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ABSTRACT

Partial client participation has been widely adopted in Federated Learning (FL)
to efficiently reduce the communication burden. However, an improper client
sampling scheme will select unrepresentative subsets, which will cause a large
variance in the model update and slows down the convergence. Existing sampling
methods are either biased or can be further improved to accelerate the convergence.
In this paper, we propose an unbiased sampling scheme, termed DELTA, to alleviate
this problem. In particular, DELTA characterizes the impact of client diversity and
local variance and samples the representative clients who carry valuable information
for global model updates. Moreover, DELTA is a provably optimal unbiased
sampling scheme that minimizes the variance caused by partial client participation
and achieves better convergence than other unbiased sampling schemes. We
corroborate our results with experiments on both synthetic and real data sets.

1 INTRODUCTION

Federated Learning (FL) has recently emerged as a critical distributed learning paradigm where a
number of clients collaborate with a central server to train a model. Edge clients finish the update
locally without any data sharing, thus preserving client privacy. Communication can become the pri-
mary bottleneck of FL since edge devices have limited bandwidth and connection availability (Wang
et al., 2021). In order to reduce the communication burden, only a portion of clients will be chosen for
training in practice. However, an improper client sampling strategy, such as uniform client sampling
adopted in FedAvg (McMahan et al., 2017), might exacerbate the issues of data heterogeneity in
FL, as the randomly-selected unrepresentative subsets can increase the variance introduced by client
sampling and directly slow down the convergence.
Existing sampling strategies can usually be categorized into two classes: biased and unbiased.
Considering the crucial unbiased client sampling that may preserve the optimization objective, only
a few strategies are proposed, e.g., in terms of multinomial distribution (MD) sampling and cluster
sampling, including clustering based on sample size and clustering based on similarity methods.
However, these sampling methods usually suffer from a slow convergence with large variance and
computation overhead problems (Balakrishnan et al., 2021; Fraboni et al., 2021b).
To accelerate the convergence of FL with partial client participation, Importance Sampling (IS),
another unbiased sampling strategy, is proposed in recent literature (Chen et al., 2020; Rizk et al.,
2020). IS will select clients with the large gradient norm, as shown in Fig 1(a). As for another
sampling method in Figure 1(a), cluster-based IS will first cluster the clients according to the gradient
norm and then use IS to select the clients with a large gradient norm within each cluster.
Though IS, and cluster-based IS have their advantages, 1) IS suffers from learning inefficiency
due to the transmission of excessive important yet similar updates from clients to the server.
This problem has been pointed out in recent works (Fraboni et al., 2021a; Shen et al., 2022), and
some efforts are being conducted to solve this problem. One of them is cluster-based IS, which
avoids redundant sampling of clients by first clustering similar clients into groups. Though clustering
operation can somewhat alleviate this problem, 2) vanilla cluster-based IS does not work well
because the high-dimensional gradient is too complicated to be a good clustering feature
and can bring about poor clustering results, as pointed out by Shen et al. (2022). In addition,
clustering is known to be susceptible to biased performance if the samples are chosen from a
group that is clustered based on a biased opinion, as shown in Sharma (2017); Thompson (1990).
From the above discussion, we know though IS and cluster-based IS have their own advantages in
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Figure 1: Difference between IS, cluster-based IS, and our sampling scheme DELTA.

Figure 2: We use a logistic regression model to
show the performance of different methods on non-
iid MNIST. We sample 10 out of 200 clients and run
500 communication rounds. We report the average
of the best 10 accuracies under 100, 300, and 500
rounds, which shows the accuracy performance
from the initial training state to convergence.

sampling, they both face their own limitations as well. Specifically, IS has utilized the large gradient
norm to accelerate convergence while meeting redundant sampling problems due to excessive similar
updates, and cluster-based IS can alleviate the similar update problem but face a slow convergence
due to poor clustering effect and biased performance. Figure 2 illustrates both these two sampling
methods have times when they perform poorly.
To address the above challenges of IS and cluster-based IS, namely excessive similar updates and
poor performance due to poor cluster effect and biased grouping, we propose a novel sampling
method for Federated Learning, termed DivErse cLienT sAmpling (DELTA). To simplify the notion,
in this paper, we term FL with IS as FedIS. Compared with FedIS and cluster-based IS methods,
we show in Figure 1(b) that DELTA tends to select clients with diverse gradient w.r.t global gradient.
In this way, DELTA not only utilizes the advantages of a large gradient norm for convergence
acceleration but also overcomes the gradient similarity issue.

1.1 CONTRIBUTIONS

In this paper, we propose an efficient unbiased sampling scheme based on gradient diversity and local
variance, in the sense that (i) it can effectively solve the excessive similar gradient problem without
additional clustering operation, while taking advantage of the accelerated convergence of gradient-
norm-based IS and (ii) is provable better than uniform sampling or gradient norm based sampling.
The sampling scheme is completely generic and can be easily compatible with other advanced
optimization methods, like Fedprox (Li et al., 2018) and momentum (Karimireddy et al., 2020a).
As our key contributions,
• we present an unbiased sampling scheme for FL based on gradient diversity and local variance,

a.k.a. DELTA. It can take advantage of the clients who select a large gradient norm and solve the
problem of over-selection of clients with similar gradients at the beginning of training when that
gradient of the global model is relatively large. Compared with the SOTA rate of FedAvg, its conver-
gence rate removes the term O(1/T 2/3) as well as a σ2

G-related term in the numerator of O(1/T 1/2).
• We provide theoretical proof of convergence for nonconvex FedIS. Unlike existing work, our

analysis is based on a more relaxed assumption and yields no worse results than the existing
convergence rates. Its rate removes the term O(1/T 2/3) from that of FedAvg.

2 RELATED WORK

FedAvg is proposed by McMahan et al. (2017) as a de facto algorithm of FL, in which multiple local
SGD steps are executed on the available clients to alleviate the communication bottleneck. While
communication efficient, heterogeneity, such as system heterogeneity (Li et al., 2018; Wang et al.,
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2020; Mitra et al., 2021; Diao et al., 2020), and statistical/objective heterogeneity (Lin et al., 2020;
Karimireddy et al., 2020b; Li et al., 2018; Wang et al., 2020; Guo et al., 2021), results in inconsistent
optimization objectives and drifted clients models, impeding federated optimization considerably.

Objective inconsistency in FL. Objective inconsistency is not rare in FL due to the heterogeneity
of clients’ data and the difference in computing ability. For instance, Wang et al. (2020) first identify
an objective inconsistency caused by heterogeneous local updates. There also exist several works
that encounter the difficulty from the objective inconsistency caused by partial client participation (Li
et al., 2019; Cho et al., 2020; Balakrishnan et al., 2021). Li et al. (2019); Cho et al. (2020) use
local-global gap f∗ − 1

m

∑m
i=1 F

∗
i to measure the distance between global optimum and average

of all local personal optimum, where the local-global gap results from objective inconsistency at
the final optimal point. In fact, objective inconsistency occurs in each training round, not only at
the final optimal point. Balakrishnan et al. (2021) also encounter objective inconsistency caused by
partial client participation. However, they use ∥ 1

n

∑n
i=1 ∇Fi(xt)−∇f(xt)∥ ≤ ϵ as an assumption

to describe such update inconsistency caused by objective inconsistency without any analysis on
it. So far, the objective inconsistency caused by partial client participation has not been analyzed
though it is prevalent in FL, even in homogeneous local updates. Our work gives the fundamental
convergence analysis on the influence of the objective inconsistency of partial client participation.

Client selection in FL. In general, the sampling method can be divided into biased and unbiased
sampling. Note that unbiased sampling guarantees the same expected value of the client aggregation
as the global deterministic aggregation with all clients’ participation. In contrast, biased sampling
will lead to converging to sub-optimal. The most famous unbiased sampling strategy in FL is
multinomial sampling (MD), that samples according to client data ratio (Wang et al., 2020; Fraboni
et al., 2021a). Besides, IS, an unbiased sampling method, is recently used in FL to reduce the
convergence variance. Chen et al. (2020) uses update norm as importance to sampling clients,
Rizk et al. (2020) samples clients based on data variability and Mohammed et al. (2021) uses test
accuracy as an estimation of importance. Meanwhile, many biased sampling strategies have been
proposed for accelerating training, such as sampling clients with higher loss (Cho et al., 2020),
sampling clients as many as possible under the limitation of threshold (Qu et al., 2021), sampling
clients with larger updates (Ribero & Vikalo, 2020) and greedy sampling according to gradient
diversity (Balakrishnan et al., 2021). However, all these biased sampling methods can exacerbate the
negative effects of objective inconsistency and promise to converge to only a neighbor of optimum.
Recently, cluster-based client selection has draw some attentions in FL (Fraboni et al., 2021a; Xu
et al., 2021; Muhammad et al., 2020; Shen et al., 2022). Though cluster operation needs additional
clustering operation, and causes computation and memory overhead, Fraboni et al. (2021a); Shen
et al. (2022) show clustering is helpful for sampling diverse clients and benefits for reducing variance.
The proposed DELTA in Algorithm 1 can be viewed as a muted version of the diverse client clustering
algorithm while promising to be unbiased.

3 THEORETICAL ANALYSIS AND AN IMPROVED FL SAMPLING STRATEGY

In FL, the objective of the global model is a sum-structured optimization problem:

f∗ = minx∈Rd

[
f(x) :=

∑m
i=1 wiFi(x)

]
, (1)

where Fi(x) = Eξi∼Di
[Fi(x, ξi)] represents the local objective function of client i over data

distribution Di, and ξi means the sampled data of client i. m is the total number of clients and wi
represents the weight of client i. With partial client participation, FedAvg (McMahan et al., 2017)
randomly selects |St| = n clients (n ≤ m) to communicate and update model. Then the loss function
of actual participating users in each round can be expressed as:

fSt(xt) =
1
n

∑
i∈St

Fi(xt) . (2)

To ease the theoretical analysis of our work, we use the following widely used assumptions.

3.1 ASSUMPTIONS

Assumption 1 (L-Smooth). The client’s local objective function is Lipschitz smooth, i.e., there is a
constant L > 0, such that ∥∇Fi(x)−∇Fi(y)∥ ≤ L ∥x− y∥ ,∀x, y ∈ Rd, and i = 1, 2, . . . ,m.
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Table 1: Number of communication rounds required to reach ϵ or ϵ+φ (ϵ for unbiased sampling and ϵ+φ
for biased sampling, where φ is a non-convergent constant term) accuracy for FL. σL is local variance
bound, and σG bound is E∥∇Fi(x)−∇f(x)∥2 ≤ σ2

G. Γ is the distance of global optimum and the average of
local optimum(Heterogeneity bound), µ corresponds to µ strongly convex. G is the client’s gradient bound, and
ζG means the gradient diversity.

