
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TURING COMPLETENESS OF PROMPTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Since the success of GPT, large language models (LLMs) have been revolutioniz-
ing machine learning and have initiated the so-called LLM prompting paradigm.
In the era of LLMs, people train a single general-purpose LLM and provide the
LLM with different prompts to perform different tasks. However, such empirical
success largely lacks theoretical understanding. Here, we present the first theoret-
ical study on the LLM prompting paradigm to the best of our knowledge. In this
work, we show that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding
prompt following which the Transformer computes the function. Furthermore, we
show that even though we use only a single finite-size Transformer, it can still
achieve nearly the same complexity bounds as that of the class of all unbounded-
size Transformers. Overall, our result reveals that prompting can enable a single
finite-size Transformer to be efficiently universal, which establishes a theoretical
underpinning for prompt engineering in practice.

1 INTRODUCTION

The mainstream architecture of large language models (LLMs; e.g., OpenAI, 2024; Anthropic, 2024;
Meta, 2024; Google, 2024) is Transformers (Vaswani et al., 2017). There has been a series of
theoretical studies on Transformers under realistic abstractions (Pérez et al., 2019; Bhattamishra
et al., 2020; Hahn, 2020; Pérez et al., 2021; Hao et al., 2022; Liu et al., 2023a; Chiang et al., 2023;
Merrill & Sabharwal, 2023; Roberts, 2023; Merrill & Sabharwal, 2024a;b; Hou et al., 2024; Li
et al., 2024). For example, Pérez et al. (2021) have shown that the class of all Transformers with
hardmax attention is Turing-complete: for any computable function φ ∈ TIME1(t(n)), there exists
a Transformer that computes φ using O(t(n)) chain-of-thought (CoT; Wei et al., 2022b) steps and
O(log(n + t(n))) precision on length-n inputs; Merrill & Sabharwal (2024a) have later improved
the CoT complexity to O(t(n)) for TIME(t(n)) functions. These works have finely characterized
the capacities and limits of Transformers under the classic one-model-one-task paradigm.

Nevertheless, existing theoretical studies fail to align with the LLM prompting practice, i.e., the
one-model-many-tasks paradigm. In the era of LLMs, people train a single general-purpose LLM
and provide the LLM with different prompts to perform different tasks. Since the success of GPT
(Brown et al., 2020), the LLM prompting paradigm has revolutionized machine learning (Liu et al.,
2023b). For example, a bonus capability arising from prompting is zero-shot learning (Wei et al.,
2022a): when provided with suitable prompts, LLMs can even perform novel tasks that are not
present in their training corpora. Such empirical success calls for a theoretical understanding of the
LLM prompting paradigm:

Fundamentally, how powerful is the LLM prompting paradigm?

We answer this call and present the first theory on the LLM prompting paradigm to the best of our
knowledge. In this work, we show that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding prompt following
which the Transformer computes the function. Furthermore, we show that prompting is not only
universal but also efficiently universal: even though we only use a single finite-size Transformer,
it can still achieve nearly the same complexity bounds as that of the class of all unbounded-size
Transformers.

Main contributions. Our main contributions are informally stated as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Expressive power. We show that prompting is Turing-complete: there exists a finite-size
Transformer Γ such that for any computable function φ, there exists a finite prompt πφ

such that for any input x, the Transformer Γ computes φ(x) following the prompt πφ.
Importantly, our constructed Transformer Γ is independent of the function φ, the prompt
πφ is independent of the input x, and the input x can be arbitrarily long.

• CoT complexity. Our Γ can compute any TIME2(t(n)) function within O(t(n)) CoT
steps and can compute any TIME(t(n)) function within O(t(n) log t(n)) CoT steps for any
length-n input. Notably, our result shows that even a single Transformer can still achieve
nearly the same CoT complexity as the class of all Transformers does.

• Precision complexity. Our constructed Γ can compute any TIME(t(n)) function within
O(log(n + t(n))) bits of precision for any length-n input. Notably, our result shows that
even a single Transformer can still achieve the same precision complexity as the class of
all Transformers does. In particular, Γ can decide any P language within log-precision.

1.1 RELATED WORK

Existing theoretical studies on Transformers fall under the classic one-model-one-task paradigm:
they need to construct different Transformers for different tasks. There are two lines of related work:
(i) when at most O(1) CoT steps are allowed, it has been shown that Transformers are capable but
far from Turing-complete (Hahn, 2020; Hao et al., 2022; Liu et al., 2023a; Chiang et al., 2023;
Merrill & Sabharwal, 2023; 2024b); (ii) when more CoT steps are allowed, it has been shown that
the expressive power of Transformers increases with the number of CoT steps (Pérez et al., 2019;
Bhattamishra et al., 2020; Pérez et al., 2021; Roberts, 2023; Merrill & Sabharwal, 2024a; Hou et al.,
2024; Li et al., 2024). Besides that, there have recently been studies on the learnability (Malach,
2023; Grau-Moya et al., 2024) and the in-context learning capability (Akyürek et al., 2022; von
Oswald et al., 2023; Zhang et al., 2024; Ahn et al., 2024; Vladymyrov et al., 2024). Nevertheless,
no existing work studies the LLM prompting paradigm (i.e., the one-model-many-tasks paradigm).
Our work is the first to bridge this gap to the best of our knowledge.

1.2 TECHNICAL OVERVIEW

A core step of our proof is to construct a new model of computation (called 2-PTMs) that can be
easily encoded into a prompt using a finite alphabet. Furthermore, we show that 2-PTMs are not
only Turing-complete but also nearly as efficient as Turing machines.
Theorem (informal version of Theorem 4.1). Any TIME(t(n)) function can be computed by a 2-
PTM within O(t(n) log t(n)) steps.

Given any computable function φ, we encode its 2-PTM into a prompt πφ. Then, it remains to
construct a Transformer Γ that can execute 2-PTMs. Since it is known that Transformers without
CoTs are not universal (Hahn, 2020), the Transformer Γ needs to use CoT steps to execute 2-PTMs.
Specifically, we use CoT steps to record the execution steps of the 2-PTM so that the Transformer
can restore the state of the 2-PTM at any step. This establishes the CoT complexity of Γ .
Corollary (informal version of Corollary 4.5). Our constructed Γ can compute any TIME(t(n))
function within O(t(n) log t(n)) CoT steps.

To incorporate input x into computation, we use O(|x|) CoT steps to emulate an imaginary process
of writing the input x onto a tape of the 2-PTM. This implies the precision complexity of Γ .
Corollary (informal version of Corollary 4.7). Our constructed Γ can compute any TIME(t(n))
function within O(log(n+ t(n))) bits of precision.

Finally, we construct a decoder-only Transformer that achieves the desiderata above by leveraging
ReLU activation, layer normalization, and causal attention.

2 PRELIMINARIES

Let ϵ denote the empty string. Given a finite alphabet Σ, let Σn (n ≥ 0) denote the set of length-n
strings over Σ, let Σ∗ :=

⋃
n≥0Σ

n denote the set of all finite strings over Σ, let Σ+ :=
⋃

n≥1Σ
n

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

denote the set of all non-empty finite strings over Σ, and let Σω denote the set of all countably
infinite strings over Σ. Each symbol in Σ is called a token. For a string x ∈ Σ∗, let |x| denote the
length of the string, and let xn denote repeating the string n times. For two strings x,y ∈ Σ∗, let
x · y denote their concatenation. Given a string x = x0 · x1 · · ·x|x|−1 ∈ Σ∗, for an index i ∈ Z, let
xi denote the (i mod |x|)-th token of x; for indices i, j ∈ Z with i mod |x| ≤ j mod |x|, let xi:j

denote the substring xi mod |x| · x(i mod |x|)+1 · · ·x(j mod |x|)−1.

2.1 THEORY OF COMPUTATION

Turing machines. Turing machines (TMs; Turing, 1937a) are an abstract model of computation
that defines the notion of computability (Church, 1936; Kleene, 1936; Turing, 1937b). An m-tape
TM is defined by a septuple (Q, qstart, qhalt, Σ, ,m, δ) where Q is the finite set of states, qstart ∈ Q
is the initial state, qhalt is the halting state, Σ is the finite alphabet of the tapes, ∈ Σ is the blank
symbol, m ∈ N is the number of tapes, and δ : (Q \ {qhalt}) × Σm ⇀ Q × (Σ × {L, S, R})m
is the transition function. See, e.g., Arora & Barak (2009) for details. By the Church–Turing the-
sis (Church, 1936; Kleene, 1936; Turing, 1937b), a function φ : domφ → {0, 1}∗ is said to be
computable if there exists a TM that computes φ(x) for all inputs x ∈ domφ.

Shannon (1956) has shown that any TM M over any alphabet can be simulated by a TM M ′ over
the binary alphabet Σ = {0, 1} with = 0 (although M ′ uses more states). Hence, we will assume
that TMs have a binary alphabet for simplicity throughout this paper.

