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Abstract

Deep learning–based analysis of gigapixel whole slide images (WSIs) in computational
pathology (CPath) typically relies on patch-level feature extraction and instance aggrega-
tion, with attention-based contextualization at the core of state-of-the-art methods. How-
ever, scalability is a major challenge due to the vast number of patches. Therefore, we
introduce linear attention based multiple-instance learning (Lin-MIL), which transposes
and interchanges the calculations of queries, keys, and values in the attention mecha-
nism. By leveraging linear attention, Lin-MIL reduces computational complexity from
O(n2d) to O(nd2), compared to vanilla self-attention. Despite this efficiency gain, Lin-
MIL outperforms 12 baseline methods across biomarker, mutation, and tumor classifi-
cation benchmarks, while also demonstrating robust out-of-domain performance. More-
over, its qualitative attention maps highlight diagnostically relevant regions. In sum-
mary, Lin-MIL provides increased performance as well as enhanced scalability and in-
terpretability for a range of computational pathology tasks. Code available at https:

//github.com/charlotterchtr/Lin-MIL.

Keywords: Computational Pathology, Multiple Instance Learning, Linear Attention,
Whole Slide Image Analysis

1 Introduction

Deep learning–based whole slide image analysis faces unique challenges due to the gigapixel
scale of the data. To overcome the computational burden, the standard approach serial-
izes WSIs into sequences of patch-level feature vectors using foundation models, followed
by aggregation via multiple instance learning (MIL). Recent advances employ state-space
models (Fillioux et al., 2023; Fang et al., 2024) or various self-attention mechanisms (Shao
et al., 2021; Reisenbüchler et al., 2022; Tang et al., 2024; Wagner et al., 2023; Li et al.,
2023; Xu et al., 2024) to contextualize these sequences. However, vanilla self-attention in-
curs quadratic complexity with respect to the number of sequence elements, limiting the
number of patches that can be processed. This limitation is especially pronounced when
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incorporating multiple intra-stained slides (e.g., multiple H&E slides), inter-stained slides
(e.g., H&E and IHC stains) (Jaume et al., 2024; Reisenbüchler et al., 2024), or additional
omics data (Vaidya et al., 2025) into MIL frameworks. Moreover, while Vision Transform-
ers are typically applied to images up to 1024 pixels, WSIs contain orders of magnitude
more patches, where n ≫ 1024 and the latent dimension d ≤ 1024. In such cases, the
self-attention matrix is prone to a low-rank bottleneck (Li et al., 2024). Approaches like
TransMIL (Shao et al., 2021) mitigate this by approximating self-attention via the Nyström
method, though at the cost of performance. On the other hand, dilated attention based
MIL methods (Xu et al., 2024) restrict calculations to local regions, impairing long-range
dependency modeling. In this study, we introduce Lin-MIL, which leverages linear atten-
tion modules (Zheng, 2025) by interchanging the order of query and value computations
and performing a transposed matrix multiplication. This reformulation reduces complex-
ity from O(n2d) to O(nd2) while capturing the most informative relationships through a
d× d matrix that exploits the low-rank structure of the original attention matrix. Despite
its linear complexity in the number of sequence elements, Lin-MIL outperforms 12 base-
line models across eight computational pathology datasets, spanning biomarker, mutation,
and metastasis prediction tasks. Moreover, Lin-MIL provides particularly notable gains
in out-of-domain evaluations. Also, qualitative attention heatmaps further demonstrate
that Lin-MIL reliably focuses on diagnostically relevant regions. Our main contributions
are: (1) Lin-MIL, a novel MIL framework integrating linear attention modules, and (2) a
comprehensive evaluation across multiple tasks, datasets, and methods, using foundation
model-derived features, thus providing state-of-the-art benchmark results for WSI analysis.

2 Method

The overall design of our Lin-MIL pipeline is illustrated in Fig. 1. Our algorithm first
transforms the WSI into a set of features, and then our Lin-MIL architecture aggregates
these features to a slide-level prediction. In the following subsections, a detailed description
of the process is provided.

