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Abstract

In this paper, we study the problem of global reward maximization with only partial
distributed feedback. This problem is motivated by several real-world applications (e.g.,
cellular network configuration, dynamic pricing, and policy selection) where an action was
taken by a central entity that influences a large population that contributes to the global
reward. However, collecting such reward feedback from the entire population not only incurs
a prohibitively high cost, but often leads to privacy concerns. To tackle this, we formulate it
as a differentially private distributed linear bandits (DP-DLB), where only a subset of users
from the population are selected (called clients) to participate in the learning process and the
central server learns the global model from such partial feedback by iteratively aggregating
these clients’ local feedback in a differentially private fashion. We then propose a unified
algorithmic learning framework, called differentially private distributed phased elimination
(DP-DPE), which enables us to naturally integrate popular differential privacy (DP) models
(including central DP, local DP, and shuffle DP) into the learning process. Furthermore, we
analyze the performance of the DP-DPE algorithm and show that DP-DPE achieves both
sublinear regret and sublinear communication cost. Interestingly, we highlight that DP-DPE
allows us to achieve privacy protection “for free” as the additional cost due to privacy can be
a lower-order additive term. Finally, we conduct simulations to corroborate our theoretical
results and demonstrate the effectiveness of DP-DPE in terms of regret, communication cost,
and privacy guarantees.

1 Introduction

The bandit learning models have been widely adopted for many sequential decision-making problems, such as
clinical trials, recommender systems, and configuration selection. Each action (called arm), if selected in a
round, generates a (noisy) reward. By observing such reward feedback, the learning agent gradually learns
the unknown parameters of the model (e.g., mean rewards) and decides the action in the next round. The
objective of the learning agent is to maximize the cumulative reward over a finite time horizon, balancing
the tradeoff between exploitation and exploration. While the stochastic multi-armed bandits (MAB) model
has proven to be useful for these applications (Lai & Robbins, 1985), one key limitation is that actions are
assumed to be independent, which, however, is usually not the case in practice. Therefore, the linear bandit
model that captures the correlation among actions has been extensively studied (Lattimore & Szepesvári,
2020; Abbasi-Yadkori et al., 2011; Li et al., 2010).

In this paper, we introduce a new linear bandit setting where the reward of an action could be from a large
population. Take the cellular network configuration as an example (see Fig. 1). The configuration (antenna
tilt, maximum output power, inactivity timer, etc.) of a base station (BS), denoted by x ∈ Rd, influences
all the users under the coverage of this BS (Mahimkar et al., 2021). Once a certain configuration is set,
the BS receives a reward in terms of the network-level performance, which accounts for the performance
of all users within the coverage (e.g., average user throughput). Specifically, let the mean global reward of
configuration x be f(x) = ⟨θ∗, x⟩, where θ∗ ∈ Rd represents the unknown global parameter. While a certain
configuration may work best for a specific user, only one configuration can be applied at the BS at a time,
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Figure 1: Cellular network configuration: a motivating application of global reward maximization with partial
feedback in a distributed linear bandit setting.

which, however, simultaneously influences all the users under the coverage. Therefore, the goal here is to find
the best configuration that maximizes the global reward (i.e., the network-level performance).

At first glance, it seems that one can address the above problem by applying existing linear bandit algorithms
(e.g., LinUCB (Li et al., 2010)) to learn the global parameter θ∗. However, this would require collecting
reward feedback from the entire population, which could incur a prohibitively high cost or could even be
impossible to implement in practice when the population is large. To learn the global parameter, one natural
way is to sample a subset of users from the population and aggregate these distributed partial feedback.
This leads to a new problem we consider in this paper: global reward maximization with partial feedback in a
distributed linear bandit setting. As in many distributed supervised learning problems (Bassily et al., 2019;
Geyer et al., 2017; Girgis et al., 2021), privacy protection is also of significant importance in our setting as
clients’ local feedback may contain their sensitive information. In summary, we are interested in the following
fundamental question:

How to privately achieve global reward maximization with only partial distributed feedback?

To tackle this, we introduce a differentially private distributed linear bandit (DP-DLB) formulation. In
DP-DLB, there is a global linear bandit model f(x) = ⟨θ∗, x⟩ with an unknown parameter θ∗ ∈ Rd at the
central server (e.g., the BS); each user u of the population has a local linear bandit model fu(x) = ⟨θu, x⟩,
which represents the mean local reward for user u. Here, we assume that each user u is associated with
a different local parameter θu ∈ Rd. This is motivated by the fact that the mean local reward (e.g., the
expected throughput of a user under a certain network configuration) varies across the users. In addition,
each θu is an unknown local parameter and is assumed to be a local realization of a random vector with the
mean being the global model parameter θ∗. The server makes decisions based on the estimated global model,
which can be learned through sampling a subset of users (referred to as clients) and iteratively aggregating
these distributed partial feedback. While sampling more clients could improve the learning accuracy and
thus lead to a better performance, it also incurs a higher communication cost. Therefore, it is important
to address this tradeoff in the design of communication protocols. Furthermore, to protect users’ privacy,
we resort to differential privacy (DP) to guarantee that clients’ sensitive information will not be inferred
by an adversary. Therefore, the ultimate goal in DP-DLB is to maximize the cumulative global reward (or
equivalently minimize the regret due to not choosing the optimal action in hindsight) while minimizing the
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Table 1: Summary of our main results
Algorithm1 Regret2 Communication cost3

DPE O
(

T 1−α/2
√

d log(kT )
)

O(dT α)

CDP-DPE O
(

T 1−α/2
√

d log(kT ) + T 1−αd1+α
√

ln(1/δ)
√

log(kT )/ϵ
)

O(dT α)

LDP-DPE O
(

T 1−α/2
√

d log(kT ) + T 1−α/2d3/2
√

ln(1/δ)
√

log(kT )/ϵ
)

O(dT α)

SDP-DPE O
(

T 1−α/2
√

d log(kT ) + T 1−αd1+α ln(d/δ)
√

log(kT )/ϵ
)

O(dT 3α/2) (bits)
1DPE is the non-private DP-DPE algorithm; CDP-DPE, LDP-DPE, and SDP-DPE represent the DP-DPE algorithm in the central, local,
and shuffle models, respectively, which guarantee (ϵ, δ)-DP, (ϵ, δ)-LDP, and (ϵ, δ)-SDP, respectively.
2In the regret upper bounds, T is the length of the time horizon, k is the number of actions, d is the dimension of the action space, and
α is a design parameter that can be used to tune the tradeoff between the regret and the communication cost.
3While the communication cost of CDP-DPE and LDP-DPE is measured in the number of real numbers transmitted between the clients
and the server, SDP-DPE directly uses bits for reporting feedback. A detailed discussion is provided in Section 4.

communication cost and providing privacy guarantees for the participating clients. Our main contributions
are summarized as follows.

• To the best of our knowledge, this is the first work that considers global reward maximization with
partial feedback in the distributed linear bandit setting. In addition to the traditional tradeoff
between exploitation and exploration, learning with such partial distributed feedback introduces two
practical challenges: communication efficiency and privacy concerns, which add an extra layer of
difficulty in the design of learning algorithms.

• To address these challenges, we introduce a novel DP-DLB formulation and develop a carefully-crafted
algorithmic learning framework, called differential private distributed phased elimination (DP-DPE),
which allows the server and the clients to work in concert and also naturally integrates several
state-of-the-art DP trust models (including central model, local model, and shuffle model). This
unified framework enables us to systemically study the key regret-privacy-communication tradeoff.

• Then, we establish the regret-privacy-communication tradeoff of DP-DPE in various settings including
the non-private case as well as the central, local, and shuffle DP models. Our main results are as
summarized in Table 1. These results reveal that DP-DPE enables us to achieve privacy “for-free” in
the central and shuffle models, in the sense that the additional regret due to privacy protection is
only a lower-order additive term. Moreover, to the best of our knowledge, this is the first work that
considers the shuffle model in linear bandits to attain a better regret-privacy tradeoff, i.e., a similar
privacy protection as the strong local model while achieving the same regret as the central model.
We further perform simulations on synthetic data to corroborate our theoretical results.

• Finally, we observe an interesting connection between our introduced DP-DLB formulation and the
differentially private stochastic convex optimization (DP-SCO) problem in terms of achieving privacy
“for-free”. This bridge between our online bandit learning and the standard supervised learning might
be of independent interest.

The rest of the paper is organized as follows. We first present the system model and problem formulation
in Section 2. Then, we describe the algorithmic learning framework, DP-DPE, in Section 3, followed by its
instanstiations with different DP models in Section 4. In Section 5, we provide the performance analysis
for different DP-DPE instantiations, followed by discussions on achieving privacy “for free” as well as on
the connection between our introduced DP-DLB formulation and the DP-SCO problem in Section 6. Our
numerical results are presented in Section 7. Finally, we discuss the related work in Section 8 and make
concluding remarks in Section 9.
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2 System Model and Problem Formulation

We begin with some basic notations: [N ] ≜ {1, . . . , N} for any positive integer N ; |S| denotes the cardinality
of set S; ∥x∥2 denotes the ℓ2-norm of vector x; the inner product is denoted by ⟨·, ·⟩. For a positive definite
matrix A ∈ Rd×d, the weighted ℓ2-norm of vector x ∈ Rd is defined as ∥x∥A ≜

√
x⊤Ax. For any sequence

{at}∞
t=1, we use ai:j to denote the subsequence ai, . . . , aj . We use A ◦ B to represent the composition of

algorithms (or functions) A and B.

2.1 Global Reward Maximization with Partial Feedback

We consider the global reward maximization problem over a large population, which is a sequential decision
making problem. In each round t, the learning agent (e.g., the BS or the policy maker) selects an action
xt from a finite decision set D ⊆ {x ∈ Rd : ∥x∥2

2 ≤ 1} with |D| = k. This action leads to a global reward
with mean ⟨θ∗, xt⟩, where θ∗ ∈ Rd with ∥θ∗∥2 ≤ 1 is unknown to the agent. This global reward captures the
overall effectiveness of action xt over the entire population U . The local reward of action xt at user u has
a mean ⟨θu, xt⟩ with θu ∈ Rd, where θu is the local parameter, which is assumed to be a realization of a
random vector with mean θ∗ and is also unknown. Let x∗ ≜ arg maxx∈D⟨θ∗, x⟩ be the unique global optimal
action. Then, the objective of the agent is to maximize the cumulative global reward, or equivalently, to
minimize the regret defined as follows:

R(T ) ≜ T ⟨θ∗, x∗⟩ −
T∑

t=1
⟨θ∗, xt⟩. (1)

At first glance, standard linear bandit algorithms (e.g., LinUCB in Li et al. (2010)) can be applied to
addressing the above problem. However, the exact reward here is a global quantity, which is the average over
the entire population. The learning agent may not be able to observe this exact reward, since collecting such
global information from the entire population incurs a prohibitively high cost and could often be impossible
to implement in practice.

2.2 Differentially Private Distributed Linear Bandits (DP-DLB)

To address the above problem, we consider a differentially private distributed linear bandit (DP-DLB)
formulation, where there are two important entities: a central server (which wants to learn the global model)
and participating clients (i.e., a subset of users from the population who are willing to share their feedback).
In the following, we discuss important aspects of the DP-DLB formulation.

Server. The server is involved in learning the global linear bandit model, i.e., unknown parameter θ∗. In each
round t, it selects an action xt with the objective of maximizing the cumulative global reward

∑T
t=1⟨θ∗, xt⟩.

Without direct observation of the exact reward of action xt, the server only collects partial feedback from a
subset of users sampled from the population, called clients, and then aggregates these partial distributed
feedback to learn the global parameter θ∗. Based on the learned model, the server chooses an action in the
next round.

Clients. We assume that each participating client is randomly sampled from the population and is independent
from each other and also from other randomness. Specifically, we assume that the local parameter θu at client
u satisfies θu = θ∗ + ξu, where ξu ∈ Rd is a zero-mean σ-sub-Gaussian random vector4 and is independently
and identically distributed (i.i.d.) across all clients. Let Ut be the set of participating clients in round
t. After action xt is chosen by the server in round t, each client u ∈ Ut observes a noisy local reward:
yu,t = ⟨θu, xt⟩+ ηu,t, where ηu,t is a conditionally 1-sub-Gaussian5 noise and i.i.d. across the clients and also
over time. We also assume that the local rewards are bounded, i.e., ∥y∥2 ≤ B, for all u ∈ U and t ∈ [T ].

4A random vector ξ ∈ Rd is said to be σ-sub-Gaussian if E[ξ] = 0 and v⊤ξ is σ-sub-Gaussian for any unit vector v ∈ Rd and
∥v∥2 = 1 (Bühlmann & Van De Geer, 2011).

5Consider noise sequence {ηt}∞
t=1. As in the general linear bandit model (Lattimore & Szepesvári, 2020), ηt is assumed to be

conditionally 1-sub-Gaussian, meaning E[eληt |x1:t, η1:t] ≤ exp(λ2/2) for all λ ∈ R.
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Communication. The communication happens when the clients report their feedback to the server. At
the beginning of each communication step, each participating client reports feedback to the server based on
the local reward observations during a certain number of rounds. In particular, the time duration between
reporting feedback is called a phase. By aggregating such feedback from the clients, the server estimates
the global parameter θ∗ and adjusts its decisions in the following rounds accordingly. Suppose that the
participating clients do not quit during a phase. By slightly abusing the notation, we also use Ul to denote
the set of participating clients in the l-th phase.

Note that communication cost is a critical factor in the DP-DLB framework. We use the same definition of
the communication cost as in Wang et al. (2019): the total number of real numbers (or bits) communicated
between the server and the participating clients. Let L be the total number of phases in T rounds, and let Nl

be the number of real numbers (or bits) communicated in the l-th phase. Then, the total communication
cost, denoted by C(T ), can be calculated as follows:

C(T ) ≜
L∑

l=1
|Ul|Nl. (2)

Data privacy. In practice, even if users are willing to share their feedback, they typically require privacy
protection as a premise. This requires our learning algorithm to guarantee that clients’ sensitive information
will not be revealed during the learning process. To this end, we will resort to differential privacy (DP)
(Dwork et al., 2006) to formally address the privacy concerns in the learning process. More importantly,
instead of only considering the standard central model where the central server is responsible for protecting
the privacy, we would also like to incorporate other popular DP models in a unified way, including the
stronger local model (where each client directly protects her data) (Kasiviswanathan et al., 2011) and the
recently proposed shuffle model (where a trusted shuffler in-between clients and server is adopted to amplify
privacy) (Cheu et al., 2019). We provide the formal definitions of different DP models in Section 4.

3 Algorithm Design

In this section, we first present the key challenges within the introduced DP-DLB formulation and then
describe the developed DP-DPE framework to resolve these challenges.

3.1 Key Challenges

To solve the problem of global reward maximization with partial feedback using the DP-DLB formulation, we
face the following new challenges.

As in the standard stochastic bandit problem, there is uncertainty due to noisy rewards of each chosen
action, which is called the action-related uncertainty. In addition to this, we face another type of uncertainty
related to the sampled clients in DP-DLB, which is called the client-related uncertainty. The client-related
uncertainty lies in estimating the global model at the server based on randomly sampled clients with biased
local models. Note that the global model may not be accurately estimated even if exact rewards of the
sampled clients are known when the number of sampled clients is insufficient. Therefore, the first challenge
lies in simultaneously addressing both types of uncertainty in a sample-efficient way (Challenge a⃝).

