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Abstract

Reward Machines provide an automaton-inspired structure for specifying instruc-
tions, safety constraints, and other temporally extended reward-worthy behaviour.
By exposing the underlying structure of a reward function, they enable the decom-
position of an RL task, leading to impressive gains in sample efficiency. Although
Reward Machines and similar formal specifications have a rich history of ap-
plication towards sequential decision-making problems, they critically rely on a
ground-truth interpretation of the domain-specific vocabulary that forms the build-
ing blocks of the reward function—such ground-truth interpretations are elusive
in the real world due in part to partial observability and noisy sensing. In this
work, we explore the use of Reward Machines for Deep RL in noisy and uncertain
environments. We characterize this problem as a POMDP and propose a suite of RL
algorithms that exploit task structure under uncertain interpretation of the domain-
specific vocabulary. Through theory and experiments, we expose pitfalls in naive
approaches to this problem while simultaneously demonstrating how task structure
can be successfully leveraged under noisy interpretations of the vocabulary.

Code and videos are available at https://github.com/andrewli77/
reward-machines-noisy-environments.

1 Introduction

Formal languages, including programming languages such as Python and C, have long been used
for objective specification in sequential decision making. Using a vocabulary of domain-specific
properties, expressed as propositional variables, formal languages like Linear Temporal Logic (LTL)
[45] capture complex temporal patterns—such as the objectives of an agent—by composing variables
via temporal operators and logical connectives. These languages provide well-defined semantics while
enabling semantics-preserving transformations to normal-form representations such as automata,
which can expose the discrete structure underlying an objective to a decision-making agent. One
such representation is the increasingly popular Reward Machine, which combines expression of rich
temporally extended (non-Markovian) objectives via automata with algorithmic techniques such
as automated reward shaping, task decomposition, and counterfactual learning updates to garner
significant improvements in sample efficiency (e.g., [53, 55, 18]). Importantly, Reward Machines
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can be specified directly, constructed via translation from any regular language (including variants
of LTL), synthesized from high-level planning specifications, or learned from data [7]. For these
reasons, formal languages, and in particular, Reward Machines, have been adopted across a diversity
of domains, ranging from motion planning [31, 15, 51] and robotic manipulation [8, 26, 32] to, more
recently, general deep Reinforcement Learning (RL) problems [e.g., 1, 35, 36, 38, 53, 54, 21, 65, 29,
62, 33, 22, 63, 64, 17, 47, 11, 28, 42, 50, 60, 12, 67, 8, 10, 39, 18, 49, 66, 59, 56].

Critically, the use of formal languages in deep RL is often predicated on knowledge of a “ground-
truth” interpretation of the symbolic vocabulary. This is realized via a labelling function, an oracle
mapping from environment states to the truth or falsity of abstract properties that form the building
blocks of objective specifications. However, practical real-world environments are often partially
observable and rely on high-dimensional sensor data such as images. As a result, labelling functions
are, by necessity, noisy and uncertain, compromising the application of formal languages such as
Reward Machines or LTL for objective specification. Consider an autonomous vehicle, whose desired
behaviour at an intersection can be formally specified using temporal logic [5, 40]. In the real world,
key determinations—whether a pedestrian is crossing, the colour of the light, the intent of other
vehicles, and so on—must be made based on noisy or obstructed LiDAR and camera sensors, and
may therefore be noisy or uncertain themselves. To address this problem, while benefiting from the
advantages of Reward Machines, we make the following contributions.

(1) We propose a deep RL framework for Reward Machines in settings where the evaluation of
domain-specific vocabulary is uncertain, characterizing the RL problem in terms of a POMDP. To
our knowledge, this is the first deep RL framework for Reward Machines that broadly supports the
imperfect detection of propositions, allowing us to extend Reward Machines to general partially
observable environments.

(2) We propose and analyze a suite of RL algorithms that exploit Reward Machine structure and that
can be deployed without a ground-truth labelling function. We show how preexisting abstraction
models—uncertain estimators of abstract, task-relevant features that may manifest as pretrained neural
networks, sensors, heuristics, or otherwise—can be brought to bear to improve learning efficiency.

(3) We theoretically and experimentally evaluate our proposed RL algorithms. Theoretically, we
discover a pitfall of naively leveraging standard abstraction models—namely, that errors from repeated
queries of a model are correlated rather than i.i.d. We show that this can have serious ramifications,
including unintended or dangerous outcomes, and demonstrate how this issue can be mitigated.
Experimentally, we consider a variety of challenging domains involving partial observability and
high-dimensional observations. Results show that our algorithms successfully leverage task structure
to improve sample efficiency and total reward under uncertain interpretations of the vocabulary.

2 Background

Notation. Given a set of random variables, X , ∆X is the set of distributions over X; (̃·) denotes a
particular distribution; and for a categorical distribution w̃ ∈ ∆X and some x ∈ X , we denote w̃[x]
as the probability of x under w̃. We use xi:j as a shorthand for the sequence xi, . . . , xj .

POMDPs. A Partially Observable Markov Decision Process (POMDP) ⟨S,O,A, P,R, ω, µ⟩ [3]
is defined by the state space S, observation space O, action space A, reward function R, transition
distribution P : S ×A→ ∆S, observation distribution ω : S → ∆O, and initial state distribution
µ ∈ ∆S. An episode begins with an initial state s1 ∼ µ(·) and at each timestep t ≥ 1, the
agent observes an observation ot ∼ ω(st), performs an action at ∈ A, transitions to the next state
st+1 ∼ P (st, at), and receives reward rt = R(st, at, st+1). Denote the agent’s observation-action
history at time t by ht = (o1, a1, . . . , ot−1, at−1, ot) and the set of all possible histories as H . A
fully observable Markov Decision Process (MDP) serves as an important special case where the
observation at each time t is ot = st.

Reward Machines. A Reward Machine (RM) [53] is a formal automaton representation of a
non-Markovian reward function that captures temporally extended behaviours. Formally, an RM
R = ⟨U, u1, F,AP, δu, δr⟩, where U is a finite set of states, u1 ∈ U is the initial state, F is a finite
set of terminal states (disjoint from U ), AP is a finite set of atomic propositions representing the
occurrence of salient events in the environment, δu : U × 2AP → (U ∪ F ) is the state-transition
function, and δr : U × 2AP → R is the state-reward function. Each transition in an RM is labelled
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with a scalar reward along with a propositional logic formula over AP , while accepting states
represent task termination.