Algorithm Convexity Partial Worker Unbiased Sampling Convergence rate Assumption

SGD Strongly/Nonconvex ✓ ✓ σ2
L

µmKϵ
+ ( 1

µ
) / σ2

L
mKϵ2

+ 1
ϵ

σL bound

DELTA Nonconvex ✓ ✓ σ2
L

nKϵ2
+ M̀2

Kϵ
Assumption 3

FedIS (ours) Nonconvex ✓ ✓ σ2
L+Kσ2

G
nKϵ2

+ M2

Kϵ
Assumption 3

FedIS (others) (Chen et al., 2020) Nonconvex ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3 and ρ bound

Yang et al. (2021) Nonconvex ✓ ✓ σ2
L

nKϵ2
+

4Kσ2
G

nKϵ2
+ M̃2

Kϵ
+ K1/3M̃2

n1/3ϵ2/3
σG bound

Karimireddy et al. (2020b) Nonconvex ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3

Balakrishnan et al. (2021) Strongly convex ✓ × 1
ϵ
+ 1

φ
Heterogeneity Gap

Cho et al. (2020) Strongly convex ✓ × σ2
L+G2

ϵ+φ
+ Γ

µ
Heterogeneity Gap

Yang et al. (2021) Nonconvex × ✓ σ2
L

mKϵ2
+

σ2
L/(4K)+σ2

G
ϵ

σG bound

Karimireddy et al. (2020b) Strongly Convex × ✓ σ2
L+σ2

G
µmKϵ

+ σL+σG
µ
√
ϵ

+ m(A2+1)
µ

Assumption 3

M = σ2
L + 4Kσ2

G, M̂2 = σ2
L +K(1− n/m)σ2

G, M̃2 = σ2
L + 6Kσ2

G , M̀2 = σ2
L + 4Kζ2G.

ρ assumption: A bound of the similarity among local gradients in Chen et al. (2020) Another FedIS(others) (Chen et al., 2020) has the same convergence rate as
Karimireddy et al. (2020b) under the ρ assumption. While FedIS(ours) uses a looser Assumption 3 and achieves a faster rate than Chen et al. (2020).

Algorithm 1 DELTA
Require: initial weights x0, global learning rate η, local learning rate ηl, number of training rounds T
Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Select a subset of clients according to the proposed sampling probability of DELTA (11)
3: for each worker i ∈ St,in parallel do
4: xi

t,0 = xt

5: for k = 0, · · ·,K − 1 do
6: compute git,k = ∇Fi(x

i
t,k, ξ

i
t,k)

7: Local update:xi
t,k+1 = xi

t,k − ηLg
i
t,k

8: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k

9: Send gradient to server
10: At Server:
11: Receive ∆i

t, i ∈ St

12: let ∆t =
1

|St|
∑

i∈St

ni

npti
∆i

t

13: Server update: xt+1 = xt + η∆t

14: Broadcast xt+1 to clients

Assumption 2 (Unbiased Local Gradient Estimator and Local Variance). let ξit be a random local
data sample in the round t at client i: E

[
∇Fi(xt, ξ

i
t)
]
= ∇Fi(xt),∀i ∈ [m], where the expectation

is over the local datasets sample. The function Fi(xt, ξ
i
t) has σL,i > 0 bounded local variance,

i.e.,E
[∥∥∇Fi(xt, ξ

i
t)−∇Fi(xt)

∥∥2] = σ2
L,i ≤ σ2

L.

Assumption 3 (Bound Dissimilarity). There exists constant σG ≥ 0 and A ≥ 0 s.t. E∥∇Fi(x)∥2 ≤
(A2 + 1)∥∇f(x)∥2 + σ2

G. When all local loss functions are identical, A2 = 0 and σ2
G = 0.

The above assumptions are commonly used in both non-convex optimization and FL literature, see
e.g. Karimireddy et al. (2020b); Yang et al. (2021); Koloskova et al. (2020); Wang et al. (2020);
Cho et al. (2020); Li et al. (2019). For Assumption 3, if all local loss functions are identical, then
we have A = 0 and σG = 0.

3.2 CONVERGENCE RATE OF FEDIS

As discussed in the introduction, IS has an excessive gradient similarity problem, which may cause
redundant sampling resulting in training inefficiency. As discussed in the introduction, IS has the issue
of high gradient similarity, requiring us to design a new diversity sampling method. Before going to
the details of our new sampling strategy, we first provide the convergence rate of FL under standard IS
analysis in this section; the analysis itself is not well explored, especially for the nonconvex setting.
Theorem 3.1 (Convergence rate of FedIS). Under Assumptions 1–3, and sampling strategy FedIS

pti =
∥ĝt

i∥∑m
j=1 ∥ĝt

j∥
, where ĝti =

∑K−1
k=0 gti =

∑K−1
k=0 ∇Fi(x

i
k,t, ξ

i
k,t) is the sum of the gradient updates
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of multiple local updates. Let constant local and global learning rates ηL and η be chosen as such that
ηL < min (1/(8LK), C), where C is obtained from the condition that 1

2 − 10L2K2(A2 + 1)η2L −
L2ηK(A2+1)

2n ηL > 0 ,and η ≤ 1/(ηLL), the expected gradient norm will be bounded as follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
Kσ2

G√
nKT

)
︸ ︷︷ ︸

order of Φ

. (3)

where f0 = f(x0), f∗ = f(x∗), M = σ2
L + 4Kσ2

G and the expectation is over the local dataset
samples among workers.

The FedIS sampling probability pti =
∥ĝt

i∥∑m
j=1 ∥ĝt

j∥
is derived from minimizing the variance of conver-

gence w.r.t. pti. The variance is

Φ =
5η2

LKL2

2
M2 +

ηηLL

2m
σ2
L +

LηηL
2nK

Var(
1

mpti
ĝti), (4)

where Var(1/(mpt
i)ĝ

t
i) is called update variance. The proof details of Theorem 3.1 and derivation of

sampling probability FedIS are detailed in Appendix C and Appendix E.1.

Remark 3.2. It is worth mentioning that although a few works provide the convergence upper bound
for FedIS, several limitations exist in these analyses and results.
1) Rizk et al. (2020); Luo et al. (2022) applied IS in FL to solve a convex/strongly convex problem,
while we solved a nonconvex problem.
2) In Rizk et al. (2020), their analysis result and sampling probability rely on the assumption of
knowing the optimum x∗, which is not feasible in practice.
3) Our analysis uses the common Assumption 1–3, while Chen et al. (2020) provides the convergence
rate of nonconvex FL under a stronger assumption of gradient similarity bound. Compared with Chen
et al. (2020), we prove a tighter convergence upper bound for FedIS. Specifically, our convergence
rate for FedIS improves from O( 1√

nKT
+ 1

T + 1
T 2/3 ) to O

(
1√

nKT
+ 1

T

)
(c.f. Table 1).

Despite the success of FedIS in reducing the variance term in the convergence rate, it is far from
optimal, due to the issue of high gradient similarity and the improvement space of further minimizing
the variance term (i.e., global variance σG and local variance σL in Φ). We will discuss how to
address this challenging variance term in the next section.

3.3 AN IMPROVED CONVERGENCE ANALYSIS

To ease the understanding of the theoretical difference between FedIS and DELTA, as well as a better
illustration of our design choice, we include an analysis flowchart in Figure 3 to help understand the
difference between FedIS and DELTA while strengthening the motivation. Specifically, based on the
convergence variance of FedIS, we find it is important to reduce the variance beyond Var(1/(mpt

i)ĝ
t
i).

Furthermore, we connect the important variance with the convergence of surrogate objective f̃(xt).
Unlike FedIS, which analyzes the global objective, DELTA focuses on analyzing the surrogate
objective and therefore obtains a different convergence variance and sampling probabilities than
FedIS.

The limitations of FedIS. As identified by the Theorem 3.1 discussed above, IS suffers from
excessive similar gradient selection. The variance Φ in (4) shows that the standard IS strategy can
only control the update variance Var(1/(mpt

i)ĝ
t
i), while leaving other terms in Φ untouched, i.e., σL

and σG. Thus, the standard IS fails to handle the excessive similar gradient selection problem, and
it motivates us to give a new sampling strategy below to address the issue of σL and σG.

The decomposition of the global objective. As inspired by the proof of Theorem 3.1 as well as the
corresponding Lemma B.1 (stated in Appendix) proposed for unbiased sampling, the global objective
can be decomposed into surrogate objective and update gap,

E∥∇f(xt)∥2 = E
∥∥∥∇f̃St

(xt)
∥∥∥2 + χ2

t , (5)
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where χt = E
∥∥∥∇f̃St

(xt)−∇f(xt)
∥∥∥ is the update gap.

Intuitively, the surrogate objective is the practical objective of the participating clients in each round,
while the update gap χt means the update distance between partial client participation and full client
participation. The convergence behavior of the update gap χ2

t corresponds to the update variance

in Φ, and the convergence of surrogate objective E
∥∥∥∇f̃St(xt)

∥∥∥2 is dependent on the other variance
terms in Φ, i.e., local variance and global variance.
Minimizing the surrogate objective allows us further to reduce the variance term in the convergence
rate, and we focus on the convergence analysis of the surrogate objective below. For the purpose of
analysis, we use IS property to formulate the surrogate objective with an arbitrary unbiased sampling
probability.

Surrogate objective formulation. The expression of the surrogate objective relies on the prop-
erty of IS. In detail, IS aims to substitute the original sampling distribution p(z) with another
arbitrary sampling distribution q(z) while keeping the expectation unchanged: Eq(z) [Fi(z)] =
Ep(z) [qi(z)/pi(z)Fi(z)]. According to the Monte Carlo method, when q(z) follows the uni-
form distribution, we can estimate Eq(z) [Fi(z)] by 1/m

∑m
i=1 Fi(z) and Ep(z) [qi(z)/pi(z)Fi(z)] by

1/n
∑

i∈St
1/mpiFi(z), respectively, where m and |St| = n are sample sizes.

