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Abstract

Genome language models (GLMs) have demonstrated exceptional capabilities in1

DNA sequence generation and understanding, yet their context-dependent perfor-2

mance is limited by the fixed length of input sequences. To address this limitation,3

we propose BaseMirror, an inference-time strategy that leverages the symmetry of4

DNA’s double strand to expand the effective context. Our method autoregressively5

generates tokens along the reverse direction of the reverse-complement strand of6

a given DNA sequence, then obtains and prepends their complementary bases to7

the original strand, thereby enriching the model’s effective receptive field. We8

demonstrate that BaseMirror consistently improves generative and discriminative9

tasks’ performance on the GENERator and Evo2 families. For next-base prediction,10

progressively extending the input sequence leads to consistent performance gains11

across various input lengths, model sizes, and sampling strategies, with accuracy12

improvements of up to 4.6%, compared to the original non-extended input. For13

variant effect prediction on BRCA1, BaseMirror enhances the AUROC for zero-14

shot classification by up to 5.2%. Moreover, we uncover a scaling phenomenon in15

which performance increases monotonically with the length of the extended context.16

Our results highlight the effectiveness of BaseMirror as a lightweight, robust, and17

scalable solution at inference time through API-based GLM generation.18

1 Introduction19

Genome language models (GLMs), pre-trained on massive nucleotide corpora and comprising20

billions of parameters, have demonstrated significant capabilities in modeling DNA sequences,21

excelling in both generative and discriminative tasks [6, 16, 49, 7, 44]. These autoregressive models22

generate sequences by predicting each nucleotide based on its preceding context. This context-23

dependent capability is crucial for producing biologically plausible sequences and modeling complex24

genomic structures [13]. Notably, recent GLMs like GENERator [44] and Evo2 [7] can now generate25

biologically meaningful sequences, such as histones, enhancers, and mitochondrial genomes.26

However, a fundamental challenge for GLMs is their reliance on the input sequence during inference,27

which can restrict their effective receptive field, particularly with fixed input lengths. Unlike natural28

languages, where human-designed prompts or external knowledge can guide model behavior [27, 1],29

the inherent intricate nature of genomic sequences makes manual prompt engineering or direct30

information injection largely infeasible [20]. These limitations underscore the need for inference-time31

strategies that can expand the model’s contextual understanding within the autoregressive framework.32

In this work, we introduce BaseMirror, a novel inference-time context expansion method. BaseMirror33

enriches the input sequence by leveraging the inherent reverse-complementary symmetry of DNA.34

The core principle of our method is rooted in DNA’s double-helical structure: the two strands are35

reverse complements, with adenine (A) pairing with thymine (T) and cytosine (C) with guanine36
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Figure 1: We propose BaseMirror, an inference-time context expansion method that leverages the
double-strand symmetry of DNA. Given an input sequence, BaseMirror maps the main DNA strand to
its reverse complement and generates the hidden context of the main strand using a genome language
model. In this paper, we perform two tasks to demonstrate the effectiveness of BaseMirror. The LOF
means that the DNA mutation leads to loss of function, and the Non-LOF means the opposite.

(G) [42]. This complementary pairing ensures that identical genetic information is encoded on both37

strands, allowing biological mechanisms to recognize patterns on either [33, 28, 47]. We term the38

operation of mapping a sequence to its reverse complement as mirroring.39

BaseMirror iteratively leverages this symmetry as illustrated in Figure 1. First, the input sequence40

is mirrored to its reverse-complement strand, and then the GLM generates tokens along this new41

strand. These generated bases are subsequently mirrored back to the original strand and prepended42

to the initial input, effectively serving as expanded context. This process is bidirectional, allowing43

generation to proceed along the main chain with an enriched contextual view. By augmenting the44

sequence in this biologically-grounded manner, BaseMirror provides the model with a richer, more45

informative context without altering model weights and access to task-dependent annotations.46

To demonstrate the benefits of expanded context, we conduct experiments on both generative and47

discriminative tasks. For next k-base prediction, BaseMirror consistently improves accuracy for48

both Evo2 [7] and GENERator [44] model families, with relative gains up to 4.6%. It also enhances49

zero-shot classification performance in variant effect prediction (VEP) on BRCA1, a clinical breast50

cancer dataset [17], with relative gains up to 5.2%. We also demonstrate the generality of BaseMirror51

on the ClinVar [22], a much larger VEP dataset. These improvements are robust across diverse52

sequence lengths, numbers of bases to predict, model architectures, and sampling strategies.53

Furthermore, our analyses reveal an intriguing inference-time scaling phenomenon facilitated by54

BaseMirror: downstream performance systematically improves with increased computation at test55

time, achieved by using longer context expansions. This strong trend is observed in both next-56

base prediction and variant effect prediction tasks. While the absolute improvements from longer57

expansions can be moderate, the consistent positive trend highlights BaseMirror’s potential as a58

mechanism to unlock further capabilities of GLMs by investing more computation at inference.59

In summary, our contributions are:60

• We propose BaseMirror, a novel, model-agnostic inference-time context expansion technique61

for GLMs that leverages DNA’s reverse-complementary structure. It is lightweight and62

requires only logit-level generation API access without the need of model tuning.63

• We demonstrate that BaseMirror significantly improves performance on key genomic tasks,64

including next-base prediction and zero-shot variant effect prediction Such improvement is65

robust across sequence lengths, model architectures, and sampling strategies.66

• We identify a general inference-time scaling phenomenon: performance on downstream67

tasks improves with longer context extensions generated by BaseMirror, offering a new68

avenue for trading test-time computation for accuracy in genomic applications.69
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2 Related Work70

