
From Output to Evaluation: Does Raw Instruction-Tuned Code LLMs
Output Suffice for Fill-in-the-Middle Code Generation?

Anonymous ACL submission

Abstract

Post-processing is crucial for the automatic001
evaluation of LLMs in fill-in-the-middle (FIM)002
code generation due to the frequent presence003
of extraneous code in raw outputs. This extra-004
neous generation suggests a lack of awareness005
regarding output boundaries, requiring trunca-006
tion for effective evaluation. The determina-007
tion of an optimal truncation strategy, however,008
often proves intricate, particularly when the009
scope includes several programming languages.010
This study investigates the necessity of post-011
processing instruction-tuned LLM outputs. Our012
findings reveal that supervised fine-tuning sig-013
nificantly enhances FIM code generation, en-014
abling LLMs to generate code that seamlessly015
integrates with the surrounding context. Evalu-016
ating our fine-tuned Qwen2.5-Coder (base and017
instruct) models on HumanEval Infilling and018
SAFIM benchmarks demonstrates improved019
performances without post-processing, espe-020
cially when the middle consists of complete021
lines. However, post-processing of the LLM022
outputs remains necessary when the middle is023
a random span of code.024

1 Introduction025

The iterative process of coding, involving frequent026

edits and insertions (Bavarian et al., 2022; Fried027

et al., 2023), establishes Fill-in-the-Middle (FIM)028

code generation a prevalent task in code comple-029

tion. Models tackling this must generate the miss-030

ing code segment conditioned on both the preced-031

ing (left) and succeeding (right) context. A key032

challenge in FIM lies in seamlessly integrating033

the generated middle with the subsequent code034

while maintaining both structure and meaning –035

a non-trivial learning objective for models. Con-036

sequently, raw model outputs often undergo rule-037

based post-processing to remove extraneous con-038

tent. As shown in Table 1, two widely used FIM039

code generation evaluation benchmarks employ040

specific truncation rules that may not generalize041

to real-world FIM scenarios with arbitrary left and 042

right contexts. Furthermore, such truncation strate- 043

gies often fail to account for alternative, yet valid, 044

ways of generating the missing code. For instance, 045

as illustrated in Figure 1, a single-line infilling task 046

might expect one line as a solution, but an LLM 047

could generate five lines that perfectly match the 048

surrounding context. In this case, truncating the 049

generated middle to a single line would incorrectly 050

mark it as a failure. Given the advancements in 051

code LLMs, a crucial question emerges: do mod- 052

ern code LLMs naturally know when to stop gen- 053

erating given any arbitrary left and right context, 054

thereby eliminating the need for post-processing 055

techniques like truncation? 056

The existing body of work (Bavarian et al., 2022; 057

Fried et al., 2023; Nguyen et al., 2023; Zheng et al., 058

2024) predominantly examines base LLMs, trained 059

on massive amounts of data to understand language 060

patterns and generate consistent output. These mod- 061

els acquire Fill-in-the-Middle (FIM) capabilities 062

by learning from reordered prefix-middle-suffix se- 063

quences, created via random splits of the training 064

data. The purpose of this reordering is to allow 065

the LLM to auto-regressively predict the middle 066

segment, conditioned on both the left and right 067

contexts as past information. In contrast to base 068

LLMs, we posit that instruction-tuned LLMs are 069

better equipped for FIM generation due to their 070

customized nature and their inherent capacity to 071

adhere to instructions. Our primary motivation for 072

focusing on instruction-tuned LLMs stems from 073

the objective to avoid the expensive pre-training (or 074

their continuation) required by models like those 075

in (Bavarian et al., 2022), which demonstrated that 076

fine-tuning with FIM does not achieve the same 077

performance as pre-training with FIM. 078

This study investigates the necessity of post- 079

processing instruction-tuned LLM outputs for FIM 080

code generation. Our empirical analysis reveal 081

that the raw outputs of off-the-shelf instruction- 082

1

Dataset FIM Type Truncation Rule for Output

HumanEval Infilling
Single-line Truncate output to one line.
Multi-line Truncate output to match ground truth line count.
Random-span Truncate output if overlaps with prefix and suffix.

SAFIM
Algorithm-block Truncate output to one line.
Control-flow Truncate output to match ground truth program structure.
API function call Truncate output after first closing parenthesis.