Based on the IS property, we formulate the surrogate objective as below:

f̃St(xt) =
1
n

∑
i∈St

1
mpti

Fi(xt) , (6)

where m is the total number of clients, |St| = n is the number of participating clients in each round,
and pit is the probability that client i is selected at round t.

An improved rate for the global objective. Following the fact (c.f. Lemma B.2 in appendix) that1:

min
t∈[T ]

E∥∇f(xt)∥2 = min
t∈[T ]

E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ min

t∈[T ]
2E∥∇f̃(xt)∥2 , (7)

the convergence rate of the global objective can be formulated as follows:
Theorem 3.3 (Convergence rate). Under Assumption 1–3 and let local and global learning rates
η and ηL satisfy ηL < 1/(

√
20KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal gradient norm will be

bounded as below:
mint∈[T ] E ∥∇f (xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
, (8)

where f0 = f(x0), f∗ = f(x∗), c is a constant, and the expectation is over the local dataset samples
among all workers. The combination of variance Φ̃ represents combinations of local variance and
client gradient diversity.

We derive the convergence rates for both sampling with replacement and sampling without replace-
ment. For sampling without replacement:

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (9)

For sampling with replacement,

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i (10)

where ζG,i = ∥∇Fi(xt)−∇f(xt)∥ and let ζG be a upper bound for all i, i.e., ζG,i ≤ ζG. The proof
details of Theorem 3.3 can be found in Appendix D.

3.4 OUR PROPOSED SAMPLING STRATEGY: DELTA

The update difference between the surrogate objective and the global objective can be defined as
objective inconsistency. As demonstrated in Figure 4, different sampling methods lead to different
degrees of objective inconsistency, and such inconsistency can be alleviated by choosing clients with
a small updating gap. Figure 4(a) uses a toy example of square functions to illustrate the objective
inconsistency when two out of three clients are selected for training, where DELTA would sample

1With a slight abuse of notations, we use the f̃(xt) for f̃St(xt) in this paper.
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Figure 3: Sketch of theoretical analysis flow (Compared with FedIS). The left side represents the analysis flow
of FedIS, while the analysis of DELTA is shown on the right. The sampling probability difference comes from
the difference in variance.

Client’s update:▽Fi(xt)

Update gap

Full participation:▽Fglobal(xt)

DELTA: ▽FDELTA(xt)

(a) Objective inconsistency and update gap. (b) Illustration of different sampling methods.

Figure 4: (a): Overview of objective inconsistency and update gap. Here is three square functions with
expression y = 10x2 and y = 3(x±8)2, and gradient is calculated at x = −2. The detail enlargement shows the
objective inconsistency. (b): Illustration of the different sampling methods. The client’s update is shown by the
grey arrow and the ideal global update is the black arrow. It shows our DELTA is better than FedIS and FedAvg.

diverse clients, leading to a small update gap. Figure 4(b) shows the one single round update process
of different sampling schemes: IS tends to select client 2 and client 3 whose gradient norm is large,
while diversity sampling DELTA tends to select client 1 and client 3. Therefore, compared with IS,
the sampled clients of DELTA have a smaller bias from the global objective, illustrating a better
sampling scheme of DELTA.
To derive our sampling strategy DELTA, it is equivalent to solving an optimization problem that
minimizes the variance Φ̃ w.r.t the proposed sampling probability pti:

min
pti

Φ̃ s.t.
∑m

i=1 p
t
i = 1 ,

where Φ̃ is a linear combination of local variance σL,i and gradient diversity ζG,i (cf. Theorem 3.3).
Corollary 3.4 (Optimal sampling probability for DELTA). By solving the above optimization problem,
the optimal sampling probability can be formulated as:

pti =

√
α1∥∇Fi(x)−∇f(x)∥2+α2σ

2
L,i∑m

j=1

√
α1∥∇Fj(x)−∇f(x)∥2+α2σ

2
L,j

, (11)

where α1 and α2 are constants defined as α1 = 20K2LηL and α2 = 5KLηL + η
n .

Let ηL = O
(

1√
TKL

)
, η = O

(√
Kn
)

and substitute the optimal sampling probability (11) back

to Φ̃. Then for sufficiently large T, the iterates of Theorem 3.3 satisfy:

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
︸ ︷︷ ︸

order of Φ̃

. (12)
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3.5 DISCUSSIONS

Difference between DELTA and FedIS. The difference between DELTA and FedIS comes mainly
from the difference between Φ̃ and Φ. FedIS aims to reduce the update variance term Var(1/(mpt

i)ĝ
t
i)

in Φ, while DELTA aims to reduce the whole Φ̃ which is composed of the gradient diversity and
the local variance. Minimizing Φ̃ corresponds to further minimizing the terms of Φ that can not be
minimized by FedIS. Solving different optimization problems leads to different sampling probability
expressions. As shown in Figure 4, DELTA selects the more diverse Client 1 and Client 3 for
participation, while FedIS tends to select Client 2 and Client 3 which have large gradient norms. It
can be seen that the selection of DELTA leads to a smaller bias than FedIS. Moreover, as shown
in Table 1, based on our convergence rate results, DELTA achieves a better convergence rate with
O(G

2
/ϵ2) higher than other unbiased sampling algorithms.

Compare DELTA with uniform sampling. According to the Cauchy-Schwarz inequality, DELTA is

at least better than uniform sampling by reducing variance: Φ̃uniform

Φ̃DELTA
=

m
∑m

i=1(
√

α1σ2
L+α2ζ2

G,i)
2

(
∑m

i=1

√
α1σ2

L+α2ζ2
G,i)

2 ≥ 1 .

This implies that DELTA does reduce the variance, especially when (
∑m

i=1

√
α1σ2

L+α2ζ2
G,i)

2∑m
i=1(

√
α1σ2

L+α2ζ2
G,i)

2 ≪ m.

Remark 3.5. DELTA ensures the convergence of FL with partial client participation to a stationary
point without any gap. Our results can be considered as a theoretical explanation for the heuristic of
gradient diversity sampling algorithm in FL, and DELTA encourages the global model to acquire
more knowledge in each round. Specifically, the server will give more weight to the clients with larger
gradient diversity and local variance. These clients are representative, and sampling these clients can
accelerate training given the more diverse and informative data to reflect the global data distribution.
However, DELTA may fail to identify the attacked clients and even tends to select them when it comes
to user attack scenarios. We will leave the solution for this scenario in our future work.

4 PRACTICAL IMPLEMENTATION FOR DELTA AND FEDIS

Gradient-norm-based sampling method requires the computation of the full gradient in each
iteration (Elvira & Martino, 2021; Zhao & Zhang, 2015). However, obtaining each client’s gradient
in advance is generally inadmissible in FL. For practical purposes, a series of IS algorithms estimate
the current round’s gradient by the historical gradient (Cho et al., 2020; Katharopoulos & Fleuret,
2017). Similarly, we utilize the gradient from the previous training iteration to estimate the gradient
of the current round to reduce the computing resources (Rizk et al., 2020), where the previous
iteration refers to the one in which the client participates.
In particular, at iteration 0, all probabilities are set to 1/m, then during the ith iteration, after the
participating clients i ∈ St send the server their updated gradients, the sampling probabilities are
updated as: p∗i,t+1 =

∥ ˆgi,t∥∑
i∈St

∥ ˆgi,t∥ (1 −
∑

i∈Sc
t
p∗i,t), where the multiplicative factor follows from

ensuring all the probabilities sum to 1. Specifically, we use the average of the latest participated
clients’ gradients to approximate the true gradient of the global model for DELTA. In this way, it is
not necessary to obtain all clients’ gradients in each round. The convergence analysis of our practical
algorithm is provided in Appendix F.

5 EXPERIMENTS

In this section, we use both synthetic dataset and split FEMNIST to demonstrate our theoretical
results. To show the validity of the practical algorithm, we run experiments on FEMNIST and
CIFAR-10, and show that DELTA converges faster and achieve higher accuracy than other baselines.

Synthetic datasets. We first examine our theoretical results through logistic regression on synthetic
datasets. In details, we randomly generate (x, y) by y = log((Ax−b)2/2) with given Ai and bi as
training data for clients, and each client’s local dataset contain 1000 samples. In each round, 10 out
of 20 clients are selected to participate in training (we also provide the results of 10 out of 200 clients
in Appendix G). To simulate the gradient noise, in each training step, we calculate the gradient of
client i by gi = ∇fi(Ai, bi, Di) + νi, where Ai and bi are model parameters, Di is the local dataset
of client i, and νi is a zero-mean random variable which control the heterogeneity of client i. The
larger the E∥νi∥2, the larger the heterogeneity of client i.
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(a) ν = 20 (b) ν = 30 (c) ν = 40

Figure 5: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥y − log((Aix−bi)
2
/2)
∥∥2, A = 10, b = 1. We report the logarithm of global loss with different degrees of

gradient noise ν. All methods are well-tuned, and we report the best result of each algorithm under each setting.

Table 2: Performance of algorithms. We run 500 communication rounds on FEMNIST and CIFAR10 for
each algorithm. We report the mean of maximum 5 accuracies for test datasets and the average number of
communication rounds to reach the threshold accuracy.

Algorithm FEMNIST α = 0.1 CIFAR10 α = 0.5

Acc (%) Rounds for 70% Time(s) for 70% Acc (%) Rounds for 54% Time(s) for 54%

FedAvg (w/ uniform sampling) 70.35± 0.51 426 (1.0×) 1795.12 (1.0×) 54.28± 0.29 338 (1.0×) 3283.14 (1.0×)
Cluster-based IS 71.21 ± 0.24 362 (1.17×) 1547.41 (1.16×) 54.83± 0.02 323 (1.05×) 3188.54 (1.03×)
FedIS 71.69± 0.43 404 (1.05×) 1719.26 (1.04×) 55.05± 0.27 313 (1.08×) 3085.05 (1.06×)
DELTA 72.10± 0.49 322 (1.32×) 1372.33 (1.31×) 55.20± 0.26 303 (1.12×) 2989.98 (1.1×)

Figure 5 demonstrates that these empirical results align with our theoretical analysis. Additional
experiments of different functions and different settings, and the detailed sampling strategies of these
different sampling algorithms can be found in Appendix G.
• DELTA and FedIS outperform other biased and unbiased methods in convergence speed. We

can see both DELTA and FedIS converge faster than both FedAvg and Power-of-choice sampling.
The larger the noise (variance), the more obvious the convergence speed advantage of DELTA and
FedIS. For ν = 30, FedIS can achieve near twice faster than FedAvg, and for ν = 40, DELTA can
achieve nearly 4× times faster than FedAvg.