2.1 DNA Reverse Complement in Machine Learning71

A fundamental property of DNA is its double-helical structure, where the two strands are reverse72

complements (RC) of each other (A pairs with T, C pairs with G) [42]. This inherent symmetry implies73

that both strands carry equivalent genetic information, and many biological processes recognize74

sequence patterns irrespective of strand orientation [33, 28, 47]. However, standard machine learning75

architectures, such as conventional Convolutional Neural Networks (CNNs) and Transformers, do not76

inherently account for RC symmetry [48, 21, 31, 24, 12]. Early approaches typically employed data77

augmentation by including RC sequences during training [10]. More sophisticated methods embed78

RC symmetry directly into the model architecture [46]. For example, RC Parameter Sharing (RCPS)79

in CNNs uses shared weights for filters recognizing forward and RC patterns [34, 3, 8], though such80

approaches can face optimization difficulties [46]. Recent efforts aim for true RC equivariance, where81

the model’s output transforms predictably when the input is reverse-complemented [26]. Caduceus,82

for instance, built on the Mamba architecture, introduces specialized modules to process both forward83

and RC sequences using shared parameters [33]. In contrast, our BaseMirror method is a training-free84

approach applied, constructing an expanded context at inference time to enhance generation from85

existing genome language models without altering their architecture or requiring retraining.86

2.2 Data Augmentation for DNA Modeling87

Data augmentation has proven to be a powerful technique in computer vision (CV) and natural88

language processing, where it helps improve model generalization, mitigate overfitting, and enhance89

robustness to distributional shifts [2, 40]. In CV, augmentations like flipping, cropping, and color90

jitter introduce invariance [45]; in NLP, strategies such as back-translation and synonym substitution91

introduce semantic diversity without altering meaning [4]. In genomic modeling, however, only a92

limited number of augmentation strategies have been tailored to the properties of DNA sequences.93

Reverse complementation is used in training by leveraging the bidirectional nature of DNA strands to94

double the training data without introducing noise [10]. Another method is genomic shifting, which95

offsets the input window across the genome to introduce positional variation [14, 36]. More recently,96

evolution-inspired augmentations such as random point mutations, inversions, and deletions have97

been proposed to simulate sequence diversity [23]. However, it disregards the underlying functional98

constraints of biological sequences, potentially introducing unrealistic or non-functional variants.99

Another method [15] proposes phylogenetic augmentation, using homologous sequences from other100

species as a data augmentation strategy to improve supervised deep learning models for functional101

genomics. While it shows promising performance, this method introduces a dependency on external102

data sources. In this work, our BaseMirror adopts the reverse complement at test time as its core103

augmentation strategy, requiring no downstream labels, additional sequences, or model fine-tuning.104

2.3 In-context Learning in Biology105

In-context learning (ICL) is a prominent capability of large language models (LLMs), allowing them106

to adapt to new tasks based on examples or instructions embedded within the input prompt [27, 1].107

This can be achieved with a few examples (few-shot learning) [9, 37], or even without any explicit108

examples (zero-shot learning) [39]. Recently, the ICL paradigm has begun to gain attention in109

bioinformatics applications [29, 25, 18]. For example, few-shot ICL has been applied to protein110

characterization tasks, where general-purpose LLMs have demonstrated performance comparable111

to, or even exceeding, that of specialized models trained on extensive biological datasets [18]. Zero-112

shot prediction, where the model leverages its pre-trained knowledge directly with the realistic113

input sequence, has also shown particular promise for predicting the functional impact of genetic114

variants [7, 5, 29]. The success of such approaches hinges on the ability of models pre-trained on large-115

scale genomic sequences to implicitly capture signals of biological function and fitness [6]. Besides,116

recent studies find that existing ICL methods seem not to work effectively and universally [20, 6].117

A key aspect of ICL in genomic contexts is prompt design: most methods rely on carefully crafted118

prompts that include natural language instructions and input-output example pairs to steer the model’s119

behavior toward the desired task [19, 41]. In contrast, our BaseMirror proposes an inference-time120

manner to leverage the hidden knowledge of genome language models without any manual design,121

bypassing the need for natural language instruction or explicit task examples.122
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3 Method123

In this section, we describe our method, BaseMirror, which builds upon the causal framework of124

a genome language model (GLM). We focus on the importance of conditioning and discuss how125

BaseMirror overcomes inherent limitations imposed by the context length. In Section 3.1, we126

introduce the causal modeling of DNA generation by GLMs and propose the context limitation. In127

Section 3.2, we introduce how our BaseMirror overcomes the inherent context limitation. Finally, we128

depict the application of BaseMirror in both generative and discriminative tasks in Appendix A.2.129

3.1 Autoregressive Model for Genome Sequences130

An autoregressive model for sequence prediction generates the next element in the sequence based on131

the previous elements. In the context of genome sequence generation, let x1, x2, . . . , xt denote the132

nucleotide sequence up to position t, where each nucleotide token xi can be a nucleotide base (e.g.,133

A, T, C, G) or k-mer (e.g., ATGTGG for 6-mer). The nucleotide sequence is described from 5′ to 3′134

ends by default. The 5′ and 3′ ends of a DNA strand refer to the two distinct termini characterized135

by their chemical groups. These ends are critical for DNA replication and transcription, where new136

nucleotides are added to the 3′ end, extending the chain in the 5′ to 3′ direction.137

