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Abstract

Post-processing is crucial for the automatic
evaluation of LLMSs in fill-in-the-middle (FIM)
code generation due to the frequent presence
of extraneous code in raw outputs. This extra-
neous generation suggests a lack of awareness
regarding output boundaries, requiring trunca-
tion for effective evaluation. The determina-
tion of an optimal truncation strategy, however,
often proves intricate, particularly when the
scope includes several programming languages.
This study investigates the necessity of post-
processing instruction-tuned LLM outputs. Our
findings reveal that supervised fine-tuning sig-
nificantly enhances FIM code generation, en-
abling LLMs to generate code that seamlessly
integrates with the surrounding context. Evalu-
ating our fine-tuned Qwen2.5-Coder (base and
instruct) models on HumanEval Infilling and
SAFIM benchmarks demonstrates improved
performances without post-processing, espe-
cially when the middle consists of complete
lines. However, post-processing of the LLM
outputs remains necessary when the middle is
a random span of code.

1 Introduction

The iterative process of coding, involving frequent
edits and insertions (Bavarian et al., 2022; Fried
et al., 2023), establishes Fill-in-the-Middle (FIM)
code generation a prevalent task in code comple-
tion. Models tackling this must generate the miss-
ing code segment conditioned on both the preced-
ing (left) and succeeding (right) context. A key
challenge in FIM lies in seamlessly integrating
the generated middle with the subsequent code
while maintaining both structure and meaning —
a non-trivial learning objective for models. Con-
sequently, raw model outputs often undergo rule-
based post-processing to remove extraneous con-
tent. As shown in Table 1, two widely used FIM
code generation evaluation benchmarks employ
specific truncation rules that may not generalize

to real-world FIM scenarios with arbitrary left and
right contexts. Furthermore, such truncation strate-
gies often fail to account for alternative, yet valid,
ways of generating the missing code. For instance,
as illustrated in Figure 1, a single-line infilling task
might expect one line as a solution, but an LLM
could generate five lines that perfectly match the
surrounding context. In this case, truncating the
generated middle to a single line would incorrectly
mark it as a failure. Given the advancements in
code LLMs, a crucial question emerges: do mod-
ern code LLMs naturally know when to stop gen-
erating given any arbitrary left and right context,
thereby eliminating the need for post-processing
techniques like truncation?

The existing body of work (Bavarian et al., 2022;
Fried et al., 2023; Nguyen et al., 2023; Zheng et al.,
2024) predominantly examines base LLMs, trained
on massive amounts of data to understand language
patterns and generate consistent output. These mod-
els acquire Fill-in-the-Middle (FIM) capabilities
by learning from reordered prefix-middle-suffix se-
quences, created via random splits of the training
data. The purpose of this reordering is to allow
the LLM to auto-regressively predict the middle
segment, conditioned on both the left and right
contexts as past information. In contrast to base
LLMs, we posit that instruction-tuned LLLMs are
better equipped for FIM generation due to their
customized nature and their inherent capacity to
adhere to instructions. Our primary motivation for
focusing on instruction-tuned LLMs stems from
the objective to avoid the expensive pre-training (or
their continuation) required by models like those
in (Bavarian et al., 2022), which demonstrated that
fine-tuning with FIM does not achieve the same
performance as pre-training with FIM.

This study investigates the necessity of post-
processing instruction-tuned LLLM outputs for FIM
code generation. Our empirical analysis reveal
that the raw outputs of off-the-shelf instruction-



Dataset FIM Type

Truncation Rule for Output

Single-line

Truncate output to one line.

HumanEval Infilling | Multi-line Truncate output to match ground truth line count.
Random-span Truncate output if overlaps with prefix and suffix.
Algorithm-block | Truncate output to one line.

SAFIM Control-flow Truncate output to match ground truth program structure.

API function call

Truncate output after first closing parenthesis.

Table 1: Truncation strategy used in two popular FIM benchmarks.

Canonical solution

I def even_odd_count(num):

2 """[docstring truncated]"""
3 even_count = 0

4 odd_count = @

5 for i in str (abs(num)):

6 if int(i)%2==0:

7 even_count +=1

8 else:

9 odd_count +=1

10 return (even_count, odd_count)

FIM by our finetuned model

I def even_odd_count(num):
"""[docstring truncated]"""

even_count = 0
4 odd_count = 0
5 if num < 0:
6 num = str(num)[1:]
7 else:
8 num = str (num)

9 for i in num:

10 if int(i)%2==0:
11 even_count +=1
12 else:

13 odd_count +=1

14 return (even_count, odd_count)

Figure 1: Left: An example of a single-line infilling task (highlighted in red) from the HumanEval Infilling
benchmark. Right: A fill-in-the-middle generation produced by our fine-tuned Qwen2.5-Coder-7B-Instruct model.

tuned LLMs often require editing. Consequently,
we fine-tuned both base and instruct versions of
Qwen2.5-Coder. Our findings demonstrate that
these fine-tuned models can produce outputs that
do not require any post-processing when the middle
code segments consist of whole lines. In fact, ap-
plying any preset, heuristic-based post-processing
in such cases actually leads to incorrect middle out-
puts. However, when middle segments comprise
partial lines, it becomes necessary to truncate over-
lapping code segments. Based on our findings, we
offer straightforward post-processing recommenda-
tions for LLM-generated middle code segments.