• DELTA outperforms FedIS. In experiments, DELTA converges about twice faster as FedIS in
Figure 5(a). As all results show, DELTA can reduce more variance than FedIS and thus converge a
smaller loss.

Split FEMNIST In this section, we consider the split FEMNIST. We let 10% clients own 90%
data and the detailed split algorithm is provided in Appendix G. Figure 6 shows that when the data
distribution is highly heterogeneous, Our DELTA algorithm converges faster than other baselines.

Figure 6: Performance of different sampling methods
on Split FEMNIST dataset

FEMNIST and CIFAR-10. We also verify our
practical algorithm on FEMNIST and CIFAR-10.
We summarize our numerical results in Table 2:
Compared with other baselines, DELTA achieves
higher accuracy and has an improvement in conver-
gence rate both in terms of the number of iterations
and the wall-clock time.
We also test different choices of the number of
participated clients n and test on different hetero-
geneity α, and observe the consistent improvement
of DELTA. The detailed setting and additional ex-
periments are in Appendix G.

6 CONCLUSION AND FUTURE WORK

In this work, we studied the optimal client sampling strategy that addresses the data heterogeneity to
accelerate the convergence speed of FL. We obtain a new tractable convergence rate for nonconvex FL
algorithms with arbitrary client sampling probabilities. Based on the bound, we solve an optimization
problem with respect to sampling probability and thus develop a novel unbiased sampling scheme that
characterizes the impact of client diversity and local variance on the sampling design. Experimental re-
sults validated the superiority of our theoretical and practical algorithms compared to several baselines.
As we point out, when user attacks occur, DELTA requires some changes to be able to identify and
avoid selecting users from these attacks.
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A TOY CASE

In Figure 7, we give a detailed toy case to show that DELTA is more effective than FedIS.

(a) Overview of different methods. (b) FedAvg.

(c) FedIS. (d) DELTA.

Figure 7: Overview of objective inconsistency. The intuition of objective inconsistency in FL is caused by
client sampling. When Client 1 & 2, are selected to participate the training, then the model xt+1 becomes
xt+1
FedAvg instead of xt+1

global, resulting in objective inconsistency. Different sampling strategies can cause different
surrogate objectives, thus causing different biases. From Fig 7(a) we can see DELTA achieves minimal bias
among the three unbiased sampling methods.

Experiments for illustrating our observation. For the experiments to illustrate our observation
of the introduction, we apply a logistic regression model on the non-iid MNIST dataset. 10 clients
are selected from 200 clients to participate in training in each round. We set 2 cluster centers for
cluster-based IS. And we set the mini batch-size to 32, the learning rate to 0.01, and the local update
time to 5 for all methods. We run 500 communication rounds for each algorithm. We report the
average of each round’s selected clients’ gradient norm and the minimum of each round’s selected
clients’ gradient norm.

We report the gradient norm performance of cluster-based IS and IS to show that cluster-based
IS selects clients with small gradients. As we mentioned in the introduction, the cluster-based IS
always selects some clients from the cluster with small gradients, which will slow the convergence
in some cases. We provide the average gradient norm comparison between IS and cluster-based IS
in Figure 8(a). Besides, we also provide the minimal gradient norm comparison between IS and
cluster-based IS in Figure 8(b).

We report the comparison of accuracy and loss performance between vanilla cluster-based IS and the
removal of cluster-based IS with small gradient clusters. Specifically, we consider the setting with
two cluster centers. And after 250 rounds, we replace the clients in the cluster containing the smaller
gradient with the clients in the cluster containing the larger gradient while keeping the total number
of the participated clients the same. The experiment result is shown in Figure 9. We can observe
that the vanilla cluster-based IS performs worse than cluster-based IS without small gradients, which
indicates that the small gradient is one reason for poor performance.
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(a) Average gradient norm comparison
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(b) Minimal gradient norm comparison

Figure 8: The gradient norm comparison. Both results indicate that cluster-based IS selects clients with small
gradients after about half of the training rounds compared to IS.
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(a) Accuracy performance comparison
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Figure 9: An illustration that cluster-based IS sampling from the cluster with small gradients will
slow convergence. When the small gradient-norm cluster’s clients are replaced by the clients from the large
gradient-norm cluster, we see the performance improvement of cluster-based IS.

B TECHNIQUES

Here we show some technical lemmas which are helpful in the theoretical proof. We substitute 1
m for

ni

N to simplify writing in all following proofs. ni

N is the data ratio of client i. All our proof can be
easily extended from f(xt) =

1
m

∑m
i=1 Fi(xt) to f(xt) =

∑m
i=1

ni

N Fi(xt).

Lemma B.1. (Unbiased Sampling). Importance sampling is unbiased sampling.
E( 1n

∑
i∈St

1
mpi

∇Fi(xt)) = 1
m

∑m
i=1 ∇Fi(xt) , no matter whether the sampling is with

replacement or without replacement.

Lemma B.1 proves that the importance sampling is an unbiased sampling strategy, either in sampling
with replacement or sampling without replacement.

Proof. with replacement:

E

(
1

n

∑
i∈St

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(
E
(

1

mpti
∇Fi(xt) | S

))

=
1

n

∑
i∈St

E

(
m∑
l=1

ptl
1

mptl
∇Fl(xt)

)
=

1

n

∑
i∈St

∇f(xt) = ∇f(xt) ,

(13)
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without replacement:

E

(
1

n

∑
i∈St

1

mpi
∇Fi(xt)

)
=

1

n

m∑
l=1

E
(
Im

1

mptl
∇Fl(xt)

)
=

1

n

m∑
l=1

E(Im)× E(
1

mptl
∇Fl(xt))

=
1

n
E(

m∑
l=1

Im)× E(
1

mptl
∇Fl(xt)) =

1

n
n×

m∑
l=1

ptl
1

mptl
∇Fl(xt)

=
1

n

m∑
l=1

nptl ×
1

mptl
∇Fl(xt) =

1

m

m∑
l=1

∇Fl(xt) = ∇f(xt) , (14)

where Im ≜

{
1 if xl ∈ St ,

0 otherwise .

In the expectation, there are three origins of stochasticity. They are client sampling, local data SGD,
and filtration of xt. Therefore, the expectation is over all these randomnesses. Here, S represents
the origins of stochasticity except for client sampling. Rigorously, S represents the filtration of the
stochastic process {xj , j = 1, 2, 3. . .} at time t and the stochasticity of local SGD.

Lemma B.2 (update gap bound).

χ2 = E∥ 1
n

∑
i∈St

1

mpti
∇Fi(xt)−∇f(xt)∥2 = E∥∇f̃(xt)∥2 − ∥∇f(xt)∥2 ≤ E∥∇f̃(xt)∥2 . (15)

where the first equation follows from E[x− E(x)]2 = E[x2]− [E(x)]2 and Lemma B.1.

To increase readability, we give a detailed derivation of the Lemma B.2.

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
= E

(
∥∇f̃(xt)∥2 | S

)
− 2E

(
∥∇f̃(xt)∥∥∇f(xt)∥ | S

)
+ E

(
∥∇f(xt)∥2 | S

)
,

(16)

where E(x | S) means the expectation on x over the sampling space. And we use E
(
∥∇f̃(xt) | S

)
=

∇f(xt) and E
(
∥∇f(xt)∥2 | S

)
= ∥∇f(xt)∥2 (∥∇f(x)∥ is a constant for stochasticity S and the

expectation over a constant is the constant itself.)
Therefore, we conclude

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
= E

(
∥∇f̃(xt)∥2 | S

)
− ∥∇f(xt)∥2 ≤ E

(
∥∇f̃(xt)∥2 | S

)
.

(17)

We can further take the expectation on both sides of the inequality according to our needs, but without
changing the relationship.

The following lemma follows from Lemma 4 of Reddi et al. (2020), but with a looser condition
Assumption 3, instead of σ2

G bound. With some effort, we can derive the following lemma:

Lemma B.3 (Local updates bound.). For any step-size satisfying ηL ≤ 1
8LK , we can have the

following results:

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (18)
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Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lσ
2
G,i + 4Kη2L(A

2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (19)

(20)

Unrolling the recursion, we get:

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(21)

≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(22)

≤ 5K(η2Lσ
2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (23)

C CONVERGENCE OF FEDIS, PROOF OF THEOREM 3.1

We first restate the convergence theorem (Theorem 3.1) more formally, then prove the result for
nonconvex case.
Theorem C.1. Under Assumptions 1–3 and sampling strategy FedIS, the expected gradient norm will
converge to a stationary point of the global objective. More specifically, if communication rounds T is
pre-determined and the learning rate η and ηL is constant learning rates, then the expected gradient
norm will be bounded as follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+Φ , (24)

where F = f(x0) − f(x∗), M2 = σ2
L + 4Kσ2

G, and the expectation is over the local datasets
samples among workers.
Let ηL < min (1/(8LK), C), where C is obtained from the condition that 1

2 − 10L2K2(A2 +

1)η2L − L2ηK(A2+1)
2n ηL > 0 ,and η ≤ 1/(ηLL), it then holds that:

Φ =
1

c
[
5η2LL

2K

2m

m∑
i=1

(σ2
L + 4Kσ2

G) +
ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (25)

where c is a constant that satisfies 1
2 − 10L2K2(A2 + 1)η2L − L2ηK(A2+1)

2n ηL > c > 0, and
V ( 1

mpt
i
ĝti) = E∥ 1

mpt
i
ĝti − 1

m

∑m
i=1 ĝ

t
i∥2.

Corollary C.2. Suppose ηL and η are such that the conditions mentioned above are satisfied,
ηL = O

(
1√

TKL

)
and η = O

(√
Kn
)

, and let the sampling probability be FedIS (82). Then for
sufficiently large T, the iterates of Theorem 3.1 satisfy:

min
t∈[T ]

E∥∇f(xt)∥2 = O
(

σ2
L√

nKT
+

Kσ2
G√

nKT
+

σ2
L + 4Kσ2

G

KT

)
. (26)
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Proof.

