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ABSTRACT

Adversarial examples exploit non-robust, imperceptible features to fool deep neu-
ral networks. To explain and address this problem, we propose Depth-Aware
Adversarial Training (DAAT), which regularizes model attention to be consistent
with scene geometry inferred from monocular depth. Concretely, DAAT lever-
ages a pretrained (frozen) depth estimator to compute depth-gradient maps and
imposes an alignment penalty that encourages a Vision Transformer to focus on
depth-consistent cues while adversarial examples are generated during training,
steering learning away from brittle texture signals toward geometry-aligned evi-
dence. Empirically, on ImageNet-100, On ImageNet-100, DAAT improves L∞
AutoAttack robust accuracy by 6.96% over standard adversarial training while
retaining strong clean performance (80.74%). Theoretically, we further justify
DAAT with two analyses: (i) a geometric account showing that small perturba-
tions can distort inferred depth and shift decisions, whereas depth-aligned atten-
tion preserves 3D structure in the representation; and (ii) a robust-optimization
view in which the alignment term tightens an upper bound on adversarial loss by
constraining gradients along depth-inconsistent directions. These results indicate
that integrating depth cues into training is a principled route to more robust and
interpretable image classifiers, bridging adversarial robustness and 3D vision.

1 INTRODUCTION

Deep neural networks for image classification are notoriously vulnerable to adversarial perturba-
tions – tiny, human-imperceptible changes to an input image can induce misclassification (Goodfel-
low et al., 2014; Qian et al., 2022). Adversarial training, which injects adversarial examples during
training, remains as one of the most effective defenses (Madry et al., 2017; Zhang et al., 2019; 2021;
Rice et al., 2020). However, even adversarially trained models can be brittle and often rely on spuri-
ous features that are not human-interpretable (Ilyas et al., 2019). Why are adversarial perturbations
so effective? Beyond the well-known hypothesis of linearity in neural networks (Goodfellow et al.,
2014), recent studies suggest that robust models tend to align with human perception, emphasizing
object shapes and structure over high-frequency textures (Chen et al., 2020; Hoak et al., 2025). This
motivates us to explore adversarial robustness from a novel perspective: adversarial attacks may fool
models by altering their understanding of 3D structure and object depth in a scene. In human vision,
recognizing objects is linked to understanding spatial layout and depth; if adversarial noise confuses
a model’s depth perception, it might also misidentify objects. We therefore ask whether encouraging
a model to focus on proper depth cues can mitigate adversarial vulnerability.

We hypothesize that forcing a model to “see” in terms of depth can improve its adversarial robust-
ness. Adversarial perturbations often work by subtly shifting the input in directions that do not
correspond to real changes in the scene’s geometry (so-called “non-robust features” (Ilyas et al.,
2019)). As a motivating example, Figure 1a shows how an adversarial perturbation applied to an
image causes a trained depth model to predict noticeably altered depth values. Even though the
perturbation is nearly invisible, the model perceives some regions as significantly closer or farther
than in the original image (see red and blue regions in the signed difference map). This suggests that
adversarial attacks might deceive vision models by perturbing features related to spatial depth and
shape. We also observe that the classifier’s attention shifts correspondingly. Figure 1b demonstrates
a classifier’s Grad-CAM (Selvaraju et al., 2017) visual explanation on a clean vs. adversarial image.
The clean image (a man holding a fish) is correctly recognized (class “tench”) with a Grad-CAM
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highlighting the fish and man. However, after an adversarial perturbation, the model misclassifies
the image as a “hen,” and the Grad-CAM heatmap drastically changes – the model’s focus is misdi-
rected to background foliage and random regions. This implies a misalignment between the model’s
feature sensitivity and the true 3D structure of objects. If we can realign the model’s feature ex-
traction with genuine structure – e.g. object boundaries and surface normals indicated by depth
gradients – the model may become less sensitive to superficial pixel-level tweaks. In other words,
a model that attends to an object’s shape (which correlates with depth discontinuities) should be
harder to fool without making a geometrically meaningful change to the image.

(a) Depth of a scene

(b) Attention map

Figure 1: Illustration of how an adversarial perturbation can alter a model’s perceived depth of a
scene (a) and attention map (b).

To validate this idea, we develop Depth-Aware Adversarial Training (DAAT). In DAAT, we train a
Vision Transformer classifier on adversarial examples generated via PGD, augmented with a depth
alignment loss. During training, a fixed pre-trained depth estimation model (DINOv2 + Dense
Prediction Transformer (DPT) (Oquab et al., 2023)) computes a depth map for each input; we then
compute the spatial gradient of the depth map to identify important 3D edges. Simultaneously, we
extract the ViT’s attention map (specifically, multi-head self-attention aggregated across layers) for
the input. We apply a regularization term that encourages the model’s attention to align with the
depth edges – effectively penalizing attention on regions that are flat in depth or off the true object
contours. By coupling attention with depth cues in the loss, the model learns to emphasize features
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coincident with physical object boundaries, which are inherently more robust to perturbations that
do not respect those boundaries.