Time complexity. Let n denote the length of the input. A function t(n) : N → R+ is said to be
a complexity function iff t(n) is non-decreasing and either t(n) is a constant > 1 or t(n) → ∞ as
n→∞. In this work, we refer to the time complexity as the the time complexity on a random-access
machine (RAM) unless otherwise stated (e.g., when working with TMs). If Θ(t(n)) is a complexity
function, let TIMEm(t(n)) denote the class of functions that can be computed by an m-tape TM
within O(t(n)) steps, let TIME(t(n)) :=

⋃
m≥1TIMEm(t(n)) denote the class of functions that

can be computed by a TM within O(t(n)) steps, and let P ⊂ TIME(poly(n)) denote the class of
(indicator functions of) languages that can be decided in polynomial time.

2.2 NEURAL NETWORKS

ReLU neural networks. A ReLU neural network ψ : Re0 → ReL is a composition ψ := ψL−1 ◦
· · · ◦ ψ0 of basic operations ψl : Rel → Rel+1 (l = 0, . . . , L− 1) where each basic operation ψl(z)
(z ∈ Rel) is either an affine map ψl(z) := W lz + bl (W l ∈ Rel+1×el , bl ∈ Rel+1), an entry-wise
ReLU activation ψl(z) := max{z,0} (Fukushima, 1969) with el+1 = el, or a layer normalization
ψl(z) :=

z
∥z∥2

1[z ̸=0] (Ba et al., 2016) with el+1 = el.

Decoder-only Transformers. Mainstream LLMs are based on decoder-only Transformers (Rad-
ford et al., 2018). Given a finite token alphabet Σ, a decoder-only Transformer Γ : Σ+ → Σ (with
greedy decoding) is a composition Γ := argmax ◦Γout◦ΓL−1◦· · ·◦Γ0◦Γemb consists of an embed-
ding layer Γemb : Σ → Rd, causal-attention Transformer layer Γl : Rd → Rd (l = 0, . . . , L − 1),
and an output layer Γout : Rd → RΣ . A token embedding is a map emb : Σ → Rd, and a positional
encoding is a map pos : N→ Rd. Following the common practice (Vaswani et al., 2017), given the
input token sequence v = v0 · · · v|v|−1 ∈ Σ+, the embedding layer Γemb adds a positional encoding
pos(i) to each token embedding emb(vi):

z0,i := emb(vi) + pos(i), i = 0, . . . , |v| − 1, (1)
where pos is a computable function. Following existing theoretical works (e.g., Pérez et al., 2019;
Hao et al., 2022; Merrill & Sabharwal, 2024a), we use hardmax attention as a realistic abstraction
of softmax. Given an R sequence s, if the maximum value of s appears t times, then we define
hardmaxi(s) := 1

t if si equals the maximum value and hardmaxi(s) := 0 otherwise. Each
Transformer layer Γl has Hl attention heads followed by a ReLU neural network ϕl : Rd → Rd.
Each attention head k has a query map qryl,k : Rd → Rdl,k , a key map keyl,k : Rd → Rdl,k , a value
map vall,k : Rd → Rd, and a similarity map siml,k : R→ R (k = 0, . . . ,Hl − 1), all of which are
ReLU neural networks. The similarity scores between two tokens vi and vj are

sl,k,i,j := siml,k(qryl,k(zl,i)
T keyl,k(zl,j)). (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A decoder-only Transformer layer Γl is computed via causal attention and residual connection:

zl+1,i := zl,i + ϕl

(Hl−1∑
k=0

(i∑
j=0

hardmaxj(sl,k,i,0, . . . , sl,k,i,i) vall,k(zl,j)

))
. (3)

The output token is greedily selected according to the final outputs of the last token v|v|−1:

Γ (v) := argmax
c∈Σ

Γout(zL,|v|−1)c, (4)

where the output layer Γout is a ReLU neural network.

Given a Transformer Γ , let generateΓ : Σ+ → Σ+∪Σω denote autoregressive generation using Γ .
Specifically, let w ∈ Σ+ denote the input sequence and y ∈ Σ∗ the (current) output sequence. Ini-
tially, y is an empty string. In each generation step, we append Γ (v ·y) to y. The generation process
ends once the last token of y is a so-called stop token $ ∈ Σ, and we define generateΓ (w) := y
at last. It is possible that generation never ends, in which case we have y ∈ Σω. The autore-
gressive generation procedure is formally presented in Algorithm 1. A Transformer is said to use
log-precision for a computable function φ if the intermediate computation of all generation steps
uses O(log n) bits of precision for every length-n input of function φ (Merrill & Sabharwal, 2023).

3 TURING COMPLETENESS OF PROMPTING

Theorem 3.1 (Turing completeness of prompting). There exist a finite alphabet Σ, a finite-size
decoder-only Transformer Γ : Σ+ → Σ, and coding schemes tokenize : {0, 1}∗ → Σ∗ and
readout : Σ∗ → {0, 1}∗ with which prompting is Turing-complete: for every computable function
φ : domφ → {0, 1}∗ with domφ ⊆ {0, 1}∗, there exists a prompt πφ ∈ Σ+ such that for every
input x ∈ domφ, generateΓ (πφ · tokenize(x)) computes1 a finite CoT, and

readout(generateΓ (πφ · tokenize(x))) = φ(x). (5)

Here, Σ,Γ, tokenize, readout are independent of φ; πφ is independent of x; for any input x ∈
{0, 1}∗, tokenize and readout run in O(|x|) and O(|φ(x)|) time on a random access machine
(RAM), respectively.

Our Theorem 3.1 shows that prompting can enable a single Transformer to be universal and estab-
lishes a theoretical underpinning for prompt engineering in practice. Note that CoT is necessary for
Turing completeness because it is known that Transformers without CoTs cannot even compute the
parity function (Hahn, 2020). As a CoT typically contains more information than the answer φ(x)
alone, we need a map readout : Σ∗ → {0, 1}∗ here to extract the answer, resembling the fact that
humans need to read out the answer from the generated CoT.

Furthermore, to elucidate the technical non-triviality of our Theorem 3.1, we remark that our Theo-
rem 3.1 has ruled out trivial possibilities:

• Memorization? It is impossible that the Transformer Γ simply memorizes all computable
functions, because there are infinitely many computable functions while Γ has only a finite
size (i.e., it has a finite number of finite-bit parameters).

• Self-answering? It is impossible that the prompt πφ simply reveals the answers for all
possible inputs, because there can be infinitely many inputs while the prompt is finite.

• Tautology? It is impossible that Γ simply restates πφ · tokenize(x) and lets tokenize
or readout compute φ(x) instead, because the time hierarchy theorem (Hartmanis &
Stearns, 1965) implies that a computable function φ in general can require more than
Ω(max{|x|, |φ(x)|}) time while tokenize and readout run in only O(|x|) time and
O(|φ(x)|) time, respectively.

Our proof of Theorem 3.1 is constructive. In the rest of this section, we will present the core con-
structions in our proof, including the prompt, the CoT steps, the input tokenizer, and the Transformer.
Due to space limit, the complete proof is deferred to Appendix B.

1Following prior work (e.g., Pérez et al., 2019), we assume that every arithmetic computation in Γ is exact.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 CONSTRUCTION OF PROMPTS

In this subsection, we show how to construct a prompt πφ for any given computable function φ.
The basic idea here is that we let the prompt encode a formal description of the function φ and later
construct a Transformer that can execute the description. The construction of the Transformer is
deferred to Section 3.4.

As computability means that there exists a TM that computes φ, one might seek to encode the TM
into the prompt. Unfortunately, a TM can have an unbounded number of states and an unbounded
number of tapes, but we are only allowed to construct all prompts using a single finite alphabetΣ and
to execute all prompts using a single finite-size Transformer. Even though one can use sophisticated
schemes to encode TMs (Turing, 1937a), it remains highly non-trivial to construct a Transformer to
efficiently execute such encoded TMs.

Hence, instead of working with TMs directly, here we want a model of computation that (i) can be
easily encoded by a single finite alphabet, that (ii) is still Turing-complete, and that (iii) is nearly
as efficient as TMs. Although a possible approach is to use an imperative model of computation
such as Wang machines (Wang, 1957) and Davis–Sigal–Weyuker’s Post–Turing machines (DSW-
PTMs; Davis et al., 1994), it is still unknown how to efficiently simulate arbitrary TMs using Wang
machines or Davis–Sigal–Weyuker’s Post–Turing machines. This suggests that these models of
computation might not be the best candidate for constructing the prompt.

To fulfill our desiderata, we propose a new imperative model of computation that extends Wang ma-
chines and DSW-PTMs. Inspired by the Hennie–Stearns theorem (Hennie & Stearns, 1966), we let
our model of computation use two bi-infinite tapes A and B. Each tape has infinitely many cells over
the binary alphabet {0, 1} and a head pointing to a cell. We call this model two-tape Post–Turing
machines (2-PTMs). A 2-PTM is defined by a finite instruction sequence ι = ⟨ι0, ι1, . . . , ι|ι|−1⟩
where each instruction ιj (0 ≤ j < |ι|) is one of the following:

• #: halt;
• τL (τ ∈ {A, B}): move the head for tape τ one cell left, and go to ιj+1;
• τR (τ ∈ {A, B}): move the head for tape τ one cell right, and go to ιj+1;
• τ0 (τ ∈ {A, B}): write 0 to the pointed cell of tape τ , and go to ιj+1;
• τ1 (τ ∈ {A, B}): write 1 to the pointed cell of tape τ , and go to ιj+1;
• τ!k (τ ∈ {A, B}; k ̸= j): if the pointed cell of tape τ is 0, go to ιk; else, go to ιj+1;
• τ?k (τ ∈ {A, B}; k ̸= j): if the pointed cell of tape τ is 1, go to ιk; else, go to ιj+1.