Labelling Function. While an RM captures the high-level structure of a non-Markovian reward
function, concrete rewards in an environment are determined with the help of a labelling function
L : S ×A× S → 2AP , a mapping that abstracts state transitions (st−1, at−1, st) in the environment
to the subset of propositions that hold for that transition. To obtain rewards, the sequence of
environment states and actions s1, a1, . . . , st, at, st+1 are labelled with propositional evaluations
σ1:t, where σi = L(si, ai, si+1) ∈ 2AP . A sequence of transitions in the RM are then followed
based on σ1:t to produce the reward sequence r1:t. In an MDP environment, rewards specified by an
RM are Markovian over an extended state space S × U ; hence, there is an optimal policy of the form
π(at|st, ut) where ut ∈ U is the RM state at time t [53]. During execution, ut can be recursively
updated given ut−1 by querying L after each environment transition.

3 Problem Framework

3.1 Formalization

 Observation 

Observation Action

Agent

Reward Machine

Environment 

Abstraction Model

Labelling Function

State

Ground-truth propositions

Noisy Features
Reward + Task State

Figure 1: The Noisy Reward Machine Environment
framework. Blue elements highlight differences
with respect to a standard RL framework. Dashed
lines ( ) indicate that an element is required
during training but not deployment.

We formalize the problem of solving an RM task
under an uncertain interpretation of the vocab-
ulary. Consider an agent acting in a POMDP
environment (without the reward function) E =
⟨S,O,A, P, ω, µ⟩. We define rewards rt based
on an RM R = ⟨U, u1, F,AP, δu, δr⟩ inter-
preted under a ground-truth labelling function
L : S×A×S → 2AP as described in Section 2.

An important aspect of our framework is that
L is not made accessible to the agent. Instead,
we make the weaker assumption that the agent
can query an abstraction modelM : H → Z.
Here,M captures the agent’s preexisting knowl-
edge over how a set of high-level features Z
are grounded within the environment. Abstrac-
tion models are easier to obtain than labelling
functions for several reasons: they take as input
observable histories H rather than states S, they can map to any feature space Z, and crucially, we
allow their outcomes to be incorrect or uncertain. Note that the definition of abstraction models is
quite general—in the real world, they might manifest as pretrained foundation models [46, 37, 4, 14],
sensors [16], task-specific classifiers [20], or so on.

We refer to the tuple P = ⟨E ,R,L,M⟩ as a Noisy Reward Machine Environment (depicted in
Figure 1). Given P , our goal is to obtain a policy π(at|ht, z1:t) based on observations and outputs
from the abstraction model up to time t that maximizes the expected discounted return Eπ[

∑∞
t=0 γ

trt]
for some discount factor γ ∈ (0, 1]. In this work, we assume π is trained via RL, and we assume that
the ground-truth rewards ri are observable during training only. Notably, the trained policy π can be
deployed without access to the ground-truth labelling function L.

3.2 Running Example

The Gold Mining Problem (Figure 2) serves as a running example of a Noisy RM Environment. A
mining robot operates in a grid with a non-Markovian goal: dig up at least one chunk of gold ( )
and deliver it to the depot (Ñ). The environment is an MDP where the robot observes its current grid
position and its actions include moving in the cardinal directions and digging. A labelling function L
associates the propositions AP = { , Ñ} with grid states and actions as follows: holds when
the robot digs in the rightmost row, and Ñ holds when the robot is at the bottom-left cell.

However, the robot does not have access to L and cannot reliably distinguish gold from iron pyrite.
Thus, it cannot ascertain whether it has obtained gold during the course of an episode. Luckily,
the robot can make an educated guess as to whether a cell contains gold, which is captured by an
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Figure 2: The Gold Mining Problem is a Noisy RM Environment where the agent’s interpretation of
the vocabulary is uncertain. Left: The four rightmost cells yield gold ( ) while two cells in the
second column yield iron pyrite, which has no value. The agent cannot reliably distinguish between
the two metals—cells are labelled with the probability the agent believes it yields gold. Right: The
RM emits a (non-Markovian) reward of 1 for collecting gold and delivering it to the depot (Ñ).

abstraction modelM : H → [0, 1] mapping the robot’s current position (while ignoring the rest of
the history) to its belief that the cell contains gold.

Note that if the agent could observe L, then it could learn an optimal Markovian policy π(at|st, ut)
with a relatively simple form (ut is easily computed with access toL). Intuitively, such a policy should
collect gold while in RM state u(0) and head to the depot while in RM state u(1). Unfortunately, when
the agent does not have access toL, we cannot directly learn a policy with the simpler Markovian form
above. In the following sections, we show how the agent’s noisy belief captured by the abstraction
modelM can be leveraged to simplify the learning problem.

4 Noisy RM Environments as POMDPs

We start with an analysis of the Noisy RM Environment framework, contrasting it with a standard
RM framework. We ask: (1) What is the optimal behaviour in a Noisy RM Environment? (2) How
does the abstraction modelM affect the problem? (3) How does not observing the labelling function
L affect the problem? We provide proofs for all theorems in Appendix A.

Observe that uncertainty in the labelling function is only relevant insofar as it informs the agent’s
knowledge of the current RM state ut since rewards from an RMR are Markovian over extended states
(st, ut) ∈ S ×U . Our first result is that a Noisy RM Environment ⟨E ,R,L,M⟩ can be reformulated
into an equivalent POMDP with state space S ×U and observation space O (Theorem 4.1). Here, we
say two problems are equivalent if there is a bijection between policies for either problem such that
the policies have equal expected discounted return and behave identically given the same history ht.
Thus, optimal behaviour in a Noisy RM Environment can be reduced to solving a POMDP.

Theorem 4.1 A Noisy RM Environment ⟨E ,R,L,M⟩ is equivalent to a POMDP over state space
S × U and observation space O.

One may notice that the abstraction modelM doesn’t appear in the POMDP reformulation at all. We
later show that an appropriate choice ofM can improve policy learning in practice, but this choice
ultimately does not change the optimal behaviour of the agent (Theorem 4.2).

Theorem 4.2 (Does the choice ofM affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩, and P ′ be a Noisy RM Environment ⟨E ,R,L,M′⟩. Then P and P ′ are equivalent.

We also contrast our proposed framework, where the agent does not have direct access to L, with
prior RM frameworks where the agent does. We show that this difference does not affect the optimal
behaviour in MDP environments, but can affect the optimal behaviour in POMDPs (Theorem 4.3).

Theorem 4.3 (Does observing L affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩. Consider a problem P ′ that is identical to P except that the agent at time t additionally
observesL(st, at, st+1) after taking action at in state st. If E is an MDP, thenP andP ′ are equivalent.
If E is a POMDP, P and P ′ may be non-equivalent.
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5 Method

Input: Abstraction modelM : H → Z,
Inference module f : Z+ → ∆U .