To handle the newly introduced client-related uncertainty, we must sample a sufficiently large number of
clients so that the global parameter can be accurately estimated using the partial distributed feedback.
However, too many clients result in a large communication cost (as defined in Eq. (2)). Therefore, the second
challenge is to decide the number of sampled clients for addressing the tradeoff between the regret (due to the
client-related uncertainty) and the communication cost (Challenge b⃝).

Finally, to ensure privacy guarantees for the participating clients, one needs to add additional perturbations
(or noises) to the local feedback. Such randomness introduces another type of uncertainty to the learning
process (Challenge c⃝), and it is unclear how to integrate different trust models and DP mechanisms into a
unified algorithmic learning framework (Challenge d⃝). These add an extra layer of difficulty in the design of
learning algorithms.

5



Under review as submission to TMLR

Main ideas. To address the aforementioned challenges a⃝- d⃝, we present our main ideas as follows.
Considering the communication scheme, we are interested in a phased elimination algorithm that gradually
eliminates suboptimal actions by periodically aggregating and analyzing the local feedback from the sampled
clients in a privacy-preserving manner. To address the multiple types of uncertainty when estimating the
global reward ( a⃝ c⃝), we carefully construct a confidence width to incorporate all three types of uncertainty.
To achieve a sublinear regret while minimizing communication cost ( b⃝), we increase both the phase length
and the number of participating clients exponentially. To ensure privacy guarantees ( d⃝), we introduce a
notion, called Privatizer, which can be easily tailored under different DP models. Note that the Privatizer
is a process consisting of tasks to be collaboratively completed by the clients, the server, and/or even a
trusted third party. To keep this notion general, we use P = (R,S,A) to denote a Privatizer, where R is
the procedure at each client (usually a local randomizer), S is a trusted third party that helps privatize data
(e.g., a shuffler that permutes received messages), and A is an analyzer operated by the central server. In the
following, we will show how to integrate all these ideas into a unified framework.

3.2 Differentially Private Distributed Phased Elimination (DP-DPE)

With the main ideas presented above, we propose a unified algorithmic learning framework, called differentially
private distributed phased elimination (DP-DPE), which is built on the (non-private) phased elimination
algorithm for traditional stochastic linear bandits (Lattimore & Szepesvári, 2020; Lattimore et al., 2020).

We present DP-DPE in Algorithm 1, which runs in phases and operates with the coordination of the central
server and the participating clients in a synchronized manner. At a high level, each phase consists of the
following three steps:

1) Action selection (Lines 4-6): computing a near-G-optimal design (i.e., a distribution) over a set
of possibly optimal actions and playing these actions;

2) Clients sampling and private feedback aggregation (Lines 7-16): sampling participating
clients and aggregating their local feedback in a privacy-preserving fashion;

3) Parameter estimation and action elimination (Lines 17-19): using (privately) aggregated
data to estimate θ∗ and eliminating actions that are likely to be suboptimal.

In the following, we describe the detailed operations of DP-DPE. We begin by giving some additional
notations. Consider the l-th phase. Let tl and Tl be the index of the starting round and the length of the
l-th phase, respectively. Then, let Tl ≜ {t ∈ [T ] : tl ≤ t < tl + Tl} be the round indices in the l-th phase, let
Tl(x) ≜ {t ∈ Tl : xt = x} be the time indices in the l-th phase when action x is selected, and let Dl ⊆ D be
the set of active actions in the l-th phase.

Action selection (Lines 4-6): In the l-th phase, the action set Dl consists of active actions that are possibly
optimal. We compute a distribution πl(·) over Dl and choose actions according to πl(·). We briefly explain
the intuition below. Let V (π) ≜

∑
x∈D π(x)xx⊤ and g(π) ≜ maxx∈D ∥x∥2

V (π)−1 . According to the analysis
in Lattimore & Szepesvári (2020, Chapter 21), if action x ∈ D is played ⌈hπ(x)⌉ times (where h can be an
arbitrary positive constant), the estimation error associated with the action-related uncertainty for action x
is at most

√
2g(π) log(1/β)/h with probability 1− β for any β ∈ (0, 1). That is, for a fixed number of rounds,

a distribution π(·) with a smaller value of g(π) helps achieve a better estimation. Note that minimizing g(·)
is a well-known G-optimal design problem (Pukelsheim, 2006). According to the Kiefer-Wolfowitz Theorem
(Kiefer & Wolfowitz, 1960), one can find a distribution π∗ minimizing g(·) with g(π∗) = d, and the support
set6 of π∗, denoted by supp(π∗), has a size no greater than d(d + 1)/2. In our problem, however, it suffices to
solve it near-optimally, i.e., finding a distribution πl such that g(πl) ≤ 2d with |supp(πl)| ≤ 4d log log d + 16
(Line 4), which follows from Lattimore et al. (2020, Proposition 3.7). The near-G-optimal design reduces
complexity to O(kd2) while keeping the same order of regret.

6The support set of a distribution π over set D, denoted by suppD(π), is the subset of elements with a nonzero π(·), i.e.,
suppD(π) ≜ {x ∈ D : π(x) ̸= 0}. We drop the subscript D in suppD(π) and use supp(π) for notational simplicity.
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Algorithm 1 Differentially Private Distributed Phased Elimination (DP-DPE)
1: Input: D ⊆ Rd, α ∈ (0, 1), and confidence level β ∈ (0, 1)
2: Initialization: l = 1, t1 = 1, D1 = D, and h1 = 4d log log d + 16
3: while tl ≤ T do
4: Find a distribution πl(·) over Dl such that g(πl) ≜ maxx∈Dl

∥x∥2
V (πl)−1 ≤ 2d

and |supp(πl)| ≤ 4d log log d + 16, where V (πl) ≜
∑

x∈Dl
πl(x)xx⊤

5: Let Tl(x) = ⌈hlπl(x)⌉ for each x in supp(πl) and Tl =
∑

x∈supp(πl) Tl(x)
6: Play each action x ∈ supp(πl) exactly Tl(x) times if not reaching T
7: Randomly select ⌈2αl⌉ participating clients Ul

# Operations at each client
8: for each client u ∈ Ul do
9: for each action x ∈ supp(πl) do

10: Compute its average local observations yu
l (x) in Tl(x) rounds, i.e.,

yu
l (x) = 1

Tl(x)
∑

t∈Tl(x)(⟨θu, x⟩+ ηu,t)
11: end for
12: Let y⃗u

l = (yu
l (x))x∈supp(πl) ∈ R|supp(πl)|

# Apply the Privatizer P = (R,S,A)
# The local randomizer R at each client:

13: Run the local randomizer R and send the output R(y⃗u
l ) to the shuffler S

14: end for
# The shuffler S at a trusted third party:

15: Run the shuffler S to uniformly permute messages and send the output S({R(y⃗u
l )}u∈Ul

) to the analyzer
A
# The analyzer A at the server:

16: Generate the privately aggregated statistics: ỹl = A(S({R(y⃗u
l )}u∈Ul

))
17: Compute the following quantities:

Vl =
∑

x∈supp(πl) Tl(x)xx⊤

Gl =
∑

x∈supp(πl) Tl(x)xỹl(x)
θ̃l = V −1

l Gl

18: Find low-rewarding actions based on confidence width Wl:

El =
{

x ∈ Dl : max
b∈Dl

⟨θ̃l, b− x⟩ > 2Wl

}

19: Update Dl+1 = Dl\El; hl+1 = 2hl; tl+1 = tl + Tl; l = l + 1
20: end while

Clients sampling and private feedback aggregation (Lines 7-16): The central server randomly
samples a subset Ul of ⌈2αl⌉ users (called clients) from U to participate in the global bandit learning (Line 7).
Each sampled client u ∈ Ul collects their local reward observations of each chosen action x ∈ supp(πl) and
computes the average yu

l (x) as feedback (Line 10). Before being used to estimate the global parameter by
the central server, these feedback y⃗u

l ≜ (yu
l (x))x∈supp(πl) ∈ R|supp(πl)| are processed by a Privatizer P to

ensure differential privacy. Recall that a Privatizer P = (R,S,A) is a process completed by the clients, the
server, and/or a trusted third party. In particular, according to the requirements of privacy protections under
different DP models, the Privatizer P enjoy flexible instantiations (see detailed discussions in Section 4).
Generally speaking, a Privatizer works in the following manner: each client u runs the randomizer R
on its local average reward y⃗u

l (over Tl pulls) and then sends the resulting (potentially private) messages
R(y⃗u

l ) to the shuffler (Line 13). The shuffler S (if exists) permutes messages from all clients uniformly before
sending the results S({R(y⃗u

l )}u∈Ul
) to the analyzer A at the central server (Line 15). Finally, the analyzer A
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aggregates received messages (potentially in a privacy-preserving manner) and outputs a private averaged
local reward ỹl(x) (over participating clients Ul) for each action x ∈ supp(πl) (Line 16). We defer the rigorous
formulation of different DP models for the Privatizer P to Section 4, where the corresponding instantiations
of R,S, and A are also provided.

Parameter estimation and action elimination (Lines 17-19): Using privately aggregated feedback
(i.e., the private averaged local reward ỹl of the chosen actions x ∈ supp(πl)), the central server computes the
least-square estimator θ̃l (Line 17). To do so, we need to carefully construct a confidence width Wl as follows:

Wl ≜


√

2d

|Ul|hl︸ ︷︷ ︸
action-related

+ σ√
|Ul|︸ ︷︷ ︸

client-related

+ σn︸︷︷︸
privacy noise


√

2 log
(

1
β

)
, (3)

where σ is the standard variance associated with client sampling, σn is related to the privacy noise determined
by the DP model, and β is the confidence level from the input. We choose this confidence width based on the
concentration inequality for sub-Gaussian variables. Specifically, while the first two terms characterize the
action-related and client-related uncertainty, respectively, the third term captures the added privacy noise
to ensure differential privacy for the clients. Note that this privacy noise σn depends on the considered DP
model. Using this confidence width Wl and the estimated global model parameter θ̃l, we can identify a subset
of suboptimal actions El w.h.p. (Line 18). At the end of the l-th phase, we update the set of active actions
Dl+1 by eliminating El from Dl (Line 19).

Finally, we make two remarks about the DP-DPE algorithm.
Remark 1. While a finite number of actions is assumed in this paper, one could extend it to the case with
an infinite number of actions by using the covering argument (Lattimore & Szepesvári, 2020, Lemma 20.1).
Specifically, when the action set D ⊆ Rd is infinite, we can replace D with a finite set Dϵ0 ⊆ Rd with
|Dϵ0 | ≤ (3/ϵ0)d such that for all x ∈ D, there exists an x′ ∈ Dϵ0 with ∥x− x′∥2 ≤ ϵ0.
Remark 2. In Algorithm 1, we assume that Dl spans Rd such that matrices V (πl) and Vl are invertible.
Then, one could find the near optimal design πl(·) (Line 4) and compute the least-square estimator θ̃l (Line 17).
When Dl does not span Rd, one can simply work in the smaller space span(Dl) (Lattimore et al., 2020).

4 DP-DPE in Different DP Models

As alluded before, one of the key features of our general algorithmic framework DP-DPE is that it enables us
to consider different trust models in DP (i.e., who the user can trust with her sensitive data) in a unified
way by instantiating different mechanisms for the Privatizer. In this section, we formalize DP models
integrated with our DP-DLB formulation and provide concrete instantiations for the Privatizer P in
DP-DPE according to different trust models.

4.1 DP-DPE in the Central DP Model

In the central DP model, we assume that each client trusts the server, and hence, the server can collect clients’
raw data (i.e., the local reward yu

l (x) for each chosen action x in our case). The privacy guarantee is that
any adversary with arbitrary auxiliary information cannot infer a particular client’s data by observing the
outputs of the server. To achieve this privacy protection, the central DP model requires that the outputs of
the server on two neighboring datasets differing in only one client are indistinguishable (Dwork et al., 2006).
To present the formal definition in our case, recall that the DP-DPE algorithm (Algorithm 1) runs in phases,
and in each phase l, a set of new clients Ul will participate in the global bandit learning by providing their
feedback. Let7 UT ≜ (Ul)L

l=1 ∈ U∗ be the sequence of all the participating clients in the total L phases (T
rounds). We use M(UT ) = (x1, . . . , xT ) ∈ DT to denote the sequence of actions chosen in T rounds by the
central server. Intuitively, we are interested in a randomized algorithm such that the output M(UT ) does not
reveal “much” information about any particular client u ∈ UT . Formally, we have the following definition.

7We use the superscript ∗ to indicate that the length could be varying.
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Definition 1. (Differential Privacy (DP)). For any ϵ ≥ 0 and δ ∈ [0, 1], a DP-DPE instantiation is (ϵ, δ)-
differentially private (or (ϵ, δ)-DP) if for every UT ,U ′

T ⊆ U differing on a single client and for any subset of
actions Z ⊆ DT ,

P[M(UT ) ∈ Z] ≤ eϵP[M(U ′
T ) ∈ Z] + δ. (4)

According to the post-processing property of DP (cf. Proposition 2.1 in Dwork et al. (2014a)), it suffices
to guarantee that the final analyzer A in P is (ϵ, δ)-DP. To achieve this, we resort to standard Gaussian
mechanism at the server where A computes the average of local rewards for each chosen action to guarantee
(ϵ, δ)-DP. Specifically, in each phase l, the participating clients send their average local rewards {y⃗u

l }u∈Ul

directly to the central server, and the central server adds Gaussian noise to the average local feedback (over
clients) before estimating the global parameter and deciding the chosen actions in the next phase. That is,
in the central DP model, both R and S of the Privatizer P are identity mapping while A adds Gaussian
noise when computing the average. In this case, P = A, and the private aggregated feedback for the chosen
actions in the l-th phase can be represented as

ỹl = P ({y⃗u
l }u∈Ul

) = A ({y⃗u
l }u∈Ul

) = 1
|Ul|

∑
u∈Ul

y⃗u
l + (γ1, . . . , γsl

), (5)

where sl ≜ |supp(πl)|, γj
i.i.d.∼ N (0, σ2

nc), and the variance σ2
nc is based on the ℓ2 sensitivity of the average

1
|Ul|

∑
u∈Ul

y⃗u
l . In the rest of the paper, we will continue to use sl instead of |supp(πl)| to denote the number

of actions chosen in the l-th phase for notational simplicity, and it is also the dimension of y⃗u
l for all u.

With the above definition, we present the privacy guarantee of DP-DPE in the central DP model in Theorem 1.

Theorem 1. The DP-DPE instantiation using the Privatizer in Eq. 5 with σnc = 2B
√

2sl ln(1.25/δ)
ϵ|Ul|

guarantees (ϵ, δ)-DP.

The relatively high trust model in the central DP is not always feasible in practice since some clients do not
trust the server and are not willing to share any of their sensitive data. This motivates the introduction of a
strictly stronger notion of privacy protection called the local DP (Kasiviswanathan et al., 2011), which is the
main focus of the next subsection.