Let I denote the set of all possible instructions. Before execution, the input is written to tape A,
and the head for tape A is pointing to the leftmost cell of the input. All blank tape cells are filled
with 0. Then, execution starts from instruction ι0 and halts upon instruction #, and the output is the
content left on tape A starting from cell 0. We will show in Section 4.1 that 2-PTMs are not only
Turing-complete but also nearly as efficient as TMs.

Next, we describe how to construct a prompt for a given computable function. Recall that 2-PTMs
use the binary alphabet {0, 1} with blank symbol being 0. To distinguish the input symbol 0 and
the blank symbol 0, we employ Shannon’s encoding S : {0, 1}∗ → {0, 1}∗ (Shannon, 1956) to
translate inputs and outputs of computable functions:

S(ϵ) := ϵ, S(0) := 10, S(1) := 11; (6)
S(x) := S(x0) · · ·S(x|x|−1), x ∈ {0, 1}∗. (7)

Thus, we identify 00 as the blank symbol. Note that Shannon’s encoding S is injective, and that both
S and its corresponding decoding S−1 are computable in linear time. Since the class of 2-PTMs is
Turing-complete, then given any computable function φ, there exists a 2-PTM ι ∈ I+ that computes
S(φ(x)) from S(x) for all x ∈ domφ. It remains to encode ι into a prompt πφ.

We will define a map P : N × I → Σ∗ to encode each instruction ιj and let the prompt be the
concatenation of P (j, ιj), where the alphabet Σ will be specified later. For instructions #, τL, τR,
τ0, τ1, we can simply create a corresponding token in Σ for each of them:

P (j, ιj) := ιj if ιj is one of #, τL, τR, τ0, τ1. (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For instructions τ!k and τ?k, since k can be any natural number, we can no longer create a token
for each k because otherwise the alphabet Σ would be infinite. Instead, to help the Transformer to
execute the prompt, we use a unary encoding w.r.t k − j:

P (j, ιj) :=


τ! · -j−k · @ if ιj = τ!k and k < j;

τ! · +k−j · @ if ιj = τ!k and k > j;

τ? · -j−k · @ if ιj = τ?k and k < j;

τ? · +k−j · @ if ιj = τ?k and k > j;

(9)

where we create seven auxiliary tokens A!, B!, A?, B?,-,+,@ ∈ Σ to be used by the Transformer.
Finally, we construct the prompt as

πφ := ˆ · P (0, ι0) · · ·P (|ι| − 1, ι|ι|−1) · $, (10)

where we create two auxiliary tokens ˆ,$ ∈ Σ to be used by the Transformer.

Example. A 2-PTM for deciding the DYCK language (Schützenberger, 1963) is2

A?14@A0ALA0ALA?1@ARARA1ARBLB?13@A1#ARA?19@B1BRB!21@BLB!24@B0ARB!0@ALARARA?25@A0ALA0ALA?28@ARARA1#,

and its corresponding prompt is
ˆA?++++++++++++++@A0ALA0ALA?----@ARARA1ARBLB?++@A1#ARA?++++@B1BRB!+++@BLB!++++@B0ARB!-----------------------@
ALARARA?--@A0ALA0ALA?----@ARARA1#$.

3.2 RECORDING EXECUTION IN COT STEPS

It is known that finite-size Transformers without CoT steps are not universal (Hahn, 2020). To
achieve Turing completeness, here we leverage CoT steps to record execution steps of the 2-PTM ι
so that the Transformer can restore the state of ι at any execution step. In this subsection, we focus
on the case where the input is empty; we will describe how to incorporate the input in Section 3.3.

Let ιj denote the current instruction, and let cA, cB denote the pointed cell of tapes A and B, respec-
tively. Note that each execution step can be summarized as a quadruple (j, ιj , cA, cB), where ιj is the
current instruction, and cA and cB are the currently pointed cell of tapes A and B, respectively. We
will define a map C : N × I × {0, 1}2 → Σ∗ that maps each execution step to one or more CoT
steps. If ιj is one of #, τL, τR, τ0, τ1, we simply use a single CoT step to record ιj :

C(j, ιj , cA, cB) := ιj if ιj is one of #, τL, τR, τ0, τ1. (11)

If ιj is τ!k or τ?k, we record whether the go-to condition is satisfied or not:

C(j, ιj , cA, cB) :=



/ if ιj = τ!k and cτ ̸= 0;

= · -j−k · @ if ιj = τ!k, cτ = 0, and k < j;

= · +k−j · @ if ιj = τ!k, cτ = 0, and k > j;

/ if ιj = τ?k and cτ ̸= 1;

= · -j−k · @ if ιj = τ?k, cτ = 1, and k < j;

= · +k−j · @ if ιj = τ?k, cτ = 1, and k > j;

(12)

where we create two auxiliary tokens /,= ∈ Σ to indicate whether the go-to condition is unsatisfied
or satisfied, respectively. The execution step stops once it reaches the halting instruction #.

Finally, we append the output φ(x) after the execution steps in the CoT. We create a new auxiliary
token : ∈ Σ to mark the beginning of the output and reuse the token $ ∈ Σ to mark the end of the
output, and we put the output φ(x) ∈ {0, 1}∗ ⊆ Σ∗ between : and $. Hence, we define readout
as extracting the part of the CoT between : and $ (see Algorithm 2). By construction, the number
of CoT steps is proportional to the number of execution steps plus the length of the output.

Example (cont’d). An empty input ϵ is in the DYCK language. Its corresponding CoT steps are:

/A0ALA0AL/ARARA1ARBL/A1:1$.

To recap, we have created a finite alphabet of 23 tokens all together:

Σ := {#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?,-,+,@,ˆ,$,/,=,:, 0, 1}. (13)
2From now on, we will omit delimiters for conciseness when there is no ambiguity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 CONSTRUCTION OF INPUT TOKENIZER

In this subsection, we describe our input tokenizer tokenize : {0, 1}∗ → Σ∗, which is independent
of the function φ and can encode any input x ∈ {0, 1}∗ without changing the prompt πφ. Although
it is possible to introduce additional auxiliary tokens to represent inputs, here we provide a simpler
construction that makes use of only the existing tokens in Σ.

The key idea here is to use CoT steps to emulate an imaginary process of writing the input to tape
A. We will define a map E : {0, 1}+ → Σ+ that encodes an input x into CoT steps. Since 2-PTMs
assume that the head for tape A is initially pointing to the leftmost cell of the input, we write the
input from right to left onto tape A. Hence, for each bit xi of the input x, we write its Shannon
encoding S(xi) from right to left onto tape A:

E(0) := ALALA1, E(1) := ALA1ALA1. (14)

For the entire input, we concatenate the CoT steps of each bit from right to left:

E(x) := E(x|x|−1) · · ·E(x0), x ∈ {0, 1}+. (15)

Intuitively, E(x) represents execution steps of an imaginary program that writes S(x) onto tape A.

To ensure that the tape-A head is at cell 0 after writing the input, we first move the tape-A head
|S(x)| = 2|x| steps right. Hence, we define the CoT steps for writing S(x) as Z : {0, 1}+ → Σ+,

Z(x) := AR2|x| · E(x), x ∈ {0, 1}+. (16)

Nevertheless, there is a caveat: a 2-PTM should start from ι0, but these extra CoT steps Z(x)
will confuse the Transformer into starting from ι|Z(x)|. To address this caveat, our input tokenizer
tokenize additionally employs an imaginary go-to step to let the Transformer go back to ι0. Follow-
ing Equation (12), we re-use =,-,@ to construct the imaginary go-to step:

tokenize(x) :=

{
ϵ if x = ϵ,

Z(x) · = · -|Z(x)| · @ if x ̸= ϵ.
(17)

Example. Since input 01 has Shannon encoding S(01) = 1011, it is tokenized as

tokenize(01) = ARARARARALA1ALA1ALALA1=-----------@.

3.4 CONSTRUCTION OF TRANSFORMER

In this subsection, we sketch how to construct a decoder-only Transformer Γ that executes prompts
through CoT steps as described in Section 3.2. This means that we need to execute 2-PTMs using
ReLU activation, layer normalization, and causal attention. Due to the space limit, we only present
three core operations to be used by Γ here and defer the detailed construction to Appendix B.

Boolean algebra via ReLU activation. Let ReLU(z) := max{z, 0} denote the ReLU function.
Boolean algebra is a basic building block of our Transformer for, e.g., checking the go-to condition.
A core operation in Boolean algebra is the ∧ operation. Here, we implement ∧ via ReLU activation:

u ∧ v = ReLU(u+ v − 1), u, v ∈ {0, 1}. (18)

Together with negation ¬v = 1 − v, they can implement all other Boolean operations such as
u ∨ v = ¬((¬u) ∧ (¬v)) and u⊕ v = (u ∧ (¬v)) + ((¬u) ∧ v).

