, G) or k-mer (e.g., ATGTGG for 6-mer). This modeling is conventionally performed along the
5’ to 3’ direction, a choice grounded in fundamental biological processes. The 5’ and 3’ ends of a
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Figure 3: Workflow of BasePrompt for the RNA fitness prediction task. It first converts all input
RNA sequences to DNA, replacing U with T. Then, operating solely on the reference DNA sequence,
BasePrompt utilizes the complementary strand to perform upstream 5’ and downstream 3’ prompting
autoregressively by a Genome Language Model (GLM). Generated prompts are then concatenated
to the respective 5’ and 3’ ends of each variant sequence, creating a full set of prompted variants.
Finally, these prompted sequences are fed into the same GLM for fitness prediction.

DNA strand, defined by their distinct chemical termini, determine the direction of synthesis. During
processes such as DNA replication and transcription, new nucleotides are exclusively added to the 3’
terminus, thereby extending the chain in a unidirectional 5’ to 3’ manner.

For autoregressive generation, the model predicts the next nucleotide token x;1 conditioned on the
sequence 1, Tz, . . ., &y, formally expressed in Equation (TJ).

P(x41 | 21,22, . .., 2¢) = softmax(f(x1,za,...,2¢)) )

Here, f(-) is a function, typically implemented by a genome language model, that maps the sequence
r1,Ts, ..., T to logits over the next possible nucleotide token. The softmax function normalizes
these outputs into valid probabilities. This process continues iteratively to generate the full sequence.

3.3 Reverse Complement and Prompting

We propose that the inherent symmetry of DNA, with its double-stranded structure, may help
overcome the prompting direction challenge. In addition to the main strand of DNA, there exists a
complementary reverse strand, oriented in the opposite direction (5’ to 3’ opposite to 3’ to 5’) of the
main strand. This complementary and reverse structure offers an opportunity to extend the context
for sequence generation by utilizing the reverse complement strand.

Let x1, o, ..., x; represent the nucleotide sequence of the main strand, from 5’ to 3/. The corre-
sponding reverse complement sequence is denoted as 24, £y_1,...,21. For example, if x; is the
nucleotide at position 7 in the main strand, then 2,_; is the complementary base in the reverse strand
at the corresponding position, as shown in Figure [ (contents in black color).

By transforming to the reverse complement, we enable predictions for the downstream sequence (3')
on the reverse complement strand, which corresponds to the upstream (5') sequence on the main
strand. Specifically, the prediction on the reverse complement is P (%41 | ¢, €4—1,...,21). This
allows us to predict the nonexistent context on the main strand shown in the contents in blue of
Figure ] We assume that the token before 2 is 2_1, indicating that 2 does not exist.

After generating the downstream of the reverse complement strand, we can map the generated bases
to the main strand. Such a newly generated part is actually the upstream prompt of the main strand.
Detailed steps are shown in the Section[C] We formalize such a process in Equation (2).
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Figure 4: DNA double strands described in sequence generation.

P(x_y | gy x4-1,...,21) = compl(P(Z¢41 | ¢, Te—1, ..., T1) )

= compl(softmax(f (&1, Za,...,%)))

The compl(-) represents the probability of the complementary bases, and the function f(-) here is the
same as in Equation (T]), as genome language models are pre-trained on both strands [11} 411, 49]. By
incorporating the reverse complement strand, we can effectively generate bidirectional prompts. Let
N denote the number of tokens of the prompt, and we can now formalize generation as shown in

Equation (3).

P(@ip1 | 2N, (N—1), -+ T1,T1, T2, - -+, Tt) 3)

According to the introduction above, we can now leverage the DNA symmetry to generate upstream
prompts during inference by sampling on the next-nucleotide probability. Notably, this symmetry is
bidirectional, meaning we can start from the reverse complement strand and, by reversing the process,
operate again on the main strand. More details can be found in Section

4 Experiment

To evaluate the effectiveness of BasePrompt, we conduct experiments in a zero-shot setting and utilize
only the model inference without any tuning.

4.1 Experimental Settings

‘We introduce the tasks, datasets, models, and baselines as follows. The detailed information of our
four datasets is depicted in Table[I] Further experimental details are provided in Section[B]

Task-A (main): RNA fitness prediction. We evaluate BasePrompt by predicting the functional
effect of RNA sequences in a zero-shot manner on the RNAGym benchmark [4]. It comprises 70
DMS assays, covering over one million variants across diverse RNA types and species, with sequence
lengths ranging from 45 to 5,592 bases. We employ four metrics: Spearman’s rank correlation
(Spearman), Area Under the Receiver Operating Characteristic Curve (AUC), Matthews Correlation
Coefficient (MCC), and Area Under the Precision-Recall Curve (AUPRC).

Task-B (auxiliary): DNA fitness prediction. We take the ClinVar dataset [[26] to compare Base-
Prompt with the native prompt from the genome. The task is predicting the pathogenicity of human
clinical single-nucleotide variants. For ClinVar, we adopt the version from [9] which contains
40,976 samples. Our metrics include Spearman and AUPRC.

Task-C (auxiliary): DNA next-base prediction. Since DNA has the “ground truth" prompt which
RNA does not have, we further evaluate the synthetic prompt of BasePrompt on the DNA next-base
prediction task [49ﬂ which is then filtered to retain sequences containing only A, G, C, and T. The
task requires the model to predict the next IV bases given an input DNA sequence. We evaluate
generation quality using three metrics that capture different aspects of performance. (1) Accuracy:
The percentage of correctly predicted bases, calculated as (Neoprect/N) x 100%. (2) GC Content

Zhttps://huggingface.co/datasets/songlab/clinvar
*https://huggingface.co/datasets/GenerTeam/next-kmer-prediction



Table 1: Information about our datasets. RNAGym serves as the main dataset for evaluation, while
ClinVar and the next k-base prediction (NBP) are used as auxiliary datasets for analysis.

