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Abstract
What sorts of structure might enable a learner to
discover classes from unlabeled data? Traditional
unsupervised learning approaches risk recover-
ing incorrect classes based on spurious feature-
space similarity. In this paper, we introduce unsu-
pervised learning under Latent Label Shift (LLS),
where label marginals pdpyq shift but class condi-
tionals ppx|yq do not. This setting suggests a new
principle for identifying classes: elements that
shift together across domains belong to the same
true class. For finite input spaces, we establish an
isomorphism between LLS and topic modeling;
for continuous data, we show that if each label’s
support contains a separable region, analogous
to an anchor word, oracle access to ppd|xq suf-
fices to identify pdpyq and pdpy|xq up to permu-
tation of latent labels. Thus motivated, we intro-
duce a practical algorithm that leverages domain-
discriminative models as follows: (i) push exam-
ples through domain discriminator ppd|xq; (ii) dis-
cretize the data by clustering examples in ppd|xq

space; (iii) perform non-negative matrix factoriza-
tion on the discrete data; (iv) combine recovered
ppy|dq with discriminator outputs ppd|xq to com-
pute pdpy|xq @d. In semi-synthetic experiments,
we show that our algorithm can use domain infor-
mation to overcome a failure mode of standard un-
supervised classification in which feature-space
similarity does not indicate true groupings.

1. Introduction
Discovering systems of categories from unlabeled data is
a fundamental but ill-posed challenge in machine learning.
Typical unsupervised learning methods group instances to-
gether based on feature-space similarity. Accordingly, given
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a collection of photographs of animals, a practitioner might
hope that, in some feature space, images of animals of the
same species should be somehow similar to each other. But
why should we expect a clustering algorithm to recognize
that dogs viewed in sunlight and dogs viewed at night be-
long to the same category? Why should we expect that but-
terflies and caterpillars lie close together in feature space?

In this paper, we offer an alternative principle according to
which we might identify a set of classes: we exploit distri-
bution shift across times and locations to reveal otherwise
unrecognizable groupings among examples. For example, if
we noticed that whenever we found ourselves in a location
where butterflies are abundant, caterpillars were similarly
abundant, and that whenever butterflies were scarce, cater-
pillars had a similar drop in prevalence, we might conclude
that the two were tied to the same underlying concept, no
matter how different they appear in feature space. In short,
our principle suggests that latent classes might be uncov-
ered whenever instances that shift together group together.

Formalizing this intuition, we introduce the problem of un-
supervised learning under Latent Label Shift (LLS). Here,
we assume access to a collection of domains d P t1, . . . , ru,
where the mixture proportions pdpyq vary across domains
but the class conditional distribution ppx|yq is domain-
invariant. Our goals are to recover the underlying classes up
to permutation, and thus to identify both the per-domain mix-
ture proportions pdpyq and optimally adapted per-domain
classifiers pdpy|xq. We prove that under mild assumptions,
knowledge of this underlying structure is sufficient for in-
ducing the full set of categories.

First, we focus on the tabular setting, demonstrating that
when the input space is discrete and finite, LLS is isomor-
phic to topic modeling (Blei et al., 2003). In this case, we
can apply standard identification results for topic modeling
(Donoho & Stodden, 2003; Arora et al., 2012b; Gillis &
Vavasis, 2014; Huang et al., 2016; Chen et al., 2021) that
rely only on the existence of anchor words within each topic
(i.e., for each label y there is at least one x in the support
of y, that is not in the support of any y1 ‰ y). Here, stan-
dard methods based on Non-negative Matrix Factorization
(NMF) can recover each domain’s underlying mixture pro-
portion pdpyq and optimal predictor pdpy|xq. However, the
restriction to discrete inputs, while appropriate for topic
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modeling, proves restrictive when our interests extend to
high-dimensional continuous input spaces.

Then, to handle high-dimensional inputs, we propose
Discriminate-Discretize-Factorize-Adjust (DDFA), a general
framework that proceeds in the following steps: (i) pool data
from all domains to produce a mixture distribution qpx, dq;
(ii) train a domain discriminative model f to predict qpd|xq;
(iii) push all data through f , cluster examples in the pushfor-
ward distribution, and tabularize the data based on cluster
membership; (iv) solve the resulting discrete topic modeling
problem (e.g., via NMF), estimating qpy, dq up to permuta-
tion of the latent labels; (v) combine the predicted qpd|xq

and qpy, dq to estimate pdpyq and pdpy|xq. In developing
this approach, we draw inspiration from recent works on
distribution shift and learning from positive and unlabeled
data that (i) leverage black box predictors to perform dimen-
sionality reduction (Lipton et al., 2018; Garg et al., 2020;
2021); and (ii) work with anchor sets, separable subsets of
continuous input spaces that belong to only one class’s sup-
port (Scott, 2015; Liu & Tao, 2016; du Plessis et al., 2016)

Our key theoretical result shows that domain discrimination
(qpd|xq) provides a sufficient representation for identifying
parameters of interest. Given oracle access to qpd|xq (which
is identified without labels), our procedure is consistent. Our
analysis reveals that the true qpd|xq maps all points in the
same anchor set to a single point mass in the push-forward
distribution. This motivates our approach of discretizing
data by hunting for tight clusters in qpd|xq space.

In semi-synthetic experiments, we adapt existing image clas-
sification benchmarks to the LLS setting. We note that train-
ing a domain discriminative classifier is a difficult task, and
find that warm starting the initial layers of our model with
pretrained weights from unsupervised approaches can sig-
nificantly boost performance. We show that warm-started
DDFA outperforms state-of-the-art (SOTA) unsupervised
approaches when domain marginals pdpyq are sufficiently
sparse. In particular, we observe improvements of as much
as 30% accuracy over unsupervised SOTA on CIFAR-20.
Further, on subsets of FieldGuide dataset, where similarity
between species and diversity within a species leads to fail-
ure of unsupervised learning, we show that DDFA recovers
the true distinctions. To be clear, these are not apples-to-
apples comparisons: our methods are specifically tailored
to the LLS setting. The takeaway is that the structure of the
LLS setting can be exploited to outperform the best unsuper-
vised learning heuristics, in particular when these heuristics
detect classes by exploiting spurious similarities.

2. Problem Formulation
For a vector v P Rp, we use vj to denote its jth entry.
For an event E, we let I rEs denote the binary indicator

of the event. We use rAsi,j to access the element at pi, jq
in A. Let X be the input space and Y “ t1, 2, . . . , ku be
the output space for classification. We assume throughout
this work that the number of true classes k is known. We
use capital letters (e.g., X) to denote random variables and
small case letters (e.g., x) to denote the values they take. We
now introduce the problem of unsupervised learning under
LLS. We assume that we observe unlabeled data from R “

t1, 2, . . . , ru domains. By pd, we denote the probability
density (or mass) function for each domain d P R.

Definition 2.1 (Latent label shift). We observe data from r
domains. While the label distribution among these domains
can change, for all d, d1 P R and for all px, yq P X ˆ Y , we
have pdpx|yq “ pd1 px|yq “ ppx|yq.

Simply put, Definition 2.1 states that the conditional distri-
bution pdpx|yq remains invariant across domains, i.e., they
satisfy the label shift assumption. Crucially, under LLS,
pdpyq can vary across domains, and we observe unlabeled
data with domain label tpx1, d1q, px2, d2q, . . . , pxn, dnqu.
We now aim to (i) estimate the label marginal in each do-
main pdpyq; and (ii) estimate the optimal per-domain pre-
dictor pdpy|xq, up to some permutation of labels.

Mixing distribution Q A key step in our algorithm will be
to train a domain discriminative model. Towards this end
we define Q, a distribution over X ˆY ˆR, constructed by
taking a uniform mixture over all domains. By q, we denote
the probability density (or mass) function of Q. Define Q
such that qpx, y|D “ dq “ pdpx, yq. For all d P R, we
define γd “ qpdq, i.e., the prevalence of each domain in
our distribution Q. Notice that qpx, yq is a mixture over the
distributions tpdpx, yqudPR, with mixture weights tγdudPR.

Notation for the discrete case To begin, we setup nota-
tion for discrete input spaces. Without loss of generality,
we assume that X “ t1, 2, . . . ,mu. The label shift assump-
tion allows us to formulate the label marginal estimation
problem in matrix form. Let QX|D be an m ˆ r matrix
such that rQX|Dsi,d “ pdpX “ iq, i.e., the d-th column of
QX|D is pdpxq. Let QX|Y be an m ˆ k matrix such that
rQX|Y si,j “ ppX “ i|Y “ jq, the j-th column is a dis-
tribution over X given Y “ j. Similarly, define QY |D as
a k ˆ r matrix whose d-th column is the marginal pdpyq.
With Definition 2.1, we have pdpxq “

ř

y pdpx, yq “
ř

y pdpx|yqpdpyq “
ř

y ppx|yqpdpyq. Since this is true
@d P R, we have the matrix form as QX|D “ QX|Y QY |D.