Et[f(xt+1)]
(a1)

≤ f(xt) + ⟨∇f(xt),Et[xt+1 − xt]⟩+
L

2
Et[∥xt+1 − xt∥2]

= f(xt) + ⟨∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]⟩+
L

2
η2Et[∥∆t∥2]

= f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

,

(27)

where (a1) follows from Lipschitz continuous condition. The expectation is conditioned over
everything before current step k of round t. Specifically, it is over clients’ sampling, local data
sampling, and the current round’s model xt.
Firstly we consider A1:

A1 = ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩

=

〈
∇f(xt),Et[−

1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηL∇f(xt)]

〉

(a2)
=

〈
∇f(xt),Et[−

1

m

m∑
i=1

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηL∇f(xt)]

〉

=

〈√
ηLK∇f(xt),−

√
ηL√
K

Et[
1

m

m∑
i=1

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))]

〉

(a3)
=

ηLK

2
∥∇f(xt)∥2 +

ηL
2K

Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))

∥∥∥∥∥
2

− ηL
2K

Et∥
1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2

(a4)

≤ ηLK

2
∥∇f(xt)∥2 +

ηLL
2

2m

m∑
i=1

K−1∑
k=0

Et

∥∥xi
t,k − xt

∥∥2 − ηL
2K

Et∥
1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2

≤
(
ηLK

2
+ 10K3L2η3L(A

2 + 1)

)
∥∇f(xt)∥2 +

5L2η3L
2

K2σ2
L + 10η3LL

2K3σ2
G

− ηL
2K

Et∥
1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2 , (28)

where (a2) follows from Assumption 2 and LemmaB.1. (a3) is due to ⟨x, y⟩ =
1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and (a4) comes from Assumption 1.
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Next consider A2. Let ĝti =
∑K−1

k=0 gti,k =
∑K−1

k=0 ∇Fi(x
i
t,k, ξ

i
t,k)

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥ηL 1

n

∑
i∈St

1

mpti

K−1∑
k=0

git,k

∥∥∥∥∥
2

= η2L
1

n
Et

∥∥∥∥∥ 1

mpti

K−1∑
k=0

git,k − 1

m

m∑
i=1

K−1∑
k=0

git,k

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

gi(x
i
t,k)

∥∥∥∥∥
2

=
η2L
n
V (

1

mpti
ĝti)

+ η2LE∥
1

m

m∑
i=1

K−1∑
k=0

[gi(x
i
t,k)−∇Fi(x

i
t,k) +∇Fi(x

i
t,k)]∥2

≤ η2L
n
V (

1

mpi
ĝti)

+ η2L
1

m2

m∑
i=1

K−1∑
k=0

E∥gi(xi
t,k)−∇Fi(x

i
t,k)∥2 + η2LE∥

1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2

≤ η2L
n
V (

1

mpti
ĝti) + η2L

K

m
σ2
L + η2LE∥

1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2 . (29)

The third equality follows from independent sampling. Specifically, for sampling with replacement,
due to every index being independent, we utilize E∥x2

1 + ...+ xn∥2 = E[∥x1∥2 + ...+ ∥xn∥2].

For sampling without replacement:

E∥ 1
n

∑
i∈St

(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 (30)

=
1

n2
E∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 (31)

=
1

n2
E

(
∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 | Ii = 1

)
× P(Ii = 1) (32)

+
1

n2
E

(
∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 | Ii = 0

)
× P(Ii = 0) (33)

=
1

n

m∑
i=1

pti∥
1

mpti
ĝti −

1

m

m∑
i=1

ĝti∥
2 (34)

=
1

n
E∥ 1

mpti
ĝti −

1

m

m∑
i=1

ĝti∥
2 . (35)

From above, we observe that it is possible to gain a speedup by sampling from the distribution that
minimizes V ( 1

mpt
i
ĝti). Moreover, as we have discussed before, the optimal sampling probability

is p∗i =
∥ĝt

i∥∑m
i=1 ∥ĝt

i∥
. For MD sampling (Li et al., 2019), which samples according to date ratio, the

optimal sampling probability is p∗i,t =
qi∥ĝt

i∥∑m
i=1 qi∥ĝt

i∥
, where qi =

ni

N
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Now substitute the expression of A1 and A2:

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
∥∇f(xt)∥2 +

5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti)−

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ f(xt)− cηηLK∥∇f(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti) ,

(36)

where the last inequality follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a9) holds because

there exists a constant c > 0 (with some ηL ) satisfying 1
2 − 10L2 1

m

∑m
i−1 K

2η2L(A
2 + 1) > c > 0

Rearranging and summing from t = 0, . . . , T − 1,we have:

T−1∑
t=1

cηηLKE∥∇f(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (37)

Which implies:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+Φ , (38)

where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (39)

C.1 PROOF FOR CONVERGENCE OF FEDIS (THEOREM 3.1) UNDER ASSUMPTION 1–3.

For comparison, we first provide the convergence result under Assumption 4. The Assumption 4 is
formally defined below:

Assumption 4 (Gradient bound). The stochastic gradient’s expected squared norm is uniformly
bounded, i.e.,E∥∇Fi(xt,k, ξk,t)∥2 ≤ G2 for all i and k.

First we show Assumption 4 can be used to bound the update variance V
(

1
mpt

i
ĝti

)
, and under the

sampling probability FedIS (80):

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 ≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2 ≤ K2G2

(40)

While for using Assumption 3 instead of additional Assumption 4, we can also bound the update
variance:

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 ≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2

≤ K2σ2
G +K2(A2 + 1)∥∇f(xt)∥2 (41)
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We replace the variance back to equation (36):

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
∥∇f(xt)∥2 +

5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti)−

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)− LηηLK(A2 + 1)

2n

)
∥∇f(xt)∥2 +

5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2m
σ2
L +

Lη2η2L
2n

K2σ2
G −

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(42)
This shows that the requirement for ηL is different. It needs that there exists a constant c > 0(with
some ηL) satisfying 1

2 − 10L2K2η2L(A
2 + 1) − LηηLK(A2+1)

2n > c > 0. One can still guarantee
that there exists a constant for ηL to satisfy this inequality according to the properties of quadratic
functions. Specifically, for quadratic equations −10L2K2(A2+1)η2L− LηK(A2+1)

2n ηL+ 1
2 , we know

−10L2K2(A2 + 1) < 0, −LηK(A2+1)
2n and 1

2 > 0. According to the solution of quadratic equations,
we can make sure there exists a ηL > 0 solution.

Then we can substitute equation (36) by equation (42) and let ηL = O
(

1√
TKL

)
and η = O

(√
Kn
)

,
we get the convergence rate of FedIS under Assumption 1– 3:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(
f0 − f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
Kσ2

G√
nKT

)
︸ ︷︷ ︸

order of Φ

. (43)

D CONVERGENCE OF DELTA. PROOF OF THEOREM 3.3

D.1 CONVERGENCE RATE WITH IMPROVED ANALYSIS METHOD FOR GETTING DELTA

As we see FedIS can only reduce the update variance term in Φ. Since we want to reduce the
convergence variance as much as possible, the other term σL and σG still needs to be optimized.
However, it is not straightforward to derive the optimization problem from Φ. In order to further
reduce the variance in Φ (cf. 4), i.e., local variance (σL) and global variance (σG), we divide the
convergence of the global objective into a surrogate objective and an update gap, and analyze each
term separately. The analysis framework is shown in Figure 10.
While for the update gap, as inspired by the expression form of update variance, we formally define
it as below.
Definition D.1 (Update gap). In order to measure the update inconsistency, we define the update gap:

χt = E
[∥∥∥∇f̃(xt)−∇f(xt)

∥∥∥] . (44)

Here the expectation is over all clients’ distribution. When full clients participate, we have χ2
t = 0.

The update inconsistency exists as long as partial client participation.

The update gap is a direct embodiment of the objective inconsistency in the update process. The
existence of update gap makes the analysis of global objective different from the analysis of surrogate
objective. However, once we promise the convergence of the update gap, we can re-derive the
convergence result for the global objective. Formally, the update gap can help us to connect global
objective convergence and surrogate objective convergence as follows:

E∥∇f(xt)∥2 = E∥∇f̃(xt)∥2 + χ2
t . (45)

The equation follows from the property of unbiasedness, see Lemma B.1.
In order to deduce the convergence rate of the global objective, we start from the convergence
analysis of the surrogate objective.
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Figure 10: Sketch of theoretical analysis flow (Compared with FedIS). The left side represents the analysis flow
of FedIS, while the analysis of DELTA is shown on the right. The sampling probability difference comes from
the difference in variance.

Theorem D.2 (Convergence rate of surrogate objective). Under Assumption 1–3 and let local and
global learning rates η and ηL satisfy ηL < 1/(

√
20KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal

gradient norm of surrogate objective will be bounded as below:

mint∈[T ] E
∥∥∥∇f̃ (xt)

∥∥∥2 ≤ f0−f∗

c̃ηηLKT
+ Φ̃

c̃
, (46)

where f0 = f(x0), f∗ = f(x∗), the expectation is over the local dataset samples among workers.

Φ̃ is the new combination of variance, representing combinations of local variance and client
gradient diversity.
For sample without replacement:

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (47)

For sampling with replacement:

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i (48)

where ζG,i represents client gradient diversity: ζG,i = ∥∇Fi(xt) − ∇f(xt)∥, c̃ is a constant.
The proof of Theorem D.2 is shown in Appendix D.2 and Appendix D.3. Specifically, the proof
for sampling with replacement is shown in Appendix D.2 while the proof for sampling without
replacement is shown in Appendix D.3.

Remark D.3. We notice that there is no update variance in Φ̃, but the local variance and global
variance remain in it. Furthermore, the new combination of variance Φ̃ can be minimized by
optimizing w.r.t sampling probability, as is shown later.

Derive the convergence from surrogate objective to global objective. As shown in Lemma B.1,
unbiased sampling promises partial client updates in expectation are equal to the participation of all
clients. With enough training rounds, unbiased sampling can guarantee that the update gap χ2 will
converge to zero. However, we still need the convergence speed of χ2

t to recover the convergence rate
of the global objective. Fortunately, we can bound the convergence behavior of χ2

t by the convergence
rate of surrogate objective according to Definition D.1 and Lemma B.2. Therefore, the update gap
can achieve at least the same convergence rate as the surrogate objective.
Corollary D.4 (New convergence rate of global objective). Under Assumption 1–3 and based on the
above analysis that update variance is bounded, the global objective will converge to a stationary
point. Its gradient is bounded as:

mint∈[T ] E∥∇f(xt)∥2 = mint∈[T ] E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ mint∈[T ] 2E∥∇f̃(xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
.