Dataset ~ Modality Task Species Size

RNAGym RNA Fitness Prediction Eukaryote, Prokaryote, Virus 1,117,995

ClinVar DNA Fitness Prediction Human 40,976
NBP DNA Generation Eukaryote, Prokaryote, Virus 84,648
a
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Figure 5: BasePrompt improves performance across diverse models on the RNAGym benchmark.
We evaluate our method on the Evo families with the same prompt length of three. Bold numbers
highlight the best performance.

Difference: The absolute difference between the GC ratio of the generated bases and the ground-truth
bases averaged on all samples. (3) K-mer Jensen-Shannon Divergence (JSD): The JSD between the
k-mer frequency distributions of the generated and ground-truth sequences.

Model and sampling. We conduct experiments using recently released genome language models
(GLMs) to ensure a comprehensive evaluation across different architectures and scales. Specifically,
we employ five models in RNA fitness prediction: Evol [36], Evol.5 [34], and Evo2 [11]] (7B base,
7B, 40B). For Evo models, which use single-nucleotide tokenization, we restrict generation to the
four valid DNA bases and set top-k=1, i.e., greedy strategy. In DNA tasks, we also include the
GENERator [49]] models (1.2B, 3B), which use 6-mer tokenization. We set sampling hyperparameters
as temperature=1.0, top-k=4, and top-p=1.0. The same GLM is used for both prompting and
performing the downstream task.

4.2 BasePrompt Improves RNA Fitness Prediction

For RNA fitness prediction, Genome Language Models (GLMs) compute the negative log-likelihood
of the entire sequence S, and the length-normalized average serves as the predicted fitness score
£(S) [L1]. An ensemble score, (f(S) + f(Src))/2, can be obtained by averaging with the reverse
complement, S,.. In the official RNAGym benchmark, different models were inconsistently re-
ported—Evo1.5 with direct prediction and Evo2-7B with RC ensemble. Since we observed that RC
ensembling has a non-trivial effect, we re-implemented all baselines and reported ensemble results
for fair comparison. We report the ensembled results in the main text, and the direct predictions are
provided in Section D]

BasePrompt achieves state-of-the-art performance on RNAGym. Our method brings consistent
improvement across three metrics on the Evo series, as illustrated in Figure[5] We utilize a prompt
length of three for these models. The performance of additional baseline models is sourced from the
RNAGym paper [4], including Nucleotide Transformer (NT) [17]], RiINALMo [38], RNA-FM [15],



Table 2: BasePrompt improves performance across diverse models and achieves SOTA results on
the RNAGym benchmark. Our method achieves relative improvements of 6.0-16.4% in Spearman
p, 1.2-3.9% in AUROC, and 4.0-24.3% in MCC over the respective baseline models. We use the
reverse complement ensemble for both baselines and ours. Gray rows indicate our results, while bold
numbers denote the best performance. Results of each model’s best prompt length are reported.

Model Name Spearman p T AUROC{ MCC 1
RNA-FM 0.217 0.605 0.155
RNAErnie 0.189 0.598 0.154
NT 0.163 0.577 0.115
RiNALMo 0.155 0.582 0.122
GenSLM 0.122 0.558 0.083
Evol 0.192 0.590 0.131
w/ BasePrompt 0.211 0.604 0.146
Evol.5 0.199 0.594 0.147
w/ BasePrompt 0.232 0.617 0.183
Evo2 7B base 0.271 0.635 0.202
w/ BasePrompt 0.289 0.643 0.219
Evo2 7B 0.276 0.636 0.209
w/ BasePrompt 0.292 0.646 0.217
Evo2 40B 0.261 0.630 0.192
w/ BasePrompt 0.288 0.645 0.212

Table 3: BasePrompt consistently outperforms the baseline in RNAGym across diverse sampling
hyperparameters, achieving relative improvements ranging from 1.6% to 7.2% in Spearman’s rank
correlation. All experiments are conducted using the Evo2 7B with a prompt length of three.

Top-k  Top-p Spearman p AUROC MCC

Baseline 0.276 0.636  0.209
1 - 0.292 0.646  0.217
2 - 0.296 0.648 0.223
3 - 0.295 0.648  0.221
4 - 0.280 0.641  0.207
- 0.3 0.282 0.641 0.211
- 0.5 0.296 0.648 0.222
- 0.7 0.282 0.641 0.211
- 0.9 0.272 0.637  0.209

RNAernie [45], and GenSLM [54]. Among these, BasePrompt on Evo2 7B achieves the highest
performance, with a relative improvement of 6% in Spearman’s rank correlation.

BasePrompt performs even better with more flexible prompt lengths. In previous experiments,
we reported the result of a fixed length of three for consistency, as shown in Figure [5] However,
BasePrompt can be more powerful when equipped with a selective length for each model. As
illustrated in Table [2] our method achieves relative improvements of 6.0-16.4% in Spearman p,
1.2-3.9% in AUROC, and 4.0-24.3% in MCC over the respective baseline models. It demonstrates
the generality and potential of our method. The prompt lengths of BasePrompt for models on the
table from top to bottom are 32, 32, 5, 3, and 5.

BasePrompt is robust to sampling hyper-parameters of GLM generation. Our method consis-
tently outperforms the baseline across various top-k and top-p values, as shown in Table [3| We use
greedy sampling (top-k = 1) in the main experiment for controlled comparison without randomness
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Figure 6: BasePrompt outperforms the native genome prompt on the ClinVar dataset under limited
expansion. The “len” denotes the prompt length. For fair comparison, we normalize Spearman’s rank
correlation (Spearman p) and average precision (AP) by setting the value at input length 510 (prompt
length=0) to 0.0, and the value at prompt length of 24 to 1.0.

and get a Spearman’s p of 0.287 on Evo2 7B. However, the top-k = 2 brings a better Spearman’s p
of 0.297. It demonstrates the hidden potential of our BasePrompt.

