

000 001 DEPTH-AWARE ADVERSARIAL TRAINING FOR RO- 002 BUST IMAGE CLASSIFICATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Adversarial examples exploit non-robust, imperceptible features to fool deep neu-
012 ral networks. To explain and address this problem, we propose Depth-Aware
013 Adversarial Training (DAAT), which regularizes model attention to be consistent
014 with scene geometry inferred from monocular depth. Concretely, DAAT lever-
015 ages a pretrained (frozen) depth estimator to compute depth-gradient maps and
016 imposes an alignment penalty that encourages a Vision Transformer to focus on
017 depth-consistent cues while adversarial examples are generated during training,
018 steering learning away from brittle texture signals toward geometry-aligned evi-
019 dence. Empirically, on ImageNet-100, On ImageNet-100, DAAT improves L_∞
020 AutoAttack robust accuracy by 6.96% over standard adversarial training while
021 retaining strong clean performance (80.74%). Theoretically, we further justify
022 DAAT with two analyses: (i) a geometric account showing that small perturba-
023 tions can distort inferred depth and shift decisions, whereas depth-aligned atten-
024 tion preserves 3D structure in the representation; and (ii) a robust-optimization
025 view in which the alignment term tightens an upper bound on adversarial loss by
026 constraining gradients along depth-inconsistent directions. These results indicate
027 that integrating depth cues into training is a principled route to more robust and
028 interpretable image classifiers, bridging adversarial robustness and 3D vision.

029 1 INTRODUCTION 030

031 Deep neural networks for image classification are notoriously vulnerable to adversarial perturba-
032 tions – tiny, human-imperceptible changes to an input image can induce misclassification (Goodfellow
033 et al., 2014; Qian et al., 2022). Adversarial training, which injects adversarial examples during
034 training, remains as one of the most effective defenses (Madry et al., 2017; Zhang et al., 2019; 2021;
035 Rice et al., 2020). However, even adversarially trained models can be brittle and often rely on spuri-
036 ous features that are not human-interpretable (Ilyas et al., 2019). Why are adversarial perturbations
037 so effective? Beyond the well-known hypothesis of linearity in neural networks (Goodfellow et al.,
038 2014), recent studies suggest that robust models tend to align with human perception, emphasizing
039 object shapes and structure over high-frequency textures (Chen et al., 2020; Hoak et al., 2025). This
040 motivates us to explore adversarial robustness from a novel perspective: adversarial attacks may fool
041 models by altering their understanding of 3D structure and object depth in a scene. In human vision,
042 recognizing objects is linked to understanding spatial layout and depth; if adversarial noise confuses
043 a model’s depth perception, it might also misidentify objects. We therefore ask whether encouraging
044 a model to focus on proper depth cues can mitigate adversarial vulnerability.

045 We hypothesize that forcing a model to “see” in terms of depth can improve its adversarial robust-
046 ness. Adversarial perturbations often work by subtly shifting the input in directions that do not
047 correspond to real changes in the scene’s geometry (so-called “non-robust features” (Ilyas et al.,
048 2019)). As a motivating example, Figure 1a shows how an adversarial perturbation applied to an
049 image causes a trained depth model to predict noticeably altered depth values. Even though the
050 perturbation is nearly invisible, the model perceives some regions as significantly closer or farther
051 than in the original image (see red and blue regions in the signed difference map). This suggests that
052 adversarial attacks might deceive vision models by perturbing features related to spatial depth and
053 shape. We also observe that the classifier’s attention shifts correspondingly. Figure 1b demonstrates
The clean image (a man holding a fish) is correctly recognized (class “tench”) with a Grad-CAM

highlighting the fish and man. However, after an adversarial perturbation, the model misclassifies the image as a “hen,” and the Grad-CAM heatmap drastically changes – the model’s focus is misdirected to background foliage and random regions. This implies a misalignment between the model’s feature sensitivity and the true 3D structure of objects. If we can realign the model’s feature extraction with genuine structure – e.g. object boundaries and surface normals indicated by depth gradients – the model may become less sensitive to superficial pixel-level tweaks. In other words, a model that attends to an object’s shape (which correlates with depth discontinuities) should be harder to fool without making a geometrically meaningful change to the image.

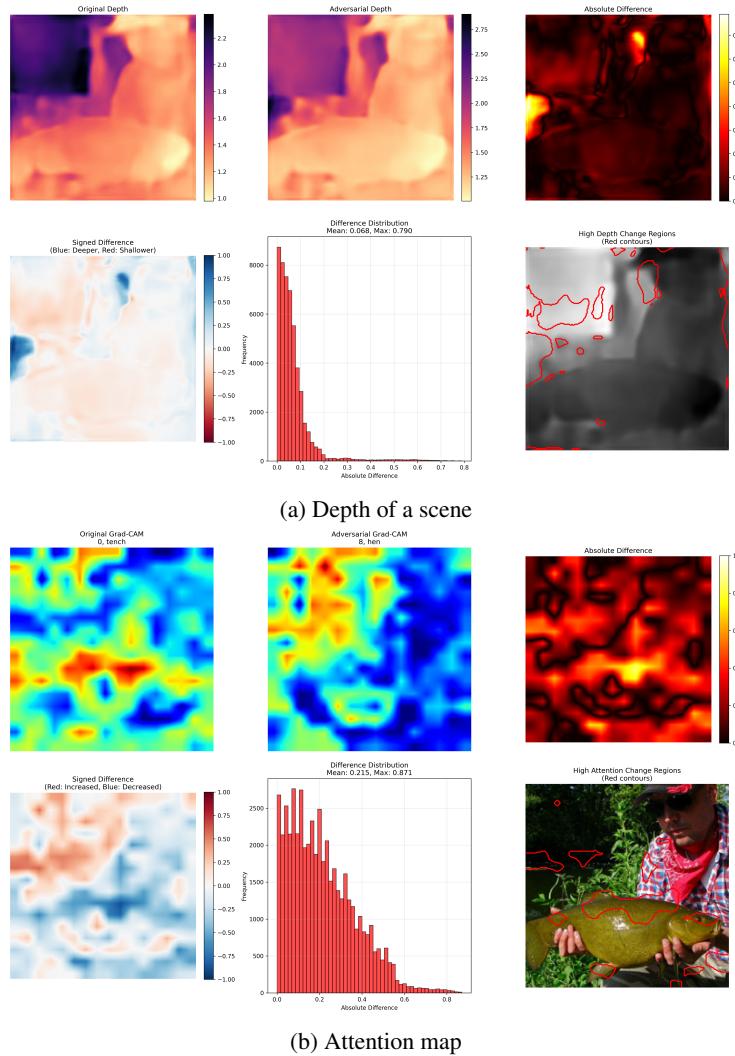


Figure 1: Illustration of how an adversarial perturbation can alter a model’s perceived depth of a scene (a) and attention map (b).