Initialize policy π : H ×∆U → ∆A.
for each episode do

Observe o1.
h1 ← (o1)
for each time t = 1, 2, ... do

zt ←M(ht)
ũt ← f(z1:t)
Execute action at ∼ π(· | ht, ũt).
Get reward rt and observation ot+1.
Update π using RL.
ht+1 ← ht + (at, ot+1)

Algorithm 1: On-policy RL that decouples RM
state inference using an abstraction model M
and decision making.

In this section, we consider how to train policies
that do not require the labelling function L to act.
Given Theorem 4.1, in principle we can apply any
deep RL approach suitable for POMDPs, such as a
recurrent policy that conditions on past actions and
observations. However, such a learning algorithm
may be inefficient as it doesn’t exploit the known
RM structure at all. Motivated by the observation
that the RM state ut is critical for decision making,
we instead propose a class of policies that decou-
ple inference of the RM state ut (treated as an
unknown random variable) and decision making
into two separate modules (Algorithm 1).

The inference module models a belief ũt ∈ ∆U
of the current RM state ut over the course of an
episode with the help of an abstraction modelM.
More precisely, the inference module is a function
f : Z+ → ∆U mapping the history of outputs
from the abstraction model to a belief over RM states. The inference objective is to recover the
(policy-independent) distribution Pr(ut|ht), marginalized over all possible state trajectories τt =
(s1, a1, . . . , st−1, at−1, st):

Pr(ut|ht) =

∫
Pr(ut|τt)p(τt|ht)dτt

Here Pr(ut|τt) is deterministic—it is the RM state given the trajectory (under the true labelling
function)—while the probability density function p(τt|ht) depends on the POMDP transition function
and observation probabilities. The decision-making module is a policy π(at|ht, ũt) that then leverages
the inferred belief ũt. Below, we describe three inference modules that leverage different forms of
abstraction modelsM : H → Z to predict ũt.

5.1 Naive

Suppose that in lieu of the labelling function L, we have a noisy estimator of L that predicts
propositional evaluations based on the observation history. This is captured via an abstraction model
of the formM : H → 2AP that makes discrete (and potentially incorrect) predictions about the
propositions L(st−1, at−1, st) that hold at time t, given the history ht. Then, we can recursively
model a discrete prediction of the RM state ût ∈ U (which can be seen as a belief over U with full
probability mass on ût) using outputs ofM in place of L.
Method 1 (Naive) Given M : H → 2AP , predict a discrete RM state ût ∈ U as follows. Set
û1 = u1. For t > 1, predict ût = δu(ût−1,M(ht)).

A weakness of this approach is that it does not represent the uncertainty in its prediction. Furthermore,
since RM state predictions are updated recursively, an error when predicting ût will propagate to all
future predictions (ût+1, ût+2, . . .).
Example 5.1 Returning to the running example, suppose the agent uses its belief of locations yielding
gold to derive an abstraction modelM : H → 2AP . For a history ht, M takes the current grid
position st and predicts is true if it believes there is at least a 50% chance it yields gold when it
performs a digging action. We assume the agent can always predict Ñ correctly. Observing Figure 2,
we see thatM agrees with L in all cases except at one cell where there is actually iron pyrite (that
the agent believes has gold with 0.6 probability). Given a trajectory where the agent mines at this
cell, Naive would erroneously assume gold was obtained.

5.2 Independent Belief Updating (IBU)

In order to capture the uncertainty in the belief over the RM state ut, one may instead wish to model
a probability distribution ũt ∈ ∆U . Given an abstraction model of the formM : H → ∆(2AP) that
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Table 1: Comparison of inference modules. For each, we highlight its prerequisite abstraction model,
the target feature the abstraction model aims to predict, and its consistency in MDPs and POMDPs.

INFERENCE ABSTRACTION TARGET CONSISTENT CONSISTENT
MODULE MODEL (MDPS) (POMDPS)

NAIVE H → 2AP L(st−1, at−1, st) ✓ ✗

IBU H → ∆(2AP) L(st−1, at−1, st) ✓ ✗
TDM H → ∆U ut ✓ ✓

predicts probabilities over possible propositional evaluations L(st−1, at−1, st), an enticing approach
is to derive ũt by probabilistically weighing all possible RM states at time t − 1 according to the
previous belief ũt−1 along with all possible evaluations of L(st−1, at−1, st) according toM.
Method 2 (IBU) GivenM : H → ∆(2AP), predict a distribution over RM states ũt ∈ ∆U as
follows. Set ũ1[u1] = 1 and ũ1[u] = 0 for u ∈ U \ {u1}. For t > 1, set

ũt[u] =
∑

σ∈2AP ,u′∈U

1[δu(u
′, σ) = u] · ũt−1[u

′] · M(ht)[σ]

On the surface, IBU may appear to solve the error propagation issue of the Naive approach by
softening a discrete belief into a probabilistic one. Surprisingly, updating beliefs ũt in this manner can
still result in a belief that quickly diverges from reality with increasing t. This is because IBU fails to
consider that propositional evaluations are linked, rather than independent. Since the computation of
ũt aggregates t queries toM, noise in the outputs ofM can dramatically amplify if the correlation
between these noisy outputs is not considered. This is best illustrated by an example.
Example 5.2 The mining agent now considers a probability distribution over propositional assign-
ments of { ,Ñ}. We assume the agent always perfectly determines Ñ and applies its belief of
locations yielding gold; e.g., digging in the cell the agent believes has gold with 0.3 probability yields
the distribution (∅ : 0.7, { } : 0.3, {Ñ} : 0, { ,Ñ} : 0). Consider a trajectory where the agent
digs at this cell multiple times. After mining once, IBU updates the RM state belief ũt to reflect a
0.3 probability of having obtained gold. After mining twice, this increases to 0.51 and in general,
the belief reflects a 1− 0.7k probability after mining k times. In reality, mining more than once at
this square should not increase the probability beyond 0.3 since all evaluations of at that cell are
linked—they are all true, or they are all false.

5.3 Temporal Dependency Modelling (TDM)

Example 5.2 demonstrates a challenge when aggregating multiple predictions from a noisy classifier—
the noise may be correlated between evaluations. One solution in the Gold Mining Problem is to
update the RM state belief only the first time the agent digs at any particular square, accounting for
the fact that all evaluations of in that state yield the same result. Indeed, this type of solution is
used by many approaches in tabular MDPs with noisy propositional evaluations [19, 61], but this
solution does not scale to infinite state spaces where propositional evaluations may be arbitrarily
linked between “similar” pairs of states.