Equality check via layer normalization. Let LN(z) := z
∥z∥2

1[z ̸=0] denote layer normalization
(LN). When checking whether a tape cell has been written or not, we will need an equality check
between two real numbers: Equal : R2 → {0, 1} where Equal(u, v) := 1[u=v] (u, v ∈ R). Since
Equal is not a continuous map, it cannot be implemented using only affine maps or ReLU activation.
Instead, we implement Equal via layer normalization as follows:

Equal(u, v) := ReLU(LN(u− v)) + ReLU(LN(v − u)), u, v ∈ R. (19)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Farthest retrieval via causal attention. A core operation to be used by the Transformer Γ can be
abstracted as follows: Given a sequence of values v = ⟨v0, . . . , v|v|−1⟩with vi ∈ {−1, 0,+1} for all
i, find the smallest i such that

∑i
j=0 vj =

∑|v|−1
j=0 vj . However, since causal attention is an average

rather than a sum, it cannot even compute the sum
∑i

j=0 vj for any i. It can compute the average
1

i+1

∑i
j=0 vj for every i, but

∑i
j=0 vj =

∑|v|−1
j=0 vj does not mean 1

i+1

∑i
j=0 vj = 1

|v|
∑|v|−1

j=0 vj .
To bypass the mismatched coefficients 1

i+1 and 1
|v| , we use LN to remove the averaging coefficient

1
i+1 . First, we let every token attend to the initial token ˆ at i = 0 to compute 1

i+1 and compute

ui := LN

(∑i
j=0 vj

i+ 1
,

1

i+ 1

)T

=

(∑i
j=0 vj√

(
∑i

j=0 vj)
2 + 1

,
1√

(
∑i

j=0 vj)
2 + 1

)T

. (20)

If
∑i

j=0 vj =
∑|v|−1

j=0 vj , we have uT
i u|v|−1 = 1; if

∑i
j=0 vj ̸=

∑|v|−1
j=0 vj , we have uT

i u|v|−1 <
1. Thus, we can add u|v|−1 to the query map qry and add ui to the key map key in attention to
retrieve an i with

∑i
j=0 vj =

∑|v|−1
j=0 vj .

It remains to retrieve the smallest such i via causal attention. Since
∑i

j=0 vi ≤ i + 1 ≤ |v|, then
note that if uT

i u|v|−1 < 1, we in fact have

uT
i u|v|−1 <

(
|v|√
|v|2 + 1

,
1√
|v|2 + 1

)(
|v|+ 1√

(|v|+ 1)2 + 1
,

1√
(|v|+ 1)2 + 1

)T

(21)

=
|v|(|v|+ 1) + 1√

|v|2 + 1
√
(|v|+ 1)2 + 1

= 1− Ω
(1

|v|4
)
. (22)

This motivates us to use the following quantity, which can be computed in positional encoding pos:

pi := 1− (i+ 1)(i+ 2) + 1√
(i+ 1)2 + 1

√
(i+ 2)2 + 1

= Ω
(1

(i+ 1)4

)
. (23)

Note that if uT
i u|v|−1 = 1 and uT

j u|v|−1 < 1, we also have

uT
j u|v|−1 +

p|v|−1

j + 1
≤ uT

j u|v|−1 + p|v|−1 < 1 = uT
i u|v|−1 < uT

i u|v|−1 +
p|v|−1

i+ 1
. (24)

Therefore, we can retrieve the smallest i with uT
i u|v|−1 = 1 using query vector (u|v|−1, p|v|−1)

T

and key vector (ui,
1

i+1)
T in causal attention.

4 COMPLEXITY BOUNDS

We (i) show in Section 4.1 that 2-PTMs are Turing-complete and nearly as efficient as TMs and (ii)
use this result to characterize the complexities of our constructed Γ in Sections 4.2 & 4.3. Through-
out this section, let t(n) denote a complexity function. Following the convention in complexity
theory, we allow different computable functions to have different constant factors in big O.

4.1 EFFICIENT SIMULATION OF TMS BY 2-PTMS

Since 2-PTMs are an essential component of our construction, we need the complexity bounds of
2-PTMs to analyze the complexities of Γ . While Wang machines and DSW-PTMs suffer from a
polynomial slowdown over TMs (Neary et al., 2014), we show that our 2-PTMs in fact has only at
most a logarithmic slowdown over TMs.
Theorem 4.1 (efficient simulation). TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)).

Theorem 4.1 shows that our 2-PTMs are Turing-complete and nearly as efficient as TMs. To prove it,
we need the following Lemma 4.2 to establish an equivalence between two-tape TMs and 2-PTMs.
Lemma 4.2 (two-tape simulation). TIME2(t(n)) ⊆ TIME2-PTM(t(n)).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proof sketch of Lemma 4.2. For any computable function φ ∈ TIME2(t(n)), there exists a two-tape
TM M = (Q, qstart, qhalt, {0, 1}, = 0,m = 2, δ) that computes S(φ(x)) from S(x) within time
O(t(n)), according to Shannon (1956). Suppose w.l.o.g. that Q = {0, 1, . . . ,K} (K ∈ N+) and
that qstart = 0, qhalt = K. We will construct a 2-PTM ι of length |ι| = 27K + 1 that simulates M
within time O(t(n)).

Recall that δ : (Q \ {qhalt})× {0, 1}2 → Q× ({0, 1} × {L, S, R})2. We use exactly six instructions
η(q′,cA,dA,cB,dB) to simulate each transition (q′, c′A, dA, c

′
B, dB), where q′ ∈ Q, c′A, c

′
B ∈ {0, 1}, dA, dB ∈

{L, S, R}. If dA, dB ̸= S, we let

η(q′,c′A,dA,c
′
B,dB)

:= ⟨Ac′A, AdA, Bc′B, BdB, A!27q′ , A?27q′⟩. (25)

If dA = S or dB = S, we can replace the corresponding AdA or BdB with Ac′A or Bc′B, respectively, so
η(q′,c′A,dA,c

′
B,dB)

still has exactly six instructions.

Then for each q ∈ Q \ {qhalt}, we use 27 instructions to simulate its transition rules:

ι27q:27q+27 := ⟨A?27q+14, B?27q+8,ηδ(q,0,0),ηδ(q,0,1), B?27q+21,ηδ(q,1,0),ηδ(q,1,1)⟩. (26)

For the halting state qhalt = K, we use one instruction ι27K := # to simulate it.

Since ι simulates each transition of M by O(1) steps, then ι also has time complexity O(t(n)).

Due to space limit, the proof of correctness of ι is deferred to Appendix A.

We are now ready to prove Theorem 4.1.

Proof sketch of Theorem 4.1. Let φ ∈ TIME(t(n)). Then, there exists a TM M that computes φ
within T (n) = O(t(n)) steps for every length-n input.

Case 1: There exists n0 ∈ N such that T (n0) < n0. Thus, the behavior of the TM M depends only
on the first T (n0) < n0 bits of the input. Hence, further increasing the length of the input does not
change the behavior of M . Therefore, a tighter time complexity T̃ (n) of M is

T̃ (n) ≤ T (n0) = O(1), ∀n ∈ N. (27)

This implies that φ ∈ TIME2(1) ⊆ TIME2-PTM(1) ⊆ TIME2-PTM(t(n) log t(n)).

Case 2: T (n) ≥ n for all n ∈ N. Then by the Hennie–Stearns theorem (Hennie & Stearns, 1966),
φ ∈ TIME2(T (n) log T (n)). Therefore, by Lemma 4.2,

φ ∈ TIME2(t(n) log t(n)) ⊆ TIME2-PTM(t(n) log t(n)). (28)

It follows from the above two cases that TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)).

Theorem 4.1 shows that 2-PTMs have only at most a logarithmic slowdown over TMs. In subsequent
Sections 4.2 & 4.3, we will use Theorem 4.1 to characterize the CoT complexity and the precision
complexity of our constructed Γ .

4.2 COT COMPLEXITY

In this subsection, we analyze the CoT complexity of our construction. We will show that our con-
structed Γ can compute any TIME2(t(n)) function within O(t(n)) CoT steps and any TIME(t(n))
function within O(t(n) log t(n)) CoT steps for any length-n input.

Definition 4.3 (CoT complexity class). Let CoTΓ (t(n)) be the class of functions that our con-
structed Transformer Γ can compute within O(t(n)) CoT steps.

Lemma 4.4 (CoT complexity for 2-PTMs). TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

Proof sketch. For any φ ∈ TIME2-PTM(t(n)), since prompt πφ has length |πφ| = O(1), then by
Section 3.2, each #, τ<, τ>, τ0, τ1 takes 1 = O(1) CoT step, and each τ!k, τ?k takes at most
O(|πφ|) = O(1) CoT steps. This implies that TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Corollary 4.5 (CoT complexity for TMs). For two-tape TMs, TIME2(t(n)) ⊆ CoTΓ (t(n)). For
general TMs, TIME(t(n)) ⊆ CoTΓ (t(n) log t(n)).

Proof. For two-tape TMs, by Lemmas 4.2 & 4.4,
TIME2(t(n)) ⊆ TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

For general TMs, by Theorem 4.1 & Lemma 4.4,
TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)) ⊆ CoTΓ (t(n) log t(n)).