To validate this idea, we develop Depth-Aware Adversarial Training (DAAT). In DAAT, we train a Vision Transformer classifier on adversarial examples generated via PGD, augmented with a depth alignment loss. During training, a fixed pre-trained depth estimation model (DINOv2 + Dense Prediction Transformer (DPT) (Oquab et al., 2023)) computes a depth map for each input; we then compute the spatial gradient of the depth map to identify important 3D edges. Simultaneously, we extract the ViT’s attention map (specifically, multi-head self-attention aggregated across layers) for the input. We apply a regularization term that encourages the model’s attention to align with the depth edges – effectively penalizing attention on regions that are flat in depth or off the true object contours. By coupling attention with depth cues in the loss, the model learns to emphasize features

108 coincident with physical object boundaries, which are inherently more robust to perturbations that
 109 do not respect those boundaries.
 110

111 Our contributions are as follows. (1) We propose a novel adversarial defense, DAAT, that inte-
 112 grates monocular depth estimates into the training of an image classifier. To our best knowledge,
 113 this is the first attempt to explicitly tie model attention to scene depth for improving robustness
 114 in image classification. (2) We conduct an empirical study on ImageNet-100 (a 100-class subset
 115 of ImageNet) using a ViT-B/14 model, showing that DAAT significantly improves robust accuracy
 116 under strong L_∞ PGD attacks compared to standard adversarial training (PGD-AT). Importantly,
 117 this robustness gain comes with minimal loss in clean accuracy (results in Section Experiments).
 118 Qualitatively, we observe that DAAT indeed causes the model to focus on semantically meaningful
 119 regions (e.g. object silhouettes), and this focus is maintained even under attacks. (3) We provide
 120 a theoretical perspective supporting DAAT. Geometrically, aligning attention with depth gradients
 121 means the model’s decisions depend on stable 3D structures, making it harder for adversarial noise
 122 to induce a class change without also causing a noticeable geometric distortion. From a robust
 123 optimization perspective, we argue that the depth alignment term acts as a regularizer that limits the
 124 model’s sensitivity to adversarial perturbations, tightening the known trade-off between robustness
 125 and accuracy by biasing the model toward “robust features” (Ilyas et al., 2019). We formalize these
 126 intuitions in Section Theoretical Justification.
 127

128 In summary, DAAT demonstrates that integrating geometry into adversarial training can be a pow-
 129 erful way to bolster model security. We hope our work paves the way for future research on multi-
 130 modal and geometry-aware defenses for robust vision.
 131

132 2 RELATED WORK

133 2.1 ADVERSARIAL ATTACKS AND TRAINING

134 Ever since the discovery of adversarial examples (Szegedy et al., 2013), many attack methods have
 135 emerged, from fast one-step methods Goodfellow et al. (2014) to powerful multi-step approaches
 136 like Projected Gradient Descent (PGD) and C&W Madry et al. (2017); Carlini & Wagner (2017)
 137 and AutoAttack (Croce & Hein, 2020). To defend against these threats, adversarial training has
 138 become the de facto standard (Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019;
 139 2021; Peng et al., 2023). In adversarial training, models are trained on adversarially perturbed
 140 inputs generated on-the-fly. PGD-AT advocated a min-max optimization framework to withstand
 141 strong iterative attacks (Madry et al., 2017). While effective, standard adversarial training often
 142 degrades clean accuracy and can overfit to the specific norm-bounded threat model (Rice et al.,
 143 2020; Liu et al., 2025). To improve robust generalization, researchers have proposed regularization
 144 schemes and objective trade-offs, which adds a term for the gap between natural and adversarial
 145 predictions (Zhang et al., 2019). Robust architecture (RA) Peng et al. (2023) offers a comprehensive
 146 analysis of how different model structures influence robustness, proposing a robust structure. From
 147 the data aspect, diffusion models have been proven to be a good choice to generate training data that
 148 improves the robustness of the model Rebuffi et al. (2021); Wang et al. (2023).
 149

150 2.2 ATTENTION ALIGNMENT IN ROBUST MODELS

151 Several works have explored the idea of aligning internal model representations between clean and
 152 adversarial examples to improve robustness. Adversarial Logit Pairing (ALP) encourages the output
 153 logits for a natural image and its adversarial counterpart to be similar (Kannan et al., 2018). Beyond
 154 logits, attention and feature maps can also be paired. Zagoruyko & Komodakis (2016) introduced at-
 155 tention transfer for model compression, and later AT+ALP was proposed, which explicitly penalizes
 156 differences in spatial attention maps between clean and adversarial images (Goodman et al., 2019).
 157 Their method improved robust accuracy on small datasets by forcing the model to “look” at the
 158 same regions for an image and its perturbed version. Our approach similarly focuses on attention,
 159 but instead of matching adversarial to clean attention, we align adversarial attention to an external
 160 signal: the depth-based salient regions of the image. This leverages a fixed prior (scene geometry)
 161 rather than the model’s own clean image features, and is complementary to methods like AT+ALP.

162 Another related idea is input gradient regularization. Ross & Doshi-Velez (2018) showed that penal-
 163 izing the magnitude of the gradient of the loss w.r.t. input (or encouraging alignment with human-
 164

162 attention masks) can both improve interpretability and robustness. Our depth alignment loss can be
 163 seen as a specialized form of input-gradient regularization that doesn’t just shrink gradients arbitrarily,
 164 but rather shapes them to coincide with meaningful depth edges.
 165

166 2.3 DEPTH AND ROBUST VISION

167 In human vision, understanding 3D structure is fundamental to recognizing objects; analogously,
 168 incorporating geometric information might strengthen machine perception against anomalous inputs.
 169 Prior work has utilized depth information mostly in multi-task or multi-modal contexts (e.g.
 170 improving object detection in autonomous driving using LiDAR or stereo depth). In the adversarial
 171 domain, recent studies on 3D tasks suggest that depth cues can aid robustness. For example,
 172 DART3D, a depth-aware adversarial training method for monocular 3D object detection, was pro-
 173 posed to improve robustness by jointly training detection and depth estimation networks (Li et al.,
 174 2023). In 2D classification, however, the use of depth for adversarial defense has been unexplored.
 175 Our work is the first to inject monocular depth cues into an image classifier’s training to enhance
 176 adversarial resilience. We note that depth cues have also been linked to shape-based representa-
 177 tions. Shi et al. (2020) found that models biased toward shape (as opposed to texture) are signif-
 178 icantly more robust to noise and corruptions. Adversarially trained models themselves have been
 179 observed to become more shape-biased (Chen et al., 2020). These findings align with our approach:
 180 by focusing on depth (which strongly correlates with object shape and boundaries), we inherently
 181 increase the model’s shape bias and reduce its reliance on brittle texture cues. Our results reinforce
 182 this connection between geometric priors and robust feature learning.
 183