We instead consider an inference module that uses an abstraction modelM : H → ∆U designed
to directly predict a distribution over RM states given the history. Such an abstraction model
might manifest as a meta-classifier that aggregates outputs from another model but corrects for the
correlation in these outputs. Another way to obtainM is to train a recurrent neural network [27]
end-to-end given a dataset of histories ht and their associated (ground-truth) RM states ut. Given an
abstraction modelM : H → ∆U , TDM simply returns the output ofM.
Method 3 (TDM) Given an abstraction model of the formM : H → ∆U predictM(ht) directly.

5.4 Comparison of Inference Modules

At first glance, it may seem challenging to compare different inference modules since they may
operate under different abstraction models. Our goal is to elucidate the relatives advantages of each
approach to better inform its use. We begin by considering a theoretical property of inference modules,
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Figure 3: Traffic Light (top left) and Kitchen (bottom left), are MiniGrids with image observations,
where key propositions are partially observable. Colour Matching (right) is a MuJoCo robotics
environment where the agent must identify colour names by their RGB values to solve a task.

with our conclusions summarized in Table 1. We consider how accurately an inference module models
its target distribution Pr(ut|ht). This largely depends on the veracity of the abstraction modelM,
but nonetheless, it is desirable that the inference module precisely recovers Pr(ut|ht) under an ideal
abstraction modelM∗. If this is possible, then we say that an inference module is consistent.
Definition 5.3 (Consistency) Consider an inference module f : Z+ → ∆U . f is consistent if there
exists someM∗ : H → Z such that for every history ht ∈ H , running f on ht usingM∗ as the
abstraction model results in the belief Pr(ut|ht).

In the case that E is an MDP, Naive, IBU, and TDM are all consistent since there exists an abstraction
model that can recover the labelling function L (for Naive and IBU) and ut (for TDM) with certainty.
However, in the general case when E is a POMDP, only TDM remains consistent. Proofs and
counterexamples are provided in Appendix A.

6 Experiments

Our experiments assess the approaches in Section 5 in terms of RL sample efficiency and final total
return, as well as accuracy in predicting a belief over RM states. We examine whether these methods
are robust to uncertainty in the outputs of abstraction models, and whether they offer advantages over
end-to-end RL algorithms that do not attempt to exploit task structure. Our experimental settings
involve challenges that arise when scaling to complex, real-world environments: temporally extended
reasoning, partial observability, high-dimensional observations, and sparse rewards.

6.1 Environments

Our environments include the Gold Mining Problem as a toy environment, along with two MiniGrid
[9] environments with image observations and a MuJoCo robotics environment (Figure 3). Full
details on the environments are provided in Appendix B.

Traffic Light is a partially observable MiniGrid where the agent must drive along a road to pick up a
package and then return home. A traffic light along the road cycles between green, yellow, and red at
stochastic intervals and the agent receives a delayed penalty if it runs the red light. The agent only has
a forward-facing camera and it can drive forwards, backwards, wait, or make a U-turn. We encode
this task with an RM (Figure 7) with propositions for running a red light, collecting the package, and
returning home. Crucially, the agent does not observe the light colour when entering the intersection
in reverse, causing the agent to be uncertain about the evaluation of the red light proposition.

Kitchen is a partially observable MiniGrid where a cleaning agent starts in the foyer of a home and is
tasked with cleaning the kitchen before leaving. There are three chores: the agent must make sure
the dishes are washed, the stove is wiped, and the trash is emptied, but not every chore necessarily
requires action from the agent (e.g. there might be no dirty dishes to begin with). However, the agent
doesn’t know how clean the kitchen is until it enters it. For each chore, a proposition represents
whether that chore is “done” (e.g. the dishes are clean) in the current state of the environment—thus,
the propositional evaluations are unknown to the agent until it enters the kitchen. The RM for this
task (omitted due to its size) uses the automaton state to encode the subset of chores that are currently
done and gives a reward of 1 for leaving the house once the kitchen is clean.
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Figure 4: RL curves averaged over 8 runs (error bars show standard error). TDM exhibits strong
performance in all domains without access to the labelling function, while Recurrent PPO fails.

In Colour Matching, the agent controls a robot car while observing LiDAR and RGB observations
of nearby objects. The agent observes an instruction with the name of a colour (e.g. “blue”) and it
must touch only that pillar and then enter the portal. Propositions for each pillar evaluate whether
the agent is touching it. The colours of the pillars (and in the instruction) are randomized from a set
of 18 possible colours in each episode, so to reliably solve the task, the agent must learn the correct
associations of colour names to their RGB values.

6.2 Baselines

We consider the methods Naive, IBU, and TDM from Section 5 that use the abstraction models
described below. For RL experiments, we baseline against a Memory-only method for general
POMDPs that does not exploit the RM structure. As an upper bound on performance, we compare
against an Oracle agent that has access to the labelling function. In the toy Gold Mining Problem,
policies are trained using Q-learning [52] with linear function approximation [41]. In all other
domains, policies are neural networks trained with PPO [48], and the Memory-only policy is Recurrent
PPO [25], a popular state-of-the-art deep RL method for general POMDPs.

6.3 Abstraction Models

In the Gold Mining Problem, we consider toy abstraction models based on the probabilities in Figure 2
as described in the running examples. TDM is equivalent to IBU except it only updates the RM state
belief when digging for the first time at the current cell.

In all other domains, abstractions models are neural networks trained via supervised learning. We
collect training datasets comprising 2K episodes in each domain (equalling 103K interactions in
Traffic Light, 397K interactions in Kitchen, and 3.7M interactions in Colour Matching), along with
validation and test datasets of 100 episodes each. This data is generated by a random policy and
labelled with propositional evaluations from L and ground-truth RM states. To obtain abstraction
models, we train classifiers on their respective target labels and we select optimal hyperparameters
according to a grid search.1 We note that all abstraction models are trained on equivalent data,
ensuring a fair comparison between different inference modules. To verify that abstraction models are
indeed noisy, we use the test set to evaluate the precision and recall of a classifier trained to predict
propositional evaluations (Figure 6). We find that key propositions towards decision making, such as
running a red light in Traffic Light, or whether the chores are done in Kitchen, are uncertain.

6.4 Results: Reinforcement Learning

We report RL learning curves for each method and environment in Figure 4. The key results are:

(R1) TDM performs well in all domains. Using only a noisy abstraction model, TDM achieves
similar sample efficiency and final performance to the Oracle agent that has access to the ground truth.