For autoregressive generation, the model predicts the next nucleotide token xt+1 conditioned on the138

sequence x1, x2, . . . , xt, formally expressed in Equation (1).139

P (xt+1 | x1, x2, . . . , xt) = softmax(f(x1, x2, . . . , xt)) (1)

Here, f() is a function, typically implemented by a genome language model, that maps the sequence140

x1, x2, . . . , xt to logits over the next possible nucleotide token. The softmax function normalizes141

these outputs into valid probabilities. This process continues iteratively to generate the full sequence.142

Importantly, the prediction of nucleotide token xt+1 relies on the preceding sequence context143

x1, x2, . . . , xt. The quality of this context is crucial for generating plausible sequences [43, 9, 38, 11].144

However, the utility of the context is constrained by its length: for generating xt+1, the context is lim-145

ited to the sequence x1, x2, . . . , xt, hindering the model’s ability to capture long-range dependencies.146

3.2 Reverse Complement and Context Expansion147

We propose that the inherent symmetry of DNA, with its double-stranded structure, may help148

overcome the context length limitation. In addition to the main strand of DNA, there exists a149

complementary reverse strand, oriented in the opposite direction (5′ to 3′ opposite to 3′ to 5′) of the150

main strand. This complementary and reverse structure offers an opportunity to extend the context151

for sequence generation by utilizing the reverse complement strand.152

Let x1, x2, . . . , xt represent the nucleotide sequence of the main strand, from 5′ to 3′. The corre-153

sponding reverse complement sequence is denoted as x̂t, x̂t−1, . . . , x̂1. For example, if xi is the154

nucleotide at position i in the main strand, then x̂t−i is the complementary base in the reverse strand155

at the corresponding position, as shown in Table 1 (contents in black color).156

Table 1: DNA double strands described in Markov chain.
5′− C T A T G T G G −3′

Main Stand x−2 x−1 x1 x2 x3 · · · xt−2 xt−1 xt

| | | | | |
Reverse Complement Stand x̂t+2 x̂t+1 x̂t x̂t−1 x̂t−2 · · · x̂3 x̂2 x̂1

3′− G A T A C A C C −5′

By transforming to the reverse complement, we enable predictions for the downstream sequence (3′)157

on the reverse complement strand, which corresponds to the upstream (5′) sequence on the main158

strand. Specifically, the prediction on the reverse complement is P (x̂t+1 | x1, x2, . . . , xt). This159

allows us to predict the nonexistent context on the main strand shown in the contents in blue of160

Table 1. We assume that the token before x1 is x−1, indicating that x0 does not exist.161
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Figure 2: BaseMirror consistently enhances next-base prediction performance across varying input
sequence lengths. As the input length increases, the relative accuracy gain over the baseline (original
input) also grows. Panels (a) / (b) show the relative improvement results using the GENERator 3B
model for predicting the next 6 / 12 bases given the input sequence, respectively.

After generating the downstream of the reverse complement strand, we can map the generated bases162

to the main strand. Such new generated part is actually the upstream of the main strand, i.e., the163

context. Detailed steps are shown in the Appendix A.1. We formalize such a process in Equation (2).164

P (x−1 | x1, x2, . . . , xt) = P (x̂t+1 | x1, x2, . . . , xt)

= P (x̂t+1 | x̂t, x̂t−1, . . . , x̂1)

= softmax(f(x̂1, x̂2, . . . , x̂t))

(2)

The function f here is the same as in Equation (1), as genome language models are pre-trained on165

both strands [7, 33, 44]. By incorporating the reverse complement strand, we effectively extend166

the context window for sequence generation. Let N denote the number of tokens in the context167

expansion, and we can now formalize nucleotide sequence generation as Equation (3).168

P (xt+1 | x−N , x−(N−1), . . . , x−1, x1, x2, . . . , xt) (3)

According to the introduction above, we can now leverage the DNA symmetry to expand the context169

during inference. Notably, this symmetry is bidirectional, meaning we can start from the reverse170

complement strand and, by reversing the process, operate again on the main strand.171

4 Experiment172

In this section, we evaluate the effectiveness of BaseMirror through experiments on two tasks. First,173

we present the experimental setup in Section 4.1, which includes task definitions, datasets, evaluation,174

baselines, models, and hyperparameters. We then provide a detailed analysis of the experiments for175

both the generative and discriminative tasks in Section 4.2 and Section 4.3, respectively. Finally, we176

provide an ablation study on generation sampling hyperparameters for the robustness of our method.177

4.1 Experimental Settings178

We briefly introduce the experimental settings here. The detailed version is shown in Appendix A.3.179
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Table 2: BaseMirror is generally effective on different models. As the number of expanded bases
increases, the performance improvement becomes more pronounced. Besides, a notable scaling effect
is observed in model size for both our method and the baselines. The task is predicting the next 6
bases given a sequence of length 192. The red value represents the delta compared to the baseline.