Assumptions We introduce four additional assumptions:

A.1 As many domains as classes, i.e., |R| ě |Y|.
A.2 Matrix formed by label marginals (as columns) across

domains is full-rank, i.e., rankpQY |Dq “ k.
A.3 Equal representation of domains, i.e., γd “ 1{r.
A.4 For all y P Y , there exists a unique subdomain Ay Ď

X , such that qpAyq ě ϵ and x P Ay if and only if
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the following conditions are satisfied: qpx|yq ą 0 and
qpx|y1q “ 0 for all y1 P Yztyu. This is the ϵ-anchor
sub-domain condition.

A.1–A.2 are benign, these assumptions just imply that the
matrix QY |D is full row rank. Without loss of generality,
A.3 can be assumed when dealing with data from a collec-
tion of domains. Intuitively, A.4 states that for each label y P

Y , we have some subset of inputs that only belong to that
class y. The anchor word condition is related to the positive
sub-domain in PU learning, which requires that there exists a
subset of X in which all examples only belong to the positive
class (Scott, 2015; Liu & Tao, 2016; du Plessis et al., 2016).

3. Theoretical Analysis
In this section, we establish identifiability of LLS problem.
We begin by considering the case where the input space is
discrete and formalize the isomorphism to topic modeling.
Then we establish the identifiability of the system in this
discrete setting by appealing to existing results in topic
modeling (Donoho & Stodden, 2003; Huang et al., 2016).
Finally, extending results from discrete case, we provide
novel analysis to establish our identifiability result for the
continuous setting.

Isomorphism to topic modeling Recall that for the
discrete input setting, we have the matrix formulation:
QX|D “ QX|Y QY |D. Consider a corpus of r documents,
consisting of terms from a vocabulary of size m. Let D be
an Rmˆr matrix such that rDsi,j represents the frequency
of term i in document j. Topic modeling (Hofmann, 1999;
Blei et al., 2003) considers each document to be composed
as a mixture of k topics. Given a topic, each term has a prob-
ability of occurring that is document-invariant, but the pro-
portion of topics themselves vary across documents. This
can be expressed as: D “ CW, where C is an Rmˆk ma-
trix, rCsi,j is the probability of term i given topic j, and W
is an Rkˆr matrix, where rWsi,j is the proportion of topic
i in document j. The isomorphism is then: document ” do-
main, topic ” label, term ” input-sample, and D “ CW ”

QX|D “ QX|Y QY |D. We leverage this isomorphism to ex-
tend identifiability conditions of the topic modeling problem
(Donoho & Stodden, 2003; Huang et al., 2016; Chen et al.,
2021) to our LLS setting. We formalize the adaption here:

Theorem 3.1. (adapted from Proposition 1 in Huang et al.
(2016)) Assume A.1, A.2 and A.4 hold (A.4 in the discrete
setting is referred to as the anchor word condition). Then
the solution to QX|D “ QX|Y QY |D is uniquely identified
up to permutation of latent labels.

We refer readers to Huang et al. (2016) for a proof of this
theorem. Theorem 3.1 states that if each label y has at least
one token in the input space that has support only in y, and
A.1, A.2 hold, then the solution to QX|Y , QY |D is unique

up to permutation of latent labels. Furthermore, under this
condition, there exist algorithms that can recover QX|Y ,
QY |D within some permutation (Arora et al., 2012a;b; Gillis
& Vavasis, 2014).

Extensions to the continuous case We will prove identifia-
bility in the continuous setting, when X “ Rp for some p ě

1. In addition to A.1–A.4, we make the assumption that we
have oracle access to qpd|xq, i.e., the true domain discrimina-
tor for mixture distribution Q. This is implied by assuming
access to the marginal qpx, dq from which we observe sam-
ples. We formalize this extension in the following theorem:

Theorem 3.2. Let the distribution Q over X,Y,D satisfy
Assumptions A.1–A.4. Assuming access to the joint distribu-
tion qpx, dq, and the true number of classes k, we show that
the following quantities are identifiable up to permutation
of latent labels: (i) QY |D, (ii) qpy|X “ xq , for all x P X
that lies in the support (i.e. qpxq ą 0); and (iii) qpy|X “

x,D “ dq , for all x P X and d P R such that qpx, dq ą 0.

We present a proof sketch for Theorem 3.2 in App. B, and a
full proof in App. D. The core idea is to show that with ac-
cess to an oracle domain discriminator fpxq “ qpd|xq, we
can construct a map from a continuous space which satisfies
assumption A.4, A.1 to a discrete space which satisfies an-
chor word condition. We also provide a geometric perspec-
tive on identifiability in the continuous setting in App. H.

4. DDFA Framework
Motivated by our identifiability analysis, in this section,
we present an algorithm to estimate QY |D, qpy|xq, and
qpy|x, dq when X is continuous by exploiting domain struc-
ture and approximating the true domain discriminator f . In-
tuitively, qpy|x, dq is the domain specific classifier pdpy|xq

and qpy|xq is the classifier for data from aggregated do-
mains. QY |D captures label marginals for individual do-
mains. A naive approach would be to aggregate data from
different domains and exploit recent advancements in un-
supervised learning (Van Gansbeke et al., 2020; Park et al.,
2020; Caron et al., 2018; 2019). However, aggregating data
from multiple domains loses the domain structure that we
hope to leverage. We highlight this failure mode of tradi-
tional unsupervised clustering methods in Sec. 5.

Discriminate We begin Algorithm 1 by creating a split of
the unlabeled samples into the training and validation sets.
Using the unlabeled data samples and the domain that each
sample originated from, we first train a domain discrimina-
tive classifier pf . The domain discriminative classifier out-
puts a distribution over domains for a given input. This clas-
sifier is trained with cross-entropy loss to predict the domain
label of each sample on the training set. With unlimited data,
the minimizer of this loss is the true f , as we prove in App. E.
To avoid overfitting, we stop training pf when the cross-
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Algorithm 1 DDFA Training
input r ě k ě 1, tpxi, diquiPrns „ qpx, dq,

A class of functions F from Rp Ñ Rr

1: Split into train set T and validation set V
2: Train pf P F to minimize cross entropy loss

to predict d|x on T with early stopping on V
3: Push all txiuiPrns through pf

4: Cluster the n points t pfpxiquiPrns, into m clusters.
5: cpxiq Ð Cluster id of pfpxiq

6: pqpcpXq “ a|D “ bq Ð

ř

iPrns Ircpxiq“a, di“bs
ř

jPrns Irdj“bs

7: For all a, b, r pQcpXq|Dsa,b Ð pqpcpXq “ a|D “ bq

8: pQcpXq|Y , pQY |D Ð NMF p pQcpXq|Dq

output pQY |D, pf

Algorithm 2 DDFA Prediction

input pQY |D, pf, px1, d1q „ qpx, dq

1: Populate pQD|Y as r pQD|Y sd,y Ð
r pQY |Dsy,d

řd2“r
d2“1

r pQY |Dsy,d2

2: Assign pqpy|x1q Ð

”

p pQD|Y q
:

pfpx1
q

ı

y

3: Assign pqpy|x1, d1q Ð
r pQD|Y sd1,ypqpy|x1q

ř

y2Prksr
pQD|Y sd1,y2

pqpy2|x1q

4: ypred Ð argmaxyPrks pqpy|x1, d1q

output : pqpy|x1, d1q “ ppd1 py|x1q, pqpy|x1q, ypred

entropy loss on the validation set stops decreasing. Note that
here the validation set also only contains (sample, source do-
main) pairs (and omits information about true class labels).

Discretize We now push forward all the samples from the
training and validation sets through the domain discrimina-
tor to get vector pfpxiq for each sample xi. In the proof of
Theorem 3.2, we argue that when working with true f , and
the entire marginal qpx, dq, we can choose a discretization
satisfying the anchor word assumption by identifying point
masses in the distribution of fpxq and filtering to include
those of at least ϵ mass. In the practical setting, because we
have only a finite set of data points and a noisy pf , we use
clustering to approximately find point masses. We choose
m ě k and recover m clusters with any standard clustering
procedure (e.g. K-means). This clustering procedure is ef-
fectively a useful, but imperfect heuristic: if the noise in pf is
sufficiently small and the clustering sufficiently granular, we
hope that our m discovered clusters will include k pure clus-
ters, each of which only contains data points from a different
anchor subdomain which are tightly packed around the true
fpAyq for the corresponding label y. Clustering in this space
is superior to a naive clustering on the input space because
close proximity in this space indicates similarity in qpd|xq.