Corollary 4.5 shows prompting a single Transformer can compute any TIME2(t(n)) function within
O(t(n)) CoT steps and any TIME(t(n)) function within O(t(n) log t(n)) CoT steps. Notably, this
is nearly the same as the CoT complexity of the class of all Transformers, which can compute any
TIME(t(n)) function within O(t(n)) CoT steps. The logarithmic slowdown here is because the
class of all Transformers can simulate an unbounded number of tapes while our single Transformer
simulates only a finite number of tapes. Assuming TIME2(t(n)) ̸= TIME(t(n)), it is unlikely that
the CoT complexity O(t(n) log t(n)) of Γ for TIME(t(n)) could be further improved to O(t(n)).

4.3 PRECISION COMPLEXITY

In this subsection, we analyze the precision complexity of our construction. We will show that our
constructed Γ can compute any TIME(t(n)) function within O(log(n+ t(n))) bits of precision for
any length-n input; in particular, it can decide any P language within log-precision. Following the
common practice in numerical analysis, we assume that each floating-point number has significant
bits and guard bits (Goodman & Feldstein, 1977), where both significant bits and guard bits are used
in arithmetic operations while guard bits are rounded off in number comparisons.
Definition 4.6 (Precision complexity class). For a complexity function p(n), let PRECΓ (p(n)) be
the class of functions that our constructed Γ can compute using O(p(n)) significant and guard bits.
Corollary 4.7 (Precision complexity). TIME(t(n)) ⊆ PRECΓ (log(n+t(n))); P ⊆ PRECΓ (log n).

Proof sketch. For any function φ ∈ CoTΓ (t(n) log t(n)), since the prompt πφ has length O(1),
then by Section 3.3, the total length I of the tokenized input, the prompt, and the CoT steps is

I = O(n) + O(1) + O(t(n) log t(n)) = O(n+ t(n) log t(n)). (29)
Thus, according to Section 3.4, all the intermediate results during computation are at most O(1), and
attention similarities have mutual differences at least Ω

(
1
I5

)
= Ω

(
1

(n+t(n) log t(n))5

)
. This implies

CoTΓ (t(n) log t(n)) ⊆ PRECΓ (log((n+ t(n) log t(n))5)) = PRECΓ (log(n+ t(n))). (30)
It follows from Corollary 4.5 and Equation (30) that

TIME(t(n)) ⊆ CoTΓ (t(n) log t(n)) ⊆ PRECΓ (log(n+ t(n))). (31)
In particular, we have

P ⊂ TIME(poly(n)) ⊆ PRECΓ (log(n+ poly(n))) = PRECΓ (log n).

Notably, Corollary 4.7 shows that prompting a single Transformer can achieve the same precision
complexity as that of the class of all Transformers: it is known that the class of all Transformers can
compute any TIME(t(n)) function within O(log(n+ t(n))) precision (Pérez et al., 2021) while we
further show a single Transformer with prompting can as well. This suggests our precision complex-
ity is presumably tight unless there are further advances in the complexity theory of Transformers.

5 CONCLUSION

In this work, we have shown that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding prompt following
which the Transformer computes the function. Furthermore, we have shown that even though we
use only a single finite-size Transformer, it can still achieve nearly the same complexity bounds as
that of the class of all unbounded-size Transformers. Overall, our result reveals that prompting can
enable a single finite-size Transformer to be efficiently universal, which establishes a theoretical
underpinning for prompt engineering in practice.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint,
(1607.06450), 2016.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of Transformers
and its implications in sequence modeling. In Proceedings of the 24th Conference on Computa-
tional Natural Language Learning, pp. 455–475, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint,
(arXiv:2005.14165), 2020.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of Transformer
encoders. In Proceedings of the 40th International Conference on Machine Learning, pp. 5544–
5562, 2023.

Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Math-
ematics, 58(2):345–363, 1936.

Martin Davis, Ron Sigal, and Elaine J Weyuker. Computability, complexity, and languages: funda-
mentals of theoretical computer science. Elsevier, 1994.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold ele-
ments. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

R. Goodman and Alan Feldstein. Effect of guard digits and normalization options on floating point
multiplication. Computing, (18):93–106, 1977.

Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv preprint, 2024.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Gregoire Deletang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, and Joel Veness.
Learning universal predictors. In Proceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 16178–16205, 2024.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention Trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms. Transac-
tions of the American Mathematical Society, 117:285–306, 1965.

Fred C. Hennie and Richard Edwin Stearns. Two-tape simulation of multitape Turing machines.
Journal of the ACM, 13(4):533–546, 1966.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with Turing programs. arXiv preprint, (2407.03310), 2024.

Stephen Cole Kleene. λ-definability and recursiveness. Duke Mathematical Journal, 2(2):340–353,
1936.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers Transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023b.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint,
(2309.06979), 2023.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision Trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

William Merrill and Ashish Sabharwal. The expressive power of Transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024a.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision Transformers. In
Advances in Neural Information Processing Systems, volume 36, 2024b.

Meta. Introducing Llama 3.1: Our most capable models to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3-1/.

Turlough Neary, Damien Woods, Niall Murphy, and Rainer Glaschick. Wang’s B machines are
efficiently universal, as is Hasenjaeger’s small universal electromechanical toy. Journal of Com-
plexity, 30(5):634–646, 2014.

OpenAI. Hello gpt-4o. 2024. URL https://openai.com/index/hello-gpt-4o/.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training, 2018. URL https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.

Jesse Roberts. How powerful are decoder-only Transformer neural models? arXiv preprint,
(2305.17026), 2023.

Marcel Paul Schützenberger. On context-free languages and push-down automata. Information and
Control, 6(3):246–264, 1963.

Claude E. Shannon. A universal Turing machine with two internal states. Automata Studies, 34:
157–165, 1956.

12

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alan Mathison Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42(2):230–265, 1937a.

Alan Mathison Turing. Computability and λ-definability. Journal of Symbolic Logic, 2(4):153–163,
1937b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, pp. 5998–6008, 2017.

Max Vladymyrov, Johannes von Oswald, Mark Sandler, and Rong Ge. Linear Transformers are
versatile in-context learners. arXiv preprint, (2402.14180), 2024.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In Proceedings of the 40th International Conference on Machine Learning, pp. 35151–
35174. PMLR, 2023.

Hao Wang. A variant to Turing’s theory of computing machines. Journal of the Association for
Computing Machinery, 4(1):63–92, 1957.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022b.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained Transformers learn linear models in-
context. Journal of Machine Learning Research, 25(49):1–55, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 1 Autoregressive generation: generateΓ (x)
Input: decoder-only Transformer Γ : Σ+ → Σ; nonempty input x ∈ Σ+; stop token $ ∈ Σ
Output: generated output ∈ Σ+ ∪Σω

1: repeat
2: generate next token c← Γ (x)
3: append next token x← x · c
4: until c = $
5: return generated output x

Algorithm 2 Extracting output from CoT (readout)
Input: generated CoT v ∈ Σ+

Output: extracted output y ∈ {0, 1}∗
1: initialize the left index i← −2
2: while vi ̸= : do
3: decrement the left index i← i− 1
4: end while
5: return extracted output vi+1:−1

CONTENTS

A Two-tape TMs v.s. 2-PTMs . 14
A.1 2-PTMs simulating two-tape TMs . 14
A.2 Bi-infinite two-tape TMs simulating 2-PTMs . 15

B Proof of Theorem 3.1 . 15
B.1 Embedding layer . 15
B.2 Other positional identifiers . 16
B.3 Parsing CoT steps . 16
B.4 Retrieving pointed tape cells . 16
B.5 Parsing instructions in prompt . 17
B.6 Locating current CoT step . 18
B.7 Executing next CoT step . 19
B.8 Extracting final output . 20
B.9 Generating next token . 21

B.10 Composing the Transformer . 21
B.11 Size of the constructed Transformer . 22

C Concluding remarks . 22

A TWO-TAPE TMS V.S. 2-PTMS

In this section, we characterize the relation between two-tape TMs and 2-PTMs.

A.1 2-PTMS SIMULATING TWO-TAPE TMS

In this subsection, we show the correctness of the construction presented in Section 4.1.

For each non-halting state q ∈ Q\{qhalt}, since we use 1+1+6+6+1+6+6 = 27 instructions to
simulate its transition rules, we put these instructions at ι27q:27q+27. Thus, the instructions for state
q starts at ι27q . Besides that, for the halting state qhalt = K, we put the halting instruction after the
last non-halting state K − 1. Thus, the halting instruction is at ι27(K−1)+27 = ι27K = ι27qhalt . To
recapitulate, the instructions for every state q ∈ Q start at ι27q .

Hence, to make a state transition to q′ ∈ Q, we should go to instruction ι27q′ . Since we do not know
pointed cell values after we move tape heads, We use two go-to instructions ⟨A!27q′ , A?27q′⟩with op-
posite conditions to ensure a state transition to q′. This establishes the correctness of η(q′,cA,dA,cB,dB).

To simulate transition rules δ(q, 0, 0), δ(q, 0, 1), δ(q, 1, 0), δ(q, 1, 1) for each non-halting state q ∈
Q \ {qhalt}, we first use A?27q+14 to check the pointed cell value of tape A and then use B?27q+8 and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B?27q+21 to check the pointed cell value of tape B, where it is easy to see that the indices 27q + 14,
27q + 8, and 27q + 21 are correct.