Model
Accuracy (%) by #Expansion

0 (Baseline) 6 12 24 48 96

GENERator 1.2B 38.4 38.5+0.1 38.4+0.0 38.7+0.3 39.0+0.6 39.4+1.0

GENERator 3B 40.1 40.3+0.2 40.5+0.4 40.7+0.6 40.9+0.8 41.6+1.5

Evo2 1B base 46.0 46.3+0.3 46.7+0.7 47.0+1.0 47.1+1.1 47.0+1.0

Evo2 7B 52.8 53.1+0.3 53.4+0.6 54.0+1.2 54.2+1.4 54.5+1.7

Evo2 40B 65.4 65.7+0.3 65.8+0.4 66.1+0.7 66.4+1.0 66.6+1.2

Tasks and Dataset The generative task involves predicting the next N bases of a DNA sequence180

from species like fungi, vertebrate_mammalian, vertebrate_other, invertebrate, protozoa, and plant,181

similar to next-token prediction [44, 32]. Given a DNA sequence, the model is required to predict182

the next N bases, with accuracy calculated as (Ncorrect/N) ∗ 100%. For the dataset, we use the183

released version1 from [44], filtering sequences to include only the bases A/G/C/T, resulting in 19,941184

sequences for next-base prediction. The discriminative task involves predicting the effect of human185

clinical variants. We adopt the experimental setup from the released version2 of Evo2 [7], which186

includes both coding and noncoding regions of the BRCA1 gene [17]. The model is tasked with187

predicting whether a given variant, represented by the sequence surrounding the SNV variant and188

its corresponding reference sequence, is pathogenic. All experiments are conducted in a zero-shot189

setting [7] using GLMs without task-specific tuning, depicted in Appendix A.3.190

Models and Hyperparameters We conduct experiments using recently released genome language191

models from the GENERator [44] and Evo2 [7] families. The Evo2 40B model is accessed through192

the NVIDIA API3, while other models are deployed locally (NVIDIA GeForce RTX 4090 GPU,193

24G). For the generation process, we employ temperature, top-k, and top-p sampling strategies.194

In most experiments, we maintain a fixed sampling strategy to limit randomness. Though Evo2195

employs single-nucleotide tokenization and its vocabulary contains 512 tokens in total, only four196

of them correspond to valid DNA bases (A, T, C, and G). Therefore, we set the top-k parameter to197

1, effectively disabling sampling. For GENERator, which utilizes 6-mer tokenization, we set the198

temperature to 1 and top-k to 4 in the majority of our experiments. Additionally, we demonstrate the199

robustness of BaseMirror across various sampling strategies, as detailed in Table 3.200

BaseMirror and Baseline Our method, BaseMirror, is an inference-time approach designed to201

expand the context of DNA sequences without modifying the underlying pipeline for either the202

generative or discriminative tasks. Specifically, we expand the task input sequence by a set number of203

additional bases, referred to as #Expansion. Detailed application of BaseMirror in tasks can be found204

in Appendix A.2. To demonstrate the effectiveness of the expansion, we compare the performance205

of our expanded sequences with one using the original input sequence. The baseline corresponds to206

the raw input sequence with no context expansion, i.e., #Expansion = 0. For consistency, we use the207

same GLM for context expansion of BaseMirror, and the latter detailed task.208

4.2 Generation: Next-base Precision209

We conduct experiments across a wide range of input sequence lengths for the next-base prediction210

task. In the following experiments, we will demonstrate the general effectiveness of our BaseMirror211

across various (1) input lengths, (2) genome language models, and (3) sampling strategies.212

1https://huggingface.co/datasets/GenerTeam/next-kmer-prediction
2https://github.com/ArcInstitute/evo2/blob/main/notebooks/brca1/brca1_zero_shot_vep.ipynb
3https://build.nvidia.com/arc/evo2-40b
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BaseMirror consistently improves accuracy across different context lengths. As illustrated in213

Figure 2, BaseMirror performs well across a range of input sequence lengths and target sequence214

lengths. Given the substantial variability in absolute accuracy with respect to input sequence length,215

we present the accuracy improvement, defined as ACC#Expansion−ACCbaseline

ACCbaseline
× 100%, to facilitate216

a direct comparison across different context lengths. The baseline values in Figure 2 corresponds217

to the original input sequence, with ACCbaseline values of 32.8%, 35.6%, 40.1%, 45.7%, 52.3%,218

and 56.6% for increasing #Expansion values, respectively. Notably, the greatest improvements are219

observed for mid-range input sequence lengths. This result aligns with expectations, as shorter input220

sequences may lack sufficient information to generate accurate context during inference.221

BaseMirror demonstrates broad efficacy across diverse model families. We evaluate BaseMirror222

on both the Evo2 and GENERator families, tasked with predicting the next 6 bases from a 192-223

base sequence, as summarized in Table 2. For both families, sequences utilizing our expanded224

contexts consistently outperform their corresponding baselines, defined as raw DNA input. Notably,225

BaseMirror ’s effectiveness is evident across a range of model sizes, from 1.2B to 40B parameters,226

highlighting its robustness and lack of dependence on a specific model capacity.227

Table 3: BaseMirror is robust under diverse gen-
eration sampling hyperparameters. The task is
predicting the next 6 bases given a DNA sequence
of length 384 using GENERator-3B. The top is the
default setting in our experiments. The red number
is the improvement compared with the baseline.