(49)
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Theorem D.5 (Restate of Theorem 3.3). Under Assumption 1-3 and the same conditions as theo-
rem3.1, the minimal gradient norm of surrogate objective will be bounded as follows by setting ηL =

1√
TKL

and η
√
Kn Let local and global learning rates η and ηL satisfy ηL < 1

√
20KL

√
1
n

∑m
l=1

1
mpt

l

and ηηL ≤ 1
KL . Under Assumption 1-3 and with partial worker participation, the sequence of

outputs xk generated by Algorithm 1 satisfies:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+

1

c
Φ̃ , (50)

where F = f(x0)− f(x∗), and the expectation is over the local dataset samplings among workers.
c is a constant. ζG,i is defined as client gradient diversity: ζG,i = ∥∇Fi(xt)−∇f(xt)∥.

For sample with replacement: Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,i.

For sampling without replacement: Φ̃ =
5L2Kη2

L

2mn

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,l.

Remark D.6 (Condition of ηL). Here, though the condition expression for ηL relies on a dynamic
sampling probability ptl , we can still guarantee that there a constant ηL satisfies this condition.

Specifically, one can substitute the optimal sampling probability 1
pt
i

=
∑m

j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

back to the above inequality condition. As long as the gradient ∇Fi(xt) is bounded,

we can ensure 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

≤ maxj

√
α1ζ2

G,j+α2σ2
L,j

mini

√
α1ζ2

G,i+α1σ2
L,i

≤ G̃, therefore
1

√
20(A2+1)KL

√√√√ 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j
+α2σ2

L,j√
α1ζ2

G,i
+α2σ2

L,i

≥ 1√
20(A2+1)KL

√
G̃

≥ C, where G̃ and C are pos-

itive constants. Thus, we can always find a constant ηL to satisfy this inequality under dynamic
sampling probability pti.
Corollary D.7. Suppose ηL and η are such that the conditions mentioned above are satisfied,
ηL = O

(
1√

TKL

)
and η = O

(√
Kn
)

. Then for sufficiently large T, the iterates of Theorem 3.3
satisfy:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

F√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
. (51)

Lemma D.8. For any step-size satisfying ηL ≤ 1
8LK , we can have the following results:

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (52)

where ζG,i = ∥∇F (xt) − ∇f(xt)∥, and the expectation is over local SGD and filtration of xt,
without the stochasticity of client sampling.

Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lζ
2
G,i + 4Kη2L(A

2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (53)

(54)
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Unrolling the recursion, we get:

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(55)

≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(56)

≤ 5K(η2Lσ
2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (57)

In Section D.2 and Section D.3, we provide the proof for Theorem D.2. Specifically, the proof
for sampling with replacement is shown in Appendix D.2 while the proof for sampling without
replacement is shown in Appendix D.3.

D.2 SAMPLE WITH REPLACEMENT

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (58)

where Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L + 4Kζ2G,i) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L.

Proof.

f̃(xt+1)
(a1)

≤ f̃(xt) +
〈
∇f̃(xt),Et[xt+1 − xt]

〉
+

L

2
Et[∥xt+1 − xt∥2]

= f̃(xt) +
〈
∇f̃(xt),Et[η∆t + ηηLK∇f̃(xt)− ηηLK∇f̃(xt)]

〉
+

L

2
η2Et[∥∆t∥2]

= f̃(xt)− ηηLK
∥∥∥∇f̃(xt)

∥∥∥2 + η
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
︸ ︷︷ ︸

A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

.

(59)

Where (a1) follows from Lipschitz continuous condition. Here the expectation is over local data SGD
and filtration of xt. However, in the next analysis, the expectation is over all randomness, i.e., client
sampling is included.
Firstly consider A1:

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
=

〈
∇f̃(xt),Et[−

1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηLK∇f̃(xt)]

〉

(a2)
=

〈
∇f̃(xt),Et[−

1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f̃(xt)]

〉

=

〈√
KηL∇f̃(xt),

√
ηL√
K

Et[−
1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)]

〉

(a3)
=

KηL
2

∥∇f̃(xt)∥2 +
ηL
2K

Et

(
∥ − 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)∥2

)

− ηL
2K

Et∥ −
1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)∥2 , (60)
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where (a2) follows from Assumption 2, and (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
for

x =
√
KηL∇f̃(xt) and y =

√
ηL

K [− 1
n

∑
i∈St

1
mpt

i

∑K−1
k=0 ∇Fi(x

i
t,k) +K∇f̃(xt)].

In order to bound A1, we need to bound the following part:

Et∥
1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)−K∇f̃(xt)∥2

= Et∥
1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)−

1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(xt)∥2

(a4)

≤ K

n

∑
i∈St

K−1∑
k=0

Et∥
1

mpti
(∇Fi(x

i
t,k)−∇Fi(xt))∥2

=
K

n

∑
i∈St

K−1∑
k=0

Et{Et(∥
1

mpti
(∇Fi(x

i
t,k)−∇Fi(xt))∥2 | S)}

=
K

n

∑
i∈St

K−1∑
k=0

Et(

m∑
l=1

1

m2ptl
∥∇Fl(x

l
t,k)−∇Fl(xt)∥2)

= K

K−1∑
k=0

m∑
l=1

1

m2ptl
Et∥∇Fl(x

l
t,k)−∇Fl(xt)∥2

(a5)

≤ K2

m2

m∑
l=1

L2

ptl
E∥xl

t,k − xt∥2

(a6)

≤ L2K2

m2

m∑
l=1

1

ptl

(
5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2

)
=

5L2K3η2L
m2

m∑
l=1

1

ptl
(σ2

L + 4Kσ2
G) +

20L2K4η2L(A
2 + 1)

m2

m∑
l=1

1

ptl
∥∇f(xt)∥2 , (61)

where (a4) follows from the fact that E∥x1 + · · ·+ xn∥2 ≤ nE
(
∥x1∥2 + · · ·+ ∥xn∥2

)
, (a5) is due

to Assumption 1, and (a6) is due to Lemma D.8.

Combining the above formulations, we have:

A1 ≤ KηL
2

∥∇f̃(xt)∥2 +
ηL
2K

[
5L2K3η2L

m2

m∑
l=1

1

ptl
(σL + 4Kζ2G,i) +

20L2K4η2L(A
2 + 1)

m2

m∑
l=1

1

ptl
∥∇f(xt)∥2

]

− ηL
2K

Et∥ −
1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)∥2 . (62)
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Next we consider to bound A2:

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥−ηL
1

n

∑
i∈St

1

mpti

K−1∑
k=0

git,k

∥∥∥∥∥
2

= η2LEt

∥∥∥∥∥ 1n ∑
i∈St

K−1∑
k=0

(
1

mpti
git,k − 1

mpti
∇Fi(x

i
t,k))

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2

∑
i∈St

K−1∑
k=0

Et

∥∥∥∥ 1

mpti
git,k − 1

mpti
∇Fi(x

i
t,k)

∥∥∥∥2 + η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2

K−1∑
k=0

Et

(
E
∥∥∥∥ 1

mpti
(git,k −∇Fi(x

i
t,k)

∥∥∥∥2 | S

)
+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2

K−1∑
k=0

Et

(
m∑
l=1

1

m2ptl

∥∥git,k −∇Fi(x
i
t,k)
∥∥2)+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(a7)

≤ η2L
K

n

m∑
l=1

1

m2ptl
σ2
L + η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

, (63)

where S represents the whole sample space and (a7) is due to Assumption 2.
Now substitute the expression of A1 and A2 and take the expectation over client sampling distribution
on both sides. It should be noted that the derivation of A1 and A2 in above is based on considering
the expectation over sampling distribution:

f(xt+1) ≤ f(xt)− ηηLKEt

∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
∇f̃(xt),∆t + ηLK∇f̃(xt)

〉
+

L

2
η2Et∥∆t∥2

≤ f(xt)−KηηL

(
1

2
− 10K2η2LL

2(A2 + 1)

m2

m∑
l=1

1

ptl

)
Et

∥∥∥∇f̃(xt)
∥∥∥2 + 5L2K2η3Lη

2m2

m∑
l=1

1

ptl

(
σL + 4Kζ2G,i

)
(64)

+
Lη2Lη

2K

2n

m∑
l=1

1

m2ptl
σ2
L −

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇fi(x
i
t,k)

∥∥∥∥∥
2

(a8)

≤ f(xt)−KηηL

(
1

2
− 10K2η2LL

2(A2 + 1)

m2

m∑
l=1

1

ptl

)
Et∥∇f̃(xt)∥2 +

5L2K2η3Lη

2m2

m∑
l=1

1

ptl
(σL + 4Kζ2G,i)

(65)

+
Lη2Lη

2K

2n

m∑
l=1

1

m2ptl
σ2
L

(a9)

≤ f(xt)− cKηηLEt∥∇f̃(xt)∥2 +
5L2K2η3Lη

2m2

m∑
l=1

1

ptl
(σ2

L + 4Kζ2G,i) +
Lη2Lη

2K

2n

m∑
l=1

1

m2ptl
σ2
L ,

(66)

where (a8) follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a9) holds because there exists a con-

stant c > 0 satisfying ( 12−
10K2η2

LL2(A2+1)
m2

∑m
l=1

1
pt
l
) > c > 0 if ηL < 1√

20(A2+1)KL
√

1
m

∑m
l=1

1
mpt

l

.

Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)

(
5L2Kη2

L

2m2

m∑
l=1

1

ptl
(σ2

L + 4Kζ2G,i) +
LηLη

2n

m∑
l=1

1

m2ptl
σ2
L

)
.

(67)
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Which implies:

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (68)

where Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L + 4Kζ2G,i) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L.

D.3 SAMPLE WITHOUT REPLACEMENT

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (69)

where Φ̃ =
5L2Kη2

L

2mn

∑m
l=1

1
pt
l
(σ2

L + 4Kζ2G,i) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L.

Proof.

f̃(xt+1) ≤ f̃(xt) +
〈
∇f̃(xt),E[xt+1 − xt]

〉
+

L

2
Et[∥xt+1 − xt∥]

= f̃(xt) +
〈
∇f̃(xt),Et[η∆t + ηηLK∇f̃(xt)− ηηLK∇f̃(xt)]

〉
+

L

2
η2Et[∥∆t∥2]

= f̃(xt)− ηηLK
∥∥∥∇f̃(xt)

∥∥∥2 + η
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
︸ ︷︷ ︸

A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

.