Table 1: Truncation strategy used in two popular FIM benchmarks.

Canonical solution

1 def even_odd_count(num):
2 """[docstring truncated]"""
3 even_count = 0
4 odd_count = 0
5 f o r i in s t r (abs(num)):
6 i f i n t (i)%2==0:
7 even_count +=1
8 e l s e :
9 odd_count +=1

10 re turn (even_count , odd_count)

FIM by our finetuned model

1 def even_odd_count(num):
2 """[docstring truncated]"""
3 even_count = 0
4 odd_count = 0
5 i f num < 0:
6 num = s t r (num)[1:]
7 e l s e :
8 num = s t r (num)
9 f o r i in num:

10 i f i n t (i)%2==0:
11 even_count +=1
12 e l s e :
13 odd_count +=1
14 re turn (even_count , odd_count)

Figure 1: Left: An example of a single-line infilling task (highlighted in red) from the HumanEval Infilling
benchmark. Right: A fill-in-the-middle generation produced by our fine-tuned Qwen2.5-Coder-7B-Instruct model.

tuned LLMs often require editing. Consequently,083

we fine-tuned both base and instruct versions of084

Qwen2.5-Coder. Our findings demonstrate that085

these fine-tuned models can produce outputs that086

do not require any post-processing when the middle087

code segments consist of whole lines. In fact, ap-088

plying any preset, heuristic-based post-processing089

in such cases actually leads to incorrect middle out-090

puts. However, when middle segments comprise091

partial lines, it becomes necessary to truncate over-092

lapping code segments. Based on our findings, we093

offer straightforward post-processing recommenda-094

tions for LLM-generated middle code segments.095

In summary, we contribute the followings:096

1. We show that off-the-shelf instruction-tuned097

LLMs require post-processing for effective098

FIM code generation and exhibit suboptimal099

performance due to a lack of task-specific fine-100

tuning or optimization.101

2. We demonstrate that lightweight fine-tuning102

significantly boosts LLM performance for103

FIM generation. Interestingly, when the mid-104

dle code consists of complete lines, the raw105

outputs from these fine-tuned models achieve106

better automatic evaluation scores than post-107

processed outputs, meaning no further editing 108

is needed. However, if the middle includes 109

partial lines, post-processing is still required. 110

2 Instruction-tuning of LLMs for 111

Fill-in-the-Middle Code Generation 112

We investigate the FIM code generation accuracy 113

of state-of-the-art instruction-tuned code LLMs by 114

prompting them with instructions, as illustrated 115

in Figure 3. This prompting method is consistent 116

with their standard usage for code generation. Our 117

findings in subsection 3.3 reveal that instruction- 118

tuned LLMs perform suboptimally, even after their 119

outputs undergo dataset-specific post-processing. 120

Building on this observation, we further investigate 121

if lightweight supervised fine-tuning can empower 122

code LLMs for improved FIM generation. 123

To achieve this, we created a training dataset of 124

instruction-response pairs using an LLM. First, we 125

collected a set of Python functions from GitHub, 126

following the data collection pipeline detailed in 127

Wei et al. (2024). This involved a rigorous filter- 128

ing process: type checking with Pyright, removal 129

of benchmark items, elimination of poorly docu- 130

mented functions, and deduplication. Using these 131

2

collected functions, we employed a straightforward132

approach to generate instruction-response pairs.133

Specifically, we prompted Mixtral-8x22B (Jiang134

et al., 2024) with the template shown in Figure 2,135

asking it to split each function into prefix, middle,136

and suffix according to one of five strategies out-137

lined in the prompt. After generating the prefix,138

middle, and suffix, we verified that their concatena-139

tion reconstructs the original function. At the end,140

we collected ≈1M instruction-response pairs that141

we used to finetune code LLMs.142

3 Experiments143

3.1 Setup144

Training & Inference Setup We fine-tuned the145

7B, 14B, and 32B parameter base and instruct ver-146