Temp Top-k Top-p Accuracy (%)
Baseline BaseMirror

1.0 4 1.0 45.7 47.5+1.8

1.2 / 1.00 37.4 38.9+1.5
1.0 / 1.00 39.0 40.5+1.5
0.8 / 1.00 40.6 42.3+1.7
0.6 / 1.00 42.6 44.2+1.6

1.0 100 / 42.7 44.1+1.4
1.0 50 / 43.4 44.9+1.5
1.0 10 / 45.1 46.2+1.1
1.0 1 / 46.4 48.2+1.8

1.0 / 1.00 39.0 40.5+1.5
1.0 / 0.99 39.2 40.7+1.5
1.0 / 0.90 40.4 41.5+1.1
1.0 / 0.70 41.5 43.2+1.7

BaseMirror is robust across diverse sampling228

hyperparameters. We perform a comprehen-229

sive evaluation across various sampling hyper-230

parameters, shown in Table 3. Such a sampling231

process influences both the context expansion232

of BaseMirror and the next-base prediction task.233

Our method consistently performs well across234

a range of temperatures, top-k, and top-p values.235

Here, the symbol “/” denotes a neutral setting,236

i.e., no restriction in the sampling process (top-237

k = 0 and top-p = 1). As top-k and top-p238

increase, the sampling flexibility increases, fol-239

lowed by a notable drop in next-base prediction240

accuracy. However, BaseMirror can still steadily241

work on such variable sampling settings, and ef-242

fectively facilitate the generation task.243

A scaling phenomenon emerges across most244

context lengths and model sizes: as the num-245

ber of expanded bases increases, performance246

improves. We hypothesize that BaseMirror247

creatively exploits an inference-time scaling248

property of genome language models (GLMs)249

during the generation process. Furthermore, this250

paradigm operates at test-time, relying solely on251

input sequences from downstream tasks. This252

universal inference-time scaling law is akin to those observed in large language models [30, 35]. We253

also showcase that BaseMirror generates relatively meaningful context in Figure 6.254

4.3 Discrimination: Zero-shot Classification255

We experiment on the prediction of the pathogenicity of BRCA1 variants, a binary classification task256

illustrated in Figure 4. We define the expansion of the original 5′ − sequence→ 3′ as 3′ expansion,257

and the reverse complement of 5′ ← sequence − 3′ as 5′ expansion, details of which are shown258

in Figure 7. We expand the reference sequence using BaseMirror and copy the expanded context259

to the variant sequence. Notably, expanding the reference and variant sequences independently260

can lead to inconsistencies, as discussed in Appendix A.7. For our experiments, we perform a261

log-scale grid search on the number of expanded bases, denoted as #Expansion, for both the 5′ and262

3′ directions. As shown in Figure 3, we report the relative improvement in AUROC, defined as263
AUROC(x,y)−AUROC(0,0)

AUROC(0,0) × 100%, relative to the baseline, i.e., the original input sequence at (0, 0).264
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Figure 3: BaseMirror improves BRCA1 classification performance. The relative improvement (%) of
AUROC is reported based on the the number of expanded context (log scale) compared to the original
input. The blue indicates lower than the baseline (0, 0), while red represents higher.

BaseMirror shows an effective improvement in BRCA1 classification on various genome lan-265

guage models (BLMs). Figure 3 illustrates the relative improvement in AUROC as we iteratively266

expand the input context during inference, with the x-axis indicating the 3′ end context expansion267

and the y-axis denoting the 5′ end expansion. Across three different models—Evo2 7B, Evo2 40B,268

and GENERator 3B—we observe consistent improvements in AUROC up to 5.15%, particularly with269

larger context expansions. This supports the idea that BaseMirror ’s context expansion provides a270

scalable and efficient approach for improving model performance in DNA sequence tasks.271

Imbalanced expansion lengths at 3′ can lead to diminished benefits or even negative effects.272

In the BRCA1 task, the mutation occurs in the middle of the given sequence, meaning the only273

difference between the reference and variant sequences is the nucleotide base at the center. When the274

3′ context length is expanded excessively, a hallucination phenomenon arises, where the generated275

sequence does not contribute effectively to variant significance classification. In contrast, expanding276

the 5′ context consistently improves the results. We hypothesize that this difference stems from277

the zero-shot classification mechanism [7], which captures the influence of upstream mutations on278

downstream bases. Consequently, a longer 5′ context, such as x−N , . . . , x−2, x−1, is more beneficial279

than a longer 3′ context, such as xt+1, xt+2, . . . , xN .280

BaseMirror also demonstrates strong performance on the ClinVar variant effect prediction281

dataset[22], extending its effectiveness beyond BRCA1. To assess generalization, we evaluate282

our approach on the full ClinVar dataset, comprising 40,976 samples4, using the GENERator-3B283

model. With a 510-length input expanded by 192 bases, BaseMirror achieve an AUROC of 0.8349,284

a notable improvement over the baseline (without context expansion) of 0.8224. These results, on285

a dataset over ten times larger than the BRCA1 set, confirm that BaseMirror consistently enhances286

performance even when the baseline AUROC is already high.287

5 Conclusion288

In this paper, we introduce a novel context expansion method, BaseMirror, which leverages the289

double-strand symmetry of DNA through genome language models (BLMs). By mapping the input290

DNA sequence to its reverse complement, BaseMirror generates hidden contexts in an iterative291

manner. Notably, this approach operates purely on the input sequence at inference time, requiring292

no model parameter tuning, and can be deployed using BLMs’ logits API from cloud servers. Our293

experimental results across generative and discriminative tasks demonstrate the broad applicability of294

BaseMirror. A key insight is the inference-time scalability: as the context expansion computation295

increases, we observe a corresponding improvement in task performance. Additionally, one limitation296

of BaseMirror is that the imbalanced usage of the 3′ expansion may negatively impact the task.297

4https://huggingface.co/datasets/songlab/clinvar
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A Technical Appendices and Supplementary Material438

A.1 Detailed Process of BaseMirror439

We describe the detailed process involved in generating the DNA strands based on the Markov440

chain model outlined in the main text. This process involves inputting an initial DNA sequence,441

generating the reverse complement strand, and mapping generated bases to the main strand using442

defined transition rules. The methodology involves simulating both the main and reverse complement443

strands as shown in Table 4, Table 5, Table 6, and Table 7.444

A.2 Application in Tasks445

A

T C GA

Input for

Generation 3’