In summary, we contribute the followings:

1. We show that off-the-shelf instruction-tuned
LLMs require post-processing for effective
FIM code generation and exhibit suboptimal
performance due to a lack of task-specific fine-
tuning or optimization.

2. We demonstrate that lightweight fine-tuning
significantly boosts LLM performance for
FIM generation. Interestingly, when the mid-
dle code consists of complete lines, the raw
outputs from these fine-tuned models achieve
better automatic evaluation scores than post-

processed outputs, meaning no further editing
is needed. However, if the middle includes
partial lines, post-processing is still required.

2 Instruction-tuning of LLMs for
Fill-in-the-Middle Code Generation

We investigate the FIM code generation accuracy
of state-of-the-art instruction-tuned code LLMs by
prompting them with instructions, as illustrated
in Figure 3. This prompting method is consistent
with their standard usage for code generation. Our
findings in subsection 3.3 reveal that instruction-
tuned LLMs perform suboptimally, even after their
outputs undergo dataset-specific post-processing.
Building on this observation, we further investigate
if lightweight supervised fine-tuning can empower
code LLMs for improved FIM generation.

To achieve this, we created a training dataset of
instruction-response pairs using an LLM. First, we
collected a set of Python functions from GitHub,
following the data collection pipeline detailed in
Wei et al. (2024). This involved a rigorous filter-
ing process: type checking with Pyright, removal
of benchmark items, elimination of poorly docu-
mented functions, and deduplication. Using these



collected functions, we employed a straightforward
approach to generate instruction-response pairs.
Specifically, we prompted Mixtral-8x22B (Jiang
et al., 2024) with the template shown in Figure 2,
asking it to split each function into prefix, middle,
and suffix according to one of five strategies out-
lined in the prompt. After generating the prefix,
middle, and suffix, we verified that their concatena-
tion reconstructs the original function. At the end,
we collected ~1M instruction-response pairs that
we used to finetune code LLMs.

3 Experiments

3.1 Setup

Training & Inference Setup We fine-tuned the
7B, 14B, and 32B parameter base and instruct ver-
sions of Qwen2.5-Coder. The finetuning spanned
5000 steps on NVIDIA H100-80GB GPUs, leverag-
ing the AdamW optimizer (Kingma and Ba, 2015)
with a batch size of 256 and a maximum sequence
length of 4096 tokens. We initialized the learn-
ing rate at 5e-6 and applied a CosineAnnealing
scheduler with a 10% warmup. We utilized tensor
parallelism and BF16 precision to accelerate the
training process. For evaluation, we utilized the
final training checkpoint, and during inference, we
employed greedy decoding.

Evaluation Benchmarks and Metrics We evalu-
ated models using two FIM code generation bench-
marks: HumanEval Infilling (Bavarian et al., 2022)
and SAFIM (Gong et al., 2024). The HumanEval
Infilling benchmark features three distinct tasks:
Single-line, Multi-line, and Random span infilling.
We provide the post-processing functions for these
tasks in Figure 4. In contrast, SAFIM is a syntax-
aware FIM benchmark, consisting of tasks focused
on algorithm block, control flow, and API function
call completion. For both benchmarks, we present
results based on the standard pass@ 1 metric.'

3.2 Research Questions

We aim to address the following questions.

1. What is the out-of-the-box effectiveness of
instruction-tuned code LLMs for fill-in-the-
middle (FIM) code generation?

2. Can supervised fine-tuning significantly im-
prove the FIM generation accuracy of code
LLMs? How does finetuning impact base and

"For SAFIM evaluation, we used the authors released code,
available at https://github.com/gonglinyuan/safim.

instruct version of LLM? Furthermore, what
are the effects of such fine-tuning on base vs.
instruct-tuned LLMs?

3. Are the raw outputs of fine-tuned LL.Ms suffi-
ciently effective for automatic evaluation?

3.3 Results

The results are presented in Table 2. We consis-
tently observed a few performance trends.

Instruction-tuned LLMs are not ready out-of-
the-box The Qwen2.5-Coder-Instruct models
consistently perform poorly on both benchmarks,
particularly on the SAFIM and random-span Hu-
manEval infilling tasks. Their low accuracies
clearly indicate that these models cannot be effec-
tively used off-the-shelf in FIM generation.