Our contributions are as follows. (1) We propose a novel adversarial defense, DAAT, that inte-
grates monocular depth estimates into the training of an image classifier. To our best knowledge,
this is the first attempt to explicitly tie model attention to scene depth for improving robustness
in image classification. (2) We conduct an empirical study on ImageNet-100 (a 100-class subset
of ImageNet) using a ViT-B/14 model, showing that DAAT significantly improves robust accuracy
under strong L∞ PGD attacks compared to standard adversarial training (PGD-AT). Importantly,
this robustness gain comes with minimal loss in clean accuracy (results in Section Experiments).
Qualitatively, we observe that DAAT indeed causes the model to focus on semantically meaningful
regions (e.g. object silhouettes), and this focus is maintained even under attacks. (3) We provide
a theoretical perspective supporting DAAT. Geometrically, aligning attention with depth gradients
means the model’s decisions depend on stable 3D structures, making it harder for adversarial noise
to induce a class change without also causing a noticeable geometric distortion. From a robust op-
timization perspective, we argue that the depth alignment term acts as a regularizer that limits the
model’s sensitivity to adversarial perturbations, tightening the known trade-off between robustness
and accuracy by biasing the model toward “robust features” (Ilyas et al., 2019). We formalize these
intuitions in Section Theoretical Justification.

In summary, DAAT demonstrates that integrating geometry into adversarial training can be a pow-
erful way to bolster model security. We hope our work paves the way for future research on multi-
modal and geometry-aware defenses for robust vision.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS AND TRAINING

Ever since the discovery of adversarial examples (Szegedy et al., 2013), many attack methods have
emerged, from fast one-step methods Goodfellow et al. (2014) to powerful multi-step approaches
like Projected Gradient Descent (PGD) and C&W Madry et al. (2017); Carlini & Wagner (2017)
and AutoAttack (Croce & Hein, 2020). To defend against these threats, adversarial training has
become the de facto standard (Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019;
2021; Peng et al., 2023). In adversarial training, models are trained on adversarially perturbed
inputs generated on-the-fly. PGD-AT advocated a min-max optimization framework to withstand
strong iterative attacks (Madry et al., 2017). While effective, standard adversarial training often
degrades clean accuracy and can overfit to the specific norm-bounded threat model (Rice et al.,
2020; Liu et al., 2025). To improve robust generalization, researchers have proposed regularization
schemes and objective trade-offs, which adds a term for the gap between natural and adversarial
predictions (Zhang et al., 2019). Robust architecture (RA) Peng et al. (2023) offers a comprehensive
analysis of how different model structures influence robustness, proposing a robust structure. From
the data aspect, diffusion models have been proven to be a good choice to generate training data that
improves the robustness of the model Rebuffi et al. (2021); Wang et al. (2023).

2.2 ATTENTION ALIGNMENT IN ROBUST MODELS

Several works have explored the idea of aligning internal model representations between clean and
adversarial examples to improve robustness. Adversarial Logit Pairing (ALP) encourages the output
logits for a natural image and its adversarial counterpart to be similar (Kannan et al., 2018). Beyond
logits, attention and feature maps can also be paired. Zagoruyko & Komodakis (2016) introduced at-
tention transfer for model compression, and later AT+ALP was proposed, which explicitly penalizes
differences in spatial attention maps between clean and adversarial images (Goodman et al., 2019).
Their method improved robust accuracy on small datasets by forcing the model to “look” at the
same regions for an image and its perturbed version. Our approach similarly focuses on attention,
but instead of matching adversarial to clean attention, we align adversarial attention to an external
signal: the depth-based salient regions of the image. This leverages a fixed prior (scene geometry)
rather than the model’s own clean image features, and is complementary to methods like AT+ALP.

Another related idea is input gradient regularization. Ross & Doshi-Velez (2018) showed that penal-
izing the magnitude of the gradient of the loss w.r.t. input (or encouraging alignment with human-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

attention masks) can both improve interpretability and robustness. Our depth alignment loss can be
seen as a specialized form of input-gradient regularization that doesn’t just shrink gradients arbitrar-
ily, but rather shapes them to coincide with meaningful depth edges.