Let us denote the learned clustering function as c, where

cpxq is the cluster assigned to a datapoint x. We now lever-
age the cluster id cpxiq of each sample xi to discretize sam-
ple into a finite discrete space rms. Combining cluster id
with the domain source di for each sample, we estimate
pQcpXq|D by simply computing, for each domain, the frac-
tion of its samples assigned to each cluster.

Factorize We apply an NMF algorithm to pQcpXq|D to
obtain our estimates of pQcpXq|Y and pQY |D.

Adjust We begin Algorithm 2 by considering a test point
px1, d1q. To make a prediction, if we had access to ora-
cle f and true QY |D, we could precisely compute qpy|x1q

(Lemma B.1). However, in place of these true quantities,
we plug in the estimates pf and pQY |D. Since these esti-
mates contain noise, the estimate pqpy|x1q is found by left-
multiplying pfpx1q with the pseudo-inverse of pQD|Y , as op-
posed to solving a sufficient system of equations. As our
estimates pf and pQD|Y approach the true values, the projec-
tion of pfpx1q into the column space of pQD|Y tends to pfpx1q

itself, so the pseudo-inverse approaches the true solution.
Now we can use the constructive procedure introduced in
the proof of Lemma B.2 to compute the plug-in estimate
pqpy|x1, d1q “ ppd1 py|x1q.

5. Experiments
Our approach is well-suited to problems in which (i) we
have data from several data domains (e.g. wildlife images
collected from different regions, or medical patient profiles
collected in a variety of different timeframes), (ii) we ex-
pect that the class-conditional data distribution is domain-
invariant, and (iii) we expect that for each true class, there
are some datapoints that could only belong to that class (sat-
isfying the anchor subdomain property). We simulate such
a problem in this section, and reveal that in this case our
approach can help avoid failure modes of traditional unsu-
pervised classification and recover true class boundaries.

Datasets To explore a failure mode of unsupervised
classification, we use FieldGuide (https://sites.
google.com/view/fgvc6/competitions/
butterflies-moths-2019), which contains images
of moths and butterflies. Each species is a class, and each
class contains images from youth (caterpillar) and adult
stages of life. We intuit that butterflies from a given species
look more like butterflies from other species than caterpillars
from their own species, and expect that unsupervised meth-
ods will learn incorrect class boundaries which distinguish
caterpillars from butterflies, instead of true species bound-
aries. We assume each class has an anchor sub-domain,
i.e., some images can only belong to that species. We build
FieldGuide-2 and FieldGuide-28 subsets, with two and 28
species, respectively. Results from FieldGuide-2 and bench-
marks CIFAR-10, CIFAR-20 (Krizhevsky & Hinton, 2009),

https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
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and ImageNet-50 (Deng et al., 2009) are available in App. G.

LLS Setup Full semi-synthetic experiment setup is found
in App. F. We sample pdpyq from a symmetric Dirichlet dis-
tribution with concentration α{k and enforce max condition
number κ on QY |D. Small α and small κ encourage spar-
sity in QY |D, so each label tends to only appear in a few
domains. Larger α encourages each pdpyq to tend toward
uniform. We draw from test, train, and valid datasets with-
out replacement to match these distributions.

Baseline Unsupervised classification method SCAN
(Van Gansbeke et al., 2020) is trained on train and valid
splits of each dataset, then evaluated on sampled test subsets.

Training and Evaluation The domain discriminator
is ResNet-18, pretrained with SCAN contrastive pre-text
weights. We train this network on images xi to predict do-
main indices di, choose best iteration by valid loss, pass
train and valid data through pf , and cluster pushforward pre-
dictions pfpxiq. We compute the pQcpXq|D matrix and run
NMF to obtain pQcpXq|Y , pQY |D. We predict class labels
with Algorithm 2, then compute the highest true accuracy
among any permutation of these labels (denoted “Test acc”).
Permuting rows of pQY |D to match this label permutation,
we compute the average absolute difference between corre-
sponding entries of pQY |D and QY |D (denoted “QY |D err”).
See App. F for full details, as well as setup for other base
domain discriminator models and initialization strategies.

Table 1. Results on FieldGuide-28. By DDFA we refer to DDFA
initialized with pretext training adopted by SCAN. In DDFA, we
do not use SCAN to cluster. α is Dirichlet parameter used for gen-
erating label marginals in each domain, κ is maximum allowed
condition number of generated QY |D matrix, r is number of do-
mains. “Test acc” is classification accuracy, under the best permu-
tation of the recovered classes (larger is better), and “QY |D err”
is the average entry-wise absolute error in the recovered QY |D

(smaller is better).

r Approach

α : 0.5, κ : 12 α : 3, κ : 20 α : 10, κ : 28

Test
acc

QY |D

err
Test
acc

QY |D

err
Test
acc

QY |D

err

28
SCAN 0.281 0.064 0.276 0.059 0.310 0.048
DDFA 0.547 0.036 0.310 0.034 0.314 0.036

37
SCAN 0.300 0.066 0.316 0.059 0.309 0.049
DDFA 0.760 0.028 0.521 0.032 0.326 0.041

47
SCAN 0.285 0.066 0.314 0.062 0.307 0.049
DDFA 0.709 0.035 0.473 0.035 0.299 0.039

Results On FieldGuide-28 (Table 1), DDFA outperforms
SCAN when QY |D is sufficiently sparse (sampled with
α : 0.5 or α : 3), with the highest observed accuracy differ-
ence ranging above 30-40%. We do not claim that SCAN
is too weak to find image groupings on this data; instead

we acknowledge that the domain information available to
DDFA (and not to SCAN) is helpful for finding the true
class distinctions between species as opposed to spurious
distinctions between adult and immature life stages. Results
from all experiments are available in App. G.

6. Conclusion and Future Work
Our theoretical results demonstrate that under LLS, we can
leverage shifts among previously seen domains to recover
correct class distinctions in a purely unsupervised manner.
We believe that this work is just the first step in a new
direction for leveraging structural assumptions together with
distribution shift to perform unsupervised learning.

Several components of our DDFA framework warrant fur-
ther investigation: (i) the deep domain discriminator can be
enhanced in myriad ways; (ii) for clustering discriminator
outputs, we might develop methods specially tailored to our
setting to replace the current generic clustering heuristic;
(iii) clustering might be replaced altogether with geometri-
cally informed methods that directly identify the corners of
the polytope; (iv) the theory of LLS can be extended beyond
identification to provide statistical results that might hold
when qpd|xq can only be noisily estimated, and when only
finite samples are available for the induced topic modeling
problem; (v) when the number of true classes k is unknown,
we may develop approaches to estimate this k.
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A. Related Work
Unsupervised Learning Standard unsupervised learning approaches for discovering labels often rely on similarity in the
original data space (MacQueen et al., 1967; Reynolds, 2009). While distances in feature space become meaningless for high-
dimensional data, deep learning researchers have turned to similarity in a representations space learned via self-supervised
contrastive tasks (Doersch et al., 2015; Noroozi & Favaro, 2016; Gidaris et al., 2018; Chen et al., 2020), or similarity
in a feature space learned end-to-end for a clustering task (Caron et al., 2018; 2019; Park et al., 2020; Van Gansbeke
et al., 2020). Our problem setup closely resembles independent component analysis (ICA), where one seeks to identify
statistically independent signal components from mixtures (Hyvärinen & Oja, 2000). However, ICA’s assumption of
statistical independence among the components does not obtain in our setup. In topic modeling (Papadimitriou et al., 2000;
Blei et al., 2003; Arora et al., 2012b; Huang et al., 2016; Chen et al., 2021), documents are modeled as mixtures of topics,
and topics as categorical distributions over a finite vocabulary. Early topic modeling approaches include the well-known
Latent Dirichlet Allocation (LDA) which assumes that topic mixing coefficients are drawn from a Dirichlet distribution (Blei
et al., 2003), as well as papers with relaxed assumptions on the distribution of topic mixing coefficients (pLSI) (Hofmann,
1999; Papadimitriou et al., 2000). The topic modeling literature often draws on non-negative Matrix Factorization (NMF)
methods (Paatero & Tapper, 1994; Seung & Lee, 2001), which decompose a given matrix into a product of two matrices
with non-negative elements (Girolami & Kabán, 2003; Gaussier & Goutte, 2005; Ding et al., 2008; de Paulo Faleiros &
de Andrade Lopes, 2016). In both Topic Modeling and NMF, a fundamental problem has been to characterize the precise
conditions under which the system is uniquely identifiable (Donoho & Stodden, 2003; Arora et al., 2012b; Huang et al.,
2016; Chen et al., 2021). The anchor condition (also referred to as separability) is known to be instrumental for identifying
topic models (Donoho & Stodden, 2003; Arora et al., 2012b; Huang et al., 2016; Chen et al., 2021). In this work, we extend
these ideas, leveraging separable subsets of each label’s support (the anchor sets) to produce anchor words in the discretized
problem. Existing methods have attempted to extend latent variable modeling to continuous input domains by making
assumptions about the functional forms of the class-conditional densities, e.g., restricting to Gaussian mixtures (Reynolds,
2009; Prabhudesai et al., 2018). A second line of approach involves finding an appropriate discretization of the continuous
space (Tian, 2018).