Supervised finetuning (SFT) is a major leap
for FIM instruction-tuning The overall results
clearly indicate a significant performance boost
with SFT of Qwen2.5-Coder-Instruct models.
The average performance of the 7B and 14B mod-
els doubled, while the 32B models saw an impres-
sive 40-50% improvement compared to their of-
the-shelf counterparts.

Sample efficiency of base vs. instruct LL.Ms
The average pass@]1 accuracies across both bench-
marks suggest that tuning instruction-following
LLMs yields slightly better performance.

Raw outputs of finetuned LLMs are effective
From Table 2, we observe that post-processing
consistently lowers accuracies for single-line and
multi-line infilling tasks in HumanEval benchmark
as shown in Figure 1. However, for random-span in-
filling, raw LLM outputs do require editing, which
is evident from the resulting improved performance
after post-processing. We see a similar pattern for
the SAFIM benchmark.

Based on our observations and experiment re-
sults, we recommend post-processing to remove
overlapping code segments found between the pre-
fix and the generated middle, and similarly between
the middle and the suffix. This is our standard ap-
proach for all infilling tasks in this work.

3.4 Other Findings

Our experiments showed that generating multiple
FIM samples from a single Python function (result-
ing in 5SM instruct-response pairs) didn’t signifi-
cantly improve supervised fine-tuning. Thus, we


https://github.com/gonglinyuan/safim

Model Post- HumankEval Infilling SAFIM (Python)
Proc. SL ML RS  Avg. | Algo. Control API  Avg.
X 47.1 22.4 0.9 23.5 3.5 0 0 1.2
(Quenz3-CoderTBAnsiuet || 533 243 124 300 | 398 144 220 135
X 89.3 68.2 31.9 63.1 28.5 29.1 69.6 42.4
(Quem2>-Coder7B ] v |87 613 437 636 | 283 367 601 447
X 91.6 67.4 34.2 64.4 30.7 30.1 72.4 44 4
er et e e s /1887 610 430 642 | 308 360 69.6 455
X 43.9 27.8 34 25.0 7.2 0 2.2 3.1
(Quemd>CoderlaBnstuct |/ | 467 274 122 288 | 127 11 437 238
X 87.0 72.7 36.4 65.4 23.7 29.6 74.0 42 .4
(Quem2>CoderldB ] /| 849 639 463 650 | 237 355 729 440
X 91.7 734 37.6 67.6 294 33.5 76.8 46.6
Qwen2.5-Coder-14B-Instruct | | go¢ 13 468 666 | 298 387 751 479
X 74.7 47.7 5.9 42.8 19 1.7 10 10.2
(Quenz3-Coder2Bnsitiet |1 770 569 27 522 | 195 253 459 302
X 93.9 75.3 36.6 68.6 31.4 36.1 74.6 47 .4
Quenz3-Coder32B | /| 897 668 479 681 | 318 417 I50 495
X 94.8 76.5 37.6 69.6 31.6 36.7 76.2 48.2
Qwen2.5-Coder-32B-Instruct | | o)/ (o7 480 694 | 31.6 417 746 493

Table 2: Performance comparison of Qwen2.5-Coder-Instruct models across three different sizes. SL, ML, and RS

ERINNTS

indicate “single-line”,

multi-line”, and “random-span” infilling tasks, respectively. Highlighted rows show our

finetuned models’ performances. Bold indicates the highest performances for each model groups.

suggest future work prioritize diversity in Python
functions over generating many samples from one.

Additionally, fine-tuning models for more than
roughly one epoch degraded performance on down-
stream FIM tasks. Therefore, we recommend using
a larger collection of training samples, but with
only a single training iteration over them.

4 Related Work

Bavarian et al. (2022) presented a foundational ap-
proach to training large language models (LLMs)
for FIM code generation, marking a significant first
step in this area. Their core innovation involved
segmenting unlabeled code into three distinct parts
and rearranging those segments to create training
sequences. This pioneering strategy proved highly
influential, shaping nearly all subsequent research
in FIM code generation (Fried et al., 2023; Zheng
et al., 2024; Wu et al., 2024; Sagtani et al., 2025).
In contrast to this dominant paradigm, Nguyen
et al. (2023) introduced an alternative method.
They trained two separate language models, each
generating code in an opposing direction: one from
left-to-right and the other from right-to-left. The
FIM task was then solved by having these inde-
pendently generated segments converge and “meet”
in the middle. More recently, Ding et al. (2024)

departed from these approaches, showing improve-
ments by adopting a planning and lookahead based
approach to language generation.