2.3 DEPTH AND ROBUST VISION

In human vision, understanding 3D structure is fundamental to recognizing objects; analogously,
incorporating geometric information might strengthen machine perception against anomalous in-
puts. Prior work has utilized depth information mostly in multi-task or multi-modal contexts (e.g.
improving object detection in autonomous driving using LiDAR or stereo depth). In the adversar-
ial domain, recent studies on 3D tasks suggest that depth cues can aid robustness. For example,
DART3D, a depth-aware adversarial training method for monocular 3D object detection, was pro-
posed to improve robustness by jointly training detection and depth estimation networks (Li et al.,
2023). In 2D classification, however, the use of depth for adversarial defense has been unexplored.
Our work is the first to inject monocular depth cues into an image classifier’s training to enhance
adversarial resilience. We note that depth cues have also been linked to shape-based representa-
tions. Shi et al. (2020) found that models biased toward shape (as opposed to texture) are signif-
icantly more robust to noise and corruptions. Adversarially trained models themselves have been
observed to become more shape-biased (Chen et al., 2020). These findings align with our approach:
by focusing on depth (which strongly correlates with object shape and boundaries), we inherently
increase the model’s shape bias and reduce its reliance on brittle texture cues. Our results reinforce
this connection between geometric priors and robust feature learning.

3 METHOD: DEPTH-AWARE ADVERSARIAL TRAINING (DAAT)

3.1 MOTIVATION AND DESIGN PRINCIPLE

Adversarial perturbations often exploit feature directions that do not correspond to meaningful
changes in scene geometry. Our central premise is that geometric structure—in particular, depth
discontinuities that delineate object boundaries and surface transitions—provides a stable, semanti-
cally aligned scaffold for recognition. Depth-Aware Adversarial Training (DAAT) instantiates this
premise by coupling a classifier’s spatial attention with a depth-derived geometric saliency signal
throughout adversarial training. Intuitively, if a model’s discriminative evidence is anchored to depth
edges, then small pixel-level perturbations that do not induce commensurate geometric change will
have limited effect on its decision.

3.2 PROBLEM SETUP

Let fθ : X → ∆C denote a C-class image classifier with parameters θ and input space X ⊂
RH×W×3. We assume access to a fixed depth estimator g : X →RH×W that maps an image to a
scalar depth map (metric or relative). The defense operates under a norm-bounded threat model: for
an input x with label y, the adversary may choose δ satisfying ∥δ∥p ≤ ε to form xadv = x+ δ.

Attention and Depth-Saliency Fields. We abstract the model’s spatial attention as a nonnegative
field A(x) ∈ RH×W

≥0 that integrates to one, ∥A(x)∥1 = 1, representing the distribution of spatial
importance on x (e.g., aggregated self-attention or any differentiable saliency). In parallel, we define
a depth-saliency field

G(x) = N
(
E
(
g(x)

) )
∈ RH×W

≥0 , ∥G(x)∥1 = 1, (1)

where E is a geometry operator that emphasizes depth discontinuities (e.g., a gradient-magnitude
or edge functional on the depth map), and N is a normalization to unit mass. We do not require
specific implementations of A or E ; DAAT only assumes that A is differentiable w.r.t. θ and that G
is a fixed supervisory signal derived from depth.

3.3 DEPTH–ATTENTION ALIGNMENT

DAAT encourages A(xadv) to conform to G(xadv) through a similarity-based penalty. Let vec(·)
flatten a field into a vector and let ⟨·, ·⟩ denote the Euclidean inner product. We adopt a scale-
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invariant cosine objective

Lalign(x
adv; θ) = 1 −

〈
vec(A(xadv)), vec(G(xadv))

〉∥∥vec(A(xadv))
∥∥
2

∥∥vec(G(xadv))
∥∥
2

, (2)

which attains 0 iff A and G are perfectly aligned (proportional) and grows as they become orthogo-
nal. Other compatible divergences (e.g., Jensen–Shannon, Earth Mover’s) can be substituted without
altering the training protocol.

3.4 EARLY-PHASE REPRESENTATION ALIGNMENT

To facilitate learning of geometry-consistent features early in training, we introduce a transient
feature alignment term that aligns the student’s intermediate representation with that of a frozen,
self-supervised teacher (DINOv2). Let ϕθ(x) ∈ Rd denote the student’s representation (e.g., the
concatenation of class and patch tokens) and ϕT (x) ∈ Rd the teacher’s counterpart. We define the
feature alignment loss

Lfeat(x; θ) = 1 − ⟨ϕθ(x), ϕT (x)⟩
∥ϕθ(x)∥2 ∥ϕT (x)∥2

, (3)

and activate it only during the initial portion of training. Concretely, for a total of T epochs, we set
a time-dependent weight

γ(t) = γ0 max
(
0, 1− t

0.2T

)
, t = 0, 1, . . . , T − 1, (4)

which decays linearly from γ0 to 0 over the first 20% epochs and remains 0 thereafter. This bootstrap
encourages the student to inherit a semantics- and shape-aware representation before the adversarial
objective dominates, yielding better synergy with depth alignment.

3.5 ROBUST OBJECTIVE

DAAT augments the standard min–max formulation of adversarial training Madry et al. (2017) with
the alignment term:

min
θ

E(x,y)∼D

[
max

∥δ∥p≤ε
Lce

(
fθ(x+ δ), y

)︸ ︷︷ ︸
adversarial classification loss

+ λ s(t) Lalign(x+ δ; θ)︸ ︷︷ ︸
depth–attention alignment

+ γ(t) Lfeat(x; θ)︸ ︷︷ ︸
feature alignment

]
.