1For RL training on Traffic Light and Kitchen, we continue to finetune the abstraction models using data
collected by the policy— this is to verify that partial observability is difficult to handle even with virtually
unlimited data and no distributional shift.
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Figure 5: Accuracy of inference modules measured by log-likelihood (higher is better) of the true
RM state, averaged over 8 runs with lines showing standard error. TDM predicts the RM state belief
more accurately than Naive and IBU.

(R2): RL makes little progress on any domain when the task structure is not exploited. Specifi-
cally, Memory only (recurrent PPO in the deep RL environments) fails since it does not leverage the
temporal and logical structure afforded by the RM.

(R3): The performance of Naive and IBU depends on the specific environment. When the
simplifying assumptions made by Naive or IBU are reasonable, these approaches can perform well.
However, the use of these approaches under noisy abstraction models can also lead to dangerous or
unintended outcomes (see Appendix B.5 for a discussion).

We now highlight the most notable qualitative behaviours that were observed. For a more in-depth
discussion, refer to Appendix B.5. In Gold Mining, Naive often digs at the nearby cell believed to
yield gold with 0.6 probability (but in actuality yielding iron pyrite) before immediately heading to
the depot, and IBU repeatedly digs at the same cell to increase its belief of having obtained gold. On
the other hand, TDM adopts a robust strategy of mining at multiple different cells to maximize its
chance of having obtained gold. In Traffic Light, Naive often runs the red light by driving in reverse to
get through the intersection faster. This shortcoming stems from its inability to represent uncertainty
about running the red light. In Kitchen, IBU often stays in the foyer without ever entering the kitchen.
Despite this, the RM state belief erroneously reflects that all chores have a high probability of being
done. This is similar to Example 5.2—each chore is initially “clean” with some small probability,
and this is compounded over time by the incorrect independence assumption. In reality, the state of
the chore is linked between timesteps (and doesn’t change unless the agent intervenes).

6.5 Results: RM State Belief Inference

We compare the inference modules Naive, IBU, and TDM in terms of their predictive accuracy of the
RM state (Figure 5). We evaluate each approach on a test set of 100 fixed trajectories generated by a
random policy (following the same distribution as the data used to train the abstraction models). Since
each inference module aims to capture a belief, we evaluate them according to the log-likelihood of
the true RM state under the belief, averaging over the predictions at all timesteps. To avoid log 0
when Naive makes an incorrect prediction, we lower bound all log-likelihoods at ln 0.01.

(R4): TDM is more accurate when predicting a belief over RM states compared to Naive or
IBU on all domains.

6.6 Results: Vision-Language Models as Zero-Shot Abstraction Models

As an additional experiment, we assess whether GPT-4o can serve as an effective zero-shot abstraction
model in the Traffic Light domain. We render RGB images of the environment and use GPT-4o to
evaluate propositions described through text. With this abstraction model, we evaluate Naive and IBU
on the test set from Section 6.5. We baseline these against the inference modules from Section 6.5 that
use abstraction models trained via supervised learning, as well as abstraction models with randomly
initialized weights. Results and further details are provided in Figure 8 of the Appendix.

(R5): GPT-4o is an effective zero-shot abstraction model for Naive and IBU. As an abstraction
model, GPT-4o is nearly as effective as a custom model trained from ground-truth data, and is
significantly more effective than a randomly initialized neural network.
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7 Related Work

Many recent works leverage structured task specifications such as RMs or Linear Temporal Logic
(LTL) in deep RL. However, the vast majority of these works assume access to the ground-truth
labelling function when acting, e.g. [59, 30, 34, 39, 18]. We note a few works that learn policies
that do not rely on a labelling function for execution. Kuo et al. [33] solve LTL tasks by encoding
them with a recurrent policy. Andreas et al. [2] and Oh et al. [44] learn modular subpolicies and
termination conditions, avoiding the need for a labelling function, but these approaches are restricted
to simple sequential tasks.

Some recent works have considered applying formal languages to deep RL under a noisy evaluation
of propositions. Nodari and Cerutti [43] empirically show that current RM algorithms are brittle to
noise in the labelling function but do not offer a solution. Tuli et al. [57] teach an agent to follow
LTL instructions in partially observable text-based games using the Naive method, but only consider
propositions that are observable to the agent. Umili et al. [58] use RMs in visual environments with a
method similar to IBU, while Hatanaka et al. [24] update a belief over LTL formulas using IBU, but
only update the belief at certain time intervals. While these last three works offer solutions that tackle
noise for a specific setting, they do not consider the efficacy of these methods more generally. Hence,
we believe our framework and the insights from this paper will provide a useful contribution.

Despite the large corpus of prior work in fully observable settings, RMs and LTL have rarely
been considered for general partially observable deep RL problems. We believe this is due to the
difficulty of working with an uncertain labelling function when propositions are defined over a
partially observed state. The closest work by Toro Icarte et al. [54] applies RMs to POMDPs but only
considers propositions defined as a function of observations.

LTL has long been used for specification in motion planning [31], and some works consider an
uncertain labelling function or partial observability. However, solutions nearly always depend on a
small, tabular state space, while we focus on solutions that scale to infinite state spaces. Ding et al.
[13] propose an approach assuming that propositions in a state occur probabilistically in an i.i.d.
manner. Ghasemi et al. [19], Verginis et al. [61], Hashimoto et al. [23], and Cai et al. [6] consider a
setting where propositions are initially unknown but can be inferred through interactions.

8 Conclusion

This work introduces a framework for Reinforcement Learning with Reward Machines where
the interpretation or perception of the domain-specific vocabulary is uncertain. We propose a
suite of algorithms that allow an RL agent to leverage the structure of the task, as exposed by
the Reward Machine, while exploiting prior knowledge through the use of abstraction models—
preexisting models that noisily ground high-level features into the environment. Through theory and
experiments, we show the pitfalls of naively aggregating outputs from a noisy abstraction model,
while simultaneously demonstrating how abstraction models that are aware of temporally correlated
predictions can mitigate this issue. Ultimately, our techniques successfully leverage task structure
to improve sample efficiency while scaling to environments with large state spaces and partial
observability.

On the topic of societal impact, our work aims to ameliorate the impact of uncertain interpretations
of symbols, which can lead to dangerous outcomes. We note that our proposed methods elucidate
the internal decision-making process of RL agents within a formal framework, potentially providing
enhanced interpretability. A limitation of TDM, our best-performing method, is that it relies on a
task-specific abstraction model (to predict the state in the specific RM). For some real-world tasks, it
might not be possible to get enough training data to learn accurate abstraction models (some RM
transitions might very rarely be observed), so deploying TDM could lead to poor outcomes.