184 3 METHOD: DEPTH-AWARE ADVERSARIAL TRAINING (DAAT)

185 3.1 MOTIVATION AND DESIGN PRINCIPLE

186 Adversarial perturbations often exploit feature directions that do not correspond to meaningful
 187 changes in scene geometry. Our central premise is that *geometric structure*—in particular, depth
 188 discontinuities that delineate object boundaries and surface transitions—provides a stable, semanti-
 189 cally aligned scaffold for recognition. Depth-Aware Adversarial Training (DAAT) instantiates this
 190 premise by coupling a classifier’s spatial *attention* with a depth-derived *geometric saliency* signal
 191 throughout adversarial training. Intuitively, if a model’s discriminative evidence is anchored to depth
 192 edges, then small pixel-level perturbations that do not induce commensurate geometric change will
 193 have limited effect on its decision.
 194

195 3.2 PROBLEM SETUP

196 Let $f_\theta : \mathcal{X} \rightarrow \Delta^C$ denote a C -class image classifier with parameters θ and input space $\mathcal{X} \subset$
 197 $\mathbb{R}^{H \times W \times 3}$. We assume access to a fixed depth estimator $g : \mathcal{X} \rightarrow \mathbb{R}^{H \times W}$ that maps an image to a
 198 scalar depth map (metric or relative). The defense operates under a norm-bounded threat model: for
 199 an input x with label y , the adversary may choose δ satisfying $\|\delta\|_p \leq \varepsilon$ to form $x^{\text{adv}} = x + \delta$.
 200

201 **Attention and Depth-Saliency Fields.** We abstract the model’s *spatial attention* as a nonnegative
 202 field $A(x) \in \mathbb{R}_{\geq 0}^{H \times W}$ that integrates to one, $\|A(x)\|_1 = 1$, representing the distribution of spatial
 203 importance on x (e.g., aggregated self-attention or any differentiable saliency). In parallel, we define
 204 a *depth-saliency* field
 205

$$206 G(x) = \mathcal{N}(\mathcal{E}(g(x))) \in \mathbb{R}_{\geq 0}^{H \times W}, \quad \|G(x)\|_1 = 1, \quad (1)$$

207 where \mathcal{E} is a geometry operator that emphasizes depth discontinuities (e.g., a gradient-magnitude
 208 or edge functional on the depth map), and \mathcal{N} is a normalization to unit mass. We do not require
 209 specific implementations of A or \mathcal{E} ; DAAT only assumes that A is differentiable w.r.t. θ and that G
 210 is a fixed supervisory signal derived from depth.
 211

212 3.3 DEPTH-ATTENTION ALIGNMENT

213 DAAT encourages $A(x^{\text{adv}})$ to conform to $G(x^{\text{adv}})$ through a similarity-based penalty. Let $\text{vec}(\cdot)$
 214 flatten a field into a vector and let $\langle \cdot, \cdot \rangle$ denote the Euclidean inner product. We adopt a scale-
 215

216 invariant cosine objective
 217

$$218 \quad \mathcal{L}_{\text{align}}(x^{\text{adv}}; \theta) = 1 - \frac{\langle \text{vec}(A(x^{\text{adv}})), \text{vec}(G(x^{\text{adv}})) \rangle}{\|\text{vec}(A(x^{\text{adv}}))\|_2 \|\text{vec}(G(x^{\text{adv}}))\|_2}, \quad (2)$$

$$219$$

$$220$$

221 which attains 0 iff A and G are perfectly aligned (proportional) and grows as they become orthogonal.
 222 Other compatible divergences (e.g., Jensen–Shannon, Earth Mover’s) can be substituted without
 223 altering the training protocol.

224 **3.4 EARLY-PHASE REPRESENTATION ALIGNMENT**
 225

226 To facilitate learning of geometry-consistent features early in training, we introduce a transient
 227 *feature alignment* term that aligns the student’s intermediate representation with that of a frozen,
 228 self-supervised teacher (DINOv2). Let $\phi_\theta(x) \in \mathbb{R}^d$ denote the student’s representation (e.g., the
 229 concatenation of class and patch tokens) and $\phi_T(x) \in \mathbb{R}^d$ the teacher’s counterpart. We define the
 230 feature alignment loss

$$231 \quad \mathcal{L}_{\text{feat}}(x; \theta) = 1 - \frac{\langle \phi_\theta(x), \phi_T(x) \rangle}{\|\phi_\theta(x)\|_2 \|\phi_T(x)\|_2}, \quad (3)$$

$$232$$

$$233$$

234 and activate it only during the initial portion of training. Concretely, for a total of T epochs, we set
 235 a time-dependent weight

$$236 \quad \gamma(t) = \gamma_0 \max\left(0, 1 - \frac{t}{0.2T}\right), \quad t = 0, 1, \dots, T-1, \quad (4)$$

$$237$$

238 which decays linearly from γ_0 to 0 over the first 20% epochs and remains 0 thereafter. This *bootstrap*
 239 encourages the student to inherit a semantics- and shape-aware representation before the adversarial
 240 objective dominates, yielding better synergy with depth alignment.

241 **3.5 ROBUST OBJECTIVE**
 242

243 DAAT augments the standard min–max formulation of adversarial training Madry et al. (2017) with
 244 the alignment term:

$$246 \quad \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\|\delta\|_p \leq \varepsilon} \underbrace{\mathcal{L}_{\text{ce}}(f_\theta(x + \delta), y)}_{\text{adversarial classification loss}} + \lambda s(t) \underbrace{\mathcal{L}_{\text{align}}(x + \delta; \theta)}_{\text{depth-attention alignment}} + \gamma(t) \underbrace{\mathcal{L}_{\text{feat}}(x; \theta)}_{\text{feature alignment}} \right]. \quad (5)$$

$$247$$

$$248$$

$$249$$

250 where \mathcal{L}_{ce} is the cross-entropy, $\lambda > 0$ weights the alignment, and $s(t) \in [0, 1]$ is a schedule (epoch
 251 index t) that ramps down the regularizer (e.g., linear warm-start followed by annealing). The depth
 252 estimator g is fixed; thus $G(\cdot)$ provides a non-learned geometric prior used only during training. We
 253 emphasize that Eq. equation 5 does not prescribe a particular inner maximizer: any norm-bounded
 254 adversary (e.g., PGD, CW surrogate) that approximately evaluates the inner maximization is com-
 255 patible with DAAT.

256 **3.6 DESIRABLE PROPERTIES**
 257

258 DAAT confers two complementary robustness properties:

- 259 **1. Geometry-consistent sensitivity.** Because $\mathcal{L}_{\text{align}}$ concentrates A on the sparse support
 260 of G , the input loss gradient $\nabla_x \mathcal{L}$ becomes small away from depth edges. Under norm
 261 constraints, the adversary’s effective search space shrinks, tightening the worst-case loss
 262 bound.
- 263 **2. Decision-boundary regularization.** By tying evidence to 3D contours, DAAT biases f_θ
 264 toward decision boundaries that respect object shape. Small appearance changes that do
 265 not alter geometry are less likely to cross the boundary, improving perceptual robustness
 266 without hand-crafted priors.