BasePrompt is computationally efficient for large-scale fitness prediction. We only generate
a sequence with three bases 70 times, a negligible computational overhead when compared to the
1,117,995 model inferences required for fitness prediction across all variants. Additionally, the extra
6 bases (3+3) introduced by our prompt contribute only 1.5% to the overall computational cost of
fitness prediction, which is derived by averaging the number and length of sequences for each assay.

4.3 Auxiliary Experiments on DNA for Analysis

To further analyze BasePrompt, we turn to DNA-based tasks where the genome could provide
natural prompts. We concentrate on the performance of discriminative and generative tasks, but not
interpretable motifs, since the prompt is used for steering downstream GLMs but not for humans.

4.3.1 BasePrompt Aids Clinical Variant Effect Prediction

On the ClinVar dataset [26], the model is given a variant-containing sequence and a matched
reference, and must classify the variant as pathogenic or benign in a zero-shot setting. Following
Evo2’s setup [ lﬂ the variant effect is measured by the log-likelihood difference between the mutant
and reference. For comparison, we consider three inputs: (i) the original sequence Sorigin, (ii) native
prompt with real genomic prompt, S/ native + Sorigin + S3/native, and (iii) prompt generated by our
BaSﬁPromPt, S5’0ur + Sorigin + SB'our'

BasePrompt outperforms native genomic prompt under short prompts. As shown in Figure [6]
orange bars represent native prompt (Ss/native + Sorigin + 93/ native) and blue bars represent BasePrompt
(S570ur + Sorigin + S3/0ur). For comparability, we normalize Spearman’s rank correlation and average
precision by setting the score at no prompting(Sorigin) to 0.0 and the score at a prompt length of 24
per side (S5/pative + Sorigin + S3/native) t0 1.0. Notably, our generated prompts consistently outperform
native prompts when the prompt length is less than or equal to 24 bases on each side.

We hypothesize that GLMs, through large-scale pretraining with next-token prediction, acquire the
ability to reconstruct “efficient” contextual signals. In contrast, a native prompt may contain redundant
information. Since the same GLM serves as both prompt generator and predictor, the synthesized
prompt may have bridged the distributional gap closer to the model’s pretraining distribution.

*The public source code in Github can be found here!
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Figure 8: BasePrompt indicates generating a positively meaningful prompt, rather than just random
expansion. The task is to predict the next 6 bases given a sequence of length 192.

4.3.2 Assessing the Biological Plausibility of Generated Prompts

It is also necessary to evaluate whether the generated sequences remain biologically plausible. We
adopt the dataset from Wu et al. [49] and then restricts it to canonical nucleotides (A, T, C, G). We
ask GLMs to predict the next k bases prediction, conditioned on a 192-base input sequence.

BasePrompt yields generations closely aligned with biologically plausible patterns. As shown
in Figure[7] our method consistently achieves higher base-level accuracy and smaller GC-content
difference compared to direct prediction on raw input, even under the 5’ prompt of 192 bases beyond
the original input. Furthermore, the 2-mer JSD remains lower across species groups, indicating that
the generated prompt better preserves local sequence statistics. Additional results for varying prompt
lengths, input lengths, GLMs, and sampling strategies are provided in Section[E]

BasePrompt generates more informative prompts compared to other prompting strategies.
We compare the performance of BasePrompt with various prompting approaches in Figure[8] The
RandomSeq is to randomly generate a sequence and prepend it to the original input. We modify
this prompting by selecting the bases from the original sequence, i.e., the RandomSeq strategy.
Additionally, we explore fixed-sequence prompts, such as repeating A/G/C/T.

5 Conclusion

We present BasePrompt, a novel framework that leverages Genome Language Models (GLMs) to
generate bidirectional RNA prompts, enhancing performance in downstream tasks without requiring
domain-specific fine-tuning. By enabling GLMs to write their own prompts, we close a critical gap in
the application of prompting to RNA sequences. Our method achieves state-of-the-art results in RNA
fitness prediction and demonstrates robustness across multiple GLM models. Additionally, we show
that the generated prompts are efficient and effective, offering consistent improvements in various
genomic tasks. BasePrompt represents a significant step toward unlocking the full potential of GLMs.
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Appendix

In the appendix, we first discuss the use of Large Language Models (LLMs) in Section |[A] We
then detail the experimental settings in Section[B] Next, we provide an in-depth description of the

BasePrompt process in Section [C} Additionally, we present supplementary experiments related to
RNA and DNA in Section[D]and Section[E] respectively.

A The Use of Large Language Models

In the process of writing this paper, large language models (LLMs) played a significant role in
supporting various tasks. Specifically, GPT-5 [37] was used to assist with grammar checking and
error correction, refining wording and phrasing, and providing suggestions for visualizations of tables
and figures. These tools were employed to enhance the clarity, coherence, and presentation of the
content. The LLMs were primarily used for tasks that involved improving the linguistic quality of the
text and offering guidance on the effective visualization of data, but they did not contribute to the
scientific ideation or the formulation of research hypotheses. The contributions of these models are
acknowledged to ensure transparency in the research process.

B Experimental Settings

All experiments are conducted in a zero-shot setting, utilizing only the inference capabilities of
pre-trained models without any fine-tuning. We design a comprehensive suite of four tasks to evaluate
BasePrompt across both generative and discriminative capabilities on DNA and RNA sequences.
The tasks are detailed in Sections[B.1|to[B.3] We then describe the models and hyperparameters in
Section[B.4]and elaborate on the core zero-shot mechanism for variant effect prediction in Section[B.5]

B.1 Task-A: RNA Variant Effect Prediction on RNAGym

Task and Dataset We evaluate BasePrompt on the RNA variant effect prediction (VEP) task using
the RNAGym benchmark [4]. The objective is to predict the functional effect of RNA sequence
variants in a zero-shot manner. Performance is evaluated by comparing the predicted functional
ranking of variants against experimental measurements from deep mutational scanning (DMS) assays.
The benchmark comprises 70 standardized DMS assays, covering 1,117,995 variants across diverse
RNA types (e.g., mRNA-splicing, tRNA, aptamer, ribozyme) and species (eukaryote, prokaryote,
virus, human), with sequence lengths ranging from 45 to 5,592 bases.