Our experiments show the promise of leveraging pretrained foundation models (e.g., GPT-4o) as
general-purpose abstraction models in a Reward Machine framework. Two of our proposed methods,
Naive and IBU, can employ such models directly in many settings where text or image descriptions
of the environment are available. A further investigation on the integration of Reward Machines and
foundation models is left to future work. Another promising direction is to relax the assumption
of access to ground-truth rewards—rewards given by the RM under the ground-truth evaluation of
propositions—during training.
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A Additional Definitions and Theorems

Theorem 4.1 A Noisy RM Environment ⟨E ,R,L,M⟩ is equivalent to a POMDP over state space
S × U and observation space O.

Proof. The POMDP K = ⟨S′, O′, A′, P ′, R′, ω′, µ′⟩, where S′ = S × U , O′ = O, A′ = A,

P ′((st+1, ut+1)|(st, ut), at) = P (st+1|st, at) · 1[δu(ut,L(st, at, st+1)) = ut+1],

R′((st, ut), at, (st+1, ut+1)) = δr(ut,L(st, at, st+1)),

ω′(ot|(st, ut)) = ω(ot|st)
µ′(s, u) = µ(s)1[u = u1]

is equivalent to the Noisy RM Environment ⟨E ,R,L,M⟩ in the following sense. For any pol-
icy π(at|ht, z1:t) in the noisy RM environment we can obtain an equivalent policy π′(at|ht) =
π(at|ht,M(h1), . . . ,M(ht)) for K that achieves the same expected discounted return and vice-
versa. To see why the reverse direction is true, we note that z1:t =M(h1), . . . ,M(ht) is a function
of ht for a fixed abstraction modelM. These policies behave identically given the same history
ht.

Theorem 4.2 (Does the choice ofM affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩, and P ′ be a Noisy RM Environment ⟨E ,R,L,M′⟩. Then P and P ′ are equivalent.

Proof. Consider any policy π(at|ht, z1:t) for P and notice that the sequence of outputs from the
abstraction modelM is a function of the history ht, i.e. z1:t = f(ht). Thus, a valid policy in P ′

is π′(at|ht, z
′
1:t) = π∗(at|ht, f(ht)) (where z′1:t are the outputs from the abstraction modelM′ but

do not affect the policy π′). Similarly, a policy for P ′ can be used to obtain a policy for P that is
identical. Thus, P and P ′ are equivalent.

Theorem 4.3 (Does observing L affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩. Consider a problem P ′ that is identical to P except that the agent at time t additionally
observesL(st, at, st+1) after taking action at in state st. If E is an MDP, thenP andP ′ are equivalent.
If E is a POMDP, P and P ′ may be non-equivalent.

Proof. Consider that E is an MDP. At time t, denote the sequence of outputs from the labelling
function up to time t by σ1:t−1, where σi = L(si, ai, si+1) = L(oi, ai, oi+1) (we assume si = oi
since E is an MDP). Consider a policy π′(at|ht, z1:t, σ1:t−1) for P ′ that conditions on all observable
information (including the outputs of the labelling function) up to time t. However, since E is fully
observable, the labelling function outputs σ1:t can be represented as a function of the history ht,
i.e. σ1:t = f(ht). Then the policy π(at|ht, z1:t) = π′(at|ht, z1:t, f(ht)) for P is identical to π′.
Similarly, given a policy π(at|ht, z1:t) for P , we can obtain an identical policy π′(at|ht, z1:t, σ1:t) =
π(at|ht, z1:t) for P ′.

Note that if E is a POMDP, this is not true, since the outputs of the labelling function σ1:t−1 (which is
a function of the history of states and actions) cannot be determined from the history of observations
and actions. For an explicit counterexample, consider that E is a two-state POMDP with states
s(0) and s(1) where the initial state is equally like to be s(0) or s(1), and that state persists for the
remainder of the episode regardless of the agent’s actions. The agent receives a single, uninformative
observation o regardless of the state. Let there be two actions a(0) and a(1), where a reward of 1 is
received for taking action a(i) in state s(i) (a reward of 0 is received otherwise). Let there be a single
proposition A that holds for a transition (st, at, st+1) if st = s(0). For the Noisy RM Environment
P (where the agent cannot observe L), the optimal policy receives no information about the current
state and has no better strategy than to randomly guess between a(0) and a(1) at each timestep. In P ′

(where the agent can observe L), the agent can deduce the state based on whether A holds or not,
enabling a strategy that receives a reward of 1 on each step. There is no identical policy in P that
achieves this, thus the problems are not equivalent.

Proposition A.1 TDM is consistent.
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Proof. This is immediate because the belief Pr(ut|ht) is a function of ht. Thus, chooseM∗(ht) =
Pr(ut|ht) and we are done.

Lemma A.2 If E is fully observable, then there exist abstraction models M1 : H → 2AP ,
M2 : H → ∆(2AP), and M3 : H → ∆U such that M1(ht) = L(st−1, at−1, st),
M2(ht)[L(st−1, at−1, st)] = 1, andM3(ht)[ut] = 1 for all ht ∈ H . In other words, M1, M2

recover the labelling function L andM3 recovers the RM state at time t with certainty.

Proof. Since E is an MDP, we assume states st and observations ot are interchangeable. The desired
statements immediately result from the fact that the labelling function L(st−1, at−1, st) and ut are
deterministic functions of the history ht.

Proposition A.3 If E is fully observable, then Naive and IBU are consistent.

Proof. Choose the abstraction modelsM1,M2 andM3 as in Lemma A.2. Running Naive withM1

precisely mirrors the procedure for computing RM states ut with the ground-truth labelling function
L, and therefore recovers ut with certainty.

For IBU withM2, we perform a simple proof by induction. At any time t, we propose that the
predicted belief ũt assigns full probability to the ground-truth RM state ut. At time 1, this is true by
the initialization of the algorithm. At time t > 1, we have

ũt(u) =
∑

σ∈2AP ,u′∈U

1[δu(u
′, σ) = u] · ũt−1(u

′) · M(ht)[σ]

=
∑

σ∈2AP

1[δu(ut−1, σ) = u] · M(ht)[σ]

= 1[δu(ut−1, L(st−1, at−1, st)) = u]

= 1[ut = u]

Proposition A.4 Naive is not necessarily consistent in general POMDP environments E .

Proof. This result stems from the fact that Naive cannot model an RM state belief of a strictly
probabilistic nature.