Finally, note that the simulation is always valid because 2-PTMs have bi-directional tapes while
TMs have uni-directional tapes. This concludes the correctness of the constructed 2-PTM ι.

It follows that TIME2(t(n)) ⊆ TIME2-PTM(t(n)).

A.2 BI-INFINITE TWO-TAPE TMS SIMULATING 2-PTMS

In this subsection, we show that any 2-PTM can be simulated by a TM over two bi-infinite tapes.

For any φ ∈ TIME2-PTM(t(n)), there exists a 2-PTM ι that computes S(φ(x)) from S(x) within
time O(t(n)). Let K := |ι|. We will construct a two-tape TM M = (Q := {0, 1, . . . ,K}, qstart :=
0, qhalt := K, {0, 1}, := 0,m := 2, δ : (Q \ {qhalt})× {0, 1}2 → Q× ({0, 1} × {L, S, R})2) that
simulates the 2-PTM ι within time O(t(n)), where we simulate each instruction ιj (j = 0, . . . , |ι|−
1) using one state j. Let cA, cB ∈ {0, 1} denote the pointed cell value on tapes A and B, respectively.

If ιj = #, then we only make a transition to the halting state qhalt:
δ(j, cA, cB) := (qhalt, cA, S, cB, S). (32)

If ιj = AdA (dA ∈ {L, R}), then we move the head for tape A and keep the head for tape B:
δ(j, cA, cB) := (j + 1, cA, dA, cB, S). (33)

If ιj = BdB (dB ∈ {L, R}), then we move the head for tape B and keep the head for tape A:
δ(j, cA, cB) := (j + 1, cA, S, cB, dB). (34)

If ιj = Ac′A (c′A ∈ {0, 1}), then we write c′A to tape A and keep tape heads:
δ(j, cA, cB) := (j + 1, c′A, S, cB, S). (35)

If ιj = Bc′B (c′B ∈ {0, 1}), then we write c′B to tape B and keep tape heads:
δ(j, cA, cB) := (j + 1, cA, S, c

′
B, S). (36)

If ιj = τ!k (τ ∈ {A, B}), we go to k if the pointed cell on tape τ is 0 and to j + 1 otherwise:

δ(j, cA, cB) :=

{
(k, cA, S, cB, S) if cτ = 0,

(j + 1, cA, S, cB, S) if cτ ̸= 0.
(37)

If ιj = τ?k (τ ∈ {A, B}), we go to k if the pointed cell on tape τ is 1 and to j + 1 otherwise:

δ(j, cA, cB) :=

{
(k, cA, S, cB, S) if cτ = 1,

(j + 1, cA, S, cB, S) if cτ ̸= 1.
(38)

The correctness of the construction above is clear. Since M simulates each ιj through 1 = O(1)
transition, then M also has time complexity O(t(n)).

B PROOF OF THEOREM 3.1

In this section, we present our detail construction of the Transformer Γ as the proof of Theorem 3.1.
We will show that we can execute the constructed prompts using affine maps, ReLU activation, layer
normalization, and causal attention. Some key ideas are presented in Section 3.4 in the main paper.
Unless otherwise specified, the similarity map we use in causal attention is the identity function.

B.1 EMBEDDING LAYER

Here, we present our construction of the token embedding and the positional encoding in the embed-
ding layer Γemb. Let v = v0 · · · v|v|−1 ∈ Σ+ denote the input token sequence of the Transformer.
For each token vi (i = 0, . . . , v|v|−1), we use the one-hot representation as its embedding:

zis σ
i := 1[vi=σ], σ ∈ Σ. (39)

As described in Section 3.4, we use the following positional encoding for each position i:

pi := 1− (i+ 1)(i+ 2) + 1√
(i+ 1)2 + 1

√
(i+ 2)2 + 1

. (40)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 OTHER POSITIONAL IDENTIFIERS

In addition to the positional encoding, we compute three other positional identifiers to be used later.
First, we use causal attention with query 1, key 1, and value zis ˆ

j to compute

zpos, 1
i :=

1

i+ 1

i∑
j=0

zis ˆ
j =

1

i+ 1
. (41)

Next, we use layer normalization (LN) to compute two other positional identifiers:

(zpos, 2
i , zpos, 3

i) := LN(1, zpos, 1
i) =

(
i+ 1√

(i+ 1)2 + 1
,

1√
(i+ 1)2 + 1

)
. (42)

B.3 PARSING COT STEPS

Since the prompt and the CoT share some tokens, we need distinguish CoT steps from the prompt
according to the position of the delimiter token $. Specifically, we need an indicator of whether
each token vi is located after the delimiter token $ or not. Thus, we use causal attention with query
1, key 1, and value zis $ to compute the discounted indicator:

zafter delim, disc
i :=

1

i+ 1

i∑
j=0

zis $
j =

1[∃j≤i:vj=$]

i+ 1
. (43)

Then, we use layer normalization to convert it to a Boolean value:

zafter delim
i := LN(zafter delim, disc

i) = 1[∃j≤i:vj=$]. (44)

Next, we check if a token is a CoT step of writing a cell using ReLU-implemented Boolean algebra:

zis τ write
i := ReLU(zis τ0

i + zis τ1
i + zafter delim

i − 1), τ ∈ {A, B}; (45)

we can compute the value that is being written using ReLU:

zτ write
i := ReLU(zis τ1

i + zafter delim
i − 1), τ ∈ {A, B}; (46)

we can also compute the direction of head move in a CoT step using ReLU:

zτ move
i := ReLU(zis τR

i + zafter delim
i − 1)− ReLU(zis τL

i + zafter delim
i − 1), τ ∈ {A, B}. (47)

B.4 RETRIEVING POINTED TAPE CELLS

Before retrieving the pointed tape cells, we need to compute the current positions of tape heads.
Since attention cannot compute sums directly, we use the idea presented in Section 3.4 to compute
a normalized representation of the position. Specifically, we first use causal attention with query 1,
key 1, and value zτ move

j to compute discounted head positions:

zτ cur disc
i :=

1

i+ 1

i∑
j=0

zτ move
j , τ ∈ {A, B}. (48)

Then, we use zpos, 1
i = 1

i+1 and LN to compute a normalized representation of head positions:

(zτ cur norm
i , zτ cur one norm

i) := LN(zτ cur disc
i , zpos, 1

i) (49)

=

(∑i
j=0 z

τ move
j√

(
∑i

j=0 z
τ move
j)2 + 1

,
1√

(
∑i

j=0 z
τ move
j)2 + 1

)
, τ ∈ {A, B}. (50)

Next, we can retrieve the pointed tape cells by finding the last write step at the
same position. We use causal attention with query (1, zτ cur norm

i , zτ cur one norm
i , pi)

T, key
(zis τ write

j , zτ cur norm
j , zτ cur one norm

j ,−zpos, 1
j)T, and value (zτ write

j , zτ cur norm
j , zis τ write

j)T to compute

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the retrieved tape cells (zτ retr
i , zτ retr cur norm

i , zτ retr is write
i)T (τ ∈ {A, B}). Note that we also com-

pute zτ retr cur norm
i and zτ retr is write

i here because there is a caveat: the pointed tape cells might not
have been written yet. We use LN and ReLU to compute an indicator of whether the pointed tape
cells have not been written:

zτ not found
i := ReLU(LN(zτ cur norm

i − zτ retr cur norm
i)) + ReLU(LN(zτ retr cur norm

i − zτ cur norm
i))

= 1[zτ cur norm
i ̸=zτ retr cur norm

i], τ ∈ {A, B}. (51)

If a retreived tape cell has not been written yet, it must have a blank value 0:

zτ val
i := ReLU(zτ retr

i − zτ not found
i + zτ retr is write

i − 1), τ ∈ {A, B}. (52)

B.5 PARSING INSTRUCTIONS IN PROMPT

Recall that each instruction is encoded into one or more tokens. Thus, we first compute whether
each token is the start of a instruction in the prompt:

zis inst
i := ReLU(zis #

i + zis AL
i + zis BL

i + zis AR
i + zis BR

i (53)

+ zis A0
i + zis B0

i + zis A1
i + zis B1

i (54)

+ zis A!
i + zis B!

i + zis A?
i + zis B?

i − zafter delim
i). (55)

We compute a program index t for the start token of each instruction. We use causal attention with
query 1, key 1, and value zis inst

j to compute the program index of each token in the prompt:

zprog idx disc, raw
i :=

1

i+ 1

i∑
j=0

zis inst
j . (56)

We further subtract 1 from
∑i

j=0 z
is inst
j to handle the lag between the prompt and the CoT:

zprog idx disc
i := zprog idx disc, raw

i − zpos, 1 =
1

i+ 1

i∑
j=0

zis inst
j − 1

i+ 1
. (57)

Then, we use LN to compute a normalized representation of
∑i

j=0 z
is inst
j − 1:

(zprog idx norm
i , zprog idx one norm

i) := LN(zprog idx disc
i , zpos, 1

i) (58)

=

(∑i
j=0 z

is inst
j − 1√

(
∑i

j=0 z
is inst
j − 1)2 + 1

,
1√

(
∑i

j=0 z
is inst
j − 1)2 + 1

)
. (59)

Besides that, since go-to’s are special instructions that need multiple tokens to encode, we also check
whether a token is the start of a go-to instruction:

zis goto cond
i := zis A!