sions of Qwen2.5-Coder. The finetuning spanned147

5000 steps on NVIDIA H100-80GB GPUs, leverag-148

ing the AdamW optimizer (Kingma and Ba, 2015)149

with a batch size of 256 and a maximum sequence150

length of 4096 tokens. We initialized the learn-151

ing rate at 5e-6 and applied a CosineAnnealing152

scheduler with a 10% warmup. We utilized tensor153

parallelism and BF16 precision to accelerate the154

training process. For evaluation, we utilized the155

final training checkpoint, and during inference, we156

employed greedy decoding.157

Evaluation Benchmarks and Metrics We evalu-158

ated models using two FIM code generation bench-159

marks: HumanEval Infilling (Bavarian et al., 2022)160

and SAFIM (Gong et al., 2024). The HumanEval161

Infilling benchmark features three distinct tasks:162

Single-line, Multi-line, and Random span infilling.163

We provide the post-processing functions for these164

tasks in Figure 4. In contrast, SAFIM is a syntax-165

aware FIM benchmark, consisting of tasks focused166

on algorithm block, control flow, and API function167

call completion. For both benchmarks, we present168

results based on the standard pass@1 metric.1169

3.2 Research Questions170

We aim to address the following questions.171

1. What is the out-of-the-box effectiveness of172

instruction-tuned code LLMs for fill-in-the-173

middle (FIM) code generation?174

2. Can supervised fine-tuning significantly im-175

prove the FIM generation accuracy of code176

LLMs? How does finetuning impact base and177

1For SAFIM evaluation, we used the authors released code,
available at https://github.com/gonglinyuan/safim.

instruct version of LLM? Furthermore, what 178

are the effects of such fine-tuning on base vs. 179

instruct-tuned LLMs? 180

3. Are the raw outputs of fine-tuned LLMs suffi- 181

ciently effective for automatic evaluation? 182

3.3 Results 183

The results are presented in Table 2. We consis- 184

tently observed a few performance trends. 185

Instruction-tuned LLMs are not ready out-of- 186

the-box The Qwen2.5-Coder-Instruct models 187

consistently perform poorly on both benchmarks, 188

particularly on the SAFIM and random-span Hu- 189

manEval infilling tasks. Their low accuracies 190

clearly indicate that these models cannot be effec- 191

tively used off-the-shelf in FIM generation. 192

Supervised finetuning (SFT) is a major leap 193

for FIM instruction-tuning The overall results 194

clearly indicate a significant performance boost 195

with SFT of Qwen2.5-Coder-Instruct models. 196

The average performance of the 7B and 14B mod- 197

els doubled, while the 32B models saw an impres- 198

sive 40-50% improvement compared to their of- 199

the-shelf counterparts. 200

Sample efficiency of base vs. instruct LLMs 201

The average pass@1 accuracies across both bench- 202

marks suggest that tuning instruction-following 203

LLMs yields slightly better performance. 204

Raw outputs of finetuned LLMs are effective 205

From Table 2, we observe that post-processing 206

consistently lowers accuracies for single-line and 207

multi-line infilling tasks in HumanEval benchmark 208

as shown in Figure 1. However, for random-span in- 209

filling, raw LLM outputs do require editing, which 210

is evident from the resulting improved performance 211

after post-processing. We see a similar pattern for 212

the SAFIM benchmark. 213

Based on our observations and experiment re- 214

sults, we recommend post-processing to remove 215

overlapping code segments found between the pre- 216

fix and the generated middle, and similarly between 217

the middle and the suffix. This is our standard ap- 218

proach for all infilling tasks in this work. 219

3.4 Other Findings 220

Our experiments showed that generating multiple 221

FIM samples from a single Python function (result- 222

ing in 5M instruct-response pairs) didn’t signifi- 223

cantly improve supervised fine-tuning. Thus, we 224

3

https://github.com/gonglinyuan/safim

Model Post- HumanEval Infilling SAFIM (Python)
Proc. SL ML RS Avg. Algo. Control API Avg.