Consider a POMDP with two states, s(0) and s(1), where the initial state is equally likely to be s(0) or
s(1), and that state persists for the remainder of the episode regardless of the agent’s actions. The
agent receives a single, uninformative observation o regardless of the state. Thus, the agent always
observes the same sequence of observations (o, o, . . .) and the sequence of states is equally likely to
be either (s(0), s(0), . . .) or (s(1), s(1), . . .).

Let there be a single proposition A that holds when the agent is currently in state s(0). Let the RMR
have two states: an initial state u(0) that transitions to the state u(1) when the proposition A holds.
The ground-truth RM state belief is given by Pr(ut = u(1)|ht) = 0.5 for all timesteps t ≥ 2. This
belief cannot be captured by Naive under any abstraction model, thus, Naive is not consistent.

Proposition A.5 IBU is not necessarily consistent in general POMDP environments E .

Proof. Suppose for a contradiction that IBU is consistent and therefore, produces ũt = Pr(ut|ht)
for someM∗.

Consider the same POMDP as in Proposition A.4, with one small change. Now, while in any state
s(i) the observation emitted is o with 0.5 probability or o(i) (revealing the state) with 0.5 probability.
Consider a history ht with the observation sequence o, o(1). After seeing the observation o, it must
be the case that ũ2 assigns 0.5 probability to both u(0) and u(1), as before. Then after seeing the
observation o(1), it becomes certain that the persistent state is s(1), and therefore P∇(ut|ht) assigns
probability 1 to u(0). However, regardless of howM∗(ht) is assigned, it is impossible to achieve

17



red

pa
ck

ag
e

ho
me

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
 &

 R
ec

al
l

Traffic Light

dis
he

s
sto

ve
tra

sh

Propositional Symbol

Kitchen

1s
t

2n
d 3rd

Colour Matching

Precision Recall

Figure 6: Precision and recall of a classifier trained to predict occurrences of propositions. Key
propositions in each domain are uncertain. Values are averaged over 8 training runs, with lines
showing standard error.

this belief for ũ3. This is since ũ2[u
(1)] = 0.5 but there are no RM transitions out of u(1), so

ũ3[u
(1)] ≥ 0.5.

B Experimental Details

B.1 Gold Mining Experiments

The Gold Mining Problem is described in Example 3.2. We also introduce a small (Markovian)
penalty of 0.02 each time the agent selects a movement action to incentivize the agent towards shorter
solutions.

Policy models. The Oracle baseline learns a Q-value for each (location, RM state, action) combination
without memory or function approximation. The Memory only baseline and all the proposed methods
are conditioned on six additional binary features corresponding to each square with gold or iron
pyrite (i.e. where the agent places non-zero probability of ) that indicates whether the agent has
previously mined at that location. We use this as a tractable alternative to representing the entire
history without neural network encoders.

All approaches except Oracle use a linear decomposition of Q-values to allow for generalization and
to reduce the number of estimated Q-values. Naive, IBU, and TDM use the following approximation.

Q(location, ũ,memory1:6, action)

=
∑
u∈U

[
ũ(u) ·

[
Q1(u) +Q2(location, u, action) +

1

6

6∑
i=1

Q3(location, u,memoryi, action)
]]

The Memory only baseline use the following approximation.

Q(location,memory1:6, action) = Q1(location, action) +
1

6

6∑
i=1

Q2(location,memoryi, action)

Hyperparameters. All methods use a learning rate of 0.01, a discount factor of 0.99, and a random
action probability of ϵ = 0.2.
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Evaluation details. All methods are trained for 1M steps, and the policy is evaluated every 10K
steps without ϵ-greedy actions. Since the evaluation policy and the environment are deterministic,
each evaluation step records the return from a single episode.

B.2 MiniGrid Experiments

In the Traffic Light domain, the task is described by the RM in Figure 7. There are propositions
corresponding to reaching the squares with the package, the home, and for crossing a red light. The
light colour cycles between green, yellow, and red, where the duration of the green and red lights are
randomly sampled. The yellow light always lasts a single timestep and serves to warn the agent of
the red light.

The RM for the Kitchen domain (not shown) has 9 states, encoding all possible subsets of the
completed chores plus one additional terminal state that is reached upon leaving the house. The
episode is initialized such that each chore needs cleaning with 2

3 probability, and a chore can be
completed by visiting that square. The agent can observe tasks that are completed when inside the
kitchen. There is one proposition per chore marking whether that chore is done (regardless of whether
the agent can observe this) and a proposition for leaving the house through the foyer. We implement
a small cost of −0.05 for opening the kitchen door and performing each task, making it so the agent
must do so purposefully.

u(0) u(1)

u(2) u(3)

u(4)
⟨package, 1⟩

⟨red, 0⟩

⟨home, 1⟩

⟨red, 0⟩

⟨package, 1⟩

⟨home,−1⟩

Figure 7: An RM for Traffic Light. The goal is to pick up the package and return home (each stage
gives a reward of 1). If the agent crosses a red light, it gets a delayed penalty upon returning home.
To simplify formulas on edge transitions, we assume all propositions occur mutually exclusively, and
if no transition condition is satisfied, the RM remains in the same state, receiving 0 reward.

Network architectures: A policy is composed of an observation encoder followed by a policy
network. The observation encoder takes in the current environment observation ot as well as a belief
over RM states (when applicable) and produces an encoding. This encoding is fed to a GRU layer to
produce an encoding of the history. The policy network takes the history encoding and feeds it to
an actor and critic network, which predicts an action distribution and value estimate, respectively.
We use ReLU activations everywhere except within the critic, which use Tanh activations. The
observation encoder consists of two 64-unit hidden layers and produces a 64-dimensional encoding.
We use a single GRU layer with a 64-dimensional history encoding. The actor and critic both use
two 64-dimensional hidden layers. The abstraction models use a separate, but identically structured
observation encoder and GRU layer. The history encoding is fed to a single, linear output layer.

B.3 Colour Matching Experiment

The atomic propositions in the Colour Matching domain are {a, b, c, d}, where a means the agent is
currently in range of the target pillar, and b and c mean the agent is in range of the second and third
pillars, respectively. The order of the three pillars is specified at the beginning of the episode via an
index vector, where each index corresponds to one of the 18 possible colours.

The RM for this task has 6 states and encodes two pieces of information: whether the target pillar
was ever reached, and the last pillar the agent visited. Each time the agent visits an incorrect pillar,
a negative reward of -0.2 is issued, but this penalty is not applied if the agent visits the same pillar
multiple times in succession. A reward of 1 is given for visiting the target pillar, and then for
subsequently going to the portal. We do not show the RM due to the excessive number of edges.
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only visible when entering the intersection in the forward direction.