Distribution Shift under the Label Shift Assumption The label shift assumption, where pdpyq can vary but ppx|yq

cannot, has been extensively studied in the domain adaptation literature (Saerens et al., 2002; Storkey, 2009; Zhang et al.,
2013; Lipton et al., 2018; Garg et al., 2020) and also features in the problem of learning from positive and unlabeled data
(Elkan & Noto, 2008; Bekker & Davis, 2020; Garg et al., 2021). For both problems, many classical approaches suffer from
the curse of dimensionality, failing in the settings where deep learning prevails. Our solution strategy draws inspiration from
recent work on label shift (Lipton et al., 2018; Alexandari et al., 2019; Azizzadenesheli et al., 2019; Garg et al., 2020) and
PU learning (Scott, 2015; Liu & Tao, 2016; Bekker & Davis, 2020; Garg et al., 2021) that leverage black-box predictors to
produce sufficient low-dimensional representations for identifying target distributions of interest (other works leverage black
box predictors heuristically (Ivanov, 2019)). Key differences: While PU learning requires identifying one new class for
which we lack labeled examples provided that the positive class contains an anchor set (Garg et al., 2021), LLS can identify
an arbitrary number of classes (up to permutation) from completely unlabeled data, provided a sufficient number of domains.

Domain Generalization The related problem of Domain Generalization (DG) also addresses learning with data drawn
from multiple distributions and where the domain identifiers play a key role (Muandet et al., 2013; Arjovsky et al., 2019).
However in DG, we are given labeled data from multiple domains, and our goal is to learn a classifier that can generalize
to new domains. By contrast, in LLS, we work with unlabeled data only, leveraging the problem structure to identify the
underlying labels.

B. Proof Sketch
In this section we present a proof sketch for Theorem 3.2. We begin by first presenting key lemmas (we include their proofs
in App. C). The full proof of Theorem 3.2 is in App. D.

Lemma B.1. Under the same assumptions as Theorem 3.2, the matrix QY |D and fpxq “ qpd|xq uniquely determine qpy|xq

for all y P Y and x P X such that qpxq ą 0.

Lemma B.1 states that given matrix QY |D and oracle domain discriminator, we can uniquely identify qpy|xq. In particular,
we show that for any x P X , qpd|xq can be expressed as a convex combination of the k columns of QD|Y (which is
computed from QY |D and is column rank k) and the coefficients of the combination are qpy|xq. Combining this with the
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linear independence of the columns of QD|Y , we show that these coefficients are unique. In the following lemma, we show
how the identified qpy|xq can then be used to identify qpy|x, dq:

Lemma B.2. Under the same assumptions as Theorem 3.2, for all y P Y and x P X such that qpx, dq ą 0, the matrix
QY |D and qpy|xq uniquely determine qpy|x, dq.

To prove Lemma B.2, we show that we can combine the conditional distribution over the labels given a sample x P X with
the prior distribution of the labels in each domain to determine the posterior distribution over labels given the sample x and
the domain of interest. Next, we introduce a key property of the domain discriminator classifier f :

Lemma B.3. Under the same assumptions as Theorem 3.2, for all x, x1 in the same anchor sub-domain, i.e., x, x1 P Ay for
a given label y P Y , we have fpxq “ fpx1q. Further, for any y P Y , if x P Ay, x

1 R Ay , then fpxq ‰ fpx1q.

Lemma B.3 implies that the oracle domain discriminator f maps all points in an anchor subdomain, and only those points in
that anchor subdomain to the same point in fpxq “ qpd|xq space. We can now present a proof sketch for Theorem 3.2 (full
proof in App. D):

Proof sketch of Theorem 3.2. The key idea of the proof lies in proposing a discretization such that some subset of anchor
subdomains for each label y in the continuous space map to distinct anchor words in discrete space. In particular, if there
exists a discretization of the continuous space X that for any y P Y , maps all x P Ay to the same point in the discrete space,
but no x R Ay maps to this point, then this point serves as an anchor word. From Lemma B.3, we know that for each y P Y ,
there is a unique point in fpxq space to which all x P Ay are mapped and to which no x1 R Ay is mapped. Pushing all the
x P X through f , we know from A.4 that there exists k point masses of size ϵ, one for each fpAyq in the fpxq “ qpd|xq

space. We can now inspect this space for point masses of size at least ϵ to find at most Op1{ϵq such point masses among
which are contained the k point masses corresponding to the anchor subdomains. Discretizing this space by assigning each
point mass to a group (and non-point masses to a single additional group), we have k groups that have support only in
one y each. Thus, we have achieved a discretization with anchor words. Further, since the discrete space arises from a
pushforward of the continuous space through f , the discrete space also satisfies the latent label shift assumption A.1. We
now use Theorem 3.1 to claim identifiability of QY |D. We then use Lemmas B.1 and B.2 to prove parts (ii) and (iii).

C. Proofs of Lemmas
In this section, we present several new lemmas which are required to prove Theorem 3.2, and provide proofs. We also
provide proofs for Lemmas B.1, B.2, and B.3.

Lemma C.1. Let distribution Q over random variables X,Y,D satisfy A.1–A.4. Then for all y P Y , qpyq ą 0. That is, all
labels have nonzero probability under Q.

Proof of Lemma C.1. Proof by contradiction. Let y P Y with qpyq “ 0.

qpyq “
ÿ

dPR
qpdqqpy|D “ dq

“
ÿ

dPR
γyqpy|D “ dq

“
ÿ

dPR

1

r
qpy|D “ dq

“
1

r

ÿ

dPR
qpy|D “ dq .

Since qpy|D “ dq ě 0 for all d P R, we see that if qpyq “ 0, then qpy|D “ dq “ 0 for all d P R.

Then rQY |Dsy,d “ 0 for all d P R. Then there is a row (row d) in the matrix QY |D in which every entry is 0, so QY |D

cannot be full row rank k. This violates assumption A.2. Then by contradiction we have shown qpyq ą 0.

Lemma C.2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1–A.4. Let x P X such that qpxq ą 0.
Then if x P Ay for some y P Y , we have that qpy|X “ xq “ 1, and for all y1 P Yztyu, qpy1|X “ xq “ 0. The converse is
also true: if qpy|X “ xq “ 1 for some y P Y and qpy1|X “ xq “ 0 @y1 P Yztyu, then we know that x P Ay .



Unsupervised Learning under Latent Label Shift

Proof of Lemma C.2. We prove directions one at a time.

• Forward direction.
Assume x P Ay .

qpxq “
ÿ

y2PY
qpy2qqpx|Y “ y2q

qpxq “ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1qqpx|Y “ y1q

qpxq “ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1q p0q

qpxq “ qpyqqpx|Y “ yq

Recalling qpx|yq ą 0 (by A.4) and qpyq ą 0 (by Lemma C.1), we know that qpxq “ qpyqqpx|Y “ yq ą 0. Then

qpy|X “ xq “
qpyqqpx|Y “ yq

qpxq
“

qpxq

qpxq
“ 1 (Bayes’ rule). Because probabilities sum to 1, we write qpy|X “

xq`
ř

y1PYztyu

qpy1|X “ xq “ 1. Then because qpy|X “ xq “ 1, we have :
ř

y1PYztyu

qpy1|X “ xq “ 0. Then for all y1 P

Yztyu, it must be that qpy1|X “ xq “ 0. We have shown qpy|X “ xq “ 1, and for all y1 P Yztyu, qpy1|X “ xq “ 0.