(A) Feature Embedding Stage. We follow established standard preprocessing steps
(Fig. 1A) and tesselate the WSI at 20× magnification scale into n smaller patches of size
R512×512×3. These patches are subsequently passed to a pathology foundation model (FM)
to extract patch-wise features. Thus, each WSI is given as a sequence {xi}ni=1 ∈ Rn×D,
where D represents the feature latent dimension.

(B) Lin-MIL based aggregation. In the aggregation stage (Fig. 1B), the sequence of
patch-embeddings, {xi}ni=1 with dimensionality D, is first projected to a lower-dimensional
space d via a fully connected (FC) layer. We append a classification token (CLS) to the se-
quence for information pooling, CLS ∈ R1×D. For the sake of brevity, the sequence length is
denoted hereafter by n. Next, the sequence is processed through l sequential linear attention
blocks (Fig. 1C), comprising a linear attention module, accompanied by skip connections,
normalization, and a final multi-layer perceptron.
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Figure 1: Lin-MIL pipeline for WSI analysis. (A) In the feature embedding stage, we
tesselate the WSI after background removal and extract patch-level features using
a pathology FM. (B) The Lin-MIL architecture shrinks the latent dimension by a
projection layer, and aggregates the sequence by linear attention blocks followed
by pooling and a classification head. (C) Each linear attention block calculates
linear attention followed by normalization and a multilayer perceptron.

(C) Linear Attention Module. In the following, we derive linear attention from vanilla
softmax attention (Fig. 2B), which is defined as:

V ′ = SoftAl(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , and values V ∈ Rn×dv . Queries, keys, and values
are derived from the input sequence x as follows:

Q = WQ · x, K = WK · x, V = WV · x.

Thus, the softmax operation acts as a similarity function Sim(·), returning the exponential
of the dot product between queries and keys. Hence, self-attention for the i-th patch can
also be expressed as

V ′
i =

N∑
j=1

Softmax(Qi,K
T
j )∑N

k=1 Softmax(Qi,KT
k )

Vj =
N∑
j=1

Sim(Qi,K
T
j )∑N

k=1 Sim(Qi,KT
k )

Vj , (2)

where scaling factors are omitted for simplicity. To address the quadratic complexity of the
above softmax attention, we follow (Katharopoulos et al., 2020) and replace the softmax
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Figure 2: Comparison of attention mechanisms. (A) Vanilla softmax attention
calculates attention scores by multiplying queries Q and keys K in O(n2d), fol-
lowed by softmax weighting and multiplication with values V . (B) Nyström At-
tention approximates self-attention by incorporating rank reduction to achieve a
complexity of O(nm), with landmarks m ≪ n. (C) Dilated Attention reduces
the number of operations by varying dilation ratios to O(n). (D) Linear At-
tention uses a decomposable kernel function ϕ(·) = ReLU(·), to first calculate
ϕ(KT )× V and then obtain the attention-weighted values V ′ in O(nd2).

function with a decomposable kernel function Sim(·) = ϕ(·),

Sim(Qi,K
T
j ) = ϕ(Qi)ϕ(K

T
j ).

By using the associative property of matrix multiplication, the self-attention term in Equa-
tion (2) can be re-written as:

V ′
i =

∑N
j=1 ϕ(Qi)ϕ(K

T
j )∑N

k=1 ϕ(Qi)ϕ(KT
k )

Vj =
ϕ(Qi)

∑N
j=1 ϕ(K

T
j )Vj∑N

k=1 ϕ(Qi)ϕ(KT
k )

. (3)

By separating the queries and keys, we first multiply the values and keys due to matrix
associativity, and then multiply by Q (Fig. 2D). This results in a reduction of the complex-
ity from O(n2d) to O(nd2). Following Zheng (2025), we use the ReLU activation function
as kernel ϕ(·), which ensures non-negative values in the attention map. As in other atten-
tion variants, linear attention can be computed in parallel across multiple heads which are
concatenated and linearly projected.