4.2 DP-DPE in the Local DP Model

In the local DP model, the privacy burden is now at each client’s local side, in the sense that any data
sent by any client must already be private. In other words, even though an adversary can observe the data
communicated from a client to the server, the adversary cannot infer any sensitive information about the
client. Mathematically, this requires a local randomizer R at each user’s side to generate approximately
indistinguishable outputs on any two different data inputs. In particular, let Y be the set of all possible
values of the average local reward y⃗u

l for client u. Then, we have the following formal definition.
Definition 2. (Local Differential Privacy (LDP)). For any ϵ ≥ 0 and δ ∈ [0, 1], a DP-DPE instantiation is
(ϵ, δ)-local differentially private (or (ϵ, δ)-LDP) if for any client u, every two datasets y⃗, y⃗′ ∈ Y satisfies

P[R(y⃗) = o] ≤ eϵP[R(y⃗′) = o] + δ. (6)

for every possible output o ∈ {R(y⃗)|y⃗ ∈ Y }.

That is, an instantiation of DP-DPE is (ϵ, δ)-LDP if the local randomizer R in P is (ϵ, δ)-DP. To this end, the
randomizer R at each client employs a Gaussian mechanism, the shuffler S is a simple identity mapping, and
the analyzer A at the server side conducts a simple averaging. Then, the overall output of the Privatizer is
the following:

ỹl = P ({y⃗u
l }u∈Ul

) = 1
|Ul|

∑
u∈Ul

R(y⃗u
l ) = 1

|Ul|
∑

u∈Ul

(y⃗u
l + (γu,1, . . . , γu,sl

)) , (7)

where γu,j
i.i.d.∼ N (0, σ2

nl), and the variance σ2
nl is based on the sensitivity of y⃗u

l .

With the above definition, we present the privacy guarantee of DP-DPE in the local DP model in Theorem 2.

9
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Theorem 2. The DP-DPE instantiation using the Privatizer in Eq. (7) with σnl = 2B
√

sl ln(1.25/δ)
ϵ

guarantees (ϵ, δ)-LDP.

Although the local DP model offers a stronger privacy protection compared to the central DP model, it
often comes at a price of the regret performance. As we will see, the regret performance of DP-DPE in the
local DP model is much worse than that in the central DP model. Therefore, a fundamental question is
whether there is a Privatizer for DP-DPE that can achieve the same regret as in the central DP Privatizer
while assuming similar trust model as in the local DP Privatizer. This motivates us to consider a recently
proposed shuffle DP model (Cheu et al., 2019; Erlingsson et al., 2019), which is the main focus of the next
subsection.

4.3 DP-DPE in the Shuffle DP Model

In the shuffle DP model, between the clients and the server, there exists a shuffler that permutes a batch of
clients’ randomized data before they are observed by the server so that the server cannot distinguish between
two clients’ data. Thus, an additional layer of randomness is introduced via shuffling, which can often be
easily implemented using cryptographic primitives (e.g., mixnets) due to its simple operation (Bittau et al.,
2017). Due to this, the clients now tend to trust the shuffler but still do not trust the central server as in
the local DP model. This new trust model offers a possibility to achieve a better regret-privacy tradeoff.
This is because the additional randomness of the shuffler creates a privacy blanket so that by adding much
less random noise, each client can now hide her information in the crowd, i.e., privacy amplification by
shuffling (Garcelon et al., 2021).

Formally, a standard one-round shuffle protocol consists of all the three parts: a (local) randomizer R, a
shuffler S, and an analyzer A. In this protocol, the clients trust the shuffler but not the analyzer. Hence, the
privacy objective is to ensure that the outputs of the shuffler on two neighbouring datasets are indistinguishable
from the analyzer’s point of view. Note that each client still does not send her raw data to the shuffler even
though she trusts it. Due to this, a shuffle protocol often also offers a certain level of LDP guarantee.

In our case, the online learning algorithm will proceed in multiple phases rather than a simple one-round
computation. Thus, we need to guarantee that all the shuffled outputs are indistinguishable. To this end,
we define the (composite) mechanism Ms(UT ) ≜ (S ◦ R|U1|,S ◦ R|U2|, . . . ,S ◦ R|UL|), where S ◦ R|Ul| ≜
S({R(y⃗u

l )}u∈Ul
). We say a DP-DPE instantiation satisfies the shuffle differential privacy (SDP) if the

composite mechanism Ms is DP, which leads to the following formal definition.
Definition 3. (Shuffle Differential Privacy (SDP)). For any ϵ ≥ 0 and δ ∈ [0, 1], a DP-DPE instantiation is
(ϵ, δ)-shuffle differential privacy (or (ϵ, δ)-SDP) if for any pair UT and U ′

T that differ in at most one client,
the following is satisfied for all Z ⊆ Range(Ms):

P[Ms(UT ) ∈ Z] ≤ eϵP[Ms(U
′

T ) ∈ Z] + δ. (8)

We present the concrete pseudocode ofR, S, and A for the shuffle DP model Privatizer P in Algorithm 2 (see
Appendix A.3), which builds on the vector summation protocol recently proposed in Cheu et al. (2021). Here,
we provide a brief description of the process. Essentially, the noise added in the shuffle model Privatizer
relies on the upper bound of ℓ2 norm of the input vectors. However, each component operates on each
coordinate of the input vectors independently. Recall that the input of the shuffle model Privatizer is
{y⃗u

l }u∈Ul
and that each chosen action x corresponds to a coordinate in the sl-dimentional vector. Consider

the coordinate jx corresponding to action x, and the entry yu
l (x) at client u. First, the local randomizer

R encodes the input yu
l (x) via a fixed-point encoding scheme (Cheu et al., 2019) and ensures privacy by

injecting binomial noise. Specifically, given any scalar w ∈ [0, 1], it is first encoded as ŵ = w̄ + γ1 using an
accuracy parameter g ∈ N, where w̄ = ⌊wg⌋ and γ1 ∼ Ber(wg − w̄) is a Bernoulli random variable. Then,
a binomial noise γ2 ∼ Bin(b, p) is generated, where b ∈ N and p ∈ (0, 1) controls the level of the privacy
noise. The output of the local randomizer for each coordinate is simply a collection of g + b bits, where
ŵ + γ2 bits are 1’s and the rest are 0’s. Combining these g + b bits for each coordinate jx for x ∈ supp(πl)
yields the final outputs of the local randomizer R for the vector y⃗u

l . Note that the output bits for each
coordinate are marked with the coordinate index so that they will not be mixed up in the following procedures.
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After receiving the bits from all participating clients, the shuffler S simply permutes these bits uniformly
at random and sends the output to the analyzer A at the central server. The analyzer A adds the received
bits, removes the bias introduced by encoding and binormial noise (through simple shifting operations), and
divides the result by |Ul| for each coordinate. Finally, the analyzer A outputs a random sl-dimensional vector
ỹl, whose expectation is the average of the input vectors. That is, E[ỹl] = 1

|Ul|
∑

u∈Ul
y⃗u

l (which is proven
in Appendix A.3). In the shuffle model Privatizer, the three parameters g, b, and p need to be properly
chosen according to the privacy requirement. Then, the final privately aggregated data is the following:

ỹl = P ({y⃗u
l }u∈Ul

) = A(S({R(y⃗u
l )}u∈Ul

)). (9)

With the above definition, we present the privacy guarantee of DP-DPE in the shuffle DP model in Theorem 3.
Theorem 3. For any ϵ ∈ (0, 15) and δ ∈ (0, 1/2), the DP-DPE instantiation using the Privatizer specified
in Algorithm 2 guarantees (ϵ, δ)-SDP.

5 Performance Analysis

In this section, we study the performance of DP-DPE under different DP models in terms of regret and
communication cost. We start with the non-private DP-DPE algorithm (with ỹl = 1

|Ul|
∑

u∈Ul
y⃗u

l and σn = 0
for all l) and present the main results in Theorem 4.
Theorem 4 (Non-private DP-DPE). Suppose β = 1/(kT ) and σn = 0 in Algorithm 1. Then, the non-private
DP-DPE algorithm achieves the following expected regret:

E[R(T )] = O(
√

dT log(kT )) + O(σT 1−α/2
√

d log(kT )) + O(d log log d), (10)

and the communication cost is O(dT α).

We present a proof sketch below and provide the detailed proof in Appendix B.

Proof sketch. We begin by considering a concentration inequality P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 2β, which indicates

that in the l-th phase, the estimation error for the global reward of each action is bound by Wl w.h.p. Then,
we show that the optimal action stays in the active set the whole time w.h.p. and that the regret incurred by
one pull is bounded by 4Wl−1 in the l-th phase. Finally, summing up the regret over rounds in all phases, we
derive the regret upper bound. The analysis of the communication cost is quite straightforward. In the l-th
phase, only local average reward of each chosen action in this phase is communicated. Since the number of
chosen actions is bounded by (4d log log d + 16) according to the near-G-optimal design (Lattimore et al.,
2020, Proposition 3.7), the communication cost is proportional to the total number of clients involved in the
entire learning process.

Remark 3. Theorem 4 shows an instance-independent regret upper bound for the proposed DP-DPE algorithm.
Interestingly, we can observe an obvious tradeoff between regret and communication cost, captured by the
value of α. While a larger α leads to a smaller regret, it also incurs a larger communication cost. Setting
α = 2/3 gives O(T 2/3) for both regret and communication cost.

In the following, we present the performance of DP-DPE in terms of regret and communication cost under
different DP models, i.e., instantiated with different Privatizers introduced in Section 4. We use CDP-DPE,
LDP-DPE, and SDP-DPE to denote the DP-DPE algorithm in the central, local, and shuffle DP models,
respectively.

Theorem 5 (CDP-DPE). Consider the Gaussian mechanism with σnc = 2B
√

2sl ln(1.25/δ)
ϵ|Ul| in the central DP

model. With σn = 2σnc

√
d and β = 1/(kT ), CDP-DPE achieves the following expected regret:

E[R(T )] = O(σT 1−α/2
√

d log(kT )) + O

(
Bd1+α

√
ln(1/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2

√
ln(1/δ)

√
log(kT )

ϵ

)
,

(11)
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and the communication cost is O(dT α).

Theorem 6 (LDP-DPE). Consider the Gaussian mechanism with σnl = 2B
√

2sl ln(1.25/δ)
ϵ in the local DP

model. With σn = 2σnl

√
d

|Ul| in the l-th phase and β = 1/(kT ), LDP-DPE achieves the following expected
regret:

E[R(T )] = O

((
Bd
√

ln(1/δ)
ϵ

+ σ

)
T 1−α/2

√
d log(kT )

)
+ O

(
Bd2

√
ln(1/δ)

√
log(kT )

ϵ

)
, (12)

and the communication cost is O(dT α).

Theorem 7 (SDP-DPE). With σn = 2σns

√
d = O

(
B

√
dsl log (sl/δ)

ϵ|Ul|

)
in the l-th phase and β = 1/(kT ),

SDP-DPE achieves the following expected regret:

E[R(T )] = O(σT 1−α/2
√

d log(kT )) + O

(
Bd1+α ln(d/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2 ln(d/δ)

√
log(kT )

ϵ

)
,

(13)

and the communication cost is O(dT 3α/2).

We provide the detailed proofs of Theorems 5, 6, and 7 in Appendix B and make the following remarks.
Remark 4 (Privacy “for-free”). Comparing the above results with Theorem 4 for the non-private case, we
observe that the DP-DPE algorithm enables us to achieve privacy guarantees “for free" in the central and
shuffle DP models, in the sense that the additional regret due to privacy protection is only a lower-order
additive term. Essentially, this is because the uncertainty introduced by privacy noise is dominated by the
client-related uncertainty, which can be captured by our carefully designed confidence width Wl in Eq. (3) and
our choice of σn for different Privatizers. See more discussions on achieving privacy “for-free” in Section 6.
Remark 5 (Regret-privacy tradeoff in the shuffle model). Consider the regret due to privacy protection.
From Theorems 5 and 6, we can see that while the local DP model ensures a stronger privacy guarantee
compared to the central DP model, it introduces an additional regret of O(T 1−α/2) compared to O(T 1−α) in
the central DP model. The shuffle DP model, however, leads to a much better tradeoff between regret and
privacy, achieving nearly the same regret guarantee as the central DP model, yet assuming a similar trust
model to the local DP model (i.e., without trusting the central server).
Remark 6 (Communication cost). Both CDP-DPE and LDP-DPE consume the same amount of communi-
cation resource as the non-private DP-DPE algorithm, counted based on the number of real numbers (Wang
et al., 2019). In contrast, SDP-DPE relies only on binary feedback (0/1 bits) from the clients, and thus,
the communication cost is counted based on the number of bits. It is worth noting that sending messages
consisting of real numbers could be difficult in practice on finite computers (Canonne et al., 2020; Kairouz
et al., 2021), and hence in this case it is desirable to adopt SDP-DPE, which incurs a communication cost of
O(dT 3α/2) bits.

6 Discussion on Achieving Privacy “for Free”

Following the remark on privacy “for-free” in the last section, in this section, we draw an interesting connection
of our novel bandit online learning problem to private (distributed) supervised learning problems, through
which we provide more intuition on why DP-DPE can achieve privacy “for-free”. In particular, we compare
our problem with differentially private stochastic convex optimization (DP-SCO) (Bassily et al., 2019), where
the goal is to approximately minimize the population loss8 over convex and Lipschitz loss functions given n
i.i.d. d-dimensional samples from a population distribution, while protecting privacy under different trust

8The population loss for a solution w is given by L(w) ≜ Ez∈D[l(w, z)], where w is the chosen solution (e.g., weights of a
classifier), z is a testing sample from the population distribution D, and l is a convex loss function of w.
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models. More specifically, via noisy stochastic gradient descent (SGD), the excess losses9 in DP-SCO under
various trust models are roughly as follows:

Central and Shuffle Model (Bassily et al., 2019; Cheu et al., 2021): Õ

(
1√
n

+
√

d

nϵ

)
, (14)

Local Model (Duchi et al., 2018): Õ

(
1√
n

+
√

d√
nϵ

)
. (15)

Recall our main results in Table 1 as follows (ignoring all the logarithmic terms for clarity):

Central and Shuffle Model: Õ

(√
dT 1−α/2 + d1+αT 1−α

ϵ

)
, (16)

Local Model: Õ

(√
dT 1−α/2 + d3/2T 1−α/2

ϵ

)
. (17)

Now, one can easily see that in both problems, privacy protection is achieved “for free” in the central and
shuffle models, in the sense that the second term (i.e., the additional privacy-dependent term) is a lower-order
term compared to the first term in both Eqs. (14) and (16). On the other hand, under the much stronger
local model, in both problems, the additional privacy-dependent term is of the same order as the first term in
both Eqs. (15) and (17).

We tend to believe that the above interesting connection is not a coincidence. Rather, it provides us with a
sharp insight into our introduced DP-DLB formulation. In particular, we know that the first term 1/

√
n in

DP-SCO comes from standard concentration results, i.e., how independent samples approximate the true
population parameter. Similarly, in our problem, the first term

√
dT 1−α/2 comes from the concentration

due to client sampling, which is used to approximate the true unknown population parameter θ∗. On the
other hand, the second term in DP-SCO is privacy-dependent and comes from the average of noisy gradients.
Similarly, in our problem, the second term is due to the average of the local reward vectors with added noise
for preserving privacy.

In addition to these useful insights, we believe that this interesting connection also opens the door to a series
of important future research directions, in which one can leverage recent advances in DP-SCO to improve our
main results (dependence on d, communication efficiency, etc.).