(5)
where Lce is the cross-entropy, λ > 0 weights the alignment, and s(t) ∈ [0, 1] is a schedule (epoch
index t) that ramps down the regularizer (e.g., linear warm-start followed by annealing). The depth
estimator g is fixed; thus G(·) provides a non-learned geometric prior used only during training. We
emphasize that Eq. equation 5 does not prescribe a particular inner maximizer: any norm-bounded
adversary (e.g., PGD, CW surrogate) that approximately evaluates the inner maximization is com-
patible with DAAT.

3.6 DESIRABLE PROPERTIES

DAAT confers two complementary robustness properties:

1. Geometry-consistent sensitivity. Because Lalign concentrates A on the sparse support
of G, the input loss gradient ∇xL becomes small away from depth edges. Under norm
constraints, the adversary’s effective search space shrinks, tightening the worst-case loss
bound.

2. Decision-boundary regularization. By tying evidence to 3D contours, DAAT biases fθ
toward decision boundaries that respect object shape. Small appearance changes that do
not alter geometry are less likely to cross the boundary, improving perceptual robustness
without hand-crafted priors.

Crucially, DAAT remains model- and attack-agnostic: it composes with standard architectures (e.g.,
CNNs, ViTs) and inner maximizers, and requires only a fixed depth oracle during training.
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4 THEORETICAL ANALYSIS

4.1 GEOMETRIC PERSPECTIVE – ALIGNING DECISION BOUNDARIES WITH 3D STRUCTURE

Adversarial perturbations often exploit feature directions that do not correspond to any real semantic
or geometric change in the scene (Ilyas et al., 2019). In Figure 1, we saw that a successful pertur-
bation not only fooled the classifier but also altered the depth map in certain regions, effectively
simulating a change in the scene’s geometry (e.g. parts of the background appeared closer/farther
than they were). This observation supports the idea that the classifier’s decision boundary in input
space was not aligned with the true object boundaries. Ideally, to misclassify an object, one would
need to significantly change its shape or depth relationships – something a human would notice. But
a non-robust model might make its decision on subtle texture cues; an adversary can tweak those
cues without touching the global shape, hence fool the model while the object’s depth silhouette
remains the same.

DAAT explicitly addresses this by making the model’s attention follow the depth gradients. As a
result, the model’s internal discriminative features are tied to the object’s 3D contours. We expect
the decision boundary of a DAAT model to cut through input space in a way that respects those
contours. An adversary trying to change the model’s prediction now has a higher hurdle: they
must induce changes to the input that significantly deform the depth map (since only then will the
model’s attention shift enough to alter the prediction). In effect, DAAT increases the perceptibility
of adversarial perturbations – if a perturbation succeeds, it likely also causes a visible geometric
distortion, as trivial pixel noise on a flat surface won’t suffice. This reasoning parallels findings that
adversarial vulnerability is linked to “non-robust features” imperceptible to humans (Ilyas et al.,
2019); by forcing the model to use robust, human-aligned features like shape and depth, we remove
the model’s blind spot that adversaries were exploiting.

More formally, consider two classes whose true separation in an image can be largely characterized
by shape (e.g., bird vs airplane may depend on outline). A standard model might latch onto texture
(feathers vs metal) which can be altered via pixel-level noise without changing the outline; a depth-
aligned model, however, will rely on the outline (depth edges of the object). The adversary’s problem
becomes one of shape-mimicking – to fool the model, the perturbation must mimic the depth-edge
patterns of another class. Such perturbations are necessarily larger in Lp norm and more easily
detectable (they resemble adding small structural patterns or “false edges” to the image, as opposed
to subtle pixel noise). Thus, the space of effective perturbations is restricted by DAAT. This can
be interpreted as the classifier’s decision boundary being more aligned with the manifold of real
images and with the true geometric differences between classes, making off-manifold moves (which
adversarial attacks typically are (Ilyas et al., 2019; Stutz et al., 2019)) less effective.

4.2 ROBUST OPTIMIZATION PERSPECTIVE – REGULARIZATION AND LOSS BOUNDS

Adversarial training is often seen as solving a robust optimization:
minθ E(x, y) ∼ D

[
maxL(fθ(x + δ), y)

]
. Solving this min-max can be seen as encouraging

the loss function to be flat (insensitive) in the neighborhood of each input x. One way to achieve a
flatter loss landscape is to constrain the gradient ∇xL(fθ(x), y). Prior work showed that adding a
penalty on the input gradient (such as |∇xL|2) can improve robustness by explicitly reducing the
worst-case first-order change in loss (Goodman et al., 2019). Our depth alignment loss serves a
related purpose: it does not directly minimize the norm of ∇xL, but it reshapes ∇xL to align with
∇xD(x) (the depth gradient directions).