i + zis B!
i + zis A?

i + zis B?
i . (60)

We also need a go-to index for tokens -,+,@ in the prompt to mark the order of tokens within
each go-to instruction. To compute it, we first compute the reciprocal number of tokens between
vi and the start token vi′ of the current go-to instruction, using causal attention with query 1, key
zprog idx norm
j , and value zis goto cond

j :

zgoto one disc
i :=

∑i
j=i′ z

is goto cond
j∑i

j=i′ 1
=

1

i− i′ + 1
. (61)

Then, we use LN to compute a normalized representation of the go-to index:

(zgoto idx norm, raw
i , zgoto one norm, raw

i) := LN(1− zgoto one disc
i , zgoto one disc

i) (62)

=

(
i− i′ + 1√

(i− i′ + 1)2 + 1
,

1√
(i− i′ + 1)2 + 1

)
. (63)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To match the go-to index of non-go-to tokens, we finally adjust them if vi is the start token v′i of the
current go-to instruction:

zgoto idx norm
i := zgoto idx norm, raw

i + zis goto cond
i , (64)

zgoto one norm
i := zgoto one norm, raw

i − zis goto cond
i . (65)

That is, when vi is the start token v′i of a go-to instruction, we instead have

(zgoto idx norm
i , zgoto one norm

i) = (1, 0). (66)

B.6 LOCATING CURRENT COT STEP

Here, we describe how to locate the current instruction to execute. We can imagine a program
pointer t that indicates the instruction ιt we are currently executing. A caveat here is that each go-to
instruction needs multiple CoT steps. Thus, it is important to check whether it is during a go-to
instruction or not.

First, we compute how each go-to step contributes to the program pointer via ReLU:

zprog move
i := ReLU(zis +

i + zafter delim
i − 1)− ReLU(zis -

i + zafter delim
i − 1). (67)

Then, we use causal attention with query 1, key 1, and value zprog move
i to compute the discounted

total contribution:

zprog move disc
i :=

1

i+ 1

i∑
j=0

zprog move
j ; (68)

and use LN to compute a normalized representation of
∑i

j=0 z
prog move
j :

(zprog move norm
i , zprog move one norm

i) := LN(zprog move disc
i , zpos, 1

i) (69)

=

(∑i
j=0 z

prog move
j√

(
∑i

j=0 z
prog move
j)2 + 1

,
1√

(
∑i

j=0 z
prog move
j)2 + 1

)
. (70)

Next, we check whether the token vi is the start token v′i of the current execution step record in the
CoT:

zis rec start
i := zis ˆ

i +ReLU(zis AL
i + zis BL

i + zis AR
i + zis BR

i (71)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (72)

+zis /
i + zis =

i + zafter delim
i − 1), (73)

where we also add zis ˆ
i here for convenience later. Similarly, we check whether the token vi is the

ending token v′i of the current execution step record in the CoT:

zis rec end
i := ReLU(zis $

i +zis AL
i + zis BL

i + zis AR
i + zis BR

i (74)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (75)

+zis @
i + zafter delim

i − 1). (76)

Then, imagine that each token has a record index to mark which each execution step it belongs to.
To compute it, we first compute the reciprocal number of execution steps t′ so far, using causal
attention with query 1, key zis rec start

j , and value zis ˆ
j :

zprog rec one disc
i :=

∑i
j=0 z

is rec start
j zis ˆ

j∑i
j=0 z

is rec start
j

=
1

t′ + 1
. (77)

We then compute a normalized representation of t′ + 1 using LN:

(zprog rec norm
i , zprog rec one norm

i) := LN(1, zprog rec one disc
i) (78)

=

(
t′ + 1√

(t′ + 1)2 + 1
,

1√
(t′ + 1)2 + 1

)
. (79)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Next, since each go-to execution step needs multiple CoT steps, we need to handle go-to execution
step records specially when the go-to condition is satisfied. We can image that each CoT step has
a temporary program index that marks the order of each token in a go-to execution step record. To
compute it, we first compute the reciprocal number of tokens between vi and the start token vi′ of
the current go-to execution step record, using causal attention with query 1, key−zprog rec one disc

j , and
value zis =

j :

zprog tmp one disc
i :=

∑i
j=i′ z

is =
j∑i

j=i′ 1
=

1

i− i′ + 1
. (80)

With this, we can compute a normalized representation of i− i′ + 1 using LN:

(zprog tmp norm, raw
i , zprog tmp one norm, raw

i) := LN(1, zprog tmp one disc
i) (81)

=

(
i− i′ + 1√

(i− i′ + 1)2 + 1
,

1√
(i− i′ + 1)2 + 1

)
. (82)

To match the temporary program index of non-go-to execution steps, we further adjust them if vi is
the ending token of the current go-to instruction:

zprog tmp norm
i := ReLU(zprog tmp norm, raw

i − zis rec end
i) + zis rec end

i , (83)

zprog tmp one norm
i := ReLU(zprog tmp one norm, raw

i − zis rec end
i). (84)

That is, when vi is the ending token of the current go-to instruction, we instead have

(zprog tmp norm
i , zprog tmp one norm

i) = (1, 0). (85)

We will use the quantities above to identify the instruction to execute.

B.7 EXECUTING NEXT COT STEP

To generate the next token, we need to execute the current instruction and record it via a CoT step.
Before that, we check whether vi belongs to a satisfied go-to execution step record:

zis rec goto
i := ReLU(zis =

i + zis -
i + zis +

i + zafter delim
i − 1). (86)

Another quantity we will need is how each CoT step contributes to the current program pointer:

zprog cur move
i := ReLU(zis AL

i + zis BL
i + zis AR

i + zis BR
i (87)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (88)

+zis /
i + zis +

i + zafter delim
i − 1)− ReLU(zis -

i + zafter delim
i − 1). (89)

We also compute an auxiliary bound zprog rec diff
i on the differences between some attention scores

using causal attention with query (zprog rec norm
i , zprog rec one norm

i)T, key (zpos, 2
j , zpos, 3

j)T, and value pj .
We further compute an auxiliary quantity:

zprog rec bias
i := 3− 1

2
ReLU(zprog rec diff

i + 2zis rec goto
i − 2). (90)

It is easy to see that zprog rec diff
i < 3 if and only if zis rec goto

i = 1. Using this quantity, we
will be able to avoid attending to tokens outside the current execution step record. Next, we
use it to identify the next instruction to execute. We first compute the discounted program in-
dex of the instruction that we need to execute, which is proportional to the sum of zprog cur move

j
until the beginning token vi′ of the current execution step record, using causal attention with
query (zprog rec bias

i ,−zprog rec norm
i ,−zprog rec one norm

i)T, key (1, zprog rec norm
j , zprog rec one norm

j)T, value
(zprog cur move

j , zis ˆ
j)T, and similarity function sim(x) := 2− ReLU(2− x) = min{x, 2}:

zprog cur disc
i :=

∑i′

j=0 z
prog cur move
j∑i′

j=0 1
=

∑i′

j=0 z
prog cur move
j

i′ + 1
, (91)

zprog cur one disc
i :=

∑i′

j=0 z
is ˆ
j∑i′

j=0 1
=

1

i′ + 1
. (92)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then, we use LN to compute a normalized representation of
∑i′

j=0 z
prog cur move
j :

(zprog cur norm
i , zprog cur one norm

i) := LN(zprog cur disc
i , zprog cur one disc

i) (93)

=

(∑i
j=0 z

prog cur move
j√

(
∑i

j=0 z
prog cur move
j)2 + 1

,
1√

(
∑i

j=0 z
prog cur move
j)2 + 1

)
. (94)

Next, we find the instruction ιt whose program index matches the current program
pointer and whose go-to index matches the current temporary program index, using
causal attention with query (zprog cur norm

i , zprog cur one norm
i , zprog tmp norm

i , zprog tmp one norm
i , pi,−1)T, key

(zprog idx norm
j , zprog idx one norm

j , zgoto idx norm
j , zgoto one norm

j , zpos, 1
j , 1)T, and value zis σ

j :

ztoken is σ
i := zis σ

t , σ ∈ {#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?,-,+,@}; (95)

ztoken is :
i := zis #

t . (96)

Note that exactly one of them is 1. It remains to execute the instruction ιt and record its outcome. If
ztoken is σ
i = 1 for some σ ∈ {A!, B!, A?, B?}, then we need to check whether the go-to condition is

satisfied or not:

zsat A!
i := ReLU(ztoken is A!

i − zA val
i), (97)

zsat B!
i := ReLU(ztoken is B!

i − zB val
i), (98)

zsat A?
i := ReLU(ztoken is A?

i + zA val
i − 1), (99)

zsat B?
i := ReLU(ztoken is B?

i + zB val
i − 1). (100)

They enable us to choose = (satisfied) or / (unsatisfied):

ztoken is =
i := zsat A!

i + zsat B!
i + zsat A?

i + zsat B?
i , (101)

ztoken is /
i := ztoken is A!

i + ztoken is B!
i + ztoken is A?

i + ztoken is B?
i − ztoken is =

i . (102)

B.8 EXTRACTING FINAL OUTPUT

After execution, the content left on the tape A is the Shannon-encoded output S(φ(x)). We need to
extract the decoded output φ(x) from the previous CoT steps.