• Converse.
Assume qpy|X “ xq “ 1 and for all y1 P Yztyu, qpy1|X “ xq “ 0. Recall qpxq ą 0. Also, qpyq ą 0 by Lemma C.1.

Then qpx|Y “ yq “
qpy|X “ xqqpxq

qpyq
“

p1qqpxq

qpyq
ą 0. Let y1 P Yztyu. Then qpx|Y “ y1q “

qpy1|X “ xqqpxq

qpy1q
“

p0qqpxq

qpy1q
“ 0. Now because qpx|Y “ yq ą 0 and @y1 P Yztyu, qpx|Y “ y1q “ 0, we know x P Ay .

Lemma C.3. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Then, the matrix
QD|Y , defined as an r ˆ k matrix whose elements are rQD|Y si,j “ QpD “ i|Y “ jq, and in which each column is a con-
ditional distribution over the domains given a label, has linearly independent columns. Furthermore, QD|Y can be com-
puted directly from only QY |D.

Proof of Lemma C.3. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.

Each rQD|Y sd,y “ qpd|Y “ yq “
qpy|D “ dqqpdq

qpyq
“
qpy|D “ dqγd

qpyq
“
qpy|D “ dq

rqpyq
.

Since each yth column of QD|Y is a probability distribution that sums to 1, and rqpyq is constant down each yth column,
we can obtain QD|Y by simply taking QJ

Y |D, in which each rQJ
Y |Dsd,y “ rQY |Dsy,d “ qpy|D “ dq, and normalizing the

columns so they sum to 1.

The matrix QY |D has linearly independent rows by Assumption A.2. Then QJ
Y |D has linearly independent columns. Scaling

these columns by a nonzero value does not change their linear independence, so the columns of QD|Y are also linearly
independent.

Then matrix QD|Y has linearly independent columns, and can be computed by taking QJ
Y |D and normalizing its columns.
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Lemma C.4. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Let d P R, x P X , y P Y .
Then qpd|X “ x, Y “ yq “ qpd|Y “ yq.

Proof of Lemma C.4.

qpd|X “ x, Y “ yq “
qpx|D “ d, Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
pdpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
ppx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
qpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“ qpd|Y “ yq .

Proof of Lemma B.1. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4. Let x P X with
qpxq ą 0, and y P Y .

Assume we know QY |D and rfpxqsd “ qpd|X “ xq. With QY |D, we know qpy|D “ dq for all y, d. Also, with the oracle
domain discriminator f , we are able to obtain qpd|X “ xq for all x, d.

For all x P X , d P R, qpd|X “ xq “
ÿ

y1PY
qpd|X “ x, Y “ y1qqpy1|X “ xq

“
ÿ

y1PY
qpd|Y “ y1qqpy1|X “ xq, using Lemma C.4.

Define the vector-valued function g : X Ñ Rk such that rgpxqsy “ qpy|X “ xq for all x P suppQpXq. QD|Y is a matrix of
shape r ˆ k, with rQD|Y si,j “ QpD “ i|Y “ jq. It can be computed from QY |D and has linearly independent columns—
both facts shown in Lemma C.3.

Then rfpxqsd “ qpd|X “ xq “ QD|Y rd, :sgpxq, a product between the dth row vector of QD|Y and the column vector
gpxq. Then fpxq “ QD|Y gpxq.

This system is a linear system with r ě k equations. Recalling that QD|Y has k linearly independent columns, we can select
any k linearly independent rows of QD|Y to solve the equation for the true, unique solution for the unknown vector gpxq. We
can also describe this with the pseudo-inverse: gpxq “ pQD|Y q:fpxq. Then we have rgpxqsy “ qpy|X “ xq for all y P Y .

Proof of Lemma B.2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4. Let x P X , d P R
with qpx, dq ą 0, and y P Y .

Assume we know matrix QY |D and qpy1|X “ xq, @y1 P Y . We can compute QD|Y from QY |D via Lemma C.3.

qpy|X “ x,D “ dq “
qpy, x, dq

qpx, dq

“
qpd|X “ x, Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq
.
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Using Lemma C.4, qpd|X “ x, Y “ yq “ qpd|Y “ yq. We apply this property.

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq

“
qpd|Y “ yqqpy|X “ xq

qpd|X “ xq
.

The denominator qpd|X “ xq is constant across all values of y, so we can write that qpy|X “ x,D “ dq 9 qpd|Y “

yqqpy|X “ xq and normalize to find the probability:

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xq

ř

y1PY
qpd|Y “ y1qqpy1|X “ xq

.

We know qpd|Y “ yq as rQD|Y sd,y , and every qpd|Y “ y1q, where y1 P Yztyu, as rQD|Y sd,y1 . We also know qpy|X “ xq

and every qpy1|X “ xq where y1 P Yztyu, by the precondition assumptions. Then we can compute qpy|X “ x,D “ dq.

Proof of Lemma B.3. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4. Recall
f : Rp Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all x P

suppQpXq. Also let us recall that QD|Y is defined as an r ˆ k matrix whose elements rQD|Y si,j “ QpD “ i|Y “

jq, and each column is a conditional distribution over the domains given a label. It has linearly independent columns by
Lemma C.3.

First recognize that for all d P R, x P X such that qpxq ą 0,

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd, y2|X “ xq.

“
ÿ

y2PY
qpd|Y “ y2, X “ xqqpy2|X “ xq

“
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq, using the equality from Lemma C.4.

Then we can write fpxq “
ř

y2PY
qpy2|X “ xqQD|Y r:, y2s, where QD|Y r:, y2s is the y2th column of QD|Y . Now we could

also rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J.

We now prove two key components of the lemma. Let y P Y . Let x P Ay such that qpxq ą 0.

• Points in same anchor sub-domain map together.
Let x1 P Ay such that qpx1q ą 0. We now seek to show that fpxq “ fpx1q. Recall that x, x1 P Ay. By Lemma C.2,
qpy|X “ xq “ qpy|X “ x1q “ 1. Also by lemma C.2, @y2 P Yztyu, qpy2|X “ xq “ qpy2|X “ x1q “ 0. Then for all
y2 P Y , qpy2|X “ xq “ qpy2|X “ x1q.

Therefore, @d P R,

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq

“
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ x1q

“ qpd|X “ x1q “ rfpx1qsd.

Then fpxq “ fpx1q.
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• Point outside of the anchor sub-domain does not map with points in the anchor sub-domain. Let x0 R Ay such
that qpx0q ą 0. We now seek to show that fpxq ‰ fpx0q. Because x0 R Ay with qpx0q ą 0, and because Ay contains
all x such that qpxq ą 0, qpy|X “ xq “ 1, and qpy1|X “ xq “ 0 for all y1 P Yztyu, then by Lemma C.2, it must be
that one of the following cases is true:

– Case 1: qpy|X “ x0q ‰ 1

– Case 2: qpy1|X “ x0q ą 0 for some y1 P Yztyu.

In all circumstances, there exists some y2 P Y : qpy2|x0q ‰ qpy2|xq. Then,

rQpY “ 1|X “ xq...QpY “ k|X “ xqs
J

‰ rQpY “ 1|X “ x0q...QpY “ k|X “ x0qs
J
.

Because QD|Y has linearly independent columns (shown in Lemma C.3), we now know that

fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

‰ QD|Y rQpY “ 1|X “ x0q ... QpY “ k|X “ x0qs
J

“ fpx0q .

So fpxq ‰ fpx0q.

D. Proof of Theorem 3.2
Proof of Theorem 3.2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.

Recall f : X Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all x P suppQpXq. It is known
because we know the marginal qpx, dq. Let y P Y . Then by Lemma B.3, f sends every x P Ay (and no other x R Ay) to
the same value. We overload notation to denote this as fpAyq. Then QpfpXq “ fpAyqq “ QpX P Ayq ě ϵ. Then in the
marginal distribution of fpXq with respect to distributionQ, there is a distinct point mass on each fpAyq, with mass at least ϵ.

Because we know the marginal qpx, dq, we know the marginal qpxq, so we can obtain the distribution of fpXq with respect
to distribution Q. If we analyze the marginal distribution of fpXq with respect to distribution Q, and recover all point
masses with mass at least ϵ, we can recover no more than O p1{ϵq such points. We set m P Z` so that the number of points
we recovered is m´ 1.

We denote a mapping ψ : Rr Ñ rms. This mapping sends each value of fpxq corresponding to a point mass with mass
at least ϵ to a unique index in t1, ...,m ´ 1u. It sends any other value in Rp to m. We note that the ordering of the point
masses might have pm´ 1q! permutations.