(70)

Where the first inequality follows from Lipschitz continuous condition. Here the expectation is
over local data SGD and filtration of xt. However, in the next analysis, the expectation is over all
randomness, i.e., client sampling is included.

Similarly, we consider A1 first:

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
=

〈
∇f̃(xt),Et

[
− 1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηLK∇f̃(xt)

]〉

=

〈
∇f̃(xt),Et

[
− 1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f̃(xt)

]〉

=

〈√
KηL∇f̃(xt),

√
ηL√
K

Et

[
− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)

]〉

=
KηL
2

∥∥∥∇f̃(xt)
∥∥∥2 + ηL

2K
Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)

∥∥∥∥∥
2

− ηL
2K

Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

. (71)

Since xi are sampled from St without replacement, this causes pairs xi1, xi2 to no longer be indepen-
dent. We introduce the activation function by:

Im ≜

{
1 if x ∈ St ,

0 otherwise .
(72)
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Then we get the following bound:

Et

∥∥∥∥∥ 1n ∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)−K∇f̃(xt)

∥∥∥∥∥
2

= Et

∥∥∥∥∥ 1n
m∑
l=1

Im
1

mptl

K−1∑
k=0

∇Fl(x
l
t,k)−

1

n

m∑
l=1

Im
1

mptl

K−1∑
k=0

∇Fl(xt)

∥∥∥∥∥
2

(b1)

≤ m

n2

m∑
l=1

Et

∥∥∥∥∥Im 1

mptl

K−1∑
k=0

(
∇Fl(x

l
t,k)−∇Fl(xt)

)∥∥∥∥∥
2

− 1

n2

∑
l1 ̸=l2

Et

∥∥∥∥∥
{
Im

1

mpl1

K−1∑
k=0

(
∇Fl1(x

l1
t,k)−∇Fl1(xt)

)}
−

{
Im

1

mpl2

K−1∑
k=0

(
∇Fl2(x

l2
t,k)−∇Fl2(xt)

)}∥∥∥∥∥
2

≤ m

n2

m∑
l=1

Et

∥∥∥∥∥Im 1

mptl

K−1∑
k=0

(
∇Fl(x

l
t,k)−

1

mptl
∇Fl(xt)

)∥∥∥∥∥
2

=
m

n2

m∑
l=1

Et


∥∥∥∥∥Im 1

mptl

K−1∑
k=0

(
∇Fl(x

l
t,k)−

1

mptl
∇Fl(xt)

)∥∥∥∥∥
2

| Im = 1

× P (Im = 1) (73)

+ Et


∥∥∥∥∥Im(

1

mptl

K−1∑
k=0

∇Fl(x
l
t,k)−

1

mptl
∇Fl(xt)

∥∥∥∥∥
2

| Im = 0

× P (Im = 0))

=
m

n2

m∑
l=1

nptlE

∥∥∥∥∥ 1

mptl

K−1∑
k=0

∇Fl(x
l
t,k)−

1

mptl

K−1∑
k=0

∇Fl(xt)

∥∥∥∥∥
2

(b2)

≤ L2K

mn

K−1∑
k=0

m∑
l=1

1

ptl
E∥xl

t,k − xt∥2

(b3)

≤ L2K2

n

(
5K

η2L
m

m∑
l=1

1

ptl
(σ2

L + 4Kζ2G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2
1

m

m∑
l=1

1

ptl

)
, (74)

where (b1) follows from ∥
∑m

i=1 ti∥2 =
∑

i∈[m] ∥ti∥2 +
∑

i ̸=j⟨ti, tj⟩
c1
=
∑

i∈[m] m∥ti∥2 −
1
2

∑
i ̸=j ∥ti − tj∥2 (where (c1) is due to ⟨x, y⟩ = 1

2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
), and (b2) is due to

E∥x1 + · · ·+ xn∥2 ≤ nE
(
∥x1∥2 + · · ·+ ∥xn∥2

)
, and (b3) is from Lemma D.8.

Therefore, we have the bound of A1:

A1 ≤ KηL
2

∥∇f̃(xt)∥2 +
ηLL

2K

2n

(
5K

η2L
m

m∑
l=1

1

ptl
(σ2

L + 4Kζ2G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2
1

m

m∑
l=1

1

ptl

)

− ηL
2K

Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

. (75)
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And A2 has the following expression:

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥−ηL
1

n

∑
i∈St

1

mpti

K−1∑
k=0

git,k

∥∥∥∥∥
2

= η2LEt

∥∥∥∥∥ 1n ∑
i∈St

K−1∑
k=0

(
1

mpti
git,k − 1

mpti
∇Fi(x

i
t,k))

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥− 1

n

∑
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1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2
Et

∥∥∥∥∥
m∑
l=1

Im
K−1∑
k=0

1

mptl
(glt,k −∇Fi(x

i
t,k))

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2

m∑
l=1

Et

∥∥∥∥∥
m∑
l=1

Im
K−1∑
k=0

1

mptl
(glt,k −∇Fi(x

i
t,k))

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

= η2L
1

n2

m∑
l=1

nptlEt

∥∥∥∥∥
K−1∑
k=0

1

mptl
(glt,k −∇Fi(x

i
t,k))

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ η2L
K

n

m∑
l=1

1

m2ptl
σ2
L + η2LEt

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

. (76)

Now substitute the expression of A1 and A2 and take the expectation over client sampling distribution
on both sides. It should be noted that the derivation of A1 and A2 in above is based on considering
the expectation over sampling distribution:

f(xt+1) ≤ f(xt)− ηηLKEt

∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
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〉
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2
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Also, for (b4), step sizes need to satisfy
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and there exists a constant

c > 0 satisfying ( 12 − 10K2η2
LL2(A2+1)
mn
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1
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l
) > c > 0 if ηL < 1√
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√

1
n

∑m
l=1

1
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l

.

Rearranging and summing from t = 0, . . . , T − 1,we have:

T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ̃ . (78)

Which implies:

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
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+
1
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Φ̃ , (79)

where Φ̃ =
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E PROOF OF OPTIMAL SAMPLING PROBABILITY

E.1 SAMPLING PROBABILITY FEDIS

Corollary E.1 (Optimal sampling probability for FedIS).

min
pt
l

Φ s.t.

m∑
l=1

ptl = 1 .

Solving the above optimization problem, we give the expression of optimal sampling probability:

pti =
∥ĝti∥∑m

j=1 ∥ĝtj∥
, (80)

where ĝti =
∑K−1

k=0 gik is the gradient updates sum of multiple updates.

Recall theorem 3.1, only the last variance term in the convergence term Φ is affected by sampling. In
other words, we need to minimize the variance term with respect to probability. We formalized it as
below:

min
pt
i∈[0,1],

∑m
i=1 pt

i=1
V (

1

mpti
ĝti) ⇔ min
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1
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∥ĝti∥

2 . (81)

This problem can be solved in closed form by the KKT condition. It is easy to verify that the solution
of the above optimization is :

p∗i,t =
∥
∑K−1

k=0 git,k∥∑m
i=1 ∥

∑K−1
k=0 git,k∥

,∀i ∈ 1, 2, ...,m . (82)

Under optimal sampling probability, the variance will be:
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Therefore, the variance term is bounded by:
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Remark: If the uniform distribution is adopted pti =
1
m , it is easy to observe that the variance of the

stochastic gradient is bounded by
∑m

i=1 ∥gi∥2

m .
According to Cauchy-Schwarz inequality,∑m
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2 ≥ 1 , (85)

This implies that importance sampling does improve convergence rate, especially when
(
∑m

i=1 ∥gi∥)
2∑m

i=1 ∥gi∥2 << m.

E.2 SAMPLING PROBABILITY OF DELTA

Our result is of the following form:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+ Φ̃ , (86)

it’s easy to see that the sampling strategy only affects Φ̃, for enhancing the convergence rate, we need
to minimize Φ̃ with respect to ptl . As is shown, the expression of Φ̃ in with and without replacement
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are similar, only differ in number n and m. Here we just consider with replacement case. Specifically,
we need to solve this optimization problem:

min
pt
l
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Solving this optimization problem, we can find the optimal sampling probability to be:
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For simplicity’s sake, we rewrote the optimal sampling probability as :

p∗i,t =

√
α1ζ2G,i + α2σ2

L,i∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

, (88)

where α1 = 20K2LηL, α2 = 5KLηL + η
n .

Remark: Now we compare with the uniform sampling strategy:
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LηL
2c

∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

m

2

. (89)

For uniform pl =
1
m :
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According to Cauchy-Schwarz inequality:∑m
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implies that importance sampling does improve convergence rate (importance sampling-
based approach might be n-times faster in convergence than uniform), especially when
(
∑m

l=1

√
α1ζ2

G,l+α2σ2
L,l)

2∑m
l=1(

√
α1ζ2

G,l+α2σ2
L,l)

2 << m.

F CONVERGENCE ANALYSIS OF THE PRACTICAL ALGORITHM

For providing the convergence rate of applying the practical algorithm, we need an additional
Assumption:

Assumption 5 (Local gradient norm bound). The gradients ∇Fi(x) are uniformly upper bounded
(by a constant G > 0) ∥∇Fi(x)∥2 ≤ G2,∀i.

Assumption 5 is a general assumption in IS community to bound the gradient norm (Zhao & Zhang,
2015; Elvira & Martino, 2021; Katharopoulos & Fleuret, 2018), and it is also used in the FL
community to analyze convergence (Balakrishnan et al., 2021; Zhang et al., 2020). This assumption
tells us a useful fact that will be used later:
|∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)| ≤ U for all i and k, where subscribe s refers to the lasted partici-
pated round of client i, and U is a constant upper bound. It tells us that the client’s gradient norm
change is bounded.
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In general, the gradient norm tends to be smaller as training progresses, thus leading the
|∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)| goes to zero. Even if there are some oscillations in the gradi-
ent norm, the gradient will vary within a limited range and will not appear to be infinite.
Based on Assumption 5 and Assumption 3, we can re-derive the convergence analysis for both
convergence variance Φ (4) and Φ̃ (47). As for Assumption 3 (E∥∇Fi(x)∥2 ≤ (A2 +1)∥∇f(x)∥2 +
σ2
G), we use σG,s and σG,t instead of a unified σG for the sake of comparison.