Evaluation and Metrics We employ four complementary metrics. Spearman’s rank correlation
assesses the monotonic relationship between predicted scores and experimental measurements.
Area Under the Receiver Operating Characteristic Curve (AUC) evaluates the model’s ability to
discriminate between functional and non-functional variants. Matthews Correlation Coefficient
(MCC) provides a balanced measure of classification quality, even for imbalanced datasets. Area
Under the Precision-Recall Curve (AUPRC) is particularly informative for imbalanced data, focusing
on the performance of identifying positive instances. To ensure a balanced evaluation across RNA
types with varying numbers of assays, we first compute the average performance for each RNA type
and then report the mean of these per-type averages.

B.2 Task-B: Next-base Prediction

Task and Dataset We assess the generative capabilities of models on a DNA next-base prediction
task, using data from various species, including eukaryote, prokaryote, virus, and human [49, |40].
The task requires the model to predict the next N bases given an input DNA sequence. We use the
dataset from [49ﬂ filtered to retain only sequences containing A, G, C, and T, resulting in 84,648
sequences. Dataset statistics are provided in Table 5]

Evaluation and Metrics We evaluate generation quality using three metrics that capture different
aspects of performance. (1) Accuracy: The percentage of correctly predicted bases, calculated as

>https://huggingface.co/datasets/GenerTeam/next-kmer-prediction
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(Neorreet/N) x 100%. (2) GC Content Difference: The absolute difference between the GC content
ratio of the generated bases and the ground-truth bases. (3) k-mer Jensen-Shannon Divergence (JSD):
The JSD between the k-mer frequency distributions of the generated and ground-truth sequences.
These metrics provide a multi-grained analysis: accuracy measures base-level precision, GC content
difference reflects compositional distribution, and k-mer JSD captures local sequence statistics.

B.3 Task-C: Clinical Variant Effect Prediction

We further evaluate BasePrompt on a discriminative task focused on predicting the pathogenicity
of human clinical single-nucleotide variants (SNVs). We use the ClinVar dataset [26] to assess
generalization on clinically significant variations. The model is given a pair of sequences—one
containing the SNV and a corresponding reference—and must classify the variant as pathogenic or
benign in a zero-shot setting. We adopt the version from [9ﬂ which contains 40,976 samples.

Evaluation and Metrics Our evaluation metrics include Spearman and AUPRC. Spearman’s Rank
Correlation quantifies the monotonic relationship between the model’s predicted pathogenicity scores
(e.g., logits or probabilities) and the ground-truth binary labels. It assesses how well the model
preserves the inherent ranking of variants by their severity, indicating if higher scores generally
correspond to more severe variants. AUPRC is particularly informative for imbalanced datasets, such
as clinical variant annotations, where pathogenic variants are often rarer. It focuses on the trade-off
between precision and recall for the positive class (pathogenic variants), providing a more sensitive
measure of performance when identifying these critical cases.

B.4 Models and Hyperparameters

We conduct experiments using recently released genome language models (GLMs) to ensure a com-
prehensive evaluation across different architectures and scales. Specifically, we employ six models
from two families: GENERator-1.2B, GENERator-3B [49], Evo2-1B-base, Evo2-7B, Evo2-7B-base,
and Evo2-40B [11]]. For generative tasks, we employ standard sampling strategies: temperature,
top-k, and top-p. Our default settings are chosen based on the models’ tokenization schemes. For
GENERator models, which use 6-mer tokenization, we set temperature=1.0, top-k=4, and top-p=1.0.
For Evo2 models, which use single-nucleotide tokenization, we restrict generation to the four valid
DNA bases (A, T, C, G) by setting top-k=1, effectively performing greedy decoding. The robustness
of BasePrompt to variations in sampling strategies is further discussed and evaluated in Table[TT]

BasePrompt is a pure inference-time approach that enhances model performance by generating the
prompt, without altering the underlying model architecture or its downstream task pipeline. The
specific application of BasePrompt to each task is detailed in Section |C| For consistency and fair
comparison, the same GLM is used for both generating the bidirectional prompts and for performing
the final downstream task. For instance, if an experiment is labeled Evo2 7B, it signifies that Evo2
7B was leveraged for both prompting and the subsequent prediction.

B.5 Zero-shot Mechanism of Variant Effect Prediction

In this section, we introduce the detailed mechanism of zero-shot implementation on variant classifi-
cation. In a zero-shot setting, the model is not explicitly trained on labeled variant effect data but
instead leverages its pretrained knowledge of genomic sequences to assess mutation impact directly
from sequence likelihoods. The input to the model consists of a pair of sequences: a reference
sequence (ref) and a variant sequence (var), differing by a single nucleotide variant (SNV).

Here, the reference sequence x™ represents the wild-type (non-mutated) version of a genomic region,

while x**" is an otherwise identical sequence that contains an SNV at a specific position. The task
is to predict whether the variant results in loss of function (LoF) or the opposite (Non-LOF). Given
a reference sequence x™' and a variant sequence x**, we compute a log-likelihood score for each
sequence by averaging the model’s log-probabilities over all positions:

%Dataset link.
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Figure 9: Motivation and illustration of BasePrompt. The transcription from DNA to RNA involves
mechanisms such as alternative splicing, which can irreversibly limit the available sequence context.
Inspired by the complementary double-helix structure of DNA, we introduce BasePrompt, a novel
method for RNA prompting. It generates the bidirectional prompts by autoregressively predicting the
upstream 5’ and downstream 3’ prompts directly on the main strand. Our method is inference-time
and model-agnostic, making it both convenient and effective.

Figure 10: Input DNA sequence described in Markov chain.