Notice that the point mass on each fpAyq must be recovered among these m ´ 1 masses. Recall that for all y P Y ,
fpxq “ fpAyq if and only if x P Ay . Then for all y P Y , ψpfpxqq “ ψpfpAyqq if and only if x P Ay , because ψ does not
send any other value in Rr besides fpAyq to ψpfpAyqq.

For convenience, we now define a mapping c : X Ñ rms such that c “ ψ ˝ f . We will also abuse notation here to denote
cpAyq “ ψpfpAyqq. Then cpXq is a discrete, finite random variable that takes values in rms. As c is a pushforward function
on X , cpXq satisfies the label shift assumption because X does (i.e., when conditioning on Y , the distribution of cpXq is
domain-invariant).

We might now define a matrix QcpXq|D in which each entry rQcpXq|Dsi,d “ QpcpXq “ i|D “ dq. We recall that we know
the number of true classes k. Then we know that there is a (possibly unique) unknown decomposition of the following form:

qpcpXq|dq “
ÿ

yPY
qpcpXq|Y “ y,D “ dqqpy|D “ dq

“
ÿ

yPY
qpcpXq|Y “ yqqpy|D “ dq, using the label shift property.
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To express this decomposition in matrix form, we write QcpXq|D “ QcpXq|Y QY |D. Now we make observations about the
unknown QcpXq|Y .

For all y P Y, Qpcpxq “ cpAyq|Y “ yq “ QpX P Ay|Y “ yq ą 0 .

Qpcpxq “ cpAyq|Y ‰ yq “ QpX P Ay|Y ‰ yq “ 0 .

Then for each y P Y , the row of QcpXq|Y with row index cpAyq is positive in the yth column, and zero everywhere else.
Restated, for each y P Y , there is some row with positive entry exactly in yth column. This is precisely the anchor word
assumption for a discrete, finite random variable. We already know that QY |D is full row-rank, so because QcpXq|Y satisfies
the anchor word assumption, we can identify QY |D up to permutation of rows by Theorem 3.1. In other words, when we set
the constraint that the recovered QcpXq|Y must have k columns and satisfy anchor word and the recovered QY |D must have
k rows and be full row-rank, any solution to the decomposition QcpXq|D “ QcpXq|Y QY |D must identify the ground truth
QY |D, up to permutation of its rows.

E. Minimizing Cross-Entropy Loss yields Domain Discriminator
Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4. We here examine the behavior of the cross-
entropy loss, in the infinite data case (when we can work with expectations over the entire distribution instead of empirical
expectations over a finite set of datapoints). Define the vector-valued function z : R Ñ Rr such that zpdq is a one-hot vector
of length r, such that rzpdqsi “ 1, iff d “ i. Then we write the cross-entropy loss with targets as true domains as

LCE “ EpX,Dq„Q

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

LCE “ EXED|X

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

LCE “ EX r´

i“r
ÿ

i“1

ED|X rrzpDqsi logprfpXqsiqss

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqED|X rrzpDqsis

ff

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqp1 ˆQpD “ i|Xq ` 0 ˆ p1 ´QpD “ i|Xqqq

ff

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq

ff

In order to find the minimizer of the cross entropy loss over the class of all functions from Rp Ñ r0, 1sr, we formulate the
following objective with the Lagrange constraint:

J “ min
rfpXqs1...rfpXqsr

EX

«

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq

ff

` λ

˜

i“r
ÿ

i“1

rfpXqsi ´ 1

¸

Setting partial derivative with respect to rfpXqsr to 0, we get ´
QpD “ i|Xq

rf‹pXqsi
` λ “ 0 and rf‹pXqsi “ 1

λQpD “ i|Xq.
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From KKT condition, the optimal solution lies on constraint surface, giving:

i“r
ÿ

i“1

rf‹pXqsi “ 1

i“r
ÿ

i“1

1

λ
QpD “ i|Xq “ 1

1

λ

i“r
ÿ

i“1

QpD “ i|Xq “ 1

1

λ
“ 1

λ “ 1

Finally, we get rf‹pXqsi “ QpD “ i|Xq, so the optimal f˚ by the cross entropy loss as defined will in fact recover the
oracle domain discriminator.

F. Additional Experimental Details
Our code is available at https://github.com/manleyroberts/lls-ddfa. Here we present the full generation
procedure for semisynthetic example problems, and discuss the parameters.

1. Choose a Dirichlet concentration parameter α ą 0, maximum condition number κ ě 1 (with respect to 2-norm), and
domain count r ě k.

2. For each y P rks, sample pdpyq „ Dirpα
k 1kq.

3. Populate the matrix QY |D with the computed pdpyqs. If condpQY |Dq ě k, return to step 2 and re-sample.

4. Distribute examples across domains according to QY |D, for each of train, test, and valid sets. This procedure entails
creating a quota number of examples for each (class, domain) pair, and drawing datapoints without replacement to fill
each quota. We must discard excess examples from some classes in the dataset due to class imbalance in the QY |D

matrix. Due to integral rounding, domains may be slightly imbalanced.

5. Conceal true class information and return pxi, diq pairs.

It is important to note the role of κ and α in the above formulation. Although they are unknown parameters to the
classification algorithm, they affect the sparsity of the QY |D and difficulty of the problem. Small α encourages high sparsity
in pdpyq, and large α causes pdpyq to tend towards a uniform distribution. We observe an example of the effects of α in
Fig. 1. κ has a strong effect on the difficulty of the problem. Consider the case when k “ 2. When κ “ 1, the only potential
QY |D matrices are I2 up to row permutation (which means that domains and classes are exactly correlated, so the domain
indicates the class and the problem is supervised). In the other limit, if κ Ñ `8, we may generate QY |D matrices that are
singular, breaking needed assumptions for domain discriminator output to uniquely identify true class of anchor subdomains.
κ also helps control the class imbalance (if a row of QY |D is small, indicating that the class is heavily under-represented
across all domains, the condition number will increase).

F.1. FieldGuide-2 and FieldGuide-28 Datasets

The dataset and description is available at https://sites.google.com/view/fgvc6/competitions/
butterflies-moths-2019. From this data we create two datasets FieldGuide-2 and FieldGuide-28. For FieldGuide-
28 we select the 28 classes which have 1000 datapoints in the training file. Since the test set provided in the website does
not have annotations, we manually create a test set by sampling 200 datapoints from training file of each of the 28 classes.
Therefore, we finally have 22400 training points and 5600 testing points. The FieldGuide-2 dataset is created by considering
two classes from the created FieldGuide-28 dataset.

https://github.com/manleyroberts/lls-ddfa
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
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„

0.17 0.65
0.83 0.35

ȷ

(a) α : 0.5, κ : 3

„

0.37 0.06
0.63 0.94

ȷ

(b) α : 3, κ : 5

„

0.42 0.25
0.58 0.75

ȷ

(c) α : 10, κ : 7

Figure 1. Example QY |D matrices sampled for FieldGuide-2 with 2 classes and 2 domains. Each column represents the distribution
across classes pdpyq for a given domain. At small α, each pdpyq is likelier to be “sparse” (our definition is an informal one meaning not
that there are many zero entries, but instead that the distribution is heavily concentrated in a few classes). At large α, pdpyq tends toward a
uniform distribution in which classes are represented evenly.

F.2. Hyperparameters and Implementation Details: SCAN baseline

We select the unsupervised classification method SCAN as a state-of-the-art baseline (Van Gansbeke et al., 2020). SCAN
pretrains a ResNet (He et al., 2016) backbone using SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) setups
(pretext tasks). SCAN then trains a clustering head to minimize the SCAN loss. SCAN code is available at https:
//github.com/wvangansbeke/Unsupervised-Classification. To evaluate SCAN, we use the public
pretrained weights available for CIFAR-10, CIFAR-20, and ImageNet-50. We also train SCAN ourselves on the train and
validation portions of the FieldGuide2 and FieldGuide28 datasets with a ResNet18 backbone and SimCLR pretext task. We
replicate the hyperparameters used for CIFAR training.

We make sure to evaluate SCAN classification on the same potentially class-imbalanced test subset we create for each
experiment. Since SCAN is fit on a superset of the data DDFA sees, we believe this gives a slight data advantage to the
SCAN baseline (although we acknowledge that the class balance for SCAN training is also potentially different from its
evaluation class balance).

With the Hungarian algorithm, implemented in (Crouse, 2016; Virtanen et al., 2020), we compute the highest true accuracy
among any permutation of predicted class labels (denoted “Test acc”).