267 Crucially, DAAT remains *model- and attack-agnostic*: it composes with standard architectures (e.g.,
 268 CNNs, ViTs) and inner maximizers, and requires only a fixed depth oracle during training.

270 4 THEORETICAL ANALYSIS
271272 4.1 GEOMETRIC PERSPECTIVE – ALIGNING DECISION BOUNDARIES WITH 3D STRUCTURE
273

274 Adversarial perturbations often exploit feature directions that do not correspond to any real semantic
275 or geometric change in the scene (Ilyas et al., 2019). In Figure 1, we saw that a successful pertur-
276 bation not only fooled the classifier but also altered the depth map in certain regions, effectively
277 simulating a change in the scene’s geometry (e.g. parts of the background appeared closer/farther
278 than they were). This observation supports the idea that the classifier’s decision boundary in input
279 space was not aligned with the true object boundaries. Ideally, to misclassify an object, one would
280 need to significantly change its shape or depth relationships – something a human would notice. But
281 a non-robust model might make its decision on subtle texture cues; an adversary can tweak those
282 cues without touching the global shape, hence fool the model while the object’s depth silhouette
283 remains the same.

284 DAAT explicitly addresses this by making the model’s attention follow the depth gradients. As a
285 result, the model’s internal discriminative features are tied to the object’s 3D contours. We expect
286 the decision boundary of a DAAT model to cut through input space in a way that respects those
287 contours. An adversary trying to change the model’s prediction now has a higher hurdle: they
288 must induce changes to the input that significantly deform the depth map (since only then will the
289 model’s attention shift enough to alter the prediction). In effect, DAAT increases the perceptibility
290 of adversarial perturbations – if a perturbation succeeds, it likely also causes a visible geometric
291 distortion, as trivial pixel noise on a flat surface won’t suffice. This reasoning parallels findings that
292 adversarial vulnerability is linked to “non-robust features” imperceptible to humans (Ilyas et al.,
293 2019); by forcing the model to use robust, human-aligned features like shape and depth, we remove
294 the model’s blind spot that adversaries were exploiting.

295 More formally, consider two classes whose true separation in an image can be largely characterized
296 by shape (e.g., bird vs airplane may depend on outline). A standard model might latch onto texture
297 (feathers vs metal) which can be altered via pixel-level noise without changing the outline; a depth-
298 aligned model, however, will rely on the outline (depth edges of the object). The adversary’s problem
299 becomes one of shape-mimicking – to fool the model, the perturbation must mimic the depth-edge
300 patterns of another class. Such perturbations are necessarily larger in L_p norm and more easily
301 detectable (they resemble adding small structural patterns or “false edges” to the image, as opposed
302 to subtle pixel noise). Thus, the space of effective perturbations is restricted by DAAT. This can
303 be interpreted as the classifier’s decision boundary being more aligned with the manifold of real
304 images and with the true geometric differences between classes, making off-manifold moves (which
305 adversarial attacks typically are (Ilyas et al., 2019; Stutz et al., 2019)) less effective.

306 4.2 ROBUST OPTIMIZATION PERSPECTIVE – REGULARIZATION AND LOSS BOUNDS
307

308 Adversarial training is often seen as solving a robust optimization:
309 $\min_{\theta} \mathbb{E}(x, y) \sim \mathcal{D} \left[\max L(f_{\theta}(x + \delta), y) \right]$. Solving this min-max can be seen as encouraging
310 the loss function to be flat (insensitive) in the neighborhood of each input x . One way to achieve a
311 flatter loss landscape is to constrain the gradient $\nabla_x L(f_{\theta}(x), y)$. Prior work showed that adding a
312 penalty on the input gradient (such as $|\nabla_x L|_2$) can improve robustness by explicitly reducing the
313 worst-case first-order change in loss (Goodman et al., 2019). Our depth alignment loss serves a
314 related purpose: it does not directly minimize the norm of $\nabla_x L$, but it reshapes $\nabla_x L$ to align with
315 $\nabla_x D(x)$ (the depth gradient directions).

316 To understand the effect, consider a first-order approximation of the adversarial loss increase:
317 $L(f_{\theta}(x + \delta), y) - L(f_{\theta}(x), y) \approx \nabla_x L \cdot \delta$. The worst-case δ under an L_2 or L_{∞} norm constraint will
318 be aligned with $\nabla_x L$ itself (by Cauchy-Schwarz). Thus $\max_{|\delta| \leq \epsilon} \Delta L \approx |\nabla_x L|_* \cdot \epsilon$, where $|\cdot|_*$ is the
319 dual norm. If we can enforce that $\nabla_x L$ points along directions of depth edges, we implicitly remove
320 components of $\nabla_x L$ in other directions (e.g. those corresponding to flat regions or high-frequency
321 textures). Depth edges occupy a small fraction of all pixel directions – essentially a sparse mask of
322 salient locations. Aligning $\nabla_x L$ with this sparse support means the gradient is zero in many pixels
323 that lie off any depth edge. Consequently, a perturbation constrained by norm that spreads its budget
over many pixels (the most effective way to maximize loss if the gradient were dense) will be much

324 less effective, because large portions of δ will be orthogonal to $\nabla_x L$ and contribute nothing to loss
 325 increase. In simple terms, the effective dimensionality of the adversary’s search space is reduced.
 326 The adversary can only significantly increase loss by concentrating δ on the depth edge regions
 327 where $\nabla_x L$ is non-zero. If those regions are limited, the max loss is smaller. This tightens the upper
 328 bound on the inner maximization in robust training. By contrast, a standard model might have $\nabla_x L$
 329 spread across many irrelevant pixels (non-robust features), giving the adversary many avenues to
 330 exploit.

331 Another perspective is in terms of regularizing model capacity. The depth alignment loss biases
 332 the model to a particular class of functions: those that base their predictions on a limited set of
 333 depth-consistent features. This is akin to an inductive bias that can improve generalization. Stan-
 334 dard adversarial training alone can sometimes overfit the model to specific perturbation patterns,
 335 especially on limited data, resulting in poor robustness on unseen attacks or even on the same attack
 336 at test time if the model becomes too specialized. By adding our alignment term, we inject prior
 337 knowledge (geometric invariance) that prevents the model from fitting spurious adversarial artifacts.
 338 In theory, this should reduce overfitting and improve the model’s robust generalization – an intuition
 339 supported by our experimental results on validation data.