3 Experiments

We assess the performance of Lin-MIL on multiple CPath tasks. In the following, we present
datasets, baselines, evaluation schemes, and implementation details.
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3.1 Datasets and CPath Tasks

We predict microsatellite instability (MSI) in colorectal cancer using TCGA-CRC (Network,
2012) (N=447; 65 positive, 382 negative) and CPTAC-CRC (Edwards et al., 2015) (N=221;
53 positive, 168 negative) as training data. We externally validate on the PAIP cohort
(N=47, 12 positive, 35 negative). We assess lymph node metastasis detection in breast can-
cer using the CAMELYON16 dataset (Bejnordi et al., 2016). Genetic alteration prediction
for TP53 is performed for 4 different organs, in particular TCGA-BRCA (N=1114, 737 pos-
itive, 377 negative), TCGA-NSCLC (N=1026, 336 positive, 690 negative), TCGA-UCEC
(N=549, 342 positive, 207 negative) and TCGA-STAD (N=413, 209 positive, 204 negative).

3.2 Evaluation and Comparable Methods

We conduct patient-stratified 5-fold cross-validation (CV) for each task and report results
using the area under the receiver operating characteristic curve (AUROC), balanced ac-
curacy (Bal. Acc), and weighted F1-Score. We benchmark Lin-MIL against MIL meth-
ods, including AB-MIL (Ilse et al., 2018) based on instance-wise attention, Transformer-
MIL (Wagner et al., 2023) using softmax self-attention, CLAM-SB (Lu et al., 2021), which
incorporates clustering-constrained attention, DSMIL (Li et al., 2021), which uses a dual-
stream attention approach, LA-MIL (Reisenbüchler et al., 2022), which employs local graph-
based attention, GTP (Zheng et al., 2022), a graph transformer, RRT-MIL (Tang et al.,
2024) focusing on feature re-embedding, SC-MIL (Yang et al., 2024) using supervised con-
trastive learning, Long-MIL (Li et al., 2023), which integrates a linear bias into attention,
S4MIL (Fillioux et al., 2023) and MamMIL (Fang et al., 2024), where both are structured
state-space models, and TransMIL (Shao et al., 2021), which utilizes Nyström-based atten-
tion approximation. We use the same data preprocessing steps for all methods (Fig. 1A).

3.3 Implementation

Patch extraction was performed using the CLAM library (Lu et al., 2021) and subsequent
feature extraction through the UNI FM (Chen et al., 2024). We addressed class imbalances
during training by a weighted cross-entropy loss. We employed the ADAM optimizer with
batch size 1, a learning rate of 1e− 5 and a weight decay of 1e− 2, for a maximum of 100
epochs with early stopping. We used a linear learning rate scheduling with a factor of 1e−1
if performance plateaus occur. All experiments were executed on a single NVIDIA RTX
4500 with 25 GB GPU memory.

4 Results

4.1 Performance Analysis

Table 1 summarizes the 5-fold patient-stratified cross-validation performance of Lin-MIL
and baseline methods on CAMELYON16. Additionally, we report MSI prediction results
from models trained and validated on TCGA-CRC and CPTAC-COAD, and tested on the
external PAIP cohort. Lin-MIL marginally outperforms all comparators on CAMELYON16
and shows significant generalization improvements on PAIP, with gains of +5% in balanced
accuracy and +6% in weighted F1. Figures 3A-D present bar charts for TP53 mutation
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Figure 3: Results. (A-D) Genetic mutation prediction for TP53: Bars show mean
and standard deviation for the top 5 performing models out of all listed in Ta-
ble 1, horizontal lines visualize the mean performance of our Lin-MIL model. (E)
Depth ablation on the number of linear attention blocks in our Lin-MIL model
on MSI prediction trained on TCGA/CPTAC, and tested on PAIP. (F) GPU
memory usage of linear attention compared to softmax, nyström and dilated at-
tention. (G-H) Lin-MIL attention heatmaps for PAIP and CAMELYON16
datasets, annotations (left) and attention heatmaps (right) for two slides of PAIP
and CAMELYON16 are displayed, with patches colored according to their nor-
malized scores V ′, see Equation 3.

6



Lin-MIL for Computational Pathology

Table 1: Performance analysis. We report AUROC, balanced accuracy (Bal. Acc) and
weighted F1 (W. F1) metrics using mean and standard deviation over patient-
stratified CV runs. Results for MSI Screening reported for external test cohort.
Best in bold and second best is underlined.