5- A T G T G G -3
Main Stand X1 Ty X3 v Ty_o Tyl Xy
1 L
logp(x) = i tzzllogp(zt | x<t) “4)

Here, L is the sequence length, and p(z; | x<;) is the probability assigned to the true nucleotide
at position ¢ under the model’s autoregressive output. In practice, this is computed by applying a
log-softmax over the model’s output logits at each position and gathering the value corresponding to
the ground-truth token. Then the delta likelihood score between the reference and variant is calculated
as:

AL = log p(x"") — log p(x*™) )

This score serves as a proxy for mutation impact, with higher values indicating greater disruption
under the model’s learned distribution. To evaluate the classification performance of this approach,
the Area Under the Receiver Operating Characteristic (AUROC) is computed based on the delta
likelihood score.

C BasePrompt Mechanism

We describe the detailed process involved in generating the DNA strands based on the Markov chain
model outlined in the main text. The overview is illustrated in Figure 0] This process involves
inputting an initial DNA sequence, generating the reverse complement strand, and mapping generated
bases to the main strand using the principle of complementary base pairing. The methodology
involves simulating both the main and reverse complement strands, as shown in Figure [T0] Figure [T T}

Figure[12} and Figure[I3]

For detailed application in generation and variant classification tasks, we describe the usage of
BasePrompt in Figure[3} We define the expansion of the original 5" — sequence — 3’ by GLM as 3’
prompting, and the reverse complement of 5’ «— sequence — 3’ by GLM as 5’ prompting, details
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Figure 11: DNA double strands described in a Markov chain.
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Figure 12: Generating the downstream of the reverse complement strand.
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Generated by GLM

of which are shown in Figure [3| The upper section illustrates the 5’ prompting for the generative
task. Additionally, further inference can facilitate the formulation of a bidirectional prompting. The
lower section depicts the variant classification process, where both the 5’ 4 3’ prompts are applied
to the reference sequence. These prompts are then concatenated to the respective 5’ and 3’ ends of
each variant sequence. For computational efficiency, we perform bidirectional prompting only on
the reference sequence. These prompts are then applied consistently across all associated variant
sequences.

Step 1: Input DNA Sequence. The input DNA sequence is represented as a series of states in a
Markov chain model. The main strand of the DNA sequence is defined in Figure[I0] This sequence
corresponds to the states x1, s, T3, . . ., xy of the Markov chain. The model processes the sequence
by transitioning from one state to the next.

Step 2: DNA Double-Strand Representation. Using the initial sequence, the model generates
both the main and reverse complement (RC) strand. The RC strand is derived by replacing each base
in the main strand with its complement, shown in Figure[TT] The corresponding Markov chain states
are given by x1, xs, . .., x4 for the main strand and 1, Zo, . . . , 4 for the RC strand.

Step 3: Generating Downstream of the Reverse Complement Strand. To generate the down-
stream sequence of the reverse complement strand, the model applies transitions based on previous
transition probabilities. The downstream sequence is generated as shown in Figure[12]

Step 4: Mapping the Generated Reverse Complement Bases to the Main Strand. Finally, the
model maps the generated bases of the reverse complement strand back to the main strand. This is
done using mapping rules derived from the transitions in the Markov model shown in Figure [I3]

D Supplemented RNA Experiments

In this section, we introduce the re-implementation details of RNAGym [4] in Section and
discuss the direct prediction without ensemble in Section[D.2]

D.1 Difference of Re-implementation and Official Results

As shown in Table[f] different models were inconsistently reported—Evo1.5 with direct prediction
and Evo2-7B with reverse complement (RC) ensemble. Since we observed that RC ensembling has
a non-trivial effect, we re-implemented all Evol [36], Evol.5 [34]], and Evo2 [11]] baselines and
reported ensemble results for fairness in the main text.
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Figure 13: Mapping the generated bases of the reverse complement to the main strand.
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Algorithm 1 Pseudocode of the BasePrompt Algorithm

Input:

Srna !/ The source RNA sequence.

N /I The target prompt length for each side.

GLM /I A pre-trained Genome Language Model (generates from 5’ to 3”).

Helper Functions:

function RNAtoDNA(S;,,): Converts RNA sequence S;,, to DNA (U — T).

function RevComplement(.S;,, ): Returns the reverse complement of a DNA sequence.

function Generate(S;,,, N, GLM): Extends S;,, and returns only the newly generated part.
Output: The full sequence S, and the generated prompts S5/ and Ss/

1: function BASEPROMPT(S, 14, N)

2: Smain < RNAtODNA(S;1q) > Main strand, 5’ to 3’
// Phase A: 5’ Prompt utilizing the complementary strand

3: Sre < RevComplement(.S,,qin ) > Complement strand, 5° to 3’

4: Sup,rc < Generate(S,., N, GLM) > Upstream part on complement strand, 5’ to 3’

5: S5 < RevComplement(Sy;, ,c) > Final 5° prompt on main strand, 5’ to 3’

// Phase B: 3’ Prompt (autoregressive)

6: Sprefiz < S5 + Smain > Main strand, 5° to 3’
7: Ss < Generate(Syre fig, N, GLM) > Final 3” prompt on main strand, 5’ to 3’
// Final Assembly

8: Sfull — SS’ + Smain + SB’
9: return Sy, S5, S3/
10: end function

D.2 Experiments of Direct Prediction w/o Ensemble

As shown in Table [7] BasePrompt performs well even using only direct prediction without ensembles.
We use the reverse complement ensemble for both baselines and ours on the Evo series, following
the Evo2 setting of RNAGym. It demonstrates the generality of our method. The prompt lengths of
BasePrompt for models on the table from top to bottom are 32, 32, 3, 2, and 5.