7 Numerical Results

In this section, we conduct simulations to evaluate the performance of our proposed DP-DPE algorithm, and
discuss several interesting observations. For all simulations, we set total rounds T = 106, population size
|U| = 105, action dimension d = 20, number of actions k = 103, noise of local models σ = 0.1, client-sampling
parameter α = 0.8, confidence probability β = 1/(kT ) and perform 20 independent runs.

First, we study the regret performance of the DP-DPE algorithm in different DP models. Recall that we
use CDP-DPE, LDP-DPE, and SDP-DPE to denote DP-DPE in the central, local, and shuffle DP models,
respectively. In Fig. 2(a), we present the final cumulative regret in T rounds of the three algorithms under
different values of the privacy budget ϵ. We can observe an obvious tradeoff between the privacy budget and
the regret performance for all the DP models: the cumulative regret in T rounds decreases as the privacy
requirement becomes less stringent (i.e., a larger ϵ). In addition, it also reflects the regret-privacy tradeoff
across different DP models. That is, with the same privacy budget ϵ, while LDP-DPE has the largest regret
yet without requiring the clients to trust anyone else (neither the server nor a third party), CDP-DPE achieves
the smallest regret but relies on the assumption that the clients trust the server. Interestingly, SDP-DPE
achieves a regret fairly close to that of CDP-DPE, yet without the need to trust the server. Along with our

9The excess loss measures the gap between the chosen solution and the optimal solution in terms of the population loss. That
is, the excess loss of w is given by L(w) − minw′∈W L(w′), where w is often the minimizer of the Empirical Risk Minimization
(ERM) problem: L̂(w) ≜ 1

n

∑n

i=1 l(w, zi), where {zi}n
i=1 are i.i.d. samples from the population distribution. To find the

minimizer of ERM, we often resort to SGD.
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(a) (b) (c)

Figure 2: Performance comparisons of different algorithms. The shaded area indicates the standard deviation.
(a) Final cumulative regret vs. the privacy budget ϵ. (b) Per-round regret vs. time with privacy parameters
ϵ = 10 and δ = 0.25. (c) Per-round regret vs. time for two non-private algorithms.

theoretical results, we demonstrate that DP-DPE in the shuffle model indeed achieves a better regret-privacy
tradeoff, compared to the central and local models.

In addition, we are also interested in the regret loss due to privacy protection and how efficiently DP-DPE
performs the global bandits learning. Fix the privacy parameters ϵ = 10 and δ = 0.25. In Fig. 2(b), we plot
how the per-round regret of the three algorithms (i.e., CDP-DPE, LDP-DPE, and SDP-DPE) varies over
time compared to the non-private DP-DPE algorithm, called DPE for simplicity. The DPE algorithm is
implemented by letting the Privatizer in DP-DPE simply output the average of the local rewards without
adding any privacy noise. We observe that LDP-DPE incurs the largest regret while ensuring the strongest
privacy guarantee (i.e., (ϵ, δ)-LDP). On the other hand, the regret performance of CDP-DPE and SDP-DPE
is very close to that of DPE (that does not ensure any privacy guarantees), under the assumption of a
trusted central server and a trusted third party shuffler, respectively. Along with our theoretical results, we
demonstrate that DP-DPE indeed allows us to achieve privacy “for-free” in the central and shuffle model.

Finally, we demonstrate that the exponentially-increasing client-sampling plays a key role in balancing
between regret and communication cost. To this end, we compare our DPE (non-private DP-DPE) algorithm
with another non-private algorithm, called DPE-FixedU in Fig. 2(c). The DPE-FixedU algorithm is based on
DPE, but differently, samples a fixed number U of participating clients in each phase (i.e., the participating
clients are different but the number of clients in each phase is fixed U , in contrast to our increasing sampling
schedule). For a fair comparison, the value of U is obtained by keeping the total communication costs under
two algorithms to be equal. The result shows that DPE learns much faster than the DPE-FixedU when
consuming the same communication resource, which validates our conclusion.

8 Related Work

The bandit models (including linear bandits) and their variants have proven to be useful for many real-world
applications and have been extensively studied (see, e.g., Bubeck & Cesa-Bianchi (2012); Slivkins (2019);
Lattimore & Szepesvári (2020) and references therein). Most of the existing studies assume that the exact
reward feedback is available to the learning agent for updating the model. However, there is a key difference
in the new linear bandit setting we consider: while an action is taken at a central server, it influences a large
population of users that contribute to the global reward, which, unfortunately, is not fully observable. Instead,
one can learn the global model at the server by randomly sampling a subset of users from the population
and iteratively aggregating such partial distributed feedback. While this setting shares some similarities
with distributed bandits, federated bandits, and multi-agent cooperative bandits, our motivation and model
are very different from theirs, which leads to different regret definitions (global regret vs. group regret; see
Section 2) and algorithmic solutions. In the following, we discuss most relevant work in the literature and
highlight the key differences.
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Linear bandits. While the stochastic multi-armed bandits (MAB) model has been extensively studied for a
wide range of applications, its modeling power is limited by the assumption that actions are independent. In
contrast, the linear bandit model captures the correlation among actions via an unknown parameter (Dani
et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011). The best-known regret upper
bound for stochastic linear bandits is O(d

√
T log(T )) in Abbasi-Yadkori et al. (2011), which holds for an

almost arbitrary, even infinite, bounded subset of a finite-dimensional vector space. For a special setting
where the set of actions is finite and does not change over time, it is shown in Lattimore & Szepesvári
(2020) that a phased elimination with G-optimal exploration algorithm guarantees a regret upper bounded by
O(
√

dT log(kT )). This new bound is better by a factor of
√

d, which deserves the effort when d ≥ log(k).
However, none of these studies consider the scenario where an action influences a large population and the
exact reward feedback is unavailable, which is a key challenge in our problem. Note that the linear bandits
we consider is different from the contextual linear bandits in Li et al. (2010); Chu et al. (2011) where the
parameter is not shared by actions (although assuming linear reward function), and thus, the actions are not
correlated through the parameter.

Differentially private online learning and bandits. Since proposed in Dwork et al. (2006), differential
privacy (DP) has become the de facto privacy preserving model in many applications, including online learning
(Jain et al., 2012) and bandits problems (Mishra & Thakurta, 2015). Specifically, in Tossou & Dimitrakakis
(2016); Ren et al. (2020); Tenenbaum et al. (2021), MAB has been studied in the central, local, and shuffle
DP models, respectively. In Shariff & Sheffet (2018), the authors explore DP in contextual linear bandits and
introduce joint DP as ensuring the standard DP incurs a linear regret. As a stronger privacy protection, local
DP is also studied for contextual linear bandits (Zheng et al., 2020) and Bayesian optimization (Zhou & Tan,
2020). However, to the best of our knowledge, none of existing works consider the shuffle DP in the linear
bandits setting. Moreover, our proposed DP-DPE algorithm allows one to naturally integrate different DP
models into a unified algorithmic learning framework.

Distributed bandits. Another line of related work is on multi-agent collaborative learning in the distributed
bandits setting (Agarwal et al., 2021; Cesa-Bianchi et al., 2016; Martínez-Rubio et al., 2019; Dubey et al.,
2020b;a; Wang et al., 2019). The most relevant work to ours is the distributed linear bandit problem studied
in Wang et al. (2019). Similarly, they design a distributed phased elimination algorithm where a central server
aggregates data provided by the local clients and iteratively eliminates suboptimal actions. However, there
are two key differences: i) they consider the standard group regret minimization problem with homogeneous
clients that have the same unknown parameter; ii) the observed rewards at the clients are directly sent to the
central server without any data privacy protection.

Federated bandits. Federated learning (FL) has received substantial attention since its introduction in
McMahan et al. (2017). The main idea of FL is to enable collaborative learning among heterogeneous devices
while preserving data privacy. Very recently, bandit problems have also been studied in the federated setting,
including federated multi-armed bandits (Shi & Shen, 2021; Shi et al., 2021; Zhu et al., 2021), federated linear
bandits (Dubey & Pentland, 2020; Huang et al., 2021), and federated Bayesian optimization (Dai et al., 2020).
Among all the above work, the two most relevant studies are Huang et al. (2021) and Dubey & Pentland
(2020). While they both consider the case where all heterogeneous users share the same unknown parameter
with heterogeneous decision sets, in our problem of global reward maximization, the users have heterogeneous
unknown local parameters. This heterogeneity among users introduces a new type of uncertainty (called
client-related uncertainty), which has to be addressed simultaneously with the action-related uncertainty in
our work (see Challenge a⃝ in Section 3.1).

In addition to the differences in model and problem formulation, we also highlight the main technical
contributions compared to these works in the following.

Very recently, the work of Huang et al. (2021) studies a similar linear bandits problem in federated setting and
also employs a phased elimination algorithm. However, there are two key differences: i) They do not consider
the correlation among the actions. That is, the linear bandits setting plays a different role in their work.
Specifically, they consider a linear reward for contextual bandits while sill studying multi-armed bandits with
independent actions, each of which is associated with a distinct parameter vector. Differently, the linear
bandits formulation in our work is used to capture the correlation among the actions and can be extended
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to the case with an infinite number of actions; ii) When aggregating users’ data for learning the global
parameter, we protect users’ data privacy using rigorous differential privacy guarantees, which, however, is
not considered in their design.

While Dubey & Pentland (2020) also employs DP to protect users’ data privacy, in their work both the Gram
matrix of actions (of size O(d2)) and reward vectors (of size O(d)) need to be periodically communicated using
some DP mechanisms (e.g., the Gaussian mechanism). Instead, in our algorithm only private average local
reward for the chosen actions (of size O(d log log d)) would be communicated in each phase. Moreover, while
they only consider a variant of the central DP model, our DP-DPE solution provides a unified algorithmic
learning framework, which can be instantiated with different DP models. Specifically, DP-DPE with the
shuffle model enables us to achieve a finer regret-privacy-communication tradeoff (see Table 1). That is, not
only can it achieve nearly the same regret performance as the central model (yet without trusting the central
server), but it requires the users to report feedback in bits only throughout the learning process.

Discussion. One may wonder whether we can follow the idea of federated learning to share clients’ locally
learned model parameters only. This way, one can avoid sharing the raw data, which is another way of
protecting clients’ data privacy. However, we argue that the additional benefit is marginal. On the one hand,
by employing different DP mechanisms, our proposed DP-DPE algorithms already ensure provable privacy
guarantees. On the other hand, the communication cost of transmitting the (private) average rewards is
nearly the same as that of transmitting the local model parameters. Specifically, in each phase, a client in our
DP-DPE algorithm needs to send a |supp(πl)|-dimensional vector in DP-DPE, compared to a d-dimensional
vector when sending the local model parameters. Therefore, the difference is really marginal since we have
|supp(πl)| ≤ 4d log log d + 16.

9 Conclusion

In this paper, we considered the problem of global reward maximization with only partial feedback in a
distributed linear bandit setting. This problem is motivated by several practical applications, where the
action of the learning agent would generate a global reward, which represents the overall performance of a
large population. In such scenarios, it is often difficult or even impossible to obtain exact feedback of the
global reward, which renders existing bandit algorithms inapplicable. To that end, we proposed a novel
distributed linear bandits formulation that enables the learning agent to sample clients and interact with them
by iteratively aggregating such partial distributed feedback. Two practical challenges arise in this learning
process: communication efficiency and data privacy. To address these challenges, we developed a unified
algorithmic learning framework, called DP-DPE, which can naturally integrate different differential privacy
models and enable us to systematically study the regret-privacy-communication tradeoff. An important
takeaway message from our theoretical and simulation results is two-fold: (i) DP-DPE allows us to achieve
privacy “for-free” in the central and shuffle models; (ii) DP-DPE in the shuffle model achieves a much better
regret-privacy-communication tradeoff compared to the central and local models.

Future work. While we assume actions correlated through a common linear reward function with parameter
θ∗, one interesting direction for future work is to extend linear reward functions to general functions (possibly
non-convex) via kernelized bandits. Another line of interesting direction is to consider misspecified distributed
linear bandits where the expected local parameter of the sampled clients is different from the global parameter.
In addition, our work also raises several interesting questions that are worth investigating. For example, can
we further improve the communication efficiency by using advanced shuffle protocols? Can we generalize our
formulation to studying reinforcement learning problems?
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A Proofs of Theorems in Section 4

In this section, we provide the proof of the theorems in Section 4 to show that DP-DPE is differentially
private in different models. Before considering different models, we describe the Gaussian Mechanism in the
differential privacy literature.

Let f : U → Rs be a vector-valued function operating on databases. The ℓ2-sensitivity of f , denoted ∆2f
is the maximum over all pairs U ,U ′ of neighboring datasets of ∥f(U)− f(U ′)∥. The Gaussian mechanism
adds independent noise drawn from a Gaussian with mean zero and standard deviation slightly greater than
∆2f

√
ln(1/δ)/ϵ to each element of its output (Dwork et al., 2014b).

Theorem 8. (Gaussian Mechanism (Dwork et al., 2014a)). Given any vector-valued function f : U∗ → Rs,
define ∆2 ≜ maxU,U ′∈U∗ ∥f(U)−f(U ′)∥2. Let σ = ∆2

√
2 ln(1.25/δ)/ϵ. The Gaussian mechanism, which adds

independently drawn random noise from N (0, σ2) to each output of f(·), i.e. returning f(U) + (γ1, . . . , γs)
with γj

i.i.d.∼ N (0, σ2), ensures (ϵ, δ)-DP.

A.1 The Central Model

The Privatizer P in the central model adds Gaussian noise to the averaged local performance of each action
directly, i.e., at analyzer A while doing identity mapping with R and S. That is,

ỹl = P ({y⃗u
l }u∈Ul

) = A ({y⃗u
l }u∈Ul

) = 1
|Ul|

∑
u∈Ul

y⃗u
l + (γ1, . . . , γsl

), (18)

where γj
i.i.d.∼ N (0, σ2

nc).
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Proof of Theorem 1. Recall that UT = (Ul)L
l=1 ⊆ U represents the sequence of participating clients in the

total L phases. Let UT ,U ′
T ⊆ U be the sequence of participating clients differing on a single client and Ul, U ′

l

be the sets of participating clients in l-th phase corresponding to UT and U ′
T respectively. Note that the ℓ2

sensitivity of the average 1
|Ul|

∑
u∈Ul

y⃗u
l is

∆2 = max
UT ,U ′

T

∥∥∥∥∥∥ 1
|Ul|

∑
u∈Ul

y⃗u
l −

1
|Ul|

∑
u∈U ′

l

y⃗u
l

∥∥∥∥∥∥
2

≤ 1
|Ul|

max
u,u′∈U

∥y⃗u
l − y⃗u′

l ∥2

≤ 2
|Ul|

max
u∈U
∥y⃗u

l ∥2 ≤
2B
√

sl

|Ul|

(19)

where the last step is because sl is the dimension of yu
l and then ∥y⃗u

l ∥2
2 ≤ sl∥yu

l (x)∥2
1 ≤ slB

2.

Let σnc = 2B
√

2sl ln(1.25/δ)
ϵ|Ul| . According to Theorem 8, we have that the output ỹl of the Privatizer in the

central model is (ϵ, δ)-DP with respect to UT .

Combining the result of Proposition 2.1 in Dwork et al. (2014a), we derive that DP-DPE with a Privatizer
in the central model is (ϵ, δ)-DP.