5’3’

5’
A T C G

T A GC T A GCTCAG
5’

3’5’
A T CG

3’ Further Inference

(5’+3’ Expansion)
T A GCTCAG

AGTC A T CG

5’3’

5’ 3’ AGTC A T C G
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5’ Expanded Input for
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AGTC A T CG GTC A
5’ 3’
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Variant Classification
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T T GA

Var

5’ Expansion

5’+3’ Expansion

on Ref Input

AGTC A T T G GTC A
5’ 3’

AGTC A T C G GTC A
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on Var Input
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Figure 4: We present an overview of the 5′ and 3′ expansion of BaseMirror in downstream applications.
The top section illustrates the 5′ context expansion for the generative task. The lower section outlines
the process of variant classification, where both the 5′ and 3′ expansions (5′ + 3′) are applied to the
reference sequence (Ref). These expansions are then transferred to the variant sequence (Var).

For detailed application in generation and variant classification tasks, we describe the usage of446

BaseMirror in Figure 4. And the variant classification mechanism for BRCA1 is described in A.3.3.447

We define the expansion of the original 5′ − sequence → 3′ as 3′ expansion, and the reverse448

complement of 5′ ← sequence− 3′ as 5′ expansion, details of which are shown in Figure 7. The449

upper section illustrates the 5′ context expansion for the generative task. Additionally, further450

inference can facilitate the formulation of a 5′ + 3′ expansion. The lower section depicts the variant451

classification process, where both the 5′ +3′ expansions are applied to the reference sequence. These452

expansions are then transferred to the variant sequence.453

Notably, independent expansions on the reference and variant sequences may result in inconsistencies454

for variant classification. During the development of our method, we observed a decline in the AROC455

for zero-shot classification as the expansion length increased. Since the reference sequence serves as456

a background, such inconsistencies undermine the measurement of the mutation. In Appendix A.7,457

we quantitatively demonstrate the detrimental effect of these inconsistencies.458

Step 1: Input DNA Sequence The input DNA sequence is represented as a series of states in a459

Markov chain model. The main strand of the DNA sequence is defined in Table 4.460

Table 4: Input DNA sequence described in Markov chain.
5′− A T G T G G −3′

Main Stand x1 x2 x3 · · · xt−2 xt−1 xt
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This sequence corresponds to the states x1, x2, x3, . . . , xt of the Markov chain. The model processes461

the sequence by transitioning from one state to the next.462

Step 2: DNA Double-Strand Representation Using the initial sequence, the model generates both463

the main strand and the reverse complement strand. The reverse complement strand is derived by464

replacing each base in the main strand with its complement, shown in Table 5465

Table 5: DNA double strands described in Markov chain.
5′− A T G T G G −3′

Main Stand x1 x2 x3 · · · xt−2 xt−1 xt

| | | | | |
Reverse Complement Stand x̂t x̂t−1 x̂t−2 · · · x̂3 x̂2 x̂1

3′− T A C A C C −5′

The corresponding Markov chain states for both strands are given by x1, x2, . . . , xt for the main466

strand and x̂1, x̂2, . . . , x̂t for the reverse complement strand.467

Step 3: Generating Downstream of the Reverse Complement Strand To generate the down-468

stream sequence of the reverse complement strand, the model applies transitions based on previously469

defined transition probabilities. The sequence downstream from the initial reverse complement strand470

is generated as shown in Table 6.471

Table 6: Generating the downstream of the reverse complement strand.
5′− A T G T G G −3′

Main Stand x1 x2 x3 · · · xt−2 xt−1 xt

| | | | | |
Reverse Complement Stand x̂t+2 x̂t+1 x̂t x̂t−1 x̂t−2 · · · x̂3 x̂2 x̂1

3′− G A T A C A C C −5′

Step 4: Mapping the Generated Reverse Complement Bases to the Main Strand Finally, the472

model maps the generated bases of the reverse complement strand back to the corresponding bases in473

the main strand. This is done using a set of mapping rules derived from the transitions in the Markov474

model shown in Table 7.475

Table 7: Mapping the generated bases of the reverse complement to the main strand.
5′− C T A T G T G G −3′

Main Stand x−2 x−1 x1 x2 x3 · · · xt−2 xt−1 xt

| | | | | |
Reverse Complement Stand x̂t+2 x̂t+1 x̂t x̂t−1 x̂t−2 · · · x̂3 x̂2 x̂1

3′− G A T A C A C C −5′

According to the introduction above, we can now leverage the DNA symmetry to expand the context476

during inference. Notably, this symmetry is bidirectional, meaning we can start from the reverse477

complement strand and, by reversing the process, operate again on the main strand. This method478

allows for the precise simulation and generation of DNA sequences with both forward and reverse479

complement strands modeled using Markov chains.480

A.3 Detailed Experimental Settings481

A.3.1 Generative Task: Next k-Base Prediction482

The generative task involves predicting the next N bases of a DNA sequence from fungal species.483

This task is similar to next-token prediction [44, 32], but due to varying tokenization units in genome484
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language models (GLMs), we modify it to a next-base prediction task for fair comparison. Given485

a DNA sequence, the model is required to predict the next N bases, with accuracy calculated as486

(Ncorrect/N)∗100%. We set N to 6 or 12, as some models in our experiments use 6-mer tokenization.487

For the dataset, we use the released version5 from [44], filtering sequences to include only the bases488