• CIFAR-10 and CIFAR-20 Datasets (Krizhevsky & Hinton, 2009)
We use ResNet-18 (He et al., 2016) backbone with weights trained by SCAN-loss and obtained from the SCAN repo
https://github.com/wvangansbeke/Unsupervised-Classification.

We use the same transforms present in the repo for test data.

• ImageNet-50 Dataset (Deng et al., 2009)
We use ResNet-50 backbone with weights trained by SCAN-loss and obtained from the SCAN repo.

We use the same transforms present in the repo for test data.

• FieldGuide-2 and FieldGuide-28 Datasets
For each of the two datasets, we pretrain a different SCAN baseline network (including pretext and SCAN-loss steps)
on all available data from the dataset. The backbone for each is ResNet-18.

For training the pretext task, we use the same transform strategy used in the repo for CIFAR-10 data (with mean and std
values as computed on the Fieldguide-28 dataset, and crop size 224). For training SCAN, we resize the smallest image
dimension to 256, perform a random horizontal flip and random crop to size 224. We also normalize. For validation we
resize smallest image dimension to 256, center crop to 224, and normalize.

F.3. Hyperparameters and Implementation Details: DDFA (RI)

This is the DDFA procedure with random initialization.

We train ResNet-50 (He et al., 2016) (with random initialization and added dropout) based on the implementation from
https://github.com/kuangliu/pytorch-cifar on images xi with domain indices di as the label, choose best
iteration by valid loss, pass all training and validation data through pf , and cluster pushforward predictions pfpxiq into m ě k

clusters with Faiss K-Means (Johnson et al., 2019). We compute the pQcpXq|D matrix and run NMF to obtain pQcpXq|Y ,

https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/kuangliu/pytorch-cifar
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pQY |D. To make columns sum to 1, we normalize columns of pQcpXq|Y , multiply each column’s normalization coefficient
over the corresponding row of pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D.

Some NMF algorithms only output solutions satisfying the anchor word property (Arora et al., 2012a; Kumar et al., 2013;
Gillis & Vavasis, 2014). We found the strict requirement of an exact anchor word solution to lead to low noise tolerance. We
therefore use the Sklearn implementation of standard NMF (Cichocki & Phan, 2009; Pedregosa et al., 2011; Tan & Févotte,
2012).

We predict class labels with Algorithm 2. With the Hungarian algorithm, implemented in (Crouse, 2016; Virtanen et al.,
2020), we compute the highest true accuracy among any permutation of these labels (denoted “Test acc”). With the same
permutation, we reorder rows of pQY |D, then compute the average absolute difference between corresponding entries of
pQY |D and QY |D (denoted “QY |D err”).

In order to make hyperparameter choices for final experiments, such as the choice of the NMF solver, clustering algorithm,
and learning rate, we consulted CIFAR-10 and CINIC-10 (similar to an extension of CIFAR-10) (Darlow et al., 2018) final
test task accuracy. We were also able to confirm our intuition that minimum validation loss on domain discriminator training
corresponds to good final task performance. Final evaluation runs on CIFAR-10 were made with the best hyperparameters
found here. We acknowledge that this may lead to test-set overfitting on CIFAR-10, but point out that on all other datasets,
we consulted only validation loss on domain discriminator training when adjusting the hyperparameters. Final evaluation
runs used the following fixed hyperparameters:

Common Hyperparameters

Architecture: ResNet-50 with added dropout

Faiss KMeans number of iterations (niter): 100

Faiss Kmeans number of clustering redos (nredo): 5

Learning Rate: 0.001

Learning Rate Decay: Exponential, parameter 0.97

SKlearn NMF initialization: random

Dataset-Specific Hyperparameters

• CIFAR-10 Dataset

Training Epochs: 100

Number of Clusters (m): 30

• CIFAR-20 Dataset

Training Epochs: 100

Number of Clusters (m): 60

• ImageNet-50 Dataset

Not evaluated.

• FieldGuide-2 and FieldGuide-28 Datasets

Not evaluated.

F.4. Hyperparameters and Implementation Details: DDFA (SI) and DDFA (SPI)

This is the DDFA procedure with SCAN initialization. DDFA (SI) uses the SCAN pretext + SCAN loss pretraining steps,
while DDFA (SPI) uses only the SCAN pretext step.

In Sec. 5, we used DDFA in the results section as a shorthand for DDFA (SPI).
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The procedure is identical to the standard DDFA procedure, except that SCAN (Van Gansbeke et al., 2020) pre-trained
weights or SCAN (Van Gansbeke et al., 2020) contrastive pre-text weights are used to initialize the domain discriminator
before it is fine-tuned on the domain discrimination task. Hyperparameters used also differ.

When SCAN pretrained weights are available, we use those. When they are not, we train SCAN ourselves.

Much like SCAN (RI), we used CIFAR-10 final test acuracy to choose hyperparameters and make algorithm decisions. For
all other datasets, we consulted only validation domain discrimination loss. Final evaluation runs used the following fixed
hyperparameters:

Common Hyperparameters

Faiss KMeans number of iterations (niter): 100

Faiss Kmeans number of clustering redos (nredo): 5

Learning Rate: 0.00001

Learning Rate Decay: Exponential, parameter 0.97

SKlearn NMF initialization: random

Dataset-Specific Hyperparameters

• CIFAR-10 Dataset
Architecture: ResNet-18

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-10 (from SCAN repo).

Training Epochs: 25

Number of Clusters (m): 10

Transforms used: Same as SCAN repo.

• CIFAR-20 Dataset
Architecture: ResNet-18

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-20 (from SCAN repo).

Training Epochs: 25

Number of Clusters (m): 20

Transforms used: Same as SCAN repo.

• ImageNet-50 Dataset
Architecture: ResNet-50

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of ImageNet-50 (from SCAN repo).

Training Epochs: 25

Number of Clusters (m): 50

Transforms used: Same as SCAN repo.

• FieldGuide-2 Dataset
Architecture: ResNet-18

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-2 (trained by us).

Training Epochs: 30

Number of Clusters (m): 2

Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate mean, std, and crop size 224.

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224, normalize

Learning rate used for SCAN: 0.001 (other hyperparameters were same as in SCAN repo for CIFAR-10)
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• FieldGuide-28 Dataset
Architecture: ResNet-18

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-28 (trained by us).

Training Epochs: 60

Number of Clusters (m): 28

Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate mean, std, and crop size 224.

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224, normalize

Learning rate used for SCAN: 0.01 (other hyperparameters were same as in SCAN repo for CIFAR-10)

G. Additional Experimental Results

Table 2. Results on CIFAR-10. Each entry is produced with the averaged result of 3 different random seeds. With DDFA (RI) we refer to
DDFA with randomly initialized backbone. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note that in DDFA
(SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating label marginals in each domain, κ is the
maximum allowed condition number of the generated QY |D matrix, r is number of domains. “Test acc” is classification accuracy, under
the best permutation of the recovered classes (larger is better), and “QY |D err” is the average entry-wise absolute error in the recovered
QY |D (smaller is better).

r Approaches α : 0.5, κ : 4 α : 3, κ : 4 α : 10, κ : 8

Test acc QY |D err Test acc QY |D err Test acc QY |D err

10 SCAN 0.823 0.146 0.826 0.126 0.804 0.082
DDFA (RI) 0.736 0.035 0.539 0.048 0.314 0.074
DDFA (SI) 0.899 0.023 0.757 0.040 0.536 0.054

15 SCAN 0.822 0.154 0.817 0.116 0.812 0.080
DDFA (RI) 0.773 0.033 0.532 0.046 0.275 0.074
DDFA (SI) 0.961 0.016 0.844 0.026 0.733 0.038

20 SCAN 0.802 0.143 0.809 0.117 0.818 0.087
DDFA (RI) 0.688 0.047 0.565 0.046 0.270 0.071
DDFA (SI) 0.966 0.016 0.904 0.019 0.798 0.030

25 SCAN 0.801 0.155 0.811 0.114 0.811 0.085
DDFA (RI) 0.724 0.039 0.562 0.044 0.280 0.086
DDFA (SI) 0.970 0.013 0.917 0.017 0.820 0.027
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Table 3. Results on CIFAR-20. Each entry is produced with the averaged result of 3 different random seeds. With DDFA (RI) we refer to
DDFA with randomly initialized backbone. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note that in DDFA
(SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating label marginals in each domain, κ is the
maximum allowed condition number of the generated QY |D matrix, r is number of domains. “Test acc” is classification accuracy, under
the best permutation of the recovered classes (larger is better), and “QY |D err” is the average entry-wise absolute error in the recovered
QY |D (smaller is better).