A.2 The Local Model

The Privatizer P in the local model applies Gaussian mechanism to the local average performance of each
action (y⃗u

l ) with R while doing identity mapping with S and pure averaging with A. That is,

ỹl = P ({y⃗u
l }u∈Ul

) = 1
|Ul|

∑
u∈Ul

R(y⃗u
l ) = 1

|Ul|
∑

u∈Ul

(y⃗u
l + γu) ,

where γu
i.i.d.∼ N (0, σ2

nl).

Proof of Theorem 2. An algorithm is (ϵ, δ)-LDP if the output of the local randomizer R is (ϵ, δ)-DP. In the
local model of Privatizer, we have

R(y⃗u
l ) = y⃗u

l + γu. (20)
For any input of local parameter estimator y⃗l, the ℓ2 sensitivity is

∆2 = max
y⃗l,y⃗′

l

∥y⃗l − y⃗′
l∥2 ≤ 2 max ∥y⃗u

l ∥2 ≤ 2B
√

sl. (21)

Let σnl = 2B
√

2sl ln(1.25/δ)
ϵ . According to Theorem 8, we have that the output of the local randomizer R

of the Privatizer in the local model is (ϵ, δ)-DP. That is, the DP-DPE algorithm instantiated with the
Privatizer in the local model is (ϵ, δ)-LDP.

A.3 The Shuffle Model

In the shuffle model, the Privatizer P operates under the cooperation of the local randomizer R at each
client, the shuffler S, and the analyzer A at the central server. First, we present the implementation of each
component of the Privatizer P, including R, S, and A, in the shuffle model in Algorithm 2.

The Privatizer P in the shuffle model adds binary bits to the local average performance of each played
action (after being converted to binary representation) at each client, i.e., at local randomizer R, and then
shuffles all bits reported from all participating clients via a shuffler S before sending them to the central
server, where the analyzer A output an unbiased and private estimator of the average of local parameters.
That is,

ỹl = P ({y⃗u
l }u∈Ul

) = A(S({R(y⃗u
l )}u∈Ul

)). (23)
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Algorithm 2 M : (ϵ, δ)-SDP vector average mechanism for a set U of clients
1: Input: {yu}u∈U , where each yu ∈ Rs, ∥yu∥2 ≤ ∆2
2: Let 

ϵ̂ = ϵ

18
√

log(2/δ)

g = max{ϵ̂
√
|U |/(6

√
5 ln ((4s)/δ)),

√
s, 10}

b = ⌈ 180g2 ln (4s/δ)
ϵ̂2|U | ⌉

p = 90g2 ln (4s/δ)
bϵ̂2|U |

(22)

// Local Randomizer
function R(yu)

3: for coordinate j ∈ [s] do
4: Shift data to enforce non-negativity: wu,j = (yu)j + ∆2,∀u ∈ U

//randomizer for each entry
5: Set w̄u,j ← ⌊wu,jg/(2∆2)⌋ //max |(yu)j + ∆2| ≤ 2∆2
6: Sample rounding value γ1 ∼ Ber(wu,jg/(2∆2)− w̄u,j)
7: Sample privacy noise value γ2 ∼ Bin(b, p)
8: Let ϕu

j be a multi-set of (g + b) bits associated with the j-th coordinate of client u, where ϕu
j consists

of w̄u,j + γ1 + γ2 copies of 1 and g + b− (w̄i,j + γ1 + γ2) copies of 0
9: end for

10: Report {(j, ϕu
j )}j∈[s] to the shuffler

end function
// Shuffler
function S({(j, ϕ⃗j)}j∈[s]) //ϕ⃗j = (ϕu

j )u∈U

11: for each coordinate j ∈ [s] do
12: Shuffle and output all (g + b)|U | bits in ϕ⃗j

13: end for
end function
// Analyzer
function A(S({(j, ϕ⃗j)}j∈[s])

14: for coordinate j ∈ [s] do
15: Compute zj ← 2∆2

g|U | ((
∑(g+b)|U |

i=1 (ϕ⃗j)i)− b|U |p) // (ϕ⃗)i denotes the i-th bit in ϕ⃗j

16: Re-center: oj ← zj −∆2
17: end for
18: Output the estimator of vector average o = (oj)j∈[s]

end function

Before proving Theorem 3, we first show that the shuffle protocol in Algorithm 2 is (ϵ, δ)-SDP.

In this proof, we use (·)j to denote the j-th element of an vector.

Theorem 9. For any ϵ ∈ (0, 15), δ ∈ (0, 1), Algorithm 2 is (ϵ, δ)-SDP, unbiased, and has error distribution
which is sub-Gaussian with variance σ2

ns = O
(

∆2 ln(s/δ)
ϵ2|U |2

)
and independent of the inputs.

Proof. The proof for the privacy part follows from the SDP guarantee of vector summation protocol in Cheu
et al. (2021). In the following, we try to show the remaining part of the above theorem.

Consider an arbitrary coordinate j ∈ [s]. Note that the sum of the messages produced by R at client u is:
w̄u,j +γ1 +γ2. Since γ1 is drawn from Ber(wu,jg/(2∆2)− w̄u,j), which has expectation E[γ1] = wu,jg/(2∆2)−
w̄u,j and is 1/2-sub-Gaussian according to Hoeffding Lemma. Meanwhile, γ2 ∼ Bin(b, p) indicates E[γ2] = bp

and
√

b/2-sub-Gaussian. Recall that zj = 2∆2
g|U | ((

∑(g+b)U
i=1 (ϕ⃗j)i)− b|U |p) = 2∆2

g|U | (
∑

u∈U (w̄u,j + γ1 + γ2)− b|U |p)
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and oj = zj −∆2. We have

E[oj ] =E[zj −∆2] = E

[
2∆2

g|U |

(∑
u∈U

(w̄u,j + γ1 + γ2)− b|U |p

)
−∆2

]

= 2∆2

g|U |

(∑
u∈U

(w̄u,j + E[γ1] + E[γ2])− b|U |p

)
−∆2

= 2∆2

g|U |

(∑
u∈U

(
wu,jg

2∆2
+ bp

)
− b|U |p

)
−∆2 = 1

|U |
∑
u∈U

wu,j −∆2

= 1
|U |

∑
u∈U

((yu)j + ∆2)−∆2 = 1
|U |

∑
u∈U

(yu)j ,

which indicates the output is unbiased estimator of the average. In addition, according to the property of
sub-Gaussian, we have the output oj satisfies

Var[oj ] =Var[zj −∆2]

=Var
[

2∆2

g|U |

(∑
u∈U

(w̄u,j + γ1 + γ2)
)]

=Var
[

2∆2

g|U |

(∑
u∈U

(γ1 + γ2)
)]

≤ 4∆2
2

g2|U |2

(
|U |
4 + b|U |

4

)
≤ ∆2

2
g2|U |2

(
|U |+ |U | · (180g2 ln (4s/δ)

ϵ̂2|U |
+ 1)

)
= ∆2

2
g2|U |2

(
2|U |+ 180g2 ln (4s/δ)

ϵ̂2

)
(a)
≤ 180∆2

2 ln (4s/δ)
|U |2ϵ̂2 + 180∆2

2 ln (4s/δ)
|U |2ϵ̂2

=360∆2
2 ln (4s/δ)
|U |2ϵ̂2 = O

(
∆2

2 ln2 (s/δ)
|U |2ϵ2

)
where (a) is derived from our choice of g in Eq. (22). The output oj is O

(
∆2 ln (s/δ)

|U |ϵ

)
-sub-Gaussian. Then, the

output vector o = {oj}j∈[s] is a s-dimensional O
(

∆2 ln (s/δ)
|U |ϵ

)
-sub-Gaussian vector according to the definition

of the sub-Gaussian vector.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. From Theorem 9, we have the shuffle protocol in Algorithm 2 guarantees (ϵ, δ)-SDP with
inputs {yu}u∈U . In the DP-DPE algorithm, we apply the shuffle protocol in Algorithm 2 as a Privatizer
with inputs {y⃗u

l }u∈Ul
and ∆2 = max ∥y⃗u

l ∥2 = B
√

sl in each phase l. By admitting new clients in each phase,
the DP-DPE algorithm is (ϵ, δ)-SDP.

B Proofs of Theorems in Section 5

In Sectoin 5, we present the performance analysis of the DP-DPE algoritm in different DP models. In this
section, we provide complete proofs for each of the theorems in Section 5. For reading convenience, we restate
all claims before proving them.
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B.1 Proof of Theorem 4

Theorem 4 (Non-private DP-DPE). Suppose β = 1/(kT ) and σn = 0 in Algorithm 1. Then, the non-private
DP-DPE algorithm achieves the following expected regret:

E[R(T )] = O(σT 1−α/2
√

d log(kT ) +
√

Td log(kT ) + d log log d), (24)

and the communication cost is O(dT α).

To prove Theorem 4, we start with analyzing regret in a specific phase and then combine all phases together
to get the total regret.

1) Regret in a specific phase

Let rl denote the incurred regret in the l-th phase, i.e., rl ≜
∑

t∈Tl
⟨θ∗, x∗ − xt⟩.

i) First, the total number of pulls in the l-th phase is Tl, where Tl =
∑

x∈supp(πl) Tl(x). We have

hl ≤ Tl ≤ hl + |supp(πl)| ≤ hl + h1,

where |supp(πl)| ≤ 4d log log d + 16 = h1.

ii) With σn = 0, Wl =
√

4d
|Ul|hl

log
(

1
β

)
+
√

2σ2

|Ul| log
(

1
β

)
, we have the following concentration inequalities, for

any x ∈ D,
P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 2β, and P

{
⟨θ∗ − θ̃l, x⟩ ≥Wl

}
≤ 2β. (25)

Proof. We prove the first concentration inequality in Eq. (25) in the following, and the second inequality can
be proved symmetrically. Let

Wl,1 ≜

√
4d

hl|Ul|
log
(

1
β

)
and Wl,2 ≜

√
2σ2

|Ul|
log
(

1
β

)
,

and thus, Wl = Wl,1 + Wl,2. Note that for any action x ∈ D, the gap between the estimated reward with
parameter θ̃l and the true reward with θ∗ satisfies

⟨θ̃l − θ∗, x⟩ =
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

θu − θ∗, x

〉
=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu, x

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ .

Then, we have

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
=P

{〈
θ̃l −

1
|Ul|

∑
u∈Ul

θu, x

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl

}

=P

{〈
θ̃l −

1
|Ul|

∑
u∈Ul

θu, x

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl,1 + Wl,2

}

≤P

{〈
θ̃l −

1
|Ul|

∑
u∈Ul

θu, x

〉
≥Wl,1

}
+ P

{
1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl,2

}
.

(26)

In the following, we try to bound the above two terms, respectively. Under the non-private DP-DPE algorithm,
the output of P is the exact average of local performance, i.e., ỹl = P ({y⃗u

l }u∈Ul
) = 1

|Ul|
∑

u∈Ul
y⃗u

l . Then, the
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estimated model parameter satisfies

θ̃l = V −1
l Gl

= V −1
l

∑
x∈supp(πl)

xTl(x)ỹl(x)

= V −1
l

∑
x∈supp(πl)

xTl(x) 1
|Ul|

∑
u∈Ul

yu
l (x)

= 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)yu
l (x)

= 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

x
∑

t∈Tl(x)

(x⊤θu + ηu,t)

= 1
|Ul|

∑
u∈Ul

V −1
l

 ∑
x∈supp(πl)

Tl(x)xx⊤θu +
∑

x∈supp(πl)

∑
t∈Tl(x)

ηu,tx


= 1
|Ul|

∑
u∈Ul

V −1
l

(
Vlθu +

∑
t∈Tl

ηu,txt

)

= 1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

V −1
∑
t∈Tl

ηu,txt

(27)

For any x in D, 〈
x, V −1

l

∑
t∈Tl

ηu,txt

〉
=
∑
t∈Tl

⟨x, V −1
l xt⟩ηu,t. (28)

Note that ηu,t is i.i.d 1-sub-Gaussian over t and that the chosen action xt at t is deterministic in the l-th
phase under the DP-DPE algorithm. Combining the following result,

∑
t∈Tl

⟨x, V −1
l xt⟩2 = x⊤V −1

l

(∑
t∈Tl

xtx
⊤
t

)
V −1

l x = ∥x∥2
V −1

l

,

where the second equality is due to Vl =
∑

t∈Tl
xtx

⊤
t , we derive that the LHS of Eq. (28) is ∥x∥V −1

l
-sub-

Gaussian. Besides, we have ∥x∥2
V −1

l

≤
∥x∥2

Vl(πl)−1

hl
≤ g(πl)

hl
≤ 2d

hl
by the near-G-optimal design. According to

the property of a sub-Gaussian random variable, we can obtain

P

{
1
|Ul|

∑
u∈Ul

〈
x, V −1

l

∑
t∈Tl

ηu,txt

〉
≥Wl,1

}
≤ exp

− |Ul|W 2
l,1

2∥x∥2
V −1

l

 ≤ exp
{
−
|Ul| 4d

hl|Ul| log(1/β)
2 · 2d

hl

}
= β. (29)

Combining the result in Eq. (27), we have

P

{〈
θ̃l −

1
|Ul|

∑
u∈Ul

θu, x

〉
≥Wl,1

}
= P

{
1
|Ul|

∑
u∈Ul

〈
x, V −1

l

∑
t∈Tl

ηu,txt

〉
≥Wl,1

}
≤ β

For the second term of Eq. (26), we know that ⟨θu − θ∗, x⟩ = ⟨ξu, x⟩ is ∥x∥2σ-sub-Gaussian. Similarly,
according to the sub-Gaussian property, we have

P

{
1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl,2

}
≤ exp

{
−
|Ul|W 2

l,2

2∥x∥2
2σ2

}
≤ exp

−|Ul| · 2σ2

|Ul| log( 1
β )

2σ2

 = β. (30)
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Therefore, we have
P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 2β.

The symmetrical argument completes the proof.

iii) Recall that x∗ = arg maxx∈D⟨θ∗, x⟩ is the unique optimal action in D. Under DP-DPE algorithm, we
define a “good" event at l-th phase as El:

El ≜
{
⟨θ∗ − θ̃l, x∗⟩ ≤Wl and ∀x ∈ D\{x∗} ⟨θ̃l − θ∗, x⟩ ≤Wl

}
.

It is not difficult to derive P (El) ≥ 1− 2kβ via union bound.

Under event El, we have the following two observations:

1. If the optimal action x∗ ∈ Dl, then x∗ ∈ Dl+1.

2. For any x ∈ Dl+1, we have ⟨θ∗, x∗ − x⟩ ≤ 4Wl.

Then, for any l ≥ 2, with probability at least 1− 2kβ, the regret in l-th phase rl satisfies:

rl ≤ 8
√

2dh1 log(1/β)
(√

2l−1 + 1√
2l−1

)
+ 4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)
. (31)

Proof. We first prove the two observations under event El and then show that the regret in the l-th phase
satisfies the above result.

Observation 1:

Let b ∈ arg maxx∈Dl
⟨θ̃l, x⟩. If x∗ = b, then x∗ ∈ Dl+1 according to the elimination step in Algorithm 1. If

x∗ ̸= b, then under event El, we have

⟨θ̃l, b− x∗⟩ = ⟨θ̃l, b⟩ − ⟨θ̃l, x∗⟩
≤ ⟨θ∗, b⟩+ Wl − ⟨θ∗, x∗⟩+ Wl

= ⟨θ∗, b− x∗⟩+ 2Wl

≤ 2Wl,

(32)

which means that x∗ is not eliminated at the end of the l-th phase, i.e., x∗ ∈ Dl+1.