First, we need to check whether we have arrived at the final output stage:

zis read key
i := zis :

i + zis 0
i + zis 1

i . (103)

Suppose that we are now trying to find the k-th token of the output φ(x). Recall that the k-th token
(k ≥ 0) of the output φ(x) corresponds to the (2k)-th and (2k + 1)-th tokens of S(φ(x)). To help
compute the indices 2k and 2k + 1, we compute the following shifts:

zread cur0 shift
i := 2(zis 0

i + zis 1
i), (104)

zread cur1 shift
i := zis :

i + 2(zis 0
i + zis 1

i). (105)

Suppose that token : is the t-th token in the generated CoT. We use causal attention with query 1,
key zis read key

j , and value (zread cur0 shift
j , zread cur1 shift

j , zis :
j)T to compute the discounted 2k and 2k + 1

for i = t+ k:

zread cur0 disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zread cur0 shift
j =

2k

i− t+ 1
, (106)

zread cur1 disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zread cur1 shift
j =

2k + 1

i− t+ 1
, (107)

zread one disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zis :
j =

1

i− t+ 1
. (108)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We use layer normalization to compute representations of 2k and 2k + 1:

(zread cur0 norm
i , zread cur0 one norm

i) := LN(zread cur0 disc
i , zread one disc

i)

=

(
2k√

(2k)2 + 1
,

1√
(2k)2 + 1

)
, (109)

(zread cur1 norm
i , zread cur1 one norm

i) := LN(zread cur1 disc
i , zread one disc

i)

=

(
2k + 1√

(2k + 1)2 + 1
,

1√
(2k + 1)2 + 1

)
. (110)

Next, similarly with Appendix B.4, we retrieve the (2k)-th and (2k + 1)-th tokens of S(φ(x))
as follows. We use causal attention with query (1, zread cur0 norm

i , zread cur0 one norm
i , pi)

T, key
(zis A write

j , zA cur norm
j , zA cur one norm

j ,−zpos, 1
j)T, and value (zA write

j , zA cur norm
j , zis A write

j)T to compute the
retrieved tape cell status (zread retr0

i , zread retr0 cur norm
i , zread retr0 is write

i)T. We use causal attention with
query (1, zread cur1 norm

i , zread cur1 one norm
i , pi)

T, key (zis A write
j , zA cur norm

j , zA cur one norm
j ,−zpos, 1

j)T,
and value (zA write

j , zA cur norm
j , zis A write

j)T to compute the retrieved tape cell status
(zread retr1

i , zread retr1 cur norm
i , zread retr1 is write

i)T. We use LN and ReLU to compute an indicator
of whether the retrieved tape cells have not been written:

zread retr0 not found
i := ReLU(LN(zread cur0 norm

i − zread retr0 cur norm
i)) + ReLU(LN(zread retr0 cur norm

i − zread cur0 norm
i))

= 1[zread cur0 norm
i ̸=zread retr0 cur norm

i], (111)

zread retr1 not found
i := ReLU(LN(zread cur1 norm

i − zread retr1 cur norm
i)) + ReLU(LN(zread retr1 cur norm

i − zread cur1 norm
i))

= 1[zread cur1 norm
i ̸=zread retr1 cur norm

i]. (112)

Finally, we can obtain the values of cells 2k and 2k + 1:

zread retr0 val
i := ReLU(zread retr0

i − zread retr0 not found
i + zread retr0 is write

i − 1), (113)

zread retr1 val
i := ReLU(zread retr1

i − zread retr1 not found
i + zread retr1 is write

i − 1). (114)

Using the quantities above, we can decide the next token to generate:

ztoken is 0
i := 2ReLU(zis read key

i + zread retr0 val
i − zread retr1 val

i − 1), (115)

ztoken is 1
i := 2ReLU(zis read key

i + zread retr0 val
i + zread retr1 val

i − 2), (116)

ztoken is $
i := 2ReLU(zis read key

i − zread retr0 val
i). (117)

Here, we use coefficient 2 to distinguish the output extraction stage from the execution stage.

B.9 GENERATING NEXT TOKEN

The next token to be generated by the Transformer Γ is

argmax
σ∈{AL,BL,AR,BR,A0,B0,A1,B1,/,=,-,+,@,:,0,1,$}

ztoken is σ
|v|−1 . (118)

The generation procedure stops upon the generation of the ending token $.3

B.10 COMPOSING THE TRANSFORMER

In this subsection, we describe how to compose the aforementioned operations into a Transformer.

Embedding layer. Recall that the construction uses 4 positional encodings pi, z
pos, 1
i , zpos, 2

i , zpos, 3
i .

Thus, our token embedding and positional encoding use the first |Σ|+ 1 dimensions. For the token
embedding emb, the first |Σ| dimensions are the ont-hot representation of the token, and the next
dimension is zero. For example, if vi is the first token in Σ, then

emb(vi) = (1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

0,︸︷︷︸
next dim: zero

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (119)

3Nevertheless, the token $ in the prompt does not stop the generation procedure.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For the positional encoding pos,

pos(i) = (0, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: zeros

pi,︸︷︷︸
next dim: pos enc

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (120)

Therefore, the embedding layer for the example above is

emb(vi) + pos(i) = (1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

pi,︸︷︷︸
next dim: pos enc

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (121)

Here, emb(vi) + pos(i) is indeed the standard embedding layer in LLMs.

Intermediate results. Recall that each Transformer layer has a residual connection after its output.
Thus, we can compute each intermediate result via a Transformer layer and add it to the hidden
embedding via the residual connection. For the example above, we can construct a Transformer
layer that computes zpos, 1

i , and then the hidden embedding after the residual connection of this
Transformer layer is

(1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

pi, z
pos, 1
i , 0, . . . , 0︸ ︷︷ ︸

slots for other intermediate results

)T. (122)

B.11 SIZE OF THE CONSTRUCTED TRANSFORMER

In this subsection, we show that the constructed Transformer Γ has a constant size in terms of the
number of its operations and the number of bits to represent its parameters.

Number of operations. From the construction above, we can see that the constructed Transformer
Γ does not depend on φ or x. (To compute different functions φ, we change only the prompt but
do not need to change the Transformer.) It is clear to see that our constructed Transformer has a
constant number of operations.

Number of parameter bits. From the construction above, we can see that the constructed Trans-
former uses only 0, 12 , 1, 2, 3 as its parameters. These numbers can be exactly expressed with a
constant number of bits.

C CONCLUDING REMARKS

Connection with universal TMs. Hennie & Stearns (1966) have shown that there exists a uni-
versal TM (UTM) that can simulate any Turing machine M in O(t(n) log t(n)) steps if M halts in
t(n) ≥ n steps. Then by Pérez et al. (2019), there exists a Transformer that simulates this UTM.
However, due to the complication of the UTM, it would be quite involved to explicitly construct
this Transformer. Nevertheless, this UTM has inspired us to propose 2-PTMs, which enables us to
explicitly construct a simpler Transformer. Furthermore, our 2-PTMs establish the first theoretical
framework to formalize prompting. Using our 2-PTM-based framework, we believe that people
will be able to generalize more results from the classic one-model-one-task paradigm to the LLM
prompting paradigm.

Discussion on CoT complexity. A limitation of this work is that our construction uses long CoTs
for hard problems with high time complexity. However, while it might be possible to slightly im-
prove the CoT complexity, recent theoretical evidence has suggested that long CoTs are very likely
to be necessary for these hard problems. For example, Merrill & Sabharwal (2024a) have shown that
any Transformer with O(log n) CoT steps can solve only L problems. Assuming L ̸= NL, it implies
that any Transformer with O(log n) CoT steps cannot even solve any NL-complete problems such
as directed graph connectivity. An interesting future work is to show a tight lower bound of the CoT
complexity.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Discussion on hardmax. Following prior works (e.g., Pérez et al., 2019; Hahn, 2020), this work
uses hardmax in attention to simplify construction. However, real-world Transformers use softmax
in attention. Using hardmax instead of softmax is a limitation of this area. We hope to address this
limitation in future work.

Discussion on learnability. Our current work focuses on expressive power rather than learnability.
While we have shown the existence of a Transformer on which prompting is Turing-complete, it
does not necessarily imply that a Transformer effectively learns to simulate any 2-PTMs through
CoT steps. Investigating the learnability of such a Transformer is an intriguing direction for future
research.

23

	Introduction
	Related work
	Technical overview

	Preliminaries
	Theory of computation
	Neural networks

	Turing completeness of prompting
	Construction of prompts
	Recording execution in CoT steps
	Construction of input tokenizer
	Construction of Transformer

	Complexity bounds
	Efficient simulation of TMs by 2-PTMs
	CoT complexity
	Precision complexity

	Conclusion
	Two-tape TMs v.s. 2-PTMs
	2-PTMs simulating two-tape TMs
	Bi-infinite two-tape TMs simulating 2-PTMs

	Proof of Theorem 3.1
	Embedding layer
	Other positional identifiers
	Parsing CoT steps
	Retrieving pointed tape cells
	Parsing instructions in prompt
	Locating current CoT step
	Executing next CoT step
	Extracting final output
	Generating next token
	Composing the Transformer
	Size of the constructed Transformer

	Concluding remarks