340 In summary, from both geometric and optimization standpoints, DAAT works by making the clas-
 341 sifier see like a 3D-aware human, focusing on shape and structure. This not only makes attacks
 342 more difficult to craft without leaving telltale artifacts, but also simplifies the model’s decision logic
 343 in a way that improves worst-case loss bounds. A more rigorous theoretical analysis could involve
 344 bounding the adversarial risk in terms of alignment loss; we leave a formal proof as future work, but
 345 our arguments here outline why depth alignment is a principled regularizer for robustness.

346 5 EXPERIMENTS

349 5.1 SETUP

350 **Dataset:** We evaluate Depth-Aware Adversarial Training on the ImageNet-100 dataset to validate
 351 its effectiveness. ImageNet-100 is a subset of the ImageNet ILSVRC-2012 dataset (Deng et al.,
 352 2009) with 100 classes, containing 125K training images and 5K validation images (50 per class).
 353 We chose ImageNet-100 to balance computational feasibility and diversity – it is large enough to
 354 train a ViT and to include varied natural images, yet smaller than the full 1000-class ImageNet.
 355

356 **Setup:** Our classifier is a Vision Transformer ViT-Base (patch size 14, 224×224 resolution) Dosov-
 357 itskiy et al. (2020) initialized from scratch. We train for 300 epochs with AdamW optimizer, base
 358 learning rate 5×10^{-4} , cosine schedule. For adversarial training, we set $\epsilon = 4/255$ (L_∞ norm) and
 359 use 10-step PGD with step size 1/255 for generating adversarial examples online. Following prior
 360 work, we use a random start for PGD and the standard cross-entropy loss as the adversarial loss. In
 361 DAAT, we add the depth alignment loss with weight $\lambda = 0.1$ (tuned on a small held-out set). We
 362 use the DPT-Hybrid depth model from DINOv2 (Oquab et al., 2023) as described earlier, via the
 363 official implementation – it was pre-trained on a mixture of datasets and provides robust monocular
 364 depth predictions.

365 **Baselines:** We compare DAAT against Standard Training (no adversarial examples) and PGD Ad-
 366 versarial Training (PGD-AT) (Madry et al., 2017). (our implementation without the depth loss).
 367 PGD-AT is the primary baseline to beat.

368 Table 1: Performance on ImageNet-100

370 Method	Clean Acc	PGD-10	AA Acc
371 Standard	81.84	10.24	8.60
372 PGD-AT	78.30	52.32	46.74
373 DAAT w/o $\mathcal{L}_{\text{align}}$	80.32	55.06	51.14
374 DAAT	80.74	56.02	53.70

375 **Metrics:** We report Clean Accuracy (on unperturbed validation images) and Robust Accuracy under
 376 PGD attacks on the validation set. Specifically, we evaluate with a 10-step PGD at $\epsilon = 4/255$ and

additionally the stronger AutoAttack ensemble (which includes APGD, APGD-T, and gradient-free attacks) to verify robustness. We also examine Grad-CAM visualizations and model attention maps to qualitatively assess where the model “looks” and how it changes under attack.



Figure 2: An illustration of how an adversarial perturbation can alter the attention map of PGD-AT (left) and DAAT (right).

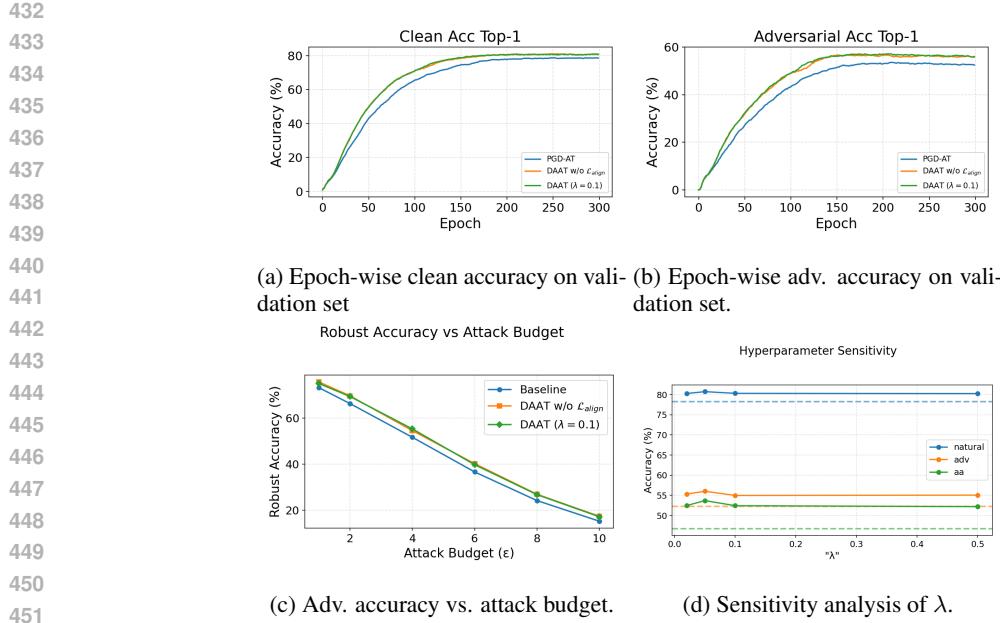
5.2 EXPERIMENTAL RESULTS

Main performance analysis. Table 1 summarizes the performance. The standard non-robust ViT achieves high clean accuracy (81.84%) but near 10% robust accuracy under PGD and 8.6% under AA, illustrating total vulnerability. With PGD adversarial training, robust accuracy under AA improves to 46.74%, at the cost of some clean accuracy drop to 78.30%. This mirrors observations from prior work: adversarial training produces a much more robust model but slightly less accurate on clean data. DAAT (ours) outperforms plain PGD-AT on robust accuracy under AA attack, achieving 53.70%, a gain of around +6.96% absolute. This indicates that the depth alignment indeed makes the model harder to attack. Notably, DAAT’s clean accuracy is 80.74%, which is higher than the PGD-AT baseline – an interesting outcome suggesting that focusing on meaningful depth features can even act as a regularizer improving generalization on natural images. In other words, our model is both more robust and more accurate than the baseline.

Visual qualitative analysis. To further illustrate qualitative behavior, Figure 2 compares Grad-CAMs under PGD attacks. With $\epsilon = 2$, both PGD-AT and DAAT keep the label Shih-Tzu, but the PGD-AT Grad-CAM is misaligned with human perception: its high-saliency regions fall largely off the dog and spill into the background (see the signed-difference map and the scattered red contours), whereas DAAT concentrates on the dog’s body with only minor shifts. When the budget increases to $\epsilon = 4$, the gap widens: the PGD-AT model flips from stinkhorn, carrion fungus to pineapple, ananas and its attention migrates across unrelated regions, producing strong positive/negative swings and dense red contours over the object. By contrast, DAAT preserves the correct label and keeps its adversarial Grad-CAM close to the clean one. Overall, DAAT stabilizes both attention and predictions, while PGD-AT can focus on non-object regions even at modest ϵ .