Observation 2:

For any x ∈ Dl+1, we have ⟨θ̃l, b− x⟩ ≤ 2Wl. Then, we have the following steps:

2Wl ≥ ⟨θ̃l, b− x⟩
≥ ⟨θ̃l, x∗ − x⟩
≥ ⟨θ∗, x∗⟩ −Wl − ⟨θ∗, x⟩ −Wl

= ⟨θ∗, x∗ − x⟩ − 2Wl,

(33)

where the second inequality is from Observation 1. Then, we derive Observation 2.

Bound regret rl:

Note that hl = 2l−1h1 and 2αl ≤ |Ul| ≤ 2αl + 1. We have

1) Wl,1 =
√

4d
hl|Ul| log

(
1
β

)
≤
√

4d
2(1+α)l−1h1

log
(

1
β

)
.

2) Wl,2 =
√

2σ2

|Ul| log
(

1
β

)
≤
√

2σ2

2αl log
(

1
β

)
.
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Combining the upper bound of Tl, we derive the regret in any phase l ≥ 2,

rl =
∑
t∈Tl

⟨θ∗, x∗ − xt⟩

≤
∑
t∈Tl

4Wl−1

=
∑
t∈Tl

4(Wl−1,1 + Wl−1,2)

= 4Tl(Wl−1,1 + Wl−1,2)

≤ 4h1(2l−1 + 1)

√
4d

2(1+α)(l−1)−1h1
log
(

1
β

)
︸ ︷︷ ︸

1⃝

+ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)
︸ ︷︷ ︸

2⃝

.

(34)

We derive an upper bound for each of the two terms in the above equation.

For 1⃝, we have

1⃝ ≤ 4h1(2l−1 + 1)

√
8d

2(1+α)(l−1)h1
log
(

1
β

)

= 8

√
2dh1 log

(
1
β

)(√
2(1−α)(l−1) + 1√

2(α+1)(l−1)

)

≤ 8

√
2dh1 log

(
1
β

)(√
2l−1 + 1√

2l−1

)
.

(35)

As to the second term 2⃝, we have

2⃝ ≤ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)

= 4h1σ

√
2 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
.

(36)

Then, the regret in the l-th phase rl is upper bounded by

rl ≤ 1⃝+ 2⃝.

2) Total Regret

The expected total regret in T rounds under the non-private DP-DPE algorithm satisfies

E[R(T )] = O(T 1−α/2
√

d log(kT ) + d log log d).

Proof. Define Eg as the event where the “good" event occurs in every phase, i.e., Eg ≜
⋂L

l=1 El. It is not
difficult to obtain P{Eg} ≥ 1 − 2kβL by applying union bound. At the same time, let Rg be the regret
under event Eg, and Rb be the regret if event Eg does not hold. Then, the expected total regret in T is
E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb.
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Under event Eg, the regret in the l-th phase rl satisfies Eq. (31) for any l ≥ 2. Combining r1 ≤ 2T1 ≤ 4h1 (
since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D), we have

Rg =
L∑

l=1
rl

≤ 4h1 +
L∑

l=2
8
√

2dh1 log(1/β)
(√

2l−1 + 1√
2l−1

)

+
L∑

l=2
4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)
≤ 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
( √

22−α

√
22−α − 1

·
√

2(L−1)(2−α) + C1

)
= 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
(

4
√

2(L−1)(2−α) + C1

)
,

(37)

where C1 =
∑∞

l=2
1√

2α(l−1) . Note that hL ≤ TL ≤ T , which indicates 2L−1 ≤ T/h1, and L ≤ log(2T/h1).
Then, the above inequality becomes

Rg =
L∑

l=1
rl

≤ 4h1 + 8
√

2dh1 log(1/β) · 4
√

T/h1 + 4h1σ
√

2 log(1/β)
(

4
√

(T/h1)2−α + C1

)
≤ 4hl + 32

√
2dT log(1/β) + 16σ

√
2h1 log(1/β) · T 1−α/2 + 4C1h1σ

√
2 log(1/β).

(38)

On the other hand, Rb ≤ 2T since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D. Choose β = 1
kT in Algorithm 1. Finally, we

have the following results:

E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb

≤ Rg + 2kβL · 2T

≤ 4h1 + 32
√

2dT log(kT ) + 16σ
√

2h1 log(kT ) · T 1−α/2 + 4C1h1σ
√

2 log(1/β) + 4 log(2T/h1)
= O(

√
dT log(kT ) + O(σT 1−α/2

√
d log(kT )) + O(d log log d).

(39)

3) Communication cost. Notice that the communicating data in each phase is the local average performance
yu

l (x) for each chosen action x in the support set supp(πl). Therefore, the total communication cost is

C(T ) =
L∑

l=1
sl|Ul| ≤

L∑
l=1

(4d log log d + 16) · 2αl = O(dT α). (40)
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B.2 Proof of Theorem 5

Theorem 5 (CDP-DPE). Consider the Gaussian mechanism with σnc = 2B
√

2sl ln(1.25/δ)
ϵ|Ul| in the central DP

model. With σn = 2σnc

√
d and β = 1/(kT ), CDP-DPE achieves the following expected regret:

E[R(T )] = O(σT 1−α/2
√

d log(kT ))

+ O

(
Bd1+α

√
ln(1/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2

√
ln(1/δ)

√
log(kT )

ϵ

) (41)

and the communication cost is O(dT α).

Following a similar line to the proof for Theorem 4, we start with analyzing regret in a specific phase and
then combine all phases together to get the total regret.

1) Regret in a specific phase

Let rl denote the incurred regret in the l-th phase, i.e., rl ≜
∑

t∈Tl
⟨θ∗, x∗ − xt⟩.

i) First, the total number of pulls in the l-th phase is Tl, where Tl =
∑

x∈supp(πl) Tl(x). We have

hl ≤ Tl ≤ hl + |supp(πl)| ≤ hl + h1,

where |supp(πl)| ≤ 4d log log d + 16 = h1.

ii) With σn = 2σnc

√
d, we have Wl =

√
4d

|Ul|hl
log
(

1
β

)
+
√

2σ2

|Ul| log
(

1
β

)
+
√

8σ2
ncd log

(
1
β

)
. We have the

following concentration inequalities, for any x ∈ D,

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 3β, (42)

and
P
{
⟨θ∗ − θ̃l, x⟩ ≥Wl

}
≤ 3β. (43)

Proof. We prove the first concentration inequality in Eq. (42) in the following, and the second inequality can
be proved symmetrically. Note that Wl = Wl,1 + Wl,2 + Wl,3, where

Wl,1 =

√
4d

hl|Ul|
log
(

1
β

)
+, Wl,2 =

√
2σ2

|Ul|
log
(

1
β

)
, and Wl,3 ≜

√
8dσ2

nc log
(

1
β

)
.

Under the DP-DPE algorithm with the central model Privatizer, the output of the Privatizer P is,
ỹl = 1

|Ul|
∑

u∈Ul
y⃗u

l + (γ1, . . . , γsl
), where γj

i.i.d.∼ N (0, σ2
nc). Let jx denote the index corresponds to the action

x in the support set supp(πl), i.e., ỹl(x) = 1
|Ul|

∑
u∈Ul

yu
l (x) + γjx

. Then, the estimated model parameter
satisfies

θ̃l = V −1
l Gl

= V −1
l

∑
x∈supp(πl)

xTl(x)ỹl(x)

= V −1
l

∑
x∈supp(πl)

xTl(x)
(

1
|Ul|

∑
u∈Ul

yu
l (x) + γjx

)

= 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)yu
l (x) + V −1

l

∑
x∈supp(πl)

xTl(x)γjx

= 1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

V −1
∑
t∈Tl

ηu,txt + V −1
l

∑
x∈supp(πl)

xTl(x)γjx

(44)
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For any action x′ ∈ D, the gap between the estimated reward with parameter θ̃l and the true reward with θ∗

satisfies

⟨θ̃l − θ∗, x′⟩

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

θu − θ∗, x′

〉

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩

= 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+
〈

V −1
l

∑
x∈supp(πl)

xTl(x)γjx
, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ,

Then, we have

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
=P

 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+
〈

V −1
l

∑
x∈supp(πl)

xTl(x)γjx
, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ≥Wl


≤P

{
1
|Ul|

∑
u∈Ul

〈
x′, V −1

l

∑
t∈Tl

ηu,txt

〉
≥Wl,1

}
+ P

{
1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl,2

}

+ P


〈

x′, V −1
l

∑
x∈supp(πl)

xTl(x)γjx

〉
≥Wl,3

 .

(45)

We have shown that the first and the second probability in the above equation is shown to be less than β in
Eq. (29) and Eq. (30), respectively. In the following, we try to show that the third term is less than β.

Note that, 〈
x′, V −1

l

∑
x∈supp(πl)

xTl(x)γjx

〉
=

∑
x∈supp(πl)

〈
x′, V −1

l x
〉

Tl(x)γjx
, (46)

and that γj
i.i.d.∼ N (0, σ2

nc). The variance (denoted by σ2
sum) of the above sum of i.i.d. Gaussian variables is

σs
sum =

∑
x∈supp(πl)

〈
x′, V −1

l x
〉2

Tl(x)2σ2
nc

(a)
≤ Tl · x′⊤V −1

l

 ∑
x∈supp(πl)

Tl(x)xx⊤

V −1
l x′σ2

nc = Tl∥x′∥2
V −1

l

σ2
nc,

where (a) is from Tl(x) ≤ Tl for any x in the support set supp(πl). Therefore, the LHS of Eq. (46) is a
Gaussian variable with variance

σ2
sum ≤ Tl∥x′∥2

V −1
l

σ2
nc ≤ Tl ·

2d

hl
· σ2

nc

(a)
≤ 4dσ2

nc,

where (a) is due to Tl ≤ hl + h1 ≤ 2hl. Combining the tail bound for Gaussian variable, we have

P


〈

x′, V −1
l

∑
x∈supp(πl)

xTl(x)γjx

〉
≥Wl,3

 ≤ exp
{
−

W 2
l,3

2σ2
sum

}
≤ exp

{
−8dσ2

nc log(1/β)
8dσ2

nc

}
= β

By now, we complete the proof for Eq. (42). With the symmetrical argument, we obtain the result in
Eq. (43).
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iii) Define event El in the l-th phase as follows:

El ≜
{
⟨θ∗ − θ̃l, x∗⟩ ≤Wl and ∀x ∈ D\{x∗} ⟨θ̃l − θ∗, x⟩ ≤Wl

}
.

It is not difficult to derive P (El) ≥ 1− 3kβ via union bound.

Then, our second step is to show that under event El for any l ≥ 2, the regret rl ≜
∑

t∈Tl
⟨θ∗, x∗−xt⟩ incurred

in l-th phase satisfies

rl ≤8
√

2dh1 log(1/β)
(√

2l−1 + 1√
2l−1

)
+4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)
+8h1σ0

√
2dh1 log

(
1
β

)(
2(1−α)(l−1) + 1

2α(l−1)

)
,

(47)

where σ0 = 2B
√

2 ln(1.25/δ)
ϵ .

Proof. To get the bound in Eq. (47) , we start with two observations under event El:

1. If the optimal action x∗ ∈ Dl, then x∗ ∈ Dl+1.

2. For any x ∈ Dl+1, we have ⟨θ∗, x∗ − x⟩ ≤ 4Wl.

Bound regret rl:

Note that hl = 2l−1h1 and 2αl ≤ |Ul| ≤ 2αl + 1. We have

1) Wl,1 =
√

4d
hl|Ul| log

(
1
β

)
≤
√

4d
2(1+α)l−1h1

log
(

1
β

)
;

2) Wl,2 =
√

2σ2

|Ul| log
(

1
β

)
≤
√

2σ2

2αl log
(

1
β

)
;

3) Wl,3 =
√

8dσ2
nc log

(
1
β

)
=
√

8dslσ2
0

|Ul|2 log( 1
β ) ≤

√
8dslσ2

0
22αl log

(
1
β

)
, where σ0 = 2B

√
2 ln(1.25/δ)

ϵ .
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Combining the upper bound of Tl (i.e., Tl ≤ hl + h1), we derive the regret in any phase l ≥ 2,

rl =
tl+Tl−1∑

t=tl

⟨θ∗, x∗ − xt⟩

≤
tl+Tl−1∑

t=tl

4Wl−1

=
tl+Tl−1∑

t=tl

4(Wl−1,1 + Wl−1,2 + Wl−1,3)

= 4Tl(Wl−1,1 + Wl−1,2 + Wl−1,3)

≤ 4h1(2l−1 + 1)

√
4d

2(1+α)(l−1)−1h1
log
(

1
β

+
)

︸ ︷︷ ︸
1⃝

+ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)
︸ ︷︷ ︸

2⃝

+ 4h1(2l−1 + 1)

√
8dsl−1σ2

0
22α(l−1) log

(
1
β

)
︸ ︷︷ ︸

3⃝

(48)

We derive an upper bound for each of the two terms in the above equation.

For 1⃝, we have

1⃝ ≤ 4h1(2l−1 + 1)

√
8d

2(1+α)(l−1)h1
log
(

1
β

)

= 8

√
2dh1 log

(
1
β

)(√
2(1−α)(l−1) + 1√

2(α+1)(l−1)

)

≤ 8

√
2dh1 log

(
1
β

)(√
2l−1 + 1√

2l−1

)
.

As to the second term 2⃝, we have

2⃝ ≤ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)

= 4h1σ

√
2 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
.

Regarding the third term 3⃝, we have

3⃝ ≤ 4h1(2l−1 + 1)

√
8dsl−1σ2

0
22α(l−1) log

(
1
β

)

≤ 8h1σ0

√
2dh1 log

(
1
β

)(
2(1−α)(l−1) + 1

2α(l−1)

)
,

where the second inequality is due to sl ≤ h1 for any l. Then, the regret in the l-th phase rl is upper bounded
by

rl ≤ 1⃝+ 2⃝+ 3⃝.
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By proper arrangement, we get the result in Eq. (47).

2) Total Regret

The expected total regret under the DP-DPE algorithm with the central model Privatizer is

E[R(T )] = O(σT 1−α/2
√

d log(kT ))
+ O(σ0d1+αT 1−α

√
log(kT ))

+ O(d3/2σ0
√

log(kT ))

(49)

Proof. Define Eg as the event where the “good" event El occurs in every phase, i.e., Eg ≜
⋂L

l=1 El. It is not
difficult to obtain P{Eg} ≥ 1 − 3kβL by applying union bound. At the same time, let Rg be the regret
under event Eg, and Rb be the regret if event Eg does not hold. Then, the expected total regret in T is
E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb.