Qwen2.5-Coder-7B-Instruct
✗ 47.1 22.4 0.9 23.5 3.5 0 0 1.2
✓ 53.3 24.3 12.4 30.0 3.98 14.4 22.1 13.5
✗ 89.3 68.2 31.9 63.1 28.5 29.1 69.6 42.4

Qwen2.5-Coder-7B
✓ 85.7 61.3 43.7 63.6 28.3 36.7 69.1 44.7
✗ 91.6 67.4 34.2 64.4 30.7 30.1 72.4 44.4

Qwen2.5-Coder-7B-Instruct
✓ 88.7 61.0 43.0 64.2 30.8 36.0 69.6 45.5

Qwen2.5-Coder-14B-Instruct
✗ 43.9 27.8 3.4 25.0 7.2 0 2.2 3.1
✓ 46.7 27.4 12.2 28.8 12.7 15.1 43.7 23.8
✗ 87.0 72.7 36.4 65.4 23.7 29.6 74.0 42.4

Qwen2.5-Coder-14B
✓ 84.9 63.9 46.3 65.0 23.7 35.5 72.9 44.0
✗ 91.7 73.4 37.6 67.6 29.4 33.5 76.8 46.6

Qwen2.5-Coder-14B-Instruct
✓ 88.8 64.3 46.8 66.6 29.8 38.7 75.1 47.9

Qwen2.5-Coder-32B-Instruct
✗ 74.7 47.7 5.9 42.8 19 1.7 10 10.2
✓ 77.0 56.9 22.7 52.2 19.5 25.3 45.9 30.2
✗ 93.9 75.3 36.6 68.6 31.4 36.1 74.6 47.4

Qwen2.5-Coder-32B
✓ 89.7 66.8 47.9 68.1 31.8 41.7 75.1 49.5
✗ 94.8 76.5 37.6 69.6 31.6 36.7 76.2 48.2

Qwen2.5-Coder-32B-Instruct
✓ 91.4 68.7 48.0 69.4 31.6 41.7 74.6 49.3

Table 2: Performance comparison of Qwen2.5-Coder-Instruct models across three different sizes. SL, ML, and RS
indicate “single-line”, “multi-line”, and “random-span” infilling tasks, respectively. Highlighted rows show our
finetuned models’ performances. Bold indicates the highest performances for each model groups.