To understand the effect, consider a first-order approximation of the adversarial loss increase:
L(fθ(x+δ), y)−L(fθ(x), y) ≈ ∇xL ·δ. The worst-case δ under an L2 or L∞ norm constraint will
be aligned with ∇xL itself (by Cauchy-Schwarz). Thus max|δ|≤ϵ ∆L ≈ |∇xL|∗, ϵ, where |·|∗ is the
dual norm. If we can enforce that ∇xL points along directions of depth edges, we implicitly remove
components of ∇xL in other directions (e.g. those corresponding to flat regions or high-frequency
textures). Depth edges occupy a small fraction of all pixel directions – essentially a sparse mask of
salient locations. Aligning ∇xL with this sparse support means the gradient is zero in many pixels
that lie off any depth edge. Consequently, a perturbation constrained by norm that spreads its budget
over many pixels (the most effective way to maximize loss if the gradient were dense) will be much
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less effective, because large portions of δ will be orthogonal to ∇xL and contribute nothing to loss
increase. In simple terms, the effective dimensionality of the adversary’s search space is reduced.
The adversary can only significantly increase loss by concentrating δ on the depth edge regions
where ∇xL is non-zero. If those regions are limited, the max loss is smaller. This tightens the upper
bound on the inner maximization in robust training. By contrast, a standard model might have ∇xL
spread across many irrelevant pixels (non-robust features), giving the adversary many avenues to
exploit.

Another perspective is in terms of regularizing model capacity. The depth alignment loss biases
the model to a particular class of functions: those that base their predictions on a limited set of
depth-consistent features. This is akin to an inductive bias that can improve generalization. Stan-
dard adversarial training alone can sometimes overfit the model to specific perturbation patterns,
especially on limited data, resulting in poor robustness on unseen attacks or even on the same attack
at test time if the model becomes too specialized. By adding our alignment term, we inject prior
knowledge (geometric invariance) that prevents the model from fitting spurious adversarial artifacts.
In theory, this should reduce overfitting and improve the model’s robust generalization – an intuition
supported by our experimental results on validation data.

In summary, from both geometric and optimization standpoints, DAAT works by making the clas-
sifier see like a 3D-aware human, focusing on shape and structure. This not only makes attacks
more difficult to craft without leaving telltale artifacts, but also simplifies the model’s decision logic
in a way that improves worst-case loss bounds. A more rigorous theoretical analysis could involve
bounding the adversarial risk in terms of alignment loss; we leave a formal proof as future work, but
our arguments here outline why depth alignment is a principled regularizer for robustness.

5 EXPERIMENTS

5.1 SETUP

Dataset: We evaluate Depth-Aware Adversarial Training on the ImageNet-100 dataset to validate
its effectiveness. ImageNet-100 is a subset of the ImageNet ILSVRC-2012 dataset (Deng et al.,
2009) with 100 classes, containing 125K training images and 5K validation images (50 per class).
We chose ImageNet-100 to balance computational feasibility and diversity – it is large enough to
train a ViT and to include varied natural images, yet smaller than the full 1000-class ImageNet.

Setup: Our classifier is a Vision Transformer ViT-Base (patch size 14, 224×224 resolution) Doso-
vitskiy et al. (2020) initialized from scratch. We train for 300 epochs with AdamW optimizer, base
learning rate 5× 10−4, cosine schedule. For adversarial training, we set ϵ = 4/255 (L∞ norm) and
use 10-step PGD with step size 1/255 for generating adversarial examples online. Following prior
work, we use a random start for PGD and the standard cross-entropy loss as the adversarial loss. In
DAAT, we add the depth alignment loss with weight λ = 0.1 (tuned on a small held-out set). We
use the DPT-Hybrid depth model from DINOV2 (Oquab et al., 2023) as described earlier, via the
official implementation – it was pre-trained on a mixture of datasets and provides robust monocular
depth predictions.

Baselines: We compare DAAT against Standard Training (no adversarial examples) and PGD Ad-
versarial Training (PGD-AT) (Madry et al., 2017). (our implementation without the depth loss).
PGD-AT is the primary baseline to beat.

Table 1: Performance on ImageNet-100

Method Clean Acc PGD-10 AA Acc
Standard 81.84 10.24 8.60
PGD-AT 78.30 52.32 46.74

DAAT w/o Lalign 80.32 55.06 51.14
DAAT 80.74 56.02 53.70

Metrics: We report Clean Accuracy (on unperturbed validation images) and Robust Accuracy under
PGD attacks on the validation set. Specifically, we evaluate with a 10-step PGD at ϵ = 4/255 and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

additionally the stronger AutoAttack ensemble (which includes APGD, APGD-T, and gradient-free
attacks) to verify robustness. We also examine Grad-CAM visualizations and model attention maps
to qualitatively assess where the model “looks” and how it changes under attack.