Under event Eg, the regret in the l-th phase rl satisfies Eq. (47) for any l ≥ 2. Combining r1 ≤ 2T1 ≤ 4h1 (
since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D), we have

Rg =
L∑

l=1
rl ≤ 4h1 +

L∑
l=2

8
√

2dh1 log(1/β)+
(√

2l−1 + 1√
2l−1

)

+
L∑

l=2
4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)

+
L∑

l=2
8h1σ0

√
2dh1 log(1/β)

(
2(1−α)(l−1) + 1

2α(l−1)

)
≤ 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
( √

22−α

√
22−α − 1

·
√

2(L−1)(2−α) + C1

)

+ 8h1σ0
√

2dh1 log(1/β)
(

1
21−α − 1 · 2

(L−1)(1−α) + C2

)
= 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
(

4
√

2(L−1)(2−α) + C1

)
+ 8h1σ0

√
2dh1 log(1/β)

(
2(L−1)(1−α)

21−α − 1 + C1

)

(50)

where C1 =
∑∞

l=2
1√

2α(l−1) and C2 =
∑∞

l=2
1

2α(l−1) ≤ C1. Note that hL ≤ TL ≤ T , which indicates
2L−1 ≤ T/h1, and L ≤ log(2T/h1). Then, the above inequality becomes

Rg =
L∑

l=1
rl

≤ 4h1 + 8
√

2dh1 log(1/β) · 4
√

T/h1

+ 4h1σ
√

2 log(1/β)
(

4
√

(T/h1)2−α + C1

)
+ 8h1σ0

√
2dh1 log(1/β)

(
(T/h1)1−α

21−α − 1 + C1

)
≤ 4h1 + 32

√
2dT log(1/β) + 16σ

√
2h1 log(1/β) · T 1−α/2

+ 8
21−α − 1h

1/2+α
1 σ0

√
2d log(1/β) · T 1−α + 4C1h1(σ + 2σ0

√
dh1)

√
2 log(1/β).

(51)

32



Under review as submission to TMLR

On the other hand, Rb ≤ 2T since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D. Choose β = 1
kT in Algorithm 1. Finally, we

have the following results:

E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb

≤ Rg + 3kβL · 2T

≤ 4h1 + 32
√

2dT log(kT ) + 16σ
√

2h1 log(kT ) · T 1−α/2

+ 8/(21−α − 1)h1/2+α
1 σ0

√
2d log(kT ) · T 1−α + 4C1h1(σ + 2σ0

√
dh1)

√
2 log(kT )

= O(
√

dT log(kT ) + O(σT 1−α/2
√

d log(kT )) + O(σ0d1+αT 1−α
√

log(kT )) + O(d3/2σ0
√

log(kT )).

(52)

Finally, substituting σ0, we have the total expected regret under the DP-DPE with the central model
Privatizer is

E[R(T )] = O(σT 1−α/2
√

d log(kT ))

+ O

(
Bd1+α

√
ln(1/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2

√
ln(1/δ)

√
log(kT )

ϵ

) (53)

3) Communication cost. Notice that the communicating data in each phase is the local average performance
yu

l (x) for each chosen action x in the support set supp(πl). Therefore, the total communication cost is

C(T ) =
L∑

l=1
sl|Ul| ≤

L∑
l=1

(4d log log d + 16) · 2αl = O(dT α). (54)

Theorem 6(LDP-DPE) Consider the Gaussian mechanism with σnl = 2B
√

2sl ln(1.25/δ)
ϵ in the local DP

model. With σn = 2σnl

√
d

|Ul| in the l-th phase and β = 1/(kT ), LDP-DPE achieves the following expected
regret:

E[R(T )] = O

((
Bd
√

ln(1/δ)
ϵ

+ σ

)
T 1−α/2

√
d log(kT )

)

+ O

(
Bd2

√
ln(1/δ)

√
log(kT )

ϵ

) (55)

and the communication cost is O(dT α).

Following a similar line to the proof for Theorem 5, we start with analyzing regret in a specific phase and
then combine all phases together to get the total regret.

1) Regret in a specific phase

Let rl denote the incurred regret in the l-th phase, i.e., rl ≜
∑

t∈Tl
⟨θ∗, x∗ − xt⟩.

i) First, the total number of pulls in the l-th phase is Tl, where Tl =
∑

x∈supp(πl) Tl(x). We have

hl ≤ Tl ≤ hl + |supp(πl)| ≤ hl + h1,

where |supp(πl)| ≤ 4d log log d + 16 = h1.

ii) With σn = 2σnl

√
d

|Ul| , we have Wl =
√

4d
|Ul|hl

log
(

1
β

)
+
√

2σ2

|Ul| log
(

1
β

)
+
√

8dσ2
nl

|Ul| log
(

1
β

)
. We have the

following concentration inequalities, for any x ∈ D,

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 3β, (56)
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and
P
{
⟨θ∗ − θ̃l, x⟩ ≥Wl

}
≤ 3β. (57)

Proof. We prove the first concentration inequality in Eq. (56) in the following, and the second inequality can
be proved symmetrically. Note that Wl = Wl,1 + Wl,2 + Wl,3, where

Wl,1 =

√
4d

hl|Ul|
log
(

1
β

)
+, Wl,2 =

√
2σ2

|Ul|
log
(

1
β

)
, and Wl,3 ≜

√
8dσ2

nl

|Ul|
log
(

1
β

)
.

Under the DP-DPE algorithm with the local model Privatizer, the output of P is, ỹl = 1
|Ul|

∑
u∈Ul

(y⃗u
l +

(γu,1, . . . , γu,sl
)), where γu,j

i.i.d.∼ N (0, σ2
nl). Let jx denote jx the index corresponds to the action x in the

support set supp(πl), i.e., ỹl(x) = 1
|Ul|

∑
u∈Ul

(yu
l (x) + γu,jx). Then, the estimated model parameter satisfies

θ̃l = V −1
l Gl

= V −1
l

∑
x∈supp(πl)

xTl(x)ỹl(x)

= V −1
l

∑
x∈supp(πl)

xTl(x)
(

1
|Ul|

∑
u∈Ul

(yu
l (x) + γu,jx

)
)

= 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)yu
l (x) + 1

|Ul|
∑

u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)γu,jx

= 1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

V −1
∑
t∈Tl

ηu,txt + 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)γu,jx

(58)

For any action x′ ∈ D, the gap between the estimated reward with parameter θ̃l and the true reward with θ∗

satisfies

⟨θ̃l − θ∗, x′⟩

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

θu − θ∗, x′

〉

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩

= 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+ 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
x∈supp(πl)

xTl(x)γu,jx , x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ,

Then, we have

P
{
⟨θ̃l − θ∗, x′⟩ ≥Wl

}
=P

 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+ 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
x∈supp(πl)

xTl(x)γu,jx , x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ≥Wl


≤P

{
1
|Ul|

∑
u∈Ul

〈
x′, V −1

l

∑
t∈Tl

ηu,txt

〉
≥Wl,1

}
+ P

{
1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ≥Wl,2

}

+ P

 1
|Ul|

∑
u∈Ul

〈
x′, V −1

l

∑
x∈supp(πl)

xTl(x)γu,jx

〉
≥Wl,3

 .

(59)
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We have shown that the first and the second probability in the above equation is shown to be less than β in
Eq. (29) and Eq. (30), respectively. In the following, we try to show that the third term is less than β.

Note that, 〈
x′, V −1

l

∑
x∈supp(πl)

xTl(x)γu,jx

〉
=

∑
x∈supp(πl)

〈
x′, V −1

l x
〉

Tl(x)γu,jx
, (60)

and that γu,j
i.i.d.∼ N (0, σ2

nl). The variance (denoted by σ2
u,sum) of the above sum of i.i.d. Gaussian variables

is

σ2
u,sum =

∑
x∈supp(πl)

〈
x′, V −1

l x
〉2

Tl(x)2σ2
nl

(a)
≤ Tl · x′⊤V −1

l

 ∑
x∈supp(πl)

Tl(x)xx⊤

V −1
l x′σ2

nl = Tl∥x′∥2
V −1

l

σ2
nl,

where (a) is from Tl(x) ≤ Tl for any x in the support set supp(πl). Therefore, the LHS of Eq. (60) is a
Gaussian variable with variance

σ2
u,sum ≤ Tl∥x′∥2

V −1
l

σ2
nl ≤ Tl ·

2d

hl
· σ2

nl

(a)
≤ 4dσ2

nl,

where (a) is due to Tl ≤ hl + h1 ≤ 2hl. Combining the tail bound for average of i.i.d. Gaussian variables, we
have

P

 1
|Ul|

∑
u∈Ul

〈
x′, V −1

l

∑
x∈supp(πl)

xTl(x)γjx

〉
≥Wl,3

 ≤ exp
{
−
|Ul|W 2

l,3

2σ2
u,sum

}
≤ exp

{
−8dσ2

nl log(1/β)
8dσ2

nl

}
= β

By now, we complete the proof for Eq. (56). With the symmetrical argument, we obtain the result in
Eq. (57).

iii) Define event El in the l-th phase as follows:

El ≜
{
⟨θ∗ − θ̃l, x∗⟩ ≤Wl and ∀x ∈ D\{x∗} ⟨θ̃l − θ∗, x⟩ ≤Wl

}
.

It is not difficult to derive P (El) ≥ 1− 3kβ via union bound.

Then, our second step is to show that under event El for any l ≥ 2, the regret rl ≜
∑

t∈Tl
⟨θ∗, x∗−xt⟩ incurred

in l-th phase satisfies

rl ≤8
√

2dh1 log(1/β)
(√

2l−1 + 1√
2l−1

)
+4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)
+8h1σ0

√
2dh1 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
,

(61)

where σ0 = 2B
√

2 ln(1.25/δ)
ϵ .

Proof. To get the bound in Eq. (47) , we start with two observations under event El:

1. If the optimal action x∗ ∈ Dl, then x∗ ∈ Dl+1.

2. For any x ∈ Dl+1, we have ⟨θ∗, x∗ − x⟩ ≤ 4Wl.
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Bound regret rl:

Note that hl = 2l−1h1 and 2αl ≤ |Ul| ≤ 2αl + 1. We have

1) Wl,1 =
√

4d
hl|Ul| log

(
1
β

)
≤
√

4d
2(1+α)l−1h1

log
(

1
β

)
;

2) Wl,2 =
√

2σ2

|Ul| log
(

1
β

)
≤
√

2σ2

2αl log
(

1
β

)
;

3) Wl,3 =
√

8dσ2
nl

|Ul| log
(

1
β

)
=
√

8dslσ2
0

|Ul| log( 1
β ) ≤

√
8dslσ2

0
2αl log

(
1
β

)
, where σ0 = 2B

√
2 ln(1.25/δ)

ϵ .

Combining the upper bound of Tl (i.e., Tl ≤ hl + h1), we derive the regret in any phase l ≥ 2,

rl =
tl+Tl−1∑

t=tl

⟨θ∗, x∗ − xt⟩

≤
tl+Tl−1∑

t=tl

4Wl−1

=
tl+Tl−1∑

t=tl

4(Wl−1,1 + Wl−1,2 + Wl−1,3)

= 4Tl(Wl−1,1 + Wl−1,2 + Wl−1,3)

≤ 4h1(2l−1 + 1)

√
4d

2(1+α)(l−1)−1h1
log
(

1
β

)
︸ ︷︷ ︸

1⃝

+ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)
︸ ︷︷ ︸

2⃝

+ 4h1(2l−1 + 1)

√
8dsl−1σ2

0
2α(l−1) log

(
1
β

)
︸ ︷︷ ︸

3⃝

(62)

We derive an upper bound for each of the two terms in the above equation.

For 1⃝, we have

1⃝ ≤ 4h1(2l−1 + 1)

√
8d

2(1+α)(l−1)h1
log
(

1
β

)

= 8

√
2dh1 log

(
1
β

)(√
2(1−α)(l−1) + 1√

2(α+1)(l−1)

)

≤ 8

√
2dh1 log

(
1
β

)(√
2l−1 + 1√

2l−1

)
.

As to the second term 2⃝, we have

2⃝ ≤ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)

= 4h1σ

√
2 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
.
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Regarding the third term 3⃝, we have

3⃝ ≤ 4h1(2l−1 + 1)

√
8dsl−1σ2

0
2α(l−1) log

(
1
β

)

≤ 8h1σ0

√
2dh1 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
,

where the second inequality is due to sl ≤ h1 for any l. Then, the regret in the l-th phase rl is upper bounded
by

rl ≤ 1⃝+ 2⃝+ 3⃝.

By proper arrangement, we get the result in Eq. (61).

2) Total Regret

The expected total regret under the DP-DPE algorithm with the central model Privatizer is

E[R(T )] = O(σT 1−α/2
√

d log(kT ))
+ O(σ0d3/2T 1−α/2

√
log(kT ))

+ O(d3/2σ0
√

log(kT ))

(63)

Proof. Define Eg as the event where the “good" event El occurs in every phase, i.e., Eg ≜
⋂L

l=1 El. It is not
difficult to obtain P{Eg} ≥ 1− 3kβL by applying union bound. At the same time, let Rg denote the regret
under event Eg, and Rb be the regret if event Eg does not hold. Then, the expected total regret in T is
E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb.

Under event Eg, the regret in the l-th phase rl satisfies Eq. (61) for any l ≥ 2. Combining r1 ≤ 2T1 ≤ 4h1 (
since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D), we have

Rg =
L∑

l=1
rl

≤ 4h1 +
L∑

l=2
8
√

2dh1 log(1/β)+
(√

2l−1 + 1√
2l−1

)

+
L∑

l=2
4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)

+
L∑

l=2
8h1σ0

√
2dh1 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
≤ 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1(σ + 2σ0
√

dh1)
√

2 log(1/β)
( √

22−α

√
22−α − 1

·
√

2(L−1)(2−α) + C1

)
≤ 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1(σ + 2σ0
√

dh1)
√

2 log(1/β)
(

4
√

2(L−1)(2−α) + C1

)

(64)
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where C1 =
∑∞

l=2
1√

2α(l−1) . Note that hL ≤ TL ≤ T , which indicates 2L−1 ≤ T/h1, and L ≤ log(2T/h1).
Then, the above inequality becomes

Rg =
L∑

l=1
rl

≤ 4h1 + 8
√

2dh1 log(1/β) · 4
√

T/h1

+ 4h1(σ + 2σ0
√

dh1)
√

2 log(1/β)
(

4
√

(T/h1)2−α + C1

)
≤ 4h1 + 32

√
2dT log(1/β) + 16(σ + 2σ0

√
dh1)

√
2h1 log(1/β) · T 1−α/2

+ 4C1h1(σ + 2σ0
√

dh1)
√

2 log(1/β).

(65)

On the other hand, Rb ≤ 2T since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D. Choose β = 1
kT in Algorithm 1. Finally, we

have the following results:

E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb

≤ Rg + 3kβL · 2T

≤ 4h1 + 32
√

2dT log(kT ) + 16σ
√

2h1 log(kT ) · T 1−α/2

+ 32σ0h1
√

2d log(kT ) · T 1−α/2 + 4C1h1(σ + 2σ0
√

dh1)
√

2 log(kT )
= O(

√
dT log(kT ) + O(σT 1−α/2

√
d log(kT )) + O(σ0d3/2T 1−α/2

√
log(kT )) + O(d2σ0

√
log(kT )).

(66)

Finally, substituting σ0, we have the total expected regret under the DP-DPE with the local model Privatizer
is

E[R(T )] = O

((
Bd
√

ln(1/δ)
ϵ

+ σ

)
T 1−α/2

√
d log(kT )

)

+ O

(
Bd2

√
ln(1/δ)

√
log(kT )

ϵ

) (67)

3) Communication cost.