D.3 Performance across Models at a Prompt Length of Three

As shown in Table[8] we set the prompt length of BasePrompt to three and show that all models have
a great performance. Although the result does not demonstrate the best performance for each model,
the steady improvement demonstrates the stability of our BasePrompt. Note that we use the reverse
complement ensemble for both baselines and ours on the Evo series following RNAGym. Details
about direct predictions and reverse complement ensemble can be found in Table [6]

We also compare the performance across RNA types in Table[9]at a prompt length of three. Notably,
BasePrompt shows improvements across all RNA types with the Evo2 40B model. In terms of
model differences, BasePrompt demonstrates significant gains in mRNA splicing and mRNA coding,
highlighting the potential of RNA prompting for mRNA-related functions. For the remaining three
RNA types, RNA FM outperforms BasePrompt, indicating the importance of incorporating RNA-
specific information. A promising future direction could involve exploring ways to integrate RNA-
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Figure 14: BasePrompt improves performance across diverse models and achieves SOTA results
on the RNAGym benchmark. Results of each model’s best prompt length are reported. We use the
reverse complement ensemble following RNAGym on the Evo series.

related data into RNA prompting, such as leveraging RNA language models to generate upstream and
downstream prompts with BasePrompt.

D.4 Performance at Best Prompt Lengths

As illustrated in Table 2] our method achieves relative improvements of 6.0-16.4% in Spearman p,
1.2-3.9% in AUROC, and 4.0-24.3% in MCC over the respective baseline models. We use the reverse
complement ensemble for both baselines and ours on the Evo series, following the Evo2 setting of
RNAGym. It demonstrates the generality of our method. The prompt lengths of BasePrompt for
models on the table from top to bottom are 32, 32, 5, 3, and 5. We also show the tendency of relative
improvement in Figure[T4] The height of our increase in purple is much higher across three metrics.

E Supplemented DNA Experiments

In this section, we introduce several supplemented DNA experiments. We conduct experiments
across a wide range of input sequence lengths for the next-base prediction taskﬂ In the followmg
experiments, we will demonstrate the general effectiveness of our BasePrompt across various (1)
input lengths, (2) genome language models, and (3) sampling strategies.

BasePrompt consistently improves accuracy across different prompt lengths. As illustrated in
Figure [T5] BasePrompt performs well across a range of input sequence lengths and target sequence
lengths. Given the substantial variability in absolute accuracy with respect to input sequence length,

ACCBasePrompt —ACChaseline
we present the accuracy improvement, defined as B ————eziine % 100%, to facilitate
baseline

cC
a direct comparison across different prompt lengths. The baseline values in Figure[I3]correspond to

"Dataset version.
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Figure 15: BasePrompt consistently enhances next-base prediction performance across varying input
sequence lengths. As the input length increases, the relative accuracy gain over the baseline (original
input) also grows. Panels (a) / (b) show the relative improvement results using the GENERator 3B
model for predicting the next 6 / 12 bases given the input sequence, respectively.

the original input sequence, with AC'Chqseiine values of 32.8%, 35.6%, 40.1%, 45.7%, 52.3%, and
56.6% for increasing prompt length, respectively. Notably, the greatest improvements are observed
for mid-range input sequence lengths. This result aligns with expectations, as shorter input sequences
may lack sufficient information to generate accurate prompts during inference.

BasePrompt demonstrates broad efficacy across diverse model families. We evaluate Base-
Prompt on both the Evo2 and GENERator families, tasked with predicting the next 6 bases from a
192-base sequence, as summarized in Table[I0] For both families, sequences utilizing our prompts
consistently outperform their corresponding baselines, defined as raw DNA input. Notably, Base-
Prompt ’s effectiveness is evident across a range of model sizes, from 1.2B to 40B parameters,
highlighting its robustness and lack of dependence on a specific model capacity. Furthermore, the
improvement over the baseline tends to be more pronounced in larger models, underscoring that
BasePrompt can leverage advancements in genome language models.

BasePrompt is robust across diverse sampling hyperparameters. We perform a comprehensive
evaluation across various sampling hyperparameters, shown in Table[TT] Such a sampling process
influences both the bidirectional prompting and the next-base prediction task. Our method consistently
performs well across a range of temperatures, top-k, and top-p values. Here, the symbol “/”” denotes a
neutral setting, i.e., no restriction in the sampling process (top-k = 0 and top-p = 1). As top-k and
top-p increase, the sampling flexibility increases, followed by a notable drop in next-base prediction
accuracy. However, BasePrompt can still steadily work on such variable sampling settings, and
effectively facilitate the generation task.

The Python implementation of baseline prompting modes is shown as follows:

def generate_prompts(mode:str, sequences: List[str], new_length: int):
if mode == "RandomSeq":
prompts = [
"", join(random.choice(seq) for
for seq in sequences

in range(new_length))
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elif mode == "RandomBase":
prompts = [
"", join(random.choice (’TAGC’) for
for _ in range(len(sequences))

in range(new_length))

]
elif mode == "Repeat":
prompts = []
for seq in sequences:
temp_prompt = ""
while len(temp_prompt) < new_length:
temp_prompt = temp_prompt + seql[-new_length:]
prompts.append (temp_prompt [-new_length:])
elif mode in [IlAll’ IITII’ IICII’ lIGII]:
prompts = [

mode * new_length for in range(len(sequences))

1
else:
raise ValueError (f"Invalid mode: {model}")

return prompts
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Table 4: We provide details on deep mutational scanning assays in RNAGym [4], complementing the
information on each RNA assay that is not included in the original paper.