(a) PGD-AT under PGD attack with epsilon=2 (b) DAAT under PGD attack with epsilon=2

(c) PGD-AT under PGD attack with epsilon=4 (d) DAAT under PGD attack with epsilon=4

Figure 2: An illustration of how an adversarial perturbation can alter the attention map of PGD-AT
(left) and DAAT (right).

5.2 EXPERIMENTAL RESULTS

Main performance analysis. Table 1 summarizes the performance. The standard non-robust ViT
achieves high clean accuracy (81.84%) but near 10% robust accuracy under PGD and 8.6% under
AA, illustrating total vulnerability. With PGD adversarial training, robust accuracy under AA im-
proves to 46.74%, at the cost of some clean accuracy drop to 78.30%. This mirrors observations
from prior work: adversarial training produces a much more robust model but slightly less accu-
rate on clean data. DAAT (ours) outperforms plain PGD-AT on robust accuracy under AA attack,
achieving 53.70%, a gain of around +6.96% absolute. This indicates that the depth alignment in-
deed makes the model harder to attack. Notably, DAAT’s clean accuracy is 80.74%, which is higher
than the PGD-AT baseline – an interesting outcome suggesting that focusing on meaningful depth
features can even act as a regularizer improving generalization on natural images. In other words,
our model is both more robust and more accurate than the baseline.

Visual qualitative analysis. To further illustrate qualitative behavior, Figure 2 compares Grad-
CAMs under PGD attacks. With ϵ = 2, both PGD-AT and DAAT keep the label Shih-Tzu, but the
PGD-AT Grad-CAM is misaligned with human perception: its high-saliency regions fall largely off
the dog and spill into the background (see the signed-difference map and the scattered red contours),
whereas DAAT concentrates on the dog’s body with only minor shifts. When the budget increases
toϵ = 4, the gap widens: the PGD-AT model flips from stinkhorn, carrion fungus to pineapple,
ananas and its attention migrates across unrelated regions, producing strong positive/negative swings
and dense red contours over the object. By contrast, DAAT preserves the correct label and keeps its
adversarial Grad-CAM close to the clean one. Overall, DAAT stabilizes both attention and predic-
tions, while PGD-AT can focus on non-object regions even at modest ϵ.

Epoch-wise validation accuracy on ImageNet-100. We report epoch-wise validation accuracy on
ImageNet-100 in Figure 3a and 3b. The left panel reports clean Top-1 accuracy and the right panel
reports adversarial Top-1 accuracy (PGD-10 evaluation) on the held-out validation set, measured af-
ter each training epoch for three settings: PGD-AT (blue), DAAT without the depth–attention align-
ment loss Lalign (orange), and full DAAT (green). Both DAAT variants learn faster in early/mid
epochs and converge to equal or slightly higher clean accuracy than PGD-AT. On robust accuracy,
DAAT consistently outperforms PGD-AT throughout training; the gap opens early and persists at
convergence. Adding Lalign provides a small but persistent gain over the ablation, indicating com-
plementary benefits beyond the early DINOv2 feature alignment.

Robust accuracy vs. attack budget. As shown in Figure 3c, robust Top-1 (100-step PGD eval-
uation) decreases monotonically as ϵ grows, as expected. Across all budgets, both DAAT variants
lie above the PGD-AT baseline, with the gap most visible at mid/high budgets (ϵ = 4–10. The full
DAAT (green, λ = 0.1) is consistently competitive with—or slightly better than—the ablation with-
out Lalign (orange), indicating that depth–attention alignment provides small but systematic gains
beyond the early DINOv2 feature bootstrap.
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(a) Epoch-wise clean accuracy on vali-
dation set

(b) Epoch-wise adv. accuracy on vali-
dation set.

(c) Adv. accuracy vs. attack budget. (d) Sensitivity analysis of λ.

Figure 3: Validation and robustness analyses. (a) Clean, (b) PGD robust vs. epoch; (c) robust vs. ϵ;
(d) sensitivity to λ.

Sensitivity to the alignment weight λ Varying λ over a wide range yields stable, clean accuracy
(blue curve 80%) and robust accuracy that is uniformly above the PGD-AT baselines (dashed lines),
as shown in Figure 3d. Robust metrics exhibit a shallow peak around λ ∈ [0.05, 0.1] for both PGD
and AutoAttack evaluations, and degrade only mildly at larger λ. Overall, DAAT’s performance is
not overly sensitive to the alignment weight: small values already deliver improvements over PGD-
AT, while moderate values (≈0.05–0.1) give the best robustness without sacrificing clean accuracy.

6 CONCLUSION

We presented Depth-Aware Adversarial Training, a novel defense mechanism that brings depth per-
ception into the loop for robust image classification. DAAT uses a pre-trained depth model to guide
the classifier’s attention toward meaningful 3D structure, thereby making it harder for adversarial
perturbations to divert the model with imperceptible tricks. Through experiments on ImageNet-100
with Vision Transformers, we demonstrated that DAAT substantially improves adversarial robust-
ness over PGD-AT, with improvements on clean accuracy. By aligning model features with physical
geometry, the model is more aligned with human visual intuition and less sensitive to high-frequency
noise. As a result, the model “looks” at what a human would consider important. We provided the-
oretical arguments to explain how depth alignment acts as a regularizer that can tighten adversarial
loss bounds and force attacks to become more detectable.