Notice that the communicating data in each phase is the local average performance yu
l (x) for each chosen

action x in the support set supp(πl). Therefore, the total communication cost is

C(T ) =
L∑

l=1
sl|Ul| ≤

L∑
l=1

(4d log log d + 16) · 2αl = O(dT α). (68)

B.3 Proof of Theorem 7

Theorem 7 (SDP-DPE). With σn = 2σns

√
d = O

(
B

√
dsl log (sl/δ)

ϵ|Ul|

)
in the l-th phase and β = 1/(kT ), the

SDP-DPE achieves the following expected regret:

E[R(T )] = O(σT 1−α/2
√

d log(kT ))

+ O

(
Bd1+α ln(d/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2 ln(d/δ)

√
log(kT )

ϵ

) (69)

and the communication cost is O(dT 3α/2).
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Proof. Following a similar line to the proof for Theorem 5, we start with analyzing regret in a specific phase
and then combine all phases together to get the total regret.

1) Regret in a specific phase

Let rl denote the incurred regret in the l-th phase, i.e., rl ≜
∑

t∈Tl
⟨θ∗, x∗ − xt⟩.

i) First, the total number of pulls in the l-th phase Tl satisfies

hl ≤ Tl ≤ hl + |supp(πl)| ≤ hl + h1,

where |supp(πl)| ≤ 4d log log d + 16 = h1.

ii) With σn = 2σns

√
d, we have Wl =

√
4d

|Ul|hl
log
(

1
β

)
+
√

2σ2

|Ul| log
(

1
β

)
+
√

8dσ2
ns log

(
1
β

)
. We have the

following concentration inequalities, for any x ∈ D,

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
≤ 3β, (70)

and

P
{
⟨θ∗ − θ̃l, x⟩ ≥Wl

}
≤ 3β. (71)

Proof. We prove the first concentration inequality in Eq. (70) in the following, and the second inequality can
be proved symmetrically. Note that Wl = Wl,1 + Wl,2 + Wl,3, where

Wl,1 =

√
4d

hl|Ul|
log
(

1
β

)
+, Wl,2 =

√
2σ2

|Ul|
log
(

1
β

)
, and Wl,3 ≜

√
8dσ2

ns log
(

1
β

)
.

Under the DP-DPE algorithm with the shuffle model Privatizer, the output of P is, ỹl = (A ◦ S ◦
R|Ul|)({y⃗u

l }u∈Ul
) = A(S({R(y⃗u

l )}u∈Ul
)), where A,S and R follow Algorithm 2. From Theorem 9, we know

that the output of (A ◦ S ◦ R|Ul|)({y⃗u
l }u∈Ul

) is an unbiased estimator of the average of the |Ul| input vectors
{y⃗u

l }u∈Ul
and that the error distribution is sub-Gaussian with variance σ2

ns = O
(

B2sl ln2(sl/δ)
ϵ2|Ul|2

)
. Let γ(e)

denote the error vector and jx represent the index corresponding to the action x in the support set supp(πl).
That is, γ

(e)
jx

= ỹl(x)− 1
|Ul|

∑
u∈Ul

yu
l (x) is σns-sub-Gaussian with E[γ(e)

jx
] = 0. The estimated model parameter

satisfies

θ̃l = V −1
l Gl

= V −1
l

∑
x∈supp(πl)

xTl(x)ỹl(x)

= V −1
l

∑
x∈supp(πl)

xTl(x)
(

1
|Ul|

∑
u∈Ul

yu
l (x) + γ

(e)
jx

)

= 1
|Ul|

∑
u∈Ul

V −1
l

∑
x∈supp(πl)

xTl(x)yu
l (x) + V −1

l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

= 1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

V −1
∑
t∈Tl

ηu,txt + V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

(72)
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For any action x′ ∈ D, the gap between the estimated reward with parameter θ̃l and the true reward with θ∗

satisfies

⟨θ̃l − θ∗, x′⟩

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu + 1
|Ul|

∑
u∈Ul

θu − θ∗, x′

〉

=
〈

θ̃l −
1
|Ul|

∑
u∈Ul

θu, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩

= 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+
〈

V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ,

Then, we have

P
{
⟨θ̃l − θ∗, x⟩ ≥Wl

}
=P

 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+
〈

V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ≥Wl


=P

 1
|Ul|

∑
u∈Ul

〈
V −1

l

∑
t∈Tl

ηu,txt, x′

〉
+
〈

V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

, x′

〉
+ 1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x′⟩ ≥Wl,1 + Wl,2 + Wl,3


≤P

{
1
|Ul|

∑
u∈Ul

〈
x′, V −1

l

∑
t∈Tl

ηu,txt

〉
≥Wl,1

}
+ P

{
1
|Ul|

∑
u∈Ul

⟨θu − θ∗, x⟩ ≥Wl,2

}

+ P


〈

x′, V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

〉
≥Wl,3

 .

(73)
We have shown that the first and the second probability in the above equation is shown to be less than β in
Eq. (29) and Eq. (30), respectively. In the following, we try to show that the third term is less than β.

Note that γ
(e)
jx

is σns-sub-Gaussian and i.i.d. over each coordinate in {jx : x ∈ supp(πl)}, and that〈
x′, V −1

l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

〉
=

∑
x∈supp(πl)

〈
x′, V −1

l x
〉

Tl(x)γ(e)
jx

. (74)

The variance (denoted by σ2
sub-G) of the above sum of i.i.d. sub-Gaussian variables is

σ2
sub-G =

∑
x∈supp(πl)

〈
x′, V −1

l x
〉2

Tl(x)2σ2
ns

(a)
≤ Tl · x′⊤V −1

l

 ∑
x∈supp(πl)

Tl(x)xx⊤

V −1
l x′σ2

ns = Tl∥x′∥2
V −1

l

σ2
ns,

where (a) is from Tl(x) ≤ Tl for any x in the support set supp(πl). Therefore, the LHS of Eq. (74) is
σsub-G-sub-Gaussian with variance proxy

σ2
sub-G ≤ Tl∥x′∥2

V −1
l

σ2
ns ≤ Tl ·

2d

hl
· σ2

ns

(a)
≤ 4dσ2

ns,

where (a) is due to Tl ≤ hl + h1 ≤ 2hl. Combining the property for sub-Gaussian variables, we have

P


〈

x′, V −1
l

∑
x∈supp(πl)

xTl(x)γ(e)
jx

〉
≥Wl,3

 ≤ exp
{
−

W 2
l,3

2σ2
sub-G

}
≤ exp

{
−8dσ2

ns log(1/β)
8dσ2

ns

}
= β
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By now, we complete the proof for Eq. (42). With the symmetrical argument, we obtain the result in
Eq. (43).

iii) Define event El in the l-th phase as follows:

El ≜
{
⟨θ∗ − θ̃l, x∗⟩ ≤Wl and ∀x ∈ D\{x∗} ⟨θ̃l − θ∗, x⟩ ≤Wl

}
.

It is not difficult to derive P (El) ≥ 1− 3kβ via union bound.

Then, our second step is to show that under event El for any l ≥ 2, the regret rl ≜
∑

t∈Tl
⟨θ∗, x∗−xt⟩ incurred

in l-th phase satisfies

rl ≤8
√

2dh1 log(1/β)
(√

2l−1 + 1√
2l−1

)
+4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)
+8h1σ0

√
2dh1 log

(
1
β

)(
2(1−α)(l−1) + 1

2α(l−1)

)
,

(75)

where σ0 = CB ln(h1/δ)
ϵ .

Proof. To get the bound in Eq. (75) , we start with two observations under event El:

1. If the optimal action x∗ ∈ Dl, then x∗ ∈ Dl+1.

2. For any x ∈ Dl+1, we have ⟨θ∗, x∗ − x⟩ ≤ 4Wl.

Bound regret rl:

Note that hl = 2l−1h1, sl ≤ h1, and 2αl ≤ |Ul| ≤ 2αl + 1. Hence,

1) Wl,1 =
√

4d
hl|Ul| log

(
1
β

)
≤
√

4d
2(1+α)l−1h1

log
(

1
β

)
;

2) Wl,2 =
√

2σ2

|Ul| log
(

1
β

)
≤
√

2σ2

2αl log
(

1
β

)
;

3) Besides, we let σns = CB
√

sl ln(sl/δ)
ϵ|Ul| and have

Wl,3 =

√
8dσ2

ns log
(

1
β

)

=

√
8dC2B2sl ln2(sl/δ)

ϵ2|Ul|2
log
(

1
β

)
(a)
≤

√
8dC2B2h1 ln2(h1/δ)

ϵ2|Ul|2
log
(

1
β

)
(b)
≤

√
8dh1σ2

0
22αl

log
(

1
β

)

where (a) is due to sl ≤ h1 and (b) is from σ0 ≜ CB ln(h1/δ)
ϵ and |Ul| ≥ 2αl.
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Combining the upper bound of Tl (i.e., Tl ≤ hl + h1), we derive the regret in any phase l ≥ 2,

rl =
tl+Tl−1∑

t=tl

⟨θ∗, x∗ − xt⟩

≤
tl+Tl−1∑

t=tl

4Wl−1

=
tl+Tl−1∑

t=tl

4(Wl−1,1 + Wl−1,2 + Wl−1,3)

= 4Tl(Wl−1,1 + Wl−1,2 + Wl−1,3)

≤ 4h1(2l−1 + 1)

√
4d

2(1+α)(l−1)−1h1
log
(

1
β

+
)

︸ ︷︷ ︸
1⃝

+ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)
︸ ︷︷ ︸

2⃝

+ 4h1(2l−1 + 1)

√
8dh1σ2

0
22α(l−1) log

(
1
β

)
︸ ︷︷ ︸

3⃝

(76)

We derive an upper bound for each of the two terms in the above equation.

For 1⃝, we have

1⃝ ≤ 4h1(2l−1 + 1)

√
8d

2(1+α)(l−1)h1
log
(

1
β

)

= 8

√
2dh1 log

(
1
β

)(√
2(1−α)(l−1) + 1√

2(α+1)(l−1)

)

≤ 8

√
2dh1 log

(
1
β

)(√
2l−1 + 1√

2l−1

)
.

As to the second term 2⃝, we have

2⃝ ≤ 4h1(2l−1 + 1)

√
2σ2

2α(l−1) log
(

1
β

)

= 4h1σ

√
2 log

(
1
β

)(√
2(2−α)(l−1) + 1√

2α(l−1)

)
.

Regarding the third term 3⃝, we have

3⃝ ≤ 4h1(2l−1 + 1)

√
8dh1σ2

0
22α(l−1) log

(
1
β

)

= 8h1σ0

√
2dh1 log

(
1
β

)(
2(1−α)(l−1) + 1

2α(l−1)

)
.

Then, the regret in the l-th phase rl is upper bounded by

rl ≤ 1⃝+ 2⃝+ 3⃝.
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By proper arrangement, we get the result in Eq. (75).

2) Total Regret

The expected total regret under the DP-DPE algorithm with the shuffle model Privatizer is

E[R(T )] = O(σT 1−α/2
√

d log(kT ))
+ O(σ0d1+αT 1−α

√
log(kT ))

+ O(d3/2σ0
√

log(kT ))

(77)

Proof. Define Eg as the event where the “good" event El occurs in every phase, i.e., Eg ≜
⋂L

l=1 El. It is not
difficult to obtain P{Eg} ≥ 1 − 3kβL by applying union bound. At the same time, let Rg be the regret
under event Eg, and Rb be the regret if event Eg does not hold. Then, the expected total regret in T is
E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb.

Under event Eg, the regret in the l-th phase rl satisfies Eq. (75) for any l ≥ 2. Combining r1 ≤ 2T1 ≤ 4h1 (
since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D), we have

Rg =
L∑

l=1
rl ≤ 4h1 +

L∑
l=2

8
√

2dh1 log(1/β)+
(√

2l−1 + 1√
2l−1

)

+
L∑

l=2
4h1σ

√
2 log(1/β)

(√
2(2−α)(l−1) + 1√

2α(l−1)

)

+
L∑

l=2
8h1σ0

√
2dh1 log(1/β)

(
2(1−α)(l−1) + 1

2α(l−1)

)
≤ 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
( √

22−α

√
22−α − 1

·
√

2(L−1)(2−α) + C1

)

+ 8h1σ0
√

2dh1 log(1/β)
(

1
21−α − 1 · 2

(L−1)(1−α) + C2

)
= 4h1 + 8

√
2dh1 log(1/β) · 4

√
2L−1

+ 4h1σ
√

2 log(1/β)
(

4
√

2(L−1)(2−α) + C1

)
+ 8h1σ0

√
2dh1 log(1/β)

(
2(L−1)(1−α)

21−α − 1 + C1

)

(78)

where C1 =
∑∞

l=2
1√

2α(l−1) and C2 =
∑∞

l=2
1

2α(l−1) ≤ C1. Note that hL ≤ TL ≤ T , which indicates
2L−1 ≤ T/h1, and L ≤ log(2T/h1). Then, the above inequality becomes

Rg =
L∑

l=1
rl

≤ 4h1 + 8
√

2dh1 log(1/β) · 4
√

T/h1

+ 4h1σ
√

2 log(1/β)
(

4
√

(T/h1)2−α + C1

)
+ 8h1σ0

√
2dh1 log(1/β)

(
(T/h1)1−α

21−α − 1 + C1

)
≤ 4h1 + 32

√
2dT log(1/β) + 16σ

√
2h1 log(1/β) · T 1−α/2

+ 8
21−α − 1h

1/2+α
1 σ0

√
2d log(1/β) · T 1−α + 4C1h1(σ + 2σ0

√
dh1)

√
2 log(1/β).

(79)
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On the other hand, Rb ≤ 2T since ⟨θ∗, x∗ − x⟩ ≤ 2 for all x ∈ D. Choose β = 1
kT in Algorithm 1. Finally, we

have the following results:

E[R(T )] = P (Eg)Rg + (1− P (Eg))Rb

≤ Rg + 3kβL · 2T

≤ 4h1 + 32
√

2dT log(kT ) + 16σ
√

2h1 log(kT ) · T 1−α/2

+ 8/(21−α − 1)h1/2+α
1 σ0

√
2d log(kT ) · T 1−α + 4C1h1(σ + 2σ0

√
dh1)

√
2 log(kT )

= O(
√

dT log(kT ) + O(σT 1−α/2
√

d log(kT )) + O(σ0d1+αT 1−α
√

log(kT )) + O(d3/2σ0
√

log(kT )).

(80)

Finally, substituting σ0, we have the total expected regret under the DP-DPE with the shuffle model
Privatizer is

E[R(T )] = O(σT 1−α/2
√

d log(kT ))

+ O

(
Bd1+α ln(d/δ)T 1−α

√
log(kT )

ϵ

)

+ O

(
Bd3/2 ln(d/δ)

√
log(kT )

ϵ

) (81)

3) Communication cost. The communicate cost in the shuffle model is slightly different from the central
model and the local model because it communicates (g + b)sl bits from each participating client in the
l-th phase instead of d-dimensional vectors. Based on our setting (Eq. (22) in Algorithm 2), we have

(g + b) = max
{

O

(√
|Ul|

ln(d)

)
, O
(√

d + d ln(d)
|Ul|

)
, O
(

ln(d)
|Ul|

)}
. Combining sl ≤ h1, the total communication cost

is
L∑

l=1
(g + b)sl|Ul| = O

(
L∑

l=1

2 3
2 αlh1

ln(d)

)
= O

(
dT (3/2)α

)
.
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