suggest future work prioritize diversity in Python225

functions over generating many samples from one.226

Additionally, fine-tuning models for more than227

roughly one epoch degraded performance on down-228

stream FIM tasks. Therefore, we recommend using229

a larger collection of training samples, but with230

only a single training iteration over them.231

4 Related Work232

Bavarian et al. (2022) presented a foundational ap-233

proach to training large language models (LLMs)234

for FIM code generation, marking a significant first235

step in this area. Their core innovation involved236

segmenting unlabeled code into three distinct parts237

and rearranging those segments to create training238

sequences. This pioneering strategy proved highly239

influential, shaping nearly all subsequent research240

in FIM code generation (Fried et al., 2023; Zheng241

et al., 2024; Wu et al., 2024; Sagtani et al., 2025).242

In contrast to this dominant paradigm, Nguyen243

et al. (2023) introduced an alternative method.244

They trained two separate language models, each245

generating code in an opposing direction: one from246

left-to-right and the other from right-to-left. The247

FIM task was then solved by having these inde-248

pendently generated segments converge and “meet”249

in the middle. More recently, Ding et al. (2024)250

departed from these approaches, showing improve- 251

ments by adopting a planning and lookahead based 252

approach to language generation. 253

To the best of our knowledge, the existing body 254

of work in FIM code generation has primarily fo- 255

cused on either pre-training base LLMs or explor- 256

ing alternative architectures and training method- 257

ologies. A significant gap in the existing literature 258

is the lack of focused investigation into the intrin- 259

sic FIM capabilities of instruction-tuned LLMs – 260

models already adapted for following instructions. 261

Our work aims to bridge this gap by specifically 262

evaluating and enhancing the FIM performance of 263

models that have already been fine-tuned for in- 264

struction following, offering a novel perspective 265

on leveraging these readily available and powerful 266

models for this crucial code completion task. 267

5 Conclusion 268

Supervised fine-tuning considerably enhances the 269

generation of code that can be evaluated directly, 270

significantly diminishing the reliance on intricate 271

post-processing. Our fine-tuned Qwen2.5-Coder 272

models achieve substantial performance gains on 273

the HumanEval Infilling and SAFIM benchmarks. 274

This underscores targeted fine-tuning as a route to 275

directly utilize raw LLM outputs. 276

4

6 Limitations277

First, our evaluation is primarily focused on the278

Python programming language, as reflected in the279

HumanEval Infilling and SAFIM benchmarks. The280

generalizability of our findings to other program-281

ming languages, which may exhibit different syn-282

tactic structures and code completion patterns, re-283

mains an open question. Future work should ex-284

plore the application of our fine-tuning approach285

and the resulting reduction in post-processing286

needs across a more diverse set of languages.287

Second, the instruction fine-tuning data we cre-288

ated, while effective, was generated using a specific289

LLM (Mixtral-8x22B) and a defined set of split-290

ting strategies. The quality and diversity of this syn-291

thetic data directly influence the performance of our292

fine-tuned models. Exploring alternative data gen-293

eration methods, incorporating human-annotated294

FIM examples, or scaling the size and diversity of295

the training data could potentially lead to further296

improvements in FIM generation and a more robust297

elimination of post-processing requirements.298

Finally, our evaluation focused on specific bench-299

marks designed for FIM code generation. While300

these benchmarks are widely used, they represent301

a specific type of FIM task. The performance of302

our fine-tuned models and the necessity of post-303

processing might vary in more complex or less con-304

strained FIM scenarios encountered in real-world305

code editing environments. Further investigation306

into the applicability of our findings to such diverse307

scenarios is warranted.308

References309

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,310
John Schulman, Christine McLeavey, Jerry Tworek,311
and Mark Chen. 2022. Efficient training of lan-312
guage models to fill in the middle. arXiv preprint313
arXiv:2207.14255.314

Yifeng Ding, Hantian Ding, Shiqi Wang, Qing Sun,315
Varun Kumar, and Zijian Wang. 2024. Horizon-316
length prediction: Advancing fill-in-the-middle capa-317
bilities for code generation with lookahead planning.318
arXiv preprint arXiv:2410.03103.319

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,320
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,321
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:322
A generative model for code infilling and synthesis.323
In The Eleventh International Conference on Learn-324
ing Representations.325

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin326
Cheung. 2024. Evaluation of LLMs on syntax-aware327

code fill-in-the-middle tasks. In Forty-first Interna- 328
tional Conference on Machine Learning. 329

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 330
Roux, Arthur Mensch, Blanche Savary, Chris 331
Bamford, Devendra Singh Chaplot, Diego de las 332
Casas, Emma Bou Hanna, Florian Bressand, Gi- 333
anna Lengyel, Guillaume Bour, Guillaume Lam- 334
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie- 335
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 336
Sophia Yang, Szymon Antoniak, Teven Le Scao, 337
Théophile Gervet, Thibaut Lavril, Thomas Wang, 338
Timothée Lacroix, and William El Sayed. 2024. Mix- 339
tral of experts. 340

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 341
method for stochastic optimization. In 3rd Inter- 342
national Conference on Learning Representations, 343
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 344
Conference Track Proceedings. 345

Anh Tuan Nguyen, Nikos Karampatziakis, and Weizhu 346
Chen. 2023. Meet in the middle: A new pre-training 347
paradigm. In Thirty-seventh Conference on Neural 348
Information Processing Systems. 349

Hitesh Sagtani, Rishabh Mehrotra, and Beyang Liu. 350
2025. Improving fim code completions via context 351
& curriculum based learning. In Proceedings of the 352
Eighteenth ACM International Conference on Web 353
Search and Data Mining, pages 801–810. 354

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng 355
Ding, Naman Jain, Zachary Mueller, Harm de Vries, 356
Leandro Von Werra, Arjun Guha, and LINGMING 357
ZHANG. 2024. Selfcodealign: Self-alignment for 358
code generation. In The Thirty-eighth Annual Con- 359
ference on Neural Information Processing Systems. 360

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr- 361
ishna Ramanathan, and Xiaofei Ma. 2024. Repo- 362
former: Selective retrieval for repository-level code 363
completion. In Forty-first International Conference 364
on Machine Learning. 365

Lin Zheng, Jianbo Yuan, Zhi Zhang, Hongxia Yang, and 366
Lingpeng Kong. 2024. Self-infilling code generation. 367
In Forty-first International Conference on Machine 368
Learning. 369

5

https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=jKYyFbH8ap
https://openreview.net/forum?id=jKYyFbH8ap
https://openreview.net/forum?id=jKYyFbH8ap
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=CEk6JK71Mb
https://openreview.net/forum?id=CEk6JK71Mb
https://openreview.net/forum?id=CEk6JK71Mb
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=bV9yT24t9B

Supervised Finetuning Prompt for Fill-in-the-Middle Code Generation

Split the provided Python code into three parts: (1) prefix, (2) middle, and (3) suffix. The split can be
made at any character position. The "middle" section should be from one of the following categories.