This work opens several directions. One is to explore other sources of structural signals – for ex-
ample, surface normals, segmentation maps, or optical flow – as additional constraints for robust
learning. Another direction is to apply DAAT to other architectures (CNNs or larger vision-language
models) and other threat models (such as physical world attacks, where depth information could be
especially relevant). Moreover, integrating depth cues might improve robustness not only to adver-
sarial noise but also to common corruptions or geometric transformations, a hypothesis to test in
future work.

In conclusion, depth – a fundamental aspect of human vision – proves to be a valuable asset in
defending against adversarial threats. By training models to respect the depth structure of a scene,
we make them more robust, interpretable, and aligned with physical reality. We believe this principle
can be extended to build the next generation of trustworthy and resilient computer vision systems.

9
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B MORE EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

In our experiments, we set λ = 0.05 and use ϵ = 4/255 with 10-step PGD (step size 1/255) for
both training and evaluation (these settings can be adjusted; placeholder) – this is a relatively strong
attack on 224 × 224 images. After obtaining xadv, we update model parameters θ by minimizing
Ladv(xadv; θ). The depth model g is not updated, and its gradients are not computed (its output is
treated as fixed after each forward pass). Note that we compute G(xadv) using the adversarial image
itself as input to the depth model. This means the target attention pattern comes from the perturbed
image’s geometry. An alternative could be to use the original image’s depth G(x) as a fixed target;
we found using G(xadv) to be effective, presumably because for small δ, G(xadv) remains close to
G(x) yet provides some gradient signal when δ does start to distort depth. In essence, we encourage
the model to remain focused on whatever depth edges are present in the current (possibly perturbed)
input, instead of drifting to other, less meaningful pixels.

We built on the PyTorch and timm libraries for ViT, and used an open-source DPT depth model pre-
trained on a mix of datasets (Oquab et al., 2023). The attention extraction adds some overhead: we
hook all 12 layers of ViT-Base, but this is only for computing the regularizer during training. For in-
ference, these hooks are not needed unless one wants to inspect attention. We observed roughly a 2×
slow-down in training speed due to depth prediction and attention processing, which is acceptable.
The depth model processes 32 images of size 224×224 in about 0.1 seconds on a GPU (batch infer-
ence), so it is not a major bottleneck. Memory overhead is also manageable, as the depth model’s
gradients are not stored. Overall, DAAT training was roughly 2× the time of standard adversarial
training in our setup, a reasonable cost given the substantial robustness gains.

B.2 VISUALIZATION

Figure 4 examines Grad-CAM stability at stronger attacks. (a–b) ϵ = 6, “wing” sample. Both
PGD-AT and DAAT flip to Saluki gazelle hound, but their attention behaviors diverge. PGD-AT’s
heatmap drifts off the airplane and spreads across background regions; the signed-difference map
shows large swings and the red contours (high attention-change regions) are widespread. DAAT,
while misclassifying, keeps most saliency near the wing and along geometric edges, with smaller
signed changes and fewer, more localized contours. Even in failure, DAAT remains more object-
centric. (c–d) ϵ = 8, “hare” sample. Both methods retain the correct label (hare). PGD-AT, however,
undergoes a broad redistribution of attention over the grass, producing dense contours and strong
positive/negative shifts. DAAT’s adversarial Grad-CAM stays close to the clean one, with limited
changes concentrated around the animal. Takeaway. As the attack budget grows, DAAT consis-
tently suppresses attention drift and localizes inevitable changes to geometry-related regions. When
errors occur, they are more interpretable (attention remains on the object), aligning with the depth-
anchoring principle behind DAAT.

C SIMPLIFIED ANALYSIS UNDER LINEAR AND LOCAL ASSUMPTIONS

To ground these ideas in a more formal analysis, we consider a simplified setting with the following
assumptions and notation:

1. Linearized Classifier: Assume f(x) is (locally) linear around a data point x0. For small
perturbations, we can write f(x0+δ) ≈ f(x0)+J(x0), δ, where J = ∇xf is the Jacobian
(for classification, think of f as the logit score for the true class, or a linear binary classifier
for simplicity). Likewise, the loss can be linearized as ℓ(f(x0 + δ), y) ≈ ℓ(f(x0), y) +
∇xℓ

⊤δ to first order.