Epoch-wise validation accuracy on ImageNet-100. We report epoch-wise validation accuracy on ImageNet-100 in Figure 3a and 3b. The left panel reports clean Top-1 accuracy and the right panel reports adversarial Top-1 accuracy (PGD-10 evaluation) on the held-out validation set, measured after each training epoch for three settings: PGD-AT (blue), DAAT without the depth-attention alignment loss $\mathcal{L}_{\text{align}}$ (orange), and full DAAT (green). Both DAAT variants learn faster in early/mid epochs and converge to equal or slightly higher clean accuracy than PGD-AT. On robust accuracy, DAAT consistently outperforms PGD-AT throughout training; the gap opens early and persists at convergence. Adding $\mathcal{L}_{\text{align}}$ provides a small but persistent gain over the ablation, indicating complementary benefits beyond the early DINOv2 feature alignment.

Robust accuracy vs. attack budget. As shown in Figure 3c, robust Top-1 (100-step PGD evaluation) decreases monotonically as ϵ grows, as expected. Across all budgets, both DAAT variants lie above the PGD-AT baseline, with the gap most visible at mid/high budgets ($\epsilon = 4\text{--}10$). The full DAAT (green, $\lambda = 0.1$) is consistently competitive with—or slightly better than—the ablation without $\mathcal{L}_{\text{align}}$ (orange), indicating that depth–attention alignment provides small but systematic gains beyond the early DINOv2 feature bootstrap.



452 Figure 3: Validation and robustness analyses. (a) Clean, (b) PGD robust vs. epoch; (c) robust vs. ϵ ;
453 (d) sensitivity to λ .
454

455
456 **Sensitivity to the alignment weight λ** Varying λ over a wide range yields stable, clean accuracy
457 (blue curve 80%) and robust accuracy that is uniformly above the PGD-AT baselines (dashed lines),
458 as shown in Figure 3d. Robust metrics exhibit a shallow peak around $\lambda \in [0.05, 0.1]$ for both PGD
459 and AutoAttack evaluations, and degrade only mildly at larger λ . Overall, DAAT’s performance is
460 not overly sensitive to the alignment weight: small values already deliver improvements over PGD-
461 AT, while moderate values (≈ 0.05 –0.1) give the best robustness without sacrificing clean accuracy.
462
463

6 CONCLUSION

464 We presented Depth-Aware Adversarial Training, a novel defense mechanism that brings depth per-
465 ception into the loop for robust image classification. DAAT uses a pre-trained depth model to guide
466 the classifier’s attention toward meaningful 3D structure, thereby making it harder for adversarial
467 perturbations to divert the model with imperceptible tricks. Through experiments on ImageNet-100
468 with Vision Transformers, we demonstrated that DAAT substantially improves adversarial robust-
469 ness over PGD-AT, with improvements on clean accuracy. By aligning model features with physical
470 geometry, the model is more aligned with human visual intuition and less sensitive to high-frequency
471 noise. As a result, the model “looks” at what a human would consider important. We provided the-
472 oretical arguments to explain how depth alignment acts as a regularizer that can tighten adversarial
473 loss bounds and force attacks to become more detectable.
474

475 This work opens several directions. One is to explore other sources of structural signals – for ex-
476 ample, surface normals, segmentation maps, or optical flow – as additional constraints for robust
477 learning. Another direction is to apply DAAT to other architectures (CNNs or larger vision-language
478 models) and other threat models (such as physical world attacks, where depth information could be
479 especially relevant). Moreover, integrating depth cues might improve robustness not only to ad-
480 versarial noise but also to common corruptions or geometric transformations, a hypothesis to test in
481 future work.
482

483 In conclusion, depth – a fundamental aspect of human vision – proves to be a valuable asset in
484 defending against adversarial threats. By training models to respect the depth structure of a scene,
485 we make them more robust, interpretable, and aligned with physical reality. We believe this principle
can be extended to build the next generation of trustworthy and resilient computer vision systems.
486

ETHICS STATEMENT

Our work does not involve any human subjects, sensitive data, or applications with potential ethical risks. Moreover, this work raises no known ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have provided an anonymized replicate package in the supplementary materials, which contains both the implementation and the train/validation datasets. Details of model architectures, hyperparameters, and training procedures are described in Section B.1, and all theoretical assumptions and complete proofs are presented in Appendix

REFERENCES

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017 IEEE Symposium on Security and Privacy (SP)*, pp. 39–57. IEEE, 2017.

Peijie Chen, Chirag Agarwal, and Anh Nguyen. The shape and simplicity biases of adversarially robust imagenet-trained cnns. *arXiv preprint arXiv:2006.09373*, 2020.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In *ICML*, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.

Dou Goodman, Xingjian Li, Ji Liu, Dejing Dou, and Tao Wei. Improving adversarial robustness via attention and adversarial logit pairing. *arXiv preprint arXiv:1908.11435*, 2019.

Lirong He, Qingzhong Ai, Yuqing Lei, Lili Pan, Yazhou Ren, and Zenglin Xu. Edge enhancement improves adversarial robustness in image classification. *Neurocomputing*, 518:122–132, 2023.

Blaine Hoak, Kunyang Li, and Patrick McDaniel. Alignment and adversarial robustness: Are more human-like models more secure? *arXiv preprint arXiv:2502.12377*, 2025.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features. *Advances in neural information processing systems*, 32, 2019.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. *arXiv preprint arXiv:1803.06373*, 2018.

Xingyuan Li, Jinyuan Liu, Long Ma, Xin Fan, and Risheng Liu. Advmono3d: Advanced monocular 3d object detection with depth-aware robust adversarial training. *arXiv preprint arXiv:2309.01106*, 2023.

Decheng Liu, Tao Chen, Chunlei Peng, Nannan Wang, Ruimin Hu, and Xinbo Gao. Improving adversarial robustness via decoupled visual representation masking. *IEEE Transactions on Information Forensics and Security*, 2025.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *arXiv:1706.06083*, 2017.

540 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 541 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 542 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

543

544 Shengyun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute,
 545 Jason Martin, and Duen Horng Chau. Robust principles: Architectural design principles for
 546 adversarially robust cnns. *CoRR*, abs/2308.16258, 2023.

547

548 Zhuang Qian, Kaizhu Huang, Qiu-Feng Wang, and Xu-Yao Zhang. A survey of robust adversar-
 549 ial training in pattern recognition: Fundamental, theory, and methodologies. volume 131, pp.
 549 108889, 2022.

550

551 Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Florian Stimberg, Olivia Wiles, and
 552 Timothy A. Mann. Fixing data augmentation to improve adversarial robustness. *CoRR*,
 553 abs/2103.01946, 2021.

554

555 Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust deep learning. 2020.

556

557 Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability of
 558 deep neural networks by regularizing their input gradients. In *Proceedings of the AAAI conference
 558 on artificial intelligence*, volume 32, 2018.