ATCG, resulting in 19,941 sequences for next-base prediction. It is important to note that the length of489

the input sequence varies across different experiments. This variability will be clarified independently490

for each experiment as needed.491

A.3.2 Discriminative Task: Variant Effect Prediction492

The discriminative task involves predicting the effect of human clinical variants, specifically binary493

classification for biologically significant sequence variations. The ClinVar [22] dataset comprises494

40,976 samples. For BRCA1 [17] dataset, We adopt the experimental setup from the released version6495

of Evo2 [7], which includes both coding and noncoding regions of the BRCA1 gene. The dataset496

consists of 3,893 pairs of variant and reference sequences, with 3,070 labeled as loss of function497

(LOF) and 823 as function/intermediate (Non-LOF). The model is tasked with predicting whether498

a given variant, represented by the sequence surrounding the SNV variant and its corresponding499

reference sequence, is pathogenic. All experiments are conducted in a zero-shot setting [7] using500

GLMs without task-specific fine-tuning. Specifically, the GLMs predict the logits for both the mutant501

and reference sequences. The variant significance is then determined by computing the delta between502

the predicted log-likelihoods of the mutant and reference sequences. Zero-shot details are shown in503

Appendix A.3.3. We use a sequence length of 512 and report the AUROC score.504

A.3.3 Zero-shot Mechanism of Variant Effect Prediction505

In this section, we introduce the detailed mechanism of zero-shot implementation on variant classifi-506

cation. In a zero-shot setting, the model is not explicitly trained on labeled variant effect data but507

instead leverages its pretrained knowledge of genomic sequences to assess mutation impact directly508

from sequence likelihoods. The input to the model consists of a pair of sequences: a reference509

sequence (ref) and a variant sequence (var), differing by a single nucleotide variant (SNV).510

Here, the reference sequence xref represents the wild-type (non-mutated) version of a genomic region,511

while xvar is an otherwise identical sequence that contains a SNV at a specific position. The task is512

to predict whether the variant results in loss of function (LoF) or the opposite (Non-LOF). Given513

a reference sequence xref and a variant sequence xvar, we compute a log-likelihood score for each514

sequence by averaging the model’s log-probabilities over all positions:515

log p(x) =
1

L

L∑
t=1

log p(xt | x<t) (4)

Here, L is the sequence length, and p(xt | x<t) is the probability assigned to the true nucleotide516

at position t under the model’s autoregressive output. In practice, this is computed by applying a517

log-softmax over the model’s output logits at each position and gathering the value corresponding to518

the ground-truth token. Then the delta likelihood score between the reference and variant is calculated519

as:520

∆L = log p(xref)− log p(xvar) (5)

This score serves as a proxy for mutation impact, with higher values indicating greater disrup-521

tion under the model’s learned distribution. To evaluate the classification performance of this522

approach, the Area Under the Receiver Operating Characteristic (AUROC) is computed based on523

the delta likelihood score. Note that the AUROC is calculated on −score: roc_auc_score(y_true,524

-brca1_df[’evo2_delta_score’])7.525

5https://huggingface.co/datasets/GenerTeam/next-kmer-prediction
6https://github.com/ArcInstitute/evo2/blob/main/notebooks/brca1/brca1_zero_shot_vep.ipynb
7https://github.com/ArcInstitute/evo2/blob/main/notebooks/brca1/brca1_zero_shot_

vep.ipynb
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A.3.4 Models and Hyperparameters526

We conduct experiments using recently released genome language models from the GENERator [44]527

and Evo2 [7] families. Specifically, our experiments involve five models, Evo2 1B base, Evo2 7B,528

Evo2 40B, GENERator 1.2B, and GENERator 3B, for a general conclusion. The Evo2 40B model is529

accessed through the NVIDIA API8, while other models are deployed locally. For the generation530

process, we employ temperature, top-k, and top-p sampling strategies. The temperature controls the531

flexibility of the sampling, with higher temperatures promoting greater variability. Top-k restricts the532

sampling to the k tokens with the highest probabilities, while top-p selects tokens whose cumulative533

probability is less than or equal to p.534

In most experiments, we maintain a fixed sampling strategy to limit randomness. Since Evo2535

employs single-nucleotide tokenization and has a vocabulary size of 512, restricting the task to536

four valid tokens, we set the top-k parameter to 1, effectively disabling sampling. For GENERator,537

which utilizes 6-mer tokenization, we set the temperature to 1 and top-k to 4 in the majority of our538

experiments. Additionally, we assess the impact of different sampling hyperparameters, as detailed in539

Table 3, demonstrating the robustness of BaseMirror across various sampling strategies.540

A.3.5 BaseMirror and Baseline541

Our method, BaseMirror, is an inference-time approach designed to expand the context of DNA542

sequences without modifying the underlying pipeline for either the generative or discriminative tasks.543

Specifically, we expand the task input sequence by a set number of additional bases, referred to as544

#Expansion. The baseline corresponds to the raw input sequence with no context expansion, i.e.,545

#Expansion = 0. For consistency, we use the same GLM for context expansion of BaseMirror, and546

the latter detailed task.547

0 6 12 24 48 96 192
#Expansion (log scale)
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Figure 5: BaseMirror indicates generating positively meaningful context, rather than just random
expansion. The task is to predict the next 6 bases given a sequence of length 192. For baselines,
the RandomBase represents expanding context randomly, while the RandomSeq means randomly
selecting bases from the input sequence as context. The other four use the fixed A/T/C/G sequences.
The Repeat mode copies the end of the given sequence to serve as the expanded context.