RNA Type Dataset Sequence Number  Sequence Length
sotnes Tt bdog iy e 20 G g £ 2
Andreasson_2020_ribozyme 7343 74
Beck_2022_ribozyme 21321 69
Janzen_2022_famlal_ribozyme 1953 71
Janzen_2022_fam1b1_ribozyme 1953 71
Janzen_2022_fam21_ribozyme 1953 71
Janzen_2022_fam?22_ribozyme 1953 71
Janzen_2022_fam31_ribozyme 1953 71
Kobori_2015_ribozyme_j12 255 230
Kobori_2015_ribozyme_p4 255 190
Kobori_2015_ribozyme_tw 1023 77
Kobori_2016_osa_ribozyme 10296 54
Kobori_2018_ribozyme 16383 160
Ribozyme (Cleavage and splicing) McRae_2024_5tu_ribozyme 74942 152
McRae_2024_t1_ribozyme 47503 135
Peri_2022_ribozyme 16383 197
Pitt_2010_ribozyme 186 87
Roberts_2023_HDV_ribozyme 33930 87
Roberts_2023_cepeb3_ribozyme 21321 69
Roberts_2023_hh_ribozyme 9045 45
Roberts_2023_hp_ribozyme 22578 71
Roberts_2023_tw_ribozyme 10296 48
Soo_2021_ribozyme 64019 425
Zhang_2020_cpeb3_ribozyme 111417 81
Zhang_2024_OR4K15_ribozyme 61393 140
Zhang_2024_linel_full_ribozyme 69583 146
Zhang_2024_linel_mini_ribozyme 149710 46
A0A2Z5U3Z0_9INFA_Doud_2016 10715 1698
BCHB_CHLTE_Tsuboyama_2023_2KRU 1652 156
BLAT_ECOLX_Firnberg_2014 4783 861
BLAT_ECOLX_Jacquier_2013 989 861
BRCA1_HUMAN_Findlay_2018 886 5592
C6KNH7_9INFA_Lee_2018 10754 1701
CALMI1_HUMAN_Weile_2017 1813 450
CAPSD_AAV2S_Sinai_2021 42328 2208
CBS_HUMAN_Sun_2020 7217 1656
CCDB_ECOLI_Adkar 2012 1176 306
DLG4_RAT_McLaughlin_2012 1576 2175
DOCKI1_MOUSE_Tsuboyama_2023_2MO0Y 3099 198
ESTA_BACSU_Nutschel_2020 2172 639
F7YBW8_MESOW_Ding_2023 7922 282
GFP_AEQVI_Sarkisyan_2016 51714 717
HECDI_HUMAN_Tsuboyama_2023_3DKM 6835 216
IF1_ECOLI_Kelsic_2016 1367 219
MLAC_ECOLI_MacRae_2023 4007 636
MTHR_HUMAN_Weile_2021 12464 1971
mRNA Coding (Coding mRNA fitness) OBSCN_HUMAN_Tsuboyama_2023_1V1C 3421 195
OXDA_RHOTO_Vanella_2023_activity 6396 1092
P53_HUMAN_Kotler_2018 1048 1182
PKN1_HUMAN_Tsuboyama_2023_1URF 1305 213
POLG_DEN26_Suphatrakul_2023 16897 2700
POLG_PESV_Tsuboyama_2023_2MXD 6287 159
PSAE_PICP2_Tsuboyama_2023_1PSE 1616 204
PTEN_HUMAN_Mighell 2018 7260 1212
Q837P4_ENTFA_Meier_2023 697 1770
RIAB_SARS2_Flynn_2022 5725 918
RCRO_LAMBD_Tsuboyama_2023_10RC 2401 189
RDRP_I33A0_Li_2023 12003 2271
RNC_ECOLI_Weeks_2023 4277 681
SPIKE_SARS2_Starr_2020_binding 3802 3822
SPTN1_CHICK_Tsuboyama_2023_1TUD 3485 180
SR43C_ARATH_Tsuboyama_2023_2N88 1663 144
SUMO1_HUMAN_Weile_2017 1700 306
TAT_HVI1BR_Fernandes_2016 1577 258
mRNA Splicing (Splicing ability) %ggle;()—%o IIE—RIII:IRANA 5158599 g‘;’
Domingo_2018_tRNA 4175 72
tRNA (Stability and growth) Guy_2014_tRNA 25491 105
Li_2016_tRNA 65536 72
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Table 5: Information of the Next-base Prediction dataset.

Subset Taxomony / Species Type Size
Eukaryote Archaea, Viruses, Bacteria, Eukaryota 29,944
Bacteria ~ Bacteria 30,801

Others Mitochondrion, Archaea, Plasmid, Virus, Plastid 23,903

Table 6: Effect of reverse-complement (RC) ensembling on RNAGym. Gray rows highlight
the RNAGym-reported results and our corresponding re-implementation under the same setting.
RNAGym reports Evol.5 using direct prediction but Evo2 7B with RC ensemble, introducing incon-
sistency and bias in the benchmark. Our re-implementation evaluates both settings.

Model Setting Spearman p  AUROC
RNAGym reported 0.177 0.583

Evol.5  Our re-impl. (direct) 0.177 0.583
Our re-impl. (+ RC ensemble) 0.199 0.594
RNAGym reported 0.276 0.636

Evo2 7B Our e-impl. (direct) 0.251 0.622
Our re-impl. (+ RC ensemble) 0.276 0.636

Table 7: Our BasePrompt improves RNAGym when using direct prediction without reverse comple-
ment ensemble. Specifically, our method achieves relative improvements of 7.2-29.6% in Spearman
p, 1.6-5.5% in AUROC, and 7.8-31.7% in MCC over the respective baseline models. Note that the
baseline results of Evo2 [[11] are different from RNAGym [4]] since RNAGym uses both the forward
and the reverse chain for function prediction. Results of each model’s best prompt length are reported.

Model Name Spearman p + AUROC 1+ MCC 1
RNA-FM 0.217 0.605 0.155
RNAErnie 0.189 0.598 0.154
Nucl. Transformer 0.163 0.577 0.115
RiNALMo 0.155 0.582 0.122
GenSLM 0.122 0.558 0.083
Evol 0.175 0.587 0.135
w/ BasePrompt 0.205 0.601 0.156
Evol.5 0.177 0.583 0.129
w/ BasePrompt 0.229 0.615 0.170
Evo2 7B base 0.257 0.626 0.194
w/ BasePrompt 0.281 0.637 0.209
Evo2 7B 0.251 0.622 0.176
w/ BasePrompt 0.269 0.633 0.210
Evo2 40B 0.264 0.630 0.195
w/ BasePrompt 0.286 0.641 0.216
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Table 8: BasePrompt improves performance across diverse models and achieves state-of-the-art
results on the RNAGym [4] benchmark. We use the reverse complement ensemble for both baselines
and ours on the Evo series. Gray rows denote our method, while bold numbers highlight the best
performance. The prompt length is set to three on both sides.