559

560 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 561 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 562 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 563 2017.

564

565 Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, and Jingdong Wang. Informative
 566 dropout for robust representation learning: A shape-bias perspective. In *International Conference
 566 on Machine Learning*, pp. 8828–8839. PMLR, 2020.

567

568 David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and general-
 569 ization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 570 pp. 6976–6987, 2019.

571

572 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 573 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

574

575 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
 576 models further improve adversarial training. In Andreas Krause, Emma Brunskill, Kyunghyun
 577 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
 577 on Machine Learning (ICML)*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 578 36246–36263. PMLR, 2023.

579

580 Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
 581 mance of convolutional neural networks via attention transfer. *arXiv preprint arXiv:1612.03928*,
 581 2016.

582

583 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
 584 Theoretically principled trade-off between robustness and accuracy. 2019.

585

586 Shufei Zhang, Zhuang Qian, Kaizhu Huang, Qiu Feng Wang, Rui Zhang, and Xinping Yi. Towards
 587 better robust generalization with shift consistency regularization. In *International Conference on
 587 Machine Learning*, pp. 12524–12534. PMLR, 2021.

588

589

590 **A USE OF LARGE LANGUAGE MODELS (LLMs)**

591

592 To increase writing clarity and streamline figure narration, we used Large Language Models (LLMs)
 593 only for polishing writing and grammar checking. No LLMs were involved in designing experi-
 593 ments, analyzing data, or contributing to the scientific findings of this work.

594 **B MORE EXPERIMENTS**595 **B.1 IMPLEMENTATION DETAILS**

598 In our experiments, we set $\lambda = 0.05$ and use $\epsilon = 4/255$ with 10-step PGD (step size 1/255) for
 599 both training and evaluation (these settings can be adjusted; placeholder) – this is a relatively strong
 600 attack on 224×224 images. After obtaining x^{adv} , we update model parameters θ by minimizing
 601 $\mathcal{L}_{\text{adv}}(x^{\text{adv}}; \theta)$. The depth model g is not updated, and its gradients are not computed (its output is
 602 treated as fixed after each forward pass). Note that we compute $G(x^{\text{adv}})$ using the adversarial image
 603 itself as input to the depth model. This means the target attention pattern comes from the perturbed
 604 image’s geometry. An alternative could be to use the original image’s depth $G(x)$ as a fixed target;
 605 we found using $G(x^{\text{adv}})$ to be effective, presumably because for small δ , $G(x^{\text{adv}})$ remains close to
 606 $G(x)$ yet provides some gradient signal when δ does start to distort depth. In essence, we encourage
 607 the model to remain focused on whatever depth edges are present in the current (possibly perturbed)
 608 input, instead of drifting to other, less meaningful pixels.

609 We built on the PyTorch and timm libraries for ViT, and used an open-source DPT depth model pre-
 610 trained on a mix of datasets (Oquab et al., 2023). The attention extraction adds some overhead: we
 611 hook all 12 layers of ViT-Base, but this is only for computing the regularizer during training. For in-
 612 ference, these hooks are not needed unless one wants to inspect attention. We observed roughly a 2 \times
 613 slow-down in training speed due to depth prediction and attention processing, which is acceptable.
 614 The depth model processes 32 images of size 224×224 in about 0.1 seconds on a GPU (batch inference),
 615 so it is not a major bottleneck. Memory overhead is also manageable, as the depth model’s
 616 gradients are not stored. Overall, DAAT training was roughly 2 \times the time of standard adversarial
 617 training in our setup, a reasonable cost given the substantial robustness gains.

618 **B.2 VISUALIZATION**

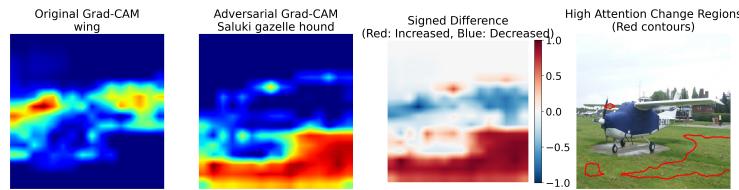
619 Figure 4 examines Grad-CAM stability at stronger attacks. (a–b) $\epsilon = 6$, “wing” sample. Both
 620 PGD-AT and DAAT flip to Saluki gazelle hound, but their attention behaviors diverge. PGD-AT’s
 621 heatmap drifts off the airplane and spreads across background regions; the signed-difference map
 622 shows large swings and the red contours (high attention-change regions) are widespread. DAAT,
 623 while misclassifying, keeps most saliency near the wing and along geometric edges, with smaller
 624 signed changes and fewer, more localized contours. Even in failure, DAAT remains more object-
 625 centric. (c–d) $\epsilon = 8$, “hare” sample. Both methods retain the correct label (hare). PGD-AT, however,
 626 undergoes a broad redistribution of attention over the grass, producing dense contours and strong
 627 positive/negative shifts. DAAT’s adversarial Grad-CAM stays close to the clean one, with limited
 628 changes concentrated around the animal. Takeaway. As the attack budget grows, DAAT consis-
 629 tently suppresses attention drift and localizes inevitable changes to geometry-related regions. When
 630 errors occur, they are more interpretable (attention remains on the object), aligning with the depth-
 631 anchoring principle behind DAAT.

632 **C SIMPLIFIED ANALYSIS UNDER LINEAR AND LOCAL ASSUMPTIONS**

633 To ground these ideas in a more formal analysis, we consider a simplified setting with the following
 634 assumptions and notation:

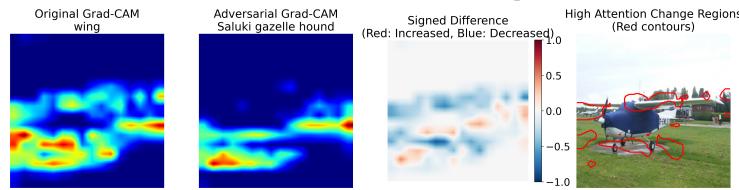
- 635 1. **Linearized Classifier:** Assume $f(x)$ is (locally) linear around a data point x_0 . For small
 636 perturbations, we can write $f(x_0 + \delta) \approx f(x_0) + J(x_0)^\top \delta$, where $J = \nabla_x f$ is the Jacobian
 637 (for classification, think of f as the logit score for the true class, or a linear binary classifier
 638 for simplicity). Likewise, the loss can be linearized as $\ell(f(x_0 + \delta), y) \approx \ell(f(x_0), y) +$
 639 $\nabla_x \ell^\top \delta$ to first order.
- 640 2. **Patch-Based Attention:** Partition the image into a set of patches or regions indexed by
 641 $i \in 1, \dots, m$ (for example, non-overlapping blocks, or individual pixels as extreme cases).
 642 Let a_i denote the attention weight that the model assigns to patch i (how important patch i
 643 is for the prediction), and let g_i denote the depth edge strength in patch i (e.g. the average
 644 magnitude of ∇D in that patch, as computed by a Sobel filter). Both a_i and g_i are non-
 645 negative and we can normalize $\sum_i a_i = \sum_i g_i = 1$ for convenience.