To the best of our knowledge, the existing body
of work in FIM code generation has primarily fo-
cused on either pre-training base LLMs or explor-
ing alternative architectures and training method-
ologies. A significant gap in the existing literature
is the lack of focused investigation into the intrin-
sic FIM capabilities of instruction-tuned LLMs —
models already adapted for following instructions.
Our work aims to bridge this gap by specifically
evaluating and enhancing the FIM performance of
models that have already been fine-tuned for in-
struction following, offering a novel perspective
on leveraging these readily available and powerful
models for this crucial code completion task.

5 Conclusion

Supervised fine-tuning considerably enhances the
generation of code that can be evaluated directly,
significantly diminishing the reliance on intricate
post-processing. Our fine-tuned Qwen2.5-Coder
models achieve substantial performance gains on
the HumanEval Infilling and SAFIM benchmarks.
This underscores targeted fine-tuning as a route to
directly utilize raw LLM outputs.



6 Limitations

First, our evaluation is primarily focused on the
Python programming language, as reflected in the
HumanEval Infilling and SAFIM benchmarks. The
generalizability of our findings to other program-
ming languages, which may exhibit different syn-
tactic structures and code completion patterns, re-
mains an open question. Future work should ex-
plore the application of our fine-tuning approach
and the resulting reduction in post-processing
needs across a more diverse set of languages.

Second, the instruction fine-tuning data we cre-
ated, while effective, was generated using a specific
LLM (Mixtral-8x22B) and a defined set of split-
ting strategies. The quality and diversity of this syn-
thetic data directly influence the performance of our
fine-tuned models. Exploring alternative data gen-
eration methods, incorporating human-annotated
FIM examples, or scaling the size and diversity of
the training data could potentially lead to further
improvements in FIM generation and a more robust
elimination of post-processing requirements.

Finally, our evaluation focused on specific bench-
marks designed for FIM code generation. While
these benchmarks are widely used, they represent
a specific type of FIM task. The performance of
our fine-tuned models and the necessity of post-
processing might vary in more complex or less con-
strained FIM scenarios encountered in real-world
code editing environments. Further investigation
into the applicability of our findings to such diverse
scenarios is warranted.
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Supervised Finetuning Prompt for Fill-in-the-Middle Code Generation

Split the provided Python code into three parts: (1) prefix, (2) middle, and (3) suffix. The split can be
made at any character position. The "middle" section should be from one of the following categories.

1. A random span

2. An algorithmic block

3. A control-flow expression
4. An API function call

5. An assignment expression

Note that, when combined, the prefix, middle, and suffix must recreate the original code in its entirety.

The input code is as follows.
" “python
{content }

Provide 5 examples of prefix, middle, and suffix in the following format. Additionally, label the middle
span as one of the five categories listed above.

# Example: example_number

## Prefix
" “python
# your code here

## Suffix
" python
# your code here

## Middle
"~ python
# your code here

#i# Label

Figure 2: Prompt template to generate fill-in-the-middle training samples.



Supervised Finetuning Prompt for Fill-in-the-Middle Code Generation

You are given an incomplete code with a prefix and suffix. Your task is to generate the middle section.

# Prefix
** “python
{prefix}

ENENEN

# Suffix
* " " python
{suffix }

# Middle
" python
# your code here

Middle section generation guidelines:

1. The middle section must, when combined with the prefix and suffix, form a complete code without
syntax errors. Ensure that the end of the middle section does not overlap with the start of the suffix.

2. Do not include any explanations or notes.

Figure 3: Prompt template for supervised finetuning for fill-in-the-middle code generation.



i def single_line_infill_postprocess(completion):

5

lines = completion. splitlines ()
for line in lines:
current_line = line.strip ()
if not current_line:
continue
if current_line.startswith ("#"):
continue
return line

"non

return

def multi_line_infill_postprocess (completion, num_lines):

assert num_lines > 0

1 =0

completion_lines = []

for line in completion.split("\n"):
completion_lines .append(line)
current_line = line.strip ()

if current_line and not current_line.startswith ("#"):

I += 1
if 1 == num_lines:
break
completion = "\n".join(completion_lines)

return completion

7 def remove_overlap_prefix_middle (prefix , middle):

prefix_len = len(prefix)
middle_len = len(middle)
for i in range(min(prefix_len , middle_len), 0, —1):

if middle. startswith (prefix[—-i:]):
return middle[i:]

return middle

def remove_overlap_middle_suffix (middle, suffix):

suffix_len = len(suffix)
middle_len = len(middle)
for i in range(min(middle_len, suffix_len), 0, —1):

if middle.endswith(suffix [:i]):
return middle[:—1]

return middle

4 def random_span_infill_postprocess(completion, prefix, suffix):

45

46

47

completion = remove_overlap_prefix_middle (prefix , completion)
completion = remove_overlap_middle_suffix (completion, suffix)

return completion

Figure 4: Post-processing functions fgr different HumanEval infilling tasks.