A.4 Context Expansion Modes548

BaseMirror effectively generates positively meaningful context for given input sequences. In549

Figure 6, we compare our method with different context expansion modes, the Python code of which550

is shown in the Appendix A.5. We randomly generate #Expansion bases and add such context to the551

original input, termed as RandomBase. Since the base distribution of sequences might be different,552

we slightly change the setting by selecting bases from the input sequence randomly, resulting in553

RandomSeq. Furthermore, we also experiment with fixed sequences such as all A/G/C/T for context554

expansion. In Figure 5 of Appendix A.4, we also experiment with the “Repeat” mode, which copies555

the end of the given sequence as the expanded context. BaseMirror is the only method that could keep556

growing by the number of expanded contexts, demonstrating its generation of meaningful context.557

The result of all modes is shown in Figure 5. As the performance of the Repeat mode drops sharply,558

we only leave the other seven modes in the main text in Figure 6. Notably, the context generated559

8https://build.nvidia.com/arc/evo2-40b
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Figure 6: BaseMirror indicates generating positively meaningful context, rather than just random
expansion. The task is to predict the next 6 bases given a sequence of length 192. For baselines,
the RandomBase represents expanding context randomly, while the RandomSeq means randomly
selecting bases from the input sequence as context. The other four use the fixed A/G/C/T sequences.

by BaseMirror can help the further next-base generation, while the copy of a piece of biologically560

meaningful context fails. Shown in Figure 5, the orange line, “Repeat” mode, copies the end of the561

given sequence as the expanded context, code of which is shown in the Appendix A.5. Both the562

RandomSeq and Repeat modes make the prediction accuracy drop sharply as the length of the repeat563

increases. We reckon that even biologically meaningful contexts can be harmful to the next-base564

prediction. Instead, BaseMirror leverages genome language models’ general knowledge gained from565

large-scale pre-training and can generate positively meaningful content.566

A.5 Python Implementation of Baseline Context Modes567

The Python implementation of baseline context modes is shown as follows:568

1 def generate_context(mode:str , sequences: List[str], new_length: int):569

2 if mode == "RandomSeq ":570

3 expanded_sequences = [571

4 "". join(random.choice(seq) for _ in range(new_length))572

5 for seq in sequences573

6 ]574

7 elif mode == "RandomBase ":575

8 expanded_sequences = [576

9 "". join(random.choice(’TAGC ’) for _ in range(new_length))577

10 for _ in range(len(sequences))578

11 ]579

12 elif mode == "Repeat ":580

13 expanded_sequences = []581

14 for seq in sequences:582

15 expanded_seq = ""583

16 while len(expanded_seq) < new_length:584

17 expanded_seq = expanded_seq + seq[-new_length :]585

18 expanded_sequences.append(expanded_seq[-new_length :])586

19 elif mode in ["A", "T", "C", "G"]:587

20 expanded_sequences = [588

21 mode * new_length for _ in range(len(sequences))589

22 ]590

23 else:591

24 raise ValueError(f"Invalid mode: {mode }")592

25 return expanded_sequences593

A.6 Details of BRCA1 Variant Classification594

In this section, we elaborate on some experimental details and results for the BRCA1 variant595

classification task owing to limited space. As shown in Figure 7, we perform a detailed analysis to596

assess the impact of varying context lengths on the BRCA1 task. The experiment focuses on the597
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Figure 7: We perform detailed experiments on the context lengths on the BRCA1 task. We design the
5′ and 3′ expansion shown on the left. On the right, the relative improvement (%) of AUROC matrix
is reported using a log scale, compared with the original input at (0, 0). Experiments are conducted
on the Evo2 7B model with a baseline AUROC of 0.714 at (0, 0).

effects of both 5′ and 3′ expansions of the reference input sequences. To facilitate our investigation,598

we vary the context lengths by adjusting the number of bases considered on both ends of the reference599

sequence.600
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Figure 8: BaseMirror consistently improves on the BRCA1 classification. Relative improvement (%)
on AUROC at the original input is reported by the the number of expanded context (log scale).

For each input sequence, we generate multiple expansions by modifying the context around the601

reference sequence, shown in Figure 8. We test several configurations, where the 5′ and 3′ context602

lengths are expanded in increments of 4 base pairs (with the values ranging from 0 to 16 for both603

ends). For each configuration, we use a model to compute the area under the receiver operating604

characteristic curve (AUROC) to evaluate performance. The relative improvements (%) of AUROC605

values are reported as differences compared to the baseline model performance using the original606

input (at 0,0 expansion).607

These findings indicate that larger context expansions on both ends of the sequence are beneficial for608

the model’s performance on the BRCA1 task, with diminishing returns as the expansion exceeds a609

certain threshold. The log scale representation of the AUROC values provides a clear visual indication610

of the improvements achieved with various context lengths, reinforcing the importance of proper611

sequence context in tasks requiring DNA sequence analysis.612

A.7 Consistency in Variant Classification613

As mentioned in the lower section of Figure 4, the consistency of context expansion is crucial for614

multi-input tasks, such as the BRCA1 variant classification, since the reference sequence serves as the615

background to compare and measure the significance of the mutation in the variant sequence. Once616

both the reference sequence and the variant sequence expand the context independently, the resulting617

expanded sequences will have more differences than the original base mutation. The influence of618

context expansion inconsistency is shown in Figure 9.619
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Figure 9: Independent context expansions of the reference sequence and the variant sequence lead to
failures. Relative improvement (%) on AUROC at the original input is reported by the the number of
expanded context (log scale).
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