2. Patch-Based Attention: Partition the image into a set of patches or regions indexed by
i ∈ 1, . . . ,m (for example, non-overlapping blocks, or individual pixels as extreme cases).
Let ai denote the attention weight that the model assigns to patch i (how important patch i
is for the prediction), and let gi denote the depth edge strength in patch i (e.g. the average
magnitude of ∇D in that patch, as computed by a Sobel filter). Both ai and gi are non-
negative and we can normalize

∑
i ai =

∑
i gi = 1 for convenience.
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(a) PGD-AT under PGD attack with epsilon=6

(b) DAAT under PGD attack with epsilon=6

(c) PGD-AT under PGD attack with epsilon=8

(d) DAAT under PGD attack with epsilon=8

Figure 4: The illustration of how an adversarial perturbation can alter the attention map of PGD-AT
and DAAT.
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3. Depth-Alignment Loss (simplified): Define Lalign =
∑

i |, ai − gi, |, which measures the
deviation between the attention distribution and the depth-gradient distribution. The model
is penalized if it places attention on patches that do not have depth edges (or ignores patches
that do have edges).

4. Classification on Edges vs Surfaces: Suppose the true task can be largely determined by
edge information. For instance, consider that each class differs in the shape/outline of an
object, not in the flat texture inside regions. An ideal depth-aligned classifier would then
base its decision on differences in patches with high gi (edges), whereas a non-aligned
classifier might also use subtle cues in low-g patches (surfaces) – e.g., texture or noise –
which are more vulnerable to perturbation.

Under this setup, we can sketch a theoretical result:

Proposition 1 Robustness with Sparse Edge-Focused Features: Consider a linear classifier f(x) =
w⊤x and two scenarios for the weight vector w: (A) w is aligned with depth edges, meaning wi ̸= 0
only for features i that lie on high-depth-gradient patches (and wi = 0 for flat patches); (B) w
is unconstrained. Assume the classifier achieves the same margin γ = w⊤x − w⊤xboundary on a
given example x (where xboundary is the nearest point on the decision boundary along the manifold)
in both scenarios. Then, under an L∞ adversarial perturbation of size ϵ, the worst-case change
in the classifier’s logit in case (A) is ∆A = ϵ

∑
i∈edges |wi|, whereas in case (B) it can be as high

as ∆B = ϵ
∑

i |wi|. Because in scenario (A) w has support only on a (typically small) subset of
features (edges),

∑
i∈edges |wi| is significantly less than

∑
i |wi| for an equally expressive classifier

in scenario (B). Thus, ∆A ≪ ∆B . In other words, an edge-focused classifier offers a tighter upper
bound on adversarial logit change.

Proof Sketch: For an L∞ attack, the maximizing perturbation sets δi = −ϵ, sign(wi) for each
feature, attaining ∆ = ϵ

∑
i |wi| change in the linear score (this follows from the definition of

dual norm: |∇xf |1 governs the L∞ vulnerability) arxiv.org . In scenario (A), if wi = 0 for all
non-edge features, then |∇xf |1 =

∑
i ∈ edges|wi| – the classifier is blind to perturbations on flat

regions. In scenario (B), w might be distributed across many features including low-depth-gradient
areas, yielding a larger ℓ1 norm for the same margin γ. (Intuitively, to achieve a given classification
margin, using a broad set of weak features requires more total weight than using a focused set of
strong features on the most informative regions. Texture-based classifiers often sum many small
pieces of evidence across the image, accumulating a large ℓ1 norm even if the ℓ2 norm of w is fixed.)
Therefore, ∆B = ϵ

∑
i |wi| will exceed ∆A = ϵ

∑
i∈edges |wi|. This demonstrates that restricting w

to align with depth edges (sparsifying the relevant features) inherently reduces the worst-case impact
of an L∞ perturbation of size ϵ.

The above proposition is a stylized result, but it captures the essence of how DAAT confers ro-
bustness. By focusing model capacity on a limited set of geometrically meaningful features, the
model’s sensitivity to input perturbations is reduced in all other (less meaningful) directions. We
saw this through the ℓ1 norm of the gradient: depth alignment effectively acts like a regularizer that
shrinks the gradient components in non-edge regions to zero. Another way to phrase this is that
DAAT introduces an implicit prior that “the classification decision should not drastically change
under small input changes unless those changes correspond to real object boundary changes.” This
prior makes the loss function locally flatter in most directions, except along those that change true
object structure.

One can also appeal to the concept of loss landscape stability. A recent theory of adversarial ro-
bustness frames it as requiring the loss to be stable (not vary too much) in a neighborhood around
natural examples (He et al., 2023). DAAT’s alignment term contributes exactly to such stability by
eliminating loss spikes due to irrelevant input variation. The auxiliary depth loss acts much like a
ridge that pulls the model’s decision boundary into alignment with stable, high-level structures. It is
a data-dependent regularization: unlike generic smoothness regularizers (which might, say, penalize
the norm of ∇xf uniformly), the depth alignment specifically targets the most semantically rele-
vant directions for allowed variation (flat regions can vary without affecting class, edges are where
variation matters). This yields a more tractable robust optimization problem – essentially narrow-
ing the worst-case loss because the model does not “care” about many of the adversary’s available
directions.
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