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.439 0.092 0.446 0.079 0.434 0.060
DDFA (RI) 0.517 0.042 0.336 0.045 0.163 0.057
DDFA (SI) 0.784 0.023 0.593 0.027 0.390 0.034

25 SCAN 0.438 0.090 0.441 0.078 0.438 0.060
DDFA (RI) 0.489 0.049 0.292 0.049 0.075 0.081
DDFA (SI) 0.837 0.020 0.669 0.025 0.487 0.030

30 SCAN 0.432 0.094 0.457 0.077 0.431 0.059
DDFA (RI) 0.512 0.046 0.299 0.048 0.087 0.077
DDFA (SI) 0.820 0.022 0.743 0.021 0.543 0.028

Table 4. Results on ImageNet-50. Each entry is produced with the averaged result of 3 different random seeds. With DDFA (SI) we
refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet
parameter used for generating label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains. “Test acc” is classification accuracy, under the best permutation of the recovered classes (larger is better),
and “QY |D err” is the average entry-wise absolute error in the recovered QY |D (smaller is better).

r Approaches α : 0.5, κ : 200 α : 3, κ : 205 α : 10, κ : 210

Test acc QY |D err Test acc QY |D err Test acc QY |D err

50 SCAN 0.726 0.039 0.745 0.037 0.741 0.032
DDFA (SI) 0.720 0.013 0.632 0.015 0.343 0.022

60 SCAN 0.755 0.039 0.730 0.037 0.748 0.032
DDFA (SI) 0.818 0.010 0.743 0.012 0.578 0.018
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Table 5. Results on FieldGuide-2. Each entry is produced with the averaged result of 3 different random seeds. With DDFA (SPI) we refer
to DDFA initialized with pretext training adopted by SCAN. Note that in DDFA (SPI), we do not leverage SCAN for clustering. α is the
Dirichlet parameter used for generating label marginals in each domain, κ is the maximum allowed condition number of the generated
QY |D matrix, r is number of domains. “Test acc” is classification accuracy, under the best permutation of the recovered classes (larger is
better), and “QY |D err” is the average entry-wise absolute error in the recovered QY |D (smaller is better).

r Approaches α : 0.5, κ : 3 α : 3, κ : 5 α : 10, κ : 7

Test acc QY |D err Test acc QY |D err Test acc QY |D err

2 SCAN 0.583 0.508 0.564 0.524 0.577 0.281
DDFA (SPI) 0.776 0.241 0.773 0.150 0.658 0.264

3 SCAN 0.589 0.858 0.590 0.458 0.590 0.273
DDFA (SPI) 0.960 0.055 0.830 0.148 0.693 0.224

5 SCAN 0.586 0.881 0.576 0.422 0.580 0.234
DDFA (SPI) 0.953 0.093 0.784 0.141 0.617 0.258

7 SCAN 0.580 0.777 0.586 0.449 0.587 0.275
DDFA (SPI) 0.904 0.115 0.816 0.145 0.661 0.198

10 SCAN 0.582 0.828 0.589 0.374 0.582 0.186
DDFA (SPI) 0.907 0.155 0.714 0.170 0.582 0.164
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Table 6. Extended Results on FieldGuide-28. Each entry is produced with the result of a single trial. With DDFA (SPI) we refer to DDFA
initialized with pretext training adopted by SCAN. Note that in DDFA (SPI), we do not leverage SCAN for clustering. α is the Dirichlet
parameter used for generating label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains. “Test acc” is classification accuracy, under the best permutation of the recovered classes (larger is better),
and “QY |D err” is the average entry-wise absolute error in the recovered QY |D (smaller is better).

r Approaches α : 0.5, κ : 12 α : 3, κ : 20 α : 10, κ : 28

Test acc QY |D err Test acc QY |D err Test acc QY |D err

28 SCAN 0.281 0.064 0.276 0.059 0.310 0.048
DDFA (SPI) 0.547 0.036 0.310 0.034 0.314 0.036

37 SCAN 0.300 0.066 0.316 0.059 0.309 0.049
DDFA (SPI) 0.760 0.028 0.521 0.032 0.326 0.041

42 SCAN 0.279 0.065 0.332 0.059 0.295 0.047
DDFA (SPI) 0.670 0.032 0.471 0.037 0.408 0.031

47 SCAN 0.285 0.066 0.314 0.062 0.307 0.049
DDFA (SPI) 0.709 0.035 0.473 0.035 0.299 0.039

H. Discussion of Convex Polytope Geometry
The geometric properties of topic modeling for finite, discrete random variables has been explored in depth in related works
((Donoho & Stodden, 2003; Huang et al., 2016; Chen et al., 2021)). The observation that columns in QX|D are convex
combinations of columns in QX|Y leads to a perspective on identification of the matrix decomposition as identification of
the convex polytope in Rm which encloses all of the columns of QX|D (the corners of which correspond to columns of
QX|Y under certain identifiability conditions).

Here, we briefly discuss an interesting but somewhat different application of convex polytope geometry. Instead of a convex
polytope in Rm with corners as columns of QX|Y , we concern ourselves with the convex polytope in Rr with corners as
columns in QD|Y , which must enclose all values taken by the oracle domain discriminator fpxq for x P X , qpxq ą 0.

Let us assume that Assumptions A.1–A.4 are satisfied. We recall the oracle domain discriminator f defined such that
rfpxqsd “ qpd|X “ xq. Let x P X “ Rp. Now, since the r values qpd|X “ xq for d P t1, 2, ..., ru together constitute a
categorical distribution, each of these r values lie between 0 and 1, and also their sum adds to 1. Therefore the vector fpxq

lies on the simplex ∆r´1. We now express fpxq as a convex combination of the k columns of QD|Y . We denote these
column vectors QD|Y r:, ys for each y P Y “ rks. Note that each such vector also lies in the ∆r´1 simplex.

As an intermediate step in the proof of Lemma B.3 given in App. C, we showed that each fpxq is a linear combi-
nation of these columns of QD|Y with coefficients qpy|X “ xq for all y P Y . That is, we can rewrite fpxq “

QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

Since the coefficients in the linear combination are probabilities which, taken together, form a categorical distribution, they
lie between 0 and 1 and sum to 1. Thus, for all x P X with qpxq ą 0, fpxq can be expressed as a convex combination of the
columns of QD|Y . Therefore, for any x with qpxq ą 0, fpxq lies inside the k´vertex convex polytope with corners as the
columns of QD|Y (which are linearly independent by Lemma C.3). This polytope is embedded in ∆r´1.

Now consider x in an anchor sub-domain, that is x P Ay for some y P Y . We know that if qpxq ą 0, qpy|X “ xq “ 1,
qpy1|X “ xq “ 0 for all y1 ‰ y (Lemma C.2). Since the qpy|X “ xq are now one-hot, we have that fpxq “ QD|Y r:, ys for
x P Ay. In words, this means that fpAyq is precisely the yth column of QD|Y . It follows that the domain discriminator
maps each of the k anchor sub-domains exactly to a unique vertex of the polytope. The situation is described in Fig. 2.

We could now recover the columns of QD|Y , up to permutation, with the following procedure:

1. Push all x P X through f .

2. Find the minimum volume convex polytope that contains the resulting density of points on the simplex. The vectors
that compose the vertices of this polytope are the columns of QD|Y , up to permutation.
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Figure 2. This figure illustrates the case with 3 domains and 3 classes. The oracle domain discriminator maps points from a high-
dimensional input space to a k “ 3 vertex convex polytope (shaded red) embedded in ∆r´1, r “ 3 (shaded yellow). The anchor
subdomains map to the vertices of this polytope.

Note that from Assumption A.4, we are guaranteed to have a region of the input space with at least ϵ ą 0 mass that gets
mapped to each of the vertices when carrying out step (i). Therefore, our discovered minimum volume polytope must
enclose all of these vertices. Since no mass will exist outside of the true polytope, requiring a minimum volume polytope
will ensure that the recovered polytope fits the true polytope’s vertices precisely (as any extraneous volume outside of the
true polytope must be eliminated). Then step (ii) recovers QD|Y , up to permutation of columns. Having recovered QD|Y ,
we can use Lemmas B.1 and B.2 to recover qpy|x, dq.

This procedure is a geometric alternative to the clustering approach outlined in Algorithm 1. In practice, fitting a convex
hull around the outputs of a noisy, non-oracle estimated domain discriminator may be computationally expensive, and noise
may lead this sensitive procedure to fail to recover the true vertices.