Specifically, Φ = 1
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According to Assumption 5, we know ∥ ĝt
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Similar to the previous proof, based on Assumption 3. we can get the new convergence rate:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√

nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
KU2σ2

G,s√
nKT

)
︸ ︷︷ ︸

order of Φ

. (94)

where M = σ2
L + 4Kσ2

G,s.

Remark F.1. It is worth noting that |∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)| is usually relatively small
because the gradient tends to go to zero as training processing. It means U can be relatively

small, more specifically, U < 1 in the upper bound term O
(

KU2σ2
G,s√

nKT

)
. However, it does not mean

the practical algorithm is better than the theoretical algorithm because the σG is different, as we
stated at the beginning. Usually, σG,s of the practical algorithm is larger than σG,t, which also
comes from the fact that the gradient tends to go to zero as training processing. Besides, due to
the presence of the summation over both i and k, the gap between σG,s and σG,t is multiplied,
and σG,s/σG,t ∼ m2K2 1

U2 . Thus, the practical algorithm leads to a slower convergence than the
theoretical algorithm.

Similarly, as long as the gradient is consistently bounded, we can assume |∇Fi(xt) −
∇f(xt)|/|∇Fi(xs) − ∇f(xs)| ≤ Ũ1 ≤ Ũ and |σL,t/σL,s| ≤ Ũ2 ≤ Ũ where σ2

L,s =

E
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i
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∥∥] for all i. Then we can get a similar conclusion following the same
analysis on Φ̃.
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, where α1 and α2 are constants defined in (11).

For the sake of comparison of different participated rounds s and t, we rewrite the symbol as ζiG,s and
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(a) A = 8, b = 2, ν = 20 (b) A = 8, b = 2, ν = 30 (c) A = 8, b = 2, ν = 40

(d) A = 10, b = 1, ν = 20 (e) A = 10, b = 1, ν = 30 (f) A = 10, b = 1, ν = 40

Figure 11: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥∥y − log( (Aix−bi)
2

2
)
∥∥∥2, we report the logarithm of global loss with different degree of gradient noise ν. All

methods are well-tuned, and we report the best result of each algorithm under each setting.

Therefore, compared with the theoretical algorithm of DELTA, the practical algorithm of DELTA has
a convergence rate as follows:

mint∈[T ] E∥∇f(xt)∥2 ≤ O
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order of Φ̃

. (96)

This discussion of the effect Ũ on convergence rate is the same as U in Remark F.1.

G EXPERIMENT DETAILS.

G.1 ADDITIONAL EXPERIMENTS

Synthetic dataset We demonstrate the experiment in different functions with different A and b.
Each function is set with the noise of 20,30,40 to illustrate our theoretical results. As for constructing
different functions, we assign A = 8, 10 and b =2, 1 respectively to see the convergence behavior of
different functions.
We choose 10 out of 20 clients in each round. All the algorithms run in the same environment
with a fixed learning rate of 0.001. We train each experiment for 2000 rounds to make global loss
have a stable convergence performance. We display the log of global loss in Fig 11, where the
Power-of-Choice is a biased sampling strategy that selects clients with higher loss (Cho et al., 2020).
We also show the convergence behavior of different sampling algorithms under small noise, as shown
in Fig12.
And to be consistent with the cross-device scenario, we further expanded the number of clients from
20 to 200, keeping 10 clients selected to participate in each round. The results in Fig 13 show the
effectiveness of DELTA.

The implementation detail of different sampling algorithms The power-of-choice sampling
method is proposed by Cho et al. (2020). The sampling strategy is that it first samples 20 clients
randomly from all clients, and then chooses 10 of the 20 clients with the largest loss as selected
clients. FedAvg samples clients according to their data ratio. Thus, FedAvg promises to be unbiased,
which is given in Fraboni et al. (2021a); Li et al. (2019) to be an unbiased sampling method. As for
FedIS, the sampling strategy follows (82). And for DELTA, the sampling probability follows (11).
For practical implementation of FedIS and DELTA, the sampling probability follows the strategy we
described in Section 4.
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(a) ν = 10 (b) ν = 5 (c) ν = 1

(d) ν = 0.5 (e) ν = 0.1

Figure 12: Performance of different algorithms on the regression model with different (small) noise setting.

(a) ν = 30 (b) ν = 20 (c) ν = 10

(d) ν = 5 (e) ν = 1

Figure 13: Performance of different algorithms on synthetic data with different noise setting. Specifically, for
testing the large client number setting, each round 10 out of 200 clients are selected to participate in training.

Split FEMNIST In this section, we consider the split FEMNIST. We let 10% clients own 90% data
and the detailed split data process is shown below.

• Divide the dataset by labels, for example, divide FEMNIST into 10 groups, and assign each
client one label

• Random select one client
• Reshuffle the data in the selected client
• Equally divided into 100 clients

FEMNIST and CIFAR-10 Specifically, we train a two-layer MLP on the split-FEMNIST and
a resnet 18 on split-CIFAR-10, respectively. CIFAR10 is composed of 32x32 images with three
RGB channels of 10 different classes with 60000 samples. The "split" follows the idea introduced
in Yu et al. (2019); Hsu et al. (2019), where we leverage the Latent Dirichlet Allocation (LDA) to
control the distribution drift with the dirichlet parameter α. Larger α indicates smaller drifts. Unless
otherwise stated ,we set dirichlet parameter α = 0.5.
Unless specifically mentioned otherwise, our studies use the following protocol. All datasets are split
with parameter α = 0.5, the server choose n = 20 clients according to our proposed probability from
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Figure 14: Loss performance of= DELTA, FedIS and FedAvg on FEMNIST.

the total of m = 300 clients, and each is trained for T = 500 communication rounds with K = 5
local epoches. The default local dataset batch size is 32. The learning rates are set the same in all
algorithms, specifically lrglobal = 1 and lrlocal = 0.01.
All algorithms use FedAvg as the backbone. We compare DELTA and FedIS with FedAvg in different
datasets with different settings.

Loss performance of FEMNIST We compare the loss of DELTA, FedIS and uniform sampling
on the non-iid FEMNIST dataset in Fig 14. It shows that DELTA and FedIS converges faster than
FedAvg, while DELTA even achieves a lower loss than FedIS.
For CIFAR-10, we report the mean of the best 10 test accuracies on global test data here. In Table 2
we compare the performance of DELTA, FedIS, and FedAvg on non-IID FEMNIST and CIFAR-10.
Specifically, we use α = 0.1 for FEMNIST and α = 0.5 for CIFAR-10 to split dataset. As for
Multinomial Distribution (MD) sampling (Li et al., 2018), it samples based on clients’ data ratio
and average aggregates. It is symmetric in sampling and aggregation with FedAvg, with similar
performance. It can be seen that DELTA has better accuracy than FedIS, while DELTA and FedIS
both outperform FedAvg with the same communication round.
In Table 3, we demonstrate that DELTA and FedIS is compatible with other FL optimization algo-
rithms, e.g., Fedprox (Li et al., 2018) and FedMime (Karimireddy et al., 2020a). Moreover, DELTA
keeps its superiority in this setting.

Table 3: Performance of algorithms with momentum and prox. We run 500 communication rounds on
CIFAR10 for each algorithm. We report the mean of maximum 5 accuracies for test datasets and the number of
communication rounds to reach the threshold accuracy.

Algorithm CIFAR-10 + momentum CIFAR-10 + prox

Acc (%) Rounds for 65% Acc (%) rounds for 65%

FedAvg (w/ uniform sampling) 0.6567 390 0.6596 283
FedIS 0.6571 252 0.661 266
DELTA 0.6604 283 0.6677 252

In Table 4, we demonstrate that DELTA and FedIS is compatible with other variance reduction
algorithms, like FedVARP (Jhunjhunwala et al., 2022).
It is worth noting that FedVARP utilizes the historic update to approximate the unparticipated clients’
updates. However, in this setting, the improvement of the sampling strategy on the results is somewhat
reduced. This is because the sampling strategy is slightly redundant when all users are involved. So
when VARP and DELTA/FedIS are combined, instead of reassigning weights in the aggregation step,
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we use 82 or 11 to select the current round update clients and then average aggregate the updates of all
clients. One can see that the combination of DELTA/FedIS and VARP can still show the advantages
of sampling.

Table 4: Performance of DELTA/FedIS in combination with FedVARP. We run 500 communication rounds
on FEMNIST with α = 0.1 for each algorithm. We report the mean of maximum 5 accuracies for test datasets
and the number of communication rounds to reach the threshold accuracy.

Algorithm FEMNIST

Acc (%) Rounds for 73%

FedVARP 73.81 ± 0.18 470
FedIS + FedVARP 73.96 ± 0.14 452
DELTA +FedVARP 74.22± 0.14 436

We also experiment with different choices of heterogeneity α in CIFAR-10. The parameter of
heterogeneity α changes from 0.1 to 0.5 to 1. We observe the consistent improvement of DELTA in
Table 5.

Table 5: Performance of algorithms under different α. We run 500 communication rounds on CIFAR10
for each algorithm (with momentum). We report the mean of maximum 5 accuracies for test datasets and the
number of communication rounds to reach the threshold accuracy.

Algorithm α = 0.1 α = 0.5 α = 1.0

Acc (%) Rounds for 42% Acc (%) rounds for 65% Acc (%) rounds for 71%

FedAvg (w/ uniform sampling) 0.4209 263 0.6567 283 0.7183 246
FedIS 0.427 305 0.6571 252 0.7218 239
DELTA 0.4311 209 0.6604 283 0.7248 221

Besides, we also experiment with various client numbers to examine the efficiency of DELTA in
FEMNIST dataset. Here we set α = 1, and participated client number choose from n = 10, 30, 50.
As shown in Table 6, DELTA maintains its supremacy with different participating client numbers.

Table 6: Performance of algorithms under different participated client number n. We run 500 communica-
tion rounds on FEMNIST for each algorithm. We report the mean of maximum 5 accuracies for test datasets and
the number of communication rounds to reach the threshold accuracy.

Algorithm n = 10 n = 30 n = 50

Acc (%) Rounds for 85% Acc (%) rounds for 85% Acc (%) rounds for 85%

FedAvg (w/ ) 0.8717 263 0.8727 267 0.8729 239
FedIS 0.8739 305 0.8734 286 0.8751 222
DELTA 0.8741 209 0.8746 270 0.8747 212
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