Task MSI Screening Metastasis Prediction

Model / Metric AUROC Bal. Acc. W. F1 AUROC Bal. Acc. W. F1

AB-MIL 90.57±1.6 61.67±5.4 75.23±4.9 97.93±1.9 91.96±10.9 92.84±9.9

CLAM-SB 90.86±1.4 64.71±6.7 77.52±5.7 98.44±1.9 96.51±2.0 97.02±1.7

DSMIL 89.48±0.5 73.29±10 74.69±6.1 87.45±16.1 86.13±15 87.20±14

GTP 82.71±5.2 71.60±3.8 73.41±11 85.62±9.4 82.64±6.4 84.10±5.7

LA-MIL 86.57±3.8 58.88±1.2 72.86±0.9 82.78±9.9 80.51±9.6 80.99±9.6

Long-MIL 87.52±4.2 61.93±7.6 74.95±7.1 97.53±2.7 95.73±3.2 96.26±2.7

RRT-MIL 89.43±2.9 63.05±9.1 75.77±7.9 98.32±1.0 95.68±3.1 95.57±3.3

SC-MIL 90.76±1.6 68.02±9.5 79.28±7.0 98.92±1.4 97.41±1.8 97.77±1.6

TransformerMIL 89.76±2.5 67.76±11 79.27±8.5 99.35±0.8 97.41±2.2 97.77±2.0

TransMIL 90.52±4.9 60.83±3.7 74.61±3.5 93.60±3.1 88.62±3.1 89.81±2.3

S4MIL 87.57±2.9 58.60±3.0 72.45±2.8 84.94±8.2 81.16±8.6 81.96±8.3

MamMIL 89.52±2.9 63.33±9.9 76.22±7.9 98.64±1.7 96.02±2.5 96.29±2.3

Lin-MIL (ours) 91.52±1.8 78.81±6.2 85.69±3.7 99.49±0.7 98.15±2.6 98.15±2.6

prediction across TCGA-NSCLC, TCGA-STAD, TCGA-UCEC, and TCGA-BRCA, where
Lin-MIL ranks first in three out of four datasets (TCGA-STAD, TCGA-NSCLC, TCGA-
BRCA) and second in TCGA-UCEC. Overall, Lin-MIL proves to be the most robust model
across tasks with in average +0.4% balanced accuracy and +0.6% AUROC compared to the
second best model, respectively. Finally, Figures 3G and 3H compare Lin-MILs attention
heatmaps with ground-truth annotations for CAMELYON16 and PAIP, demonstrating its
ability to focus on clinically relevant regions.

4.2 Ablation Study

We varied the number of linear attention blocks from 1 to 8 and identified 4 blocks as
the optimal configuration for MSI prediction on TCGA-CRC and CPTAC-COAD (Fig.3E).
Figure 3F illustrates GPU memory usage for four attention mechanisms: Linear attention
(Lin-MIL), vanilla softmax attention (TransformerMIL), Neyström attention (TransMIL),
and dilated attention (GigaPath). Figure 4A-B further compares these mechanisms (embed-
ded within the same MIL architecture Fig. 1B), across four TP53 prediction tasks in TCGA
cohorts, metastasis detection on CAMELYON16, and out-of-distribution MSI screening on
PAIP. Although Neyström approximation exhibits the highest GPU memory usage among
complexity-reducing approaches, it delivers only the second-lowest performance. In con-
trast, dilated attention uses the least memory but yields the poorest results. Lin-MIL, with
slightly lower memory usage than Neyström attention, consistently excels across all datasets
compared to memory efficient methods.
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Figure 4: Ablation on attention mechanisms. We replaced linear attention with
softmax-, Neyström- and dilated attention and report the mean performance
over 5-fold CVs. (A) TP53 mutation prediction results, experiments setup
as in Fig 3A-D. (B) Metastasis and MSI prediction results, experimental
configurations as reported in Table 1.

5 Conclusion and Future Perspective

We presented Lin-MIL, a linear attention-based architecture designed to address compu-
tational challenges associated with large input sequences and limited memory scenarios in
WSI analysis. By reducing complexity with respect to the number of patches to a linear
scale, linear attention enables the processing of a large number of patches while providing
interpretability and enhanced performance. In future work, we will study the behavior of
linear attention in multi-modal settings for intra- and inter-modal feature fusion.
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