Table 2: Hyperparameters for deep RL experiments

PPO hyperparameters Traffic Light Kitchen Colour Matching

Env. steps per update 32768 32768 32000
Number of epochs 8 8 8
Minibatch size 2048 2048 8000
Discount factor (γ) 0.97 0.99 0.999
Learning rate 3× 10−4 3× 10−4 3× 10−4

GAE-λ 0.95 0.95 0.95
Entropy coefficient 0.01 0.01 0.001
Value loss coefficient 0.5 0.5 0.5
Gradient Clipping 0.5 0.5 5
PPO Clipping (ε) 0.2 0.2 0.2
LSTM Backpropagation Steps 4 4 4

Abstraction model hyperparameters

Env. steps per update 32768 32768 32000
Number of epochs 8 8 8
Minibatch size 2048 2048 8000
Learning rate 3× 10−4 3× 10−4 3× 10−4

LSTM Backpropagation Steps 4 4 4

Network architectures. The policy and grounding model networks are similar to those in the
previous experiments. The policy uses an observation encoder with two 256-unit hidden layers and
a 128-unit output layer. This is fed to a single GRU layer with a hidden size of 128. The actor has
one encoding layer with hidden size 128, followed by linear layers to predict a mean and standard
deviation for continuous actions. The critic has two 128-unit hidden layers.

The abstraction models for Naive and IBU are MLPs with five 128-unit hidden layers (the environment
is nearly fully observable and encoding the history is not necessary for predicting the labelling
function). The abstraction model for TDM first predicts evaluations of propositions at each step, and
then aggregates the history of these predictions with history of observations, before predicting the
RM state belief. We find this approach to work well with a limited dataset as it can also exploit labels
corresponding to the evaluations of individual propositions. The network architecture is as follows.
An observation encoder first produces a 128-dimensional embedding using three 128-unit hidden
layers. This is fed to a decoder that predicts propositional probabilities using one 128-unit hidden
layer. The observation embedding and the outputs of this decoder are both fed through 2 GRU layers
with hidden size 128, and finally, another decoder uses the memory from the GRU layers to predict
the RM state belief.
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B.4 PPO Training Details

We report all hyperparameter settings for the Deep RL experiments in Table 2. Experiments were
conducted on a compute cluster. Each run occupied 1 GPU, 16 CPU workers, and 12G of RAM.
Runs lasted approximately 18 hours for Colour Matching, and 5 hours for Traffic Light and Kitchen.
The Gold Mining experiments took negligible time and were run on a personal computer. The total
runtime for these experiments is estimated at 1100 GPU hours. Prior experiments that did not make it
into the paper accounted for at least 1000 GPU hours. We used the implementation of PPO found
here under an MIT license: https://github.com/lcswillems/torch-ac.

B.5 Agent Behaviours

Table 3 provides a detailed description and explanation of the behaviours we observed for Naive,
IBU, and TDM in our experiments in the Gold Mining, Traffic Light, and Kitchen environments.

In the Colour Matching environment, Naive, IBU, and TDM all learn an effective policy in the RL
setting, but it is important to note that only TDM is effective at accurately modelling a belief over RM
states given trajectories from a random policy (see Figure 5). We believe this is since the RL setting
provides leeway for the agent to act in a manner that mitigates the errors of the inference module. In
particular, the inference modules are most uncertain when the agent stays near the distance threshold
for which a pillar is considered “reached”. However, the RL agent can address this by moving closer
to the pillar and reducing this uncertainty.
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Table 3: Behaviours observed in experiments.

Method Description of behaviour Explanation

Gold Mining

Naive The agent typically digs at a nearby cell
containing iron pyrite and immediately
heads to the depot.

There is a cell that the agent believes yields gold with 0.6 prob-
ability but is actually iron pyrite. Under the Naive approach,
digging at this location makes the agent believe with certainty
that gold has been obtained so the agent heads to the depot.

IBU The agent repeatedly digs at the same
locations within the same episode before
heading to the depot.

Under IBU, the chance of obtaining gold on each step is as-
sumed to be independent (even when digging at the same square).
Hence, the agent repeatedly digs in the same place, even though
digging more than once in any location has no utility.

TDM The agent mines at several squares to
maximize the chance of obtaining gold
before heading to the depot.

Under TDM, we include the assumption that the belief of having
obtained gold does not increase on repeated digs at the same
square.

Traffic Light

Naive The agent drives through the intersec-
tion in reverse (including when the traf-
fic light is red) to pick up the package.

When crossing the intersection in reverse, the agent cannot see
the light colour and has to guess. The chance of the light being
red tends to be less than 50%, hence the agent predicts that it has
not violated the red light.

IBU The agent faces the intersection and
waits until the light is green to proceed,
successfully solving the task.

IBU is able to capture the uncertainty in whether a red light
violation has occurred when crossing the intersection in reverse
(as further evidenced by Figure 5). Thus, IBU successfully
learns to avoid the dangerous behaviour of driving through the
intersection in reverse.

TDM Similar to IBU. Similar to IBU.

Kitchen

Naive The agent learns the correct behaviour
of entering the kitchen and completing
the remaining tasks.

Interestingly, the agent’s initial belief over RM states is not
accurate. While outside the kitchen, the agent cannot tell whether
each task was initialized in a “done” state or not—it predicts
all tasks are not done since each starts as “done” with only a
1
3

probability. This incentivizes the agent to enter the kitchen,
allowing it to observe which tasks still need to be completed.

IBU The agent wanders around outside the
kitchen and fails to complete the chores.

While outside the kitchen, the agent predicts on each timestep a
1
3

probability for each chore that it started in a “done” state. As
it treats this chance as independent on each timestep, the chance
that each chore was done at some point up to time t is predicted
to be 1 − ( 2

3
)t. By wandering around outside the kitchen for

long enough, the agent believes that all chores are completed
with close to probability 1, giving it no incentive to enter the
kitchen.

TDM The agent learns the correct behaviour
of entering the kitchen and completing
the remaining tasks.

TDM correctly models the initial belief over RM states reflecting
that each chore has an independent 1

3
chance of being done

before the agent has entered the kitchen. This incentivizes the
agent to enter the kitchen and complete all chores that may still
need to be completed.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The POMDP framework is described in sections 3 and 4, the algorithms in
section 5, the theoretical analysis in sections 4 and 5.4, and the experiments in section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion for some discussion of limitations.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our algorithms are described in detail in Section 5, and their specific imple-
mentations and training details are detailed in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section B.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The potential breaches of the code of ethics do not apply to this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Section B.4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There were no such experiments or research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no such participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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