Model Name Spearman pT AUROC T MCC 1
RNA-FM 0.217 0.605 0.155
RNAErnie 0.189 0.598 0.154
NT 0.163 0.577 0.115
RiNALMo 0.155 0.582 0.122
GenSLM 0.122 0.558 0.083
Evol 0.192 0.590 0.131
w/ BasePrompt 0.202 0.595 0.135
Evol.5 0.199 0.594 0.147
w/ BasePrompt 0.205 0.597 0.147
Evo2 7B base 0.271 0.635 0.202
w/ BasePrompt 0.289 0.642 0.210
Evo2 7B 0.276 0.636 0.209
w/ BasePrompt 0.292 0.646 0.217
Evo2 40B 0.261 0.630 0.192
w/ BasePrompt 0.278 0.639 0.203

Table 9: The average Spearman’s rank correlation of BasePrompt scores across various RNA types.
Our method demonstrates significant improvements in mRNA splicing and mRNA coding, while
RNA FM outperforms in the remaining types. Both our method and the baselines use the reverse
complement ensemble in the Evo series, consistent with the Evo2 setting of RNAGym. Gray rows
represent our results, with bold numbers highlighting the best performance. The prompt length of
each model is three.

Model Name mRNA-splic. tRNA Aptamer Ribozyme mRNA-cod. Average
RNA FM 0.103 0464  0.190 0.201 0.129 0.217
RNAErnie 0.230 0416  0.037 0.142 0.117 0.189
NT 0.121 0.317  0.146 0.147 0.083 0.163
RiNALMo 0.348 0.260  0.026 0.072 0.070 0.155
GenSLM 0.173 0.093  0.126 0.135 0.084 0.122
Evol 0.142 0.422  0.067 0.150 0.177 0.192
w/ BasePrompt 0.188 0.409  0.080 0.153 0.179 0.202
Evo 1.5 0.146 0.430  0.082 0.164 0.173 0.199
+ w/ BasePrompt 0.179 0.424  0.085 0.164 0.173 0.205
Evo2 7B Base 0.387 0.420  0.079 0.186 0.284 0.271
+ w/ BasePrompt 0.435 0427  0.136 0.159 0.287 0.289
Evo2 7B 0.432 0.387  0.119 0.170 0.271 0.276
+ w/ BasePrompt 0.468 0413  0.140 0.167 0.274 0.292
Evo2 40B 0.305 0.431  0.097 0.172 0.298 0.261
+ w/ BasePrompt 0.321 0431  0.152 0.179 0.305 0.278
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Table 10: BasePrompt is generally effective on different models. As the prompt length increases, the
performance improvement becomes more pronounced. The task is predicting the next 6 bases given a
sequence of length 192. The green value represents the delta compared to the baseline.

Model . Accuracy (%) by Prompt Length

0 (Baseline) 6 12 24 48 96
GENERator 1.2B 38.4 38.5(10.1) 384 (10.0) 38.7(10.3) 39.0(10.6) 39.4(11.0)
GENERator 3B 40.1 40.3(10.2) 40.5(10.4) 40.7(10.6) 409 (10.8) 41.6(11.5)
Evo2 1B base 46.0 463 (10.3) 46.7(10.7) 47.0(11.0) 47.1(r1.1) 47.0(11.0)
Evo2 7B 52.8 53.1(10.3) 534 (10.6) 540(112) 542(114) 5450117
Evo2 40B 65.4 65.7(10.3) 65.8(104) 66.1(10.7) 66.4(11.0) 66.6(11.2)

Table 11: BasePrompt is robust under diverse generation sampling hyperparameters. The task is
predicting the next 6 bases given a DNA sequence of length 384 using GENERator-3B. The top is the
default setting in our experiments. The green number is the improvement compared with the baseline.

Accuracy (%)

Temp Top-k Top-p | g, ccline BasePrompt

1.0 4 1.0 ‘ 45.7 47.5+1.8

1.2 / 1.00 374 38.9+1.5
1.0 / 1.00 39.0 40.5+1.5
0.8 / 1.00 40.6 42.3+1.7
0.6 / 1.00 42.6 44.2+1.6

1.0 100 / 42.7 44.1+1.4
1.0 50 / 43.4 44.9+1.5
1.0 10 / 45.1 46.2+1.1
1.0 1 / 46.4 48.2+1.8
1.0 / 1.00 39.0 40.5+1.5
1.0 / 0.99 39.2 40.7+1.5
1.0 / 0.90 40.4 41.5+1.1
1.0 / 0.70 41.5 43.2+1.7

Table 12: BasePrompt enhances generation quality in the next-6-base prediction task with a 192-base
input. Compared to direct prediction on raw input, it yields nearly consistent gains across models even
when generating a long 5’ prompt of 192 bases. Our method yields a relative accuracy improvement
of 1.3-2.4% across all models. It also achieves relative reductions of 3.1-23.3% in GC Difference and
0.5-4.8% in 2-mer JSD for most models. Results are averaged across three subsets [49] to mitigate
species imbalance.

Model Accuracy T GC Difference | JSD (2-mer) |

Baseline Ours Baseline Ours Baseline Ours

GENERator 1.2B 37.7 38.5 0.0466 0.0474 0.1229  0.1204

GENERator 3B 40.0 409  0.0360 0.0349 0.1097 0.1044
EVO?2 1B base 52.4 53.0 0.0174 0.0134 0.0872 0.0861
EVO2 7B 58.0 59.3  0.0195 0.0164 0.0709  0.0697
EVO2 40B 68.1 69.1 0.0178 0.0166 0.0504  0.0502
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