1. A random span

2. An algorithmic block

3. A control-flow expression

4. An API function call

5. An assignment expression

Note that, when combined, the prefix, middle, and suffix must recreate the original code in its entirety.

The input code is as follows.
```python
{content}
```

Provide 5 examples of prefix, middle, and suffix in the following format. Additionally, label the middle
span as one of the five categories listed above.

Example: example_number

Prefix
```python
# your code here
```

Suffix
```python
# your code here
```

Middle
```python
# your code here
```

Label

Figure 2: Prompt template to generate fill-in-the-middle training samples.

6

Supervised Finetuning Prompt for Fill-in-the-Middle Code Generation

You are given an incomplete code with a prefix and suffix. Your task is to generate the middle section.

Prefix
```python
{prefix}
```

Suffix
```python
{suffix}
```

Middle
```python
# your code here
```

Middle section generation guidelines:

1. The middle section must, when combined with the prefix and suffix, form a complete code without
syntax errors. Ensure that the end of the middle section does not overlap with the start of the suffix.

2. Do not include any explanations or notes.

Figure 3: Prompt template for supervised finetuning for fill-in-the-middle code generation.

7

1 def s i n g l e _ l i n e _ i n f i l l _ p o s t p r o c e s s (c o m p l e t i o n) :
2 l i n e s = c o m p l e t i o n . s p l i t l i n e s ()
3 f o r l i n e in l i n e s :
4 c u r r e n t _ l i n e = l i n e . s t r i p ()
5 i f not c u r r e n t _ l i n e :
6 c o n t i nu e
7 i f c u r r e n t _ l i n e . s t a r t s w i t h (" # ") :
8 c o n t i nu e
9 re turn l i n e

10 re turn " "
11

12 def m u l t i _ l i n e _ i n f i l l _ p o s t p r o c e s s (comp le t i on , num_l ines) :
13 a s s e r t num_l ine s > 0
14 l = 0
15 c o m p l e t i o n _ l i n e s = []
16 f o r l i n e in c o m p l e t i o n . s p l i t (" \ n ") :
17 c o m p l e t i o n _ l i n e s . append (l i n e)
18 c u r r e n t _ l i n e = l i n e . s t r i p ()
19 i f c u r r e n t _ l i n e and not c u r r e n t _ l i n e . s t a r t s w i t h (" # ") :
20 l += 1
21 i f l == num_l ines :
22 break
23 c o m p l e t i o n = " \ n " . j o i n (c o m p l e t i o n _ l i n e s)
24 re turn c o m p l e t i o n
25

26

27 def remove_over lap_pref ix_middle (p r e f i x , midd le) :
28 p r e f i x _ l e n = l e n (p r e f i x)
29 m i d d l e _ l e n = l e n (midd le)
30 f o r i in range (min (p r e f i x _ l e n , m i d d l e _ l e n) , 0 , −1) :
31 i f midd le . s t a r t s w i t h (p r e f i x [− i :]) :
32 re turn midd le [i :]
33 re turn midd le
34

35

36 def remove_over lap_midd le_su f f ix (middle , s u f f i x) :
37 s u f f i x _ l e n = l e n (s u f f i x)
38 m i d d l e _ l e n = l e n (midd le)
39 f o r i in range (min (midd l e_ l en , s u f f i x _ l e n) , 0 , −1) :
40 i f midd le . e n d s w i t h (s u f f i x [: i]) :
41 re turn midd le [: − i]
42 re turn midd le
43

44 def r a n d o m _ s p a n _ i n f i l l _ p o s t p r o c e s s (comple t i on , p r e f i x , s u f f i x) :
45 c o m p l e t i o n = remove_over lap_pref ix_middle (p r e f i x , c o m p l e t i o n)
46 c o m p l e t i o n = remove_over lap_midd le_suf f ix (comple t i on , s u f f i x)
47 re turn c o m p l e t i o n

Figure 4: Post-processing functions for different HumanEval infilling tasks.8