648
649
650
651
652
653
654
655
656
657
658
659



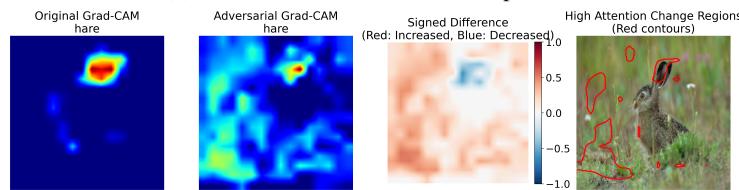
(a) PGD-AT under PGD attack with epsilon=6

660
661
662
663
664
665



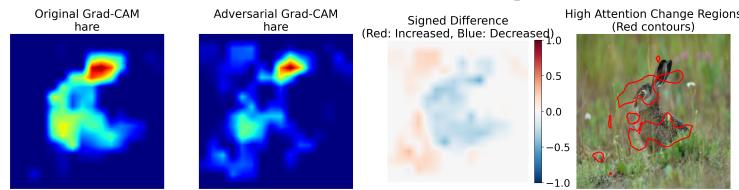
(b) DAAT under PGD attack with epsilon=6

666
667
668
669
670
671
672



(c) PGD-AT under PGD attack with epsilon=8

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688



(d) DAAT under PGD attack with epsilon=8

Figure 4: The illustration of how an adversarial perturbation can alter the attention map of PGD-AT and DAAT.

691
692
693
694
695
696
697
698
699
700
701

702 3. Depth-Alignment Loss (simplified): Define $\mathcal{L}_{align} = \sum_i |a_i - g_i|$, which measures the
 703 deviation between the attention distribution and the depth-gradient distribution. The model
 704 is penalized if it places attention on patches that do not have depth edges (or ignores patches
 705 that do have edges).

706 4. Classification on Edges vs Surfaces: Suppose the true task can be largely determined by
 707 edge information. For instance, consider that each class differs in the shape/outline of an
 708 object, not in the flat texture inside regions. An ideal depth-aligned classifier would then
 709 base its decision on differences in patches with high g_i (edges), whereas a non-aligned
 710 classifier might also use subtle cues in low- g patches (surfaces) – e.g., texture or noise –
 711 which are more vulnerable to perturbation.

712 Under this setup, we can sketch a theoretical result:

713 **Proposition 1 Robustness with Sparse Edge-Focused Features:** Consider a linear classifier $f(x) =$
 714 $w^\top x$ and two scenarios for the weight vector w : (A) w is aligned with depth edges, meaning $w_i \neq 0$
 715 only for features i that lie on high-depth-gradient patches (and $w_i = 0$ for flat patches); (B) w
 716 is unconstrained. Assume the classifier achieves the same margin $\gamma = w^\top x - w^\top x_{boundary}$ on a
 717 given example x (where $x_{boundary}$ is the nearest point on the decision boundary along the manifold)
 718 in both scenarios. Then, under an L_∞ adversarial perturbation of size ϵ , the worst-case change
 719 in the classifier’s logit in case (A) is $\Delta_A = \epsilon \sum_{i \in \text{edges}} |w_i|$, whereas in case (B) it can be as high
 720 as $\Delta_B = \epsilon \sum_i |w_i|$. Because in scenario (A) w has support only on a (typically small) subset of
 721 features (edges), $\sum_{i \in \text{edges}} |w_i|$ is significantly less than $\sum_i |w_i|$ for an equally expressive classifier
 722 in scenario (B). Thus, $\Delta_A \ll \Delta_B$. In other words, an edge-focused classifier offers a tighter upper
 723 bound on adversarial logit change.

724 *Proof Sketch:* For an L_∞ attack, the maximizing perturbation sets $\delta_i = -\epsilon, \text{sign}(w_i)$ for each
 725 feature, attaining $\Delta = \epsilon \sum_i |w_i|$ change in the linear score (this follows from the definition of
 726 dual norm: $|\nabla_x f|_1$ governs the L_∞ vulnerability) arxiv.org . In scenario (A), if $w_i = 0$ for all
 727 non-edge features, then $|\nabla_x f|_1 = \sum_{i \in \text{edges}} |w_i|$ – the classifier is blind to perturbations on flat
 728 regions. In scenario (B), w might be distributed across many features including low-depth-gradient
 729 areas, yielding a larger ℓ_1 norm for the same margin γ . (Intuitively, to achieve a given classification
 730 margin, using a broad set of weak features requires more total weight than using a focused set of
 731 strong features on the most informative regions. Texture-based classifiers often sum many small
 732 pieces of evidence across the image, accumulating a large ℓ_1 norm even if the ℓ_2 norm of w is fixed.)
 733 Therefore, $\Delta_B = \epsilon \sum_i |w_i|$ will exceed $\Delta_A = \epsilon \sum_{i \in \text{edges}} |w_i|$. This demonstrates that restricting w
 734 to align with depth edges (sparsifying the relevant features) inherently reduces the worst-case impact
 735 of an L_∞ perturbation of size ϵ .

736 The above proposition is a stylized result, but it captures the essence of how DAAT confers ro-
 737 bustness. By focusing model capacity on a limited set of geometrically meaningful features, the
 738 model’s sensitivity to input perturbations is reduced in all other (less meaningful) directions. We
 739 saw this through the ℓ_1 norm of the gradient: depth alignment effectively acts like a regularizer that
 740 shrinks the gradient components in non-edge regions to zero. Another way to phrase this is that
 741 DAAT introduces an implicit prior that “the classification decision should not drastically change
 742 under small input changes unless those changes correspond to real object boundary changes.” This
 743 prior makes the loss function locally flatter in most directions, except along those that change true
 744 object structure.

745 One can also appeal to the concept of loss landscape stability. A recent theory of adversarial ro-
 746 bustness frames it as requiring the loss to be stable (not vary too much) in a neighborhood around
 747 natural examples (He et al., 2023). DAAT’s alignment term contributes exactly to such stability by
 748 eliminating loss spikes due to irrelevant input variation. The auxiliary depth loss acts much like a
 749 ridge that pulls the model’s decision boundary into alignment with stable, high-level structures. It is
 750 a data-dependent regularization: unlike generic smoothness regularizers (which might, say, penalize
 751 the norm of $\nabla_x f$ uniformly), the depth alignment specifically targets the most semantically rele-
 752 vant directions for allowed variation (flat regions can vary without affecting class, edges are where
 753 variation matters). This yields a more tractable robust optimization problem – essentially narrow-
 754 ing the worst-case loss because the model does not “care” about many of the adversary’s available
 755 directions.