

000 001 002 003 004 005 006 007 008 009 010 DO AI MODELS PERFORM HUMAN-LIKE ABSTRACT 001 002 003 004 005 006 007 008 009 010 REASONING ACROSS MODALITIES?

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 OpenAI’s o3-preview reasoning model exceeded human accuracy on the ARC-AGI
 012 benchmark, but does that mean state-of-the-art models recognize and reason with
 013 the abstractions that the task creators intended? In this work, we investigate the
 014 abstraction abilities of AI models using the ConceptARC benchmark. We evaluate
 015 models under settings that vary the input modality (textual vs. visual), whether
 016 the model is permitted to use external Python tools, and, for reasoning models,
 017 the amount of reasoning effort. In addition to measuring output accuracy, we
 018 perform fine-grained evaluation of the natural-language rules that models generate
 019 to explain their solutions. This dual evaluation allows us to assess whether models
 020 solve tasks using the abstractions that ConceptARC was designed to elicit, rather
 021 than relying on surface-level patterns. Our results show that, while some models
 022 using text-based task representations match human output accuracy, the best mod-
 023 els’ rules are frequently based on surface-level “shortcuts”, and capture intended
 024 abstractions substantially less often than do humans. Thus their capabilities for
 025 general abstract reasoning may be overestimated by evaluations based on accuracy
 026 alone. In the visual modality, AI models’ output accuracy drops sharply, yet our
 027 rule-level analysis reveals that models might be underestimated, as they still exhibit
 028 a substantial share of rules that capture intended abstractions, but are often unable
 029 to correctly apply these rules. In short, our results show that models still lag
 030 humans in abstract reasoning, and that using accuracy alone to evaluate abstract
 031 reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in
 032 textual modalities and underestimate it in visual modalities. We believe that our
 033 evaluation framework offers a more faithful picture of multimodal models’ abstract
 034 reasoning abilities and a more principled way to track progress toward human-like,
 035 abstraction-centered intelligence.

036 1 INTRODUCTION

037 The ability to quickly form abstractions and reason with them via analogy is central to humans’
 038 remarkable capacity to generalize knowledge to novel situations (Carey, 2011; Hofstadter, 2001;
 039 Lake et al., 2017). Many benchmarks have been designed to evaluate abstract reasoning abilities in
 040 machines (Foundalis, 2025; Hofstadter, 1995; Zhang et al., 2019). Among the most prominent such
 041 benchmarks is the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019). ARC consists of a set of
 042 idealized problems that require few-shot rule-induction and analogical reasoning. As Figure 1 shows,
 043 each puzzle (“task”) consists of a small set of *demonstrations*—initial and transformed grids—and a
 044 *test* grid, each ranging in size from 1×1 to 30×30 , with each cell having one of 10 possible colors.
 045 To solve a task, an agent should infer a rule governing the demonstrations and apply that rule to the
 046 test input to produce a correct output grid.

047 Chollet 2025 devised 1,000 such tasks, releasing 400 easier puzzles as a “training set,” 400 harder
 048 puzzles as an “evaluation set,” and keeping the remaining harder puzzles to form private test sets.
 049 Participants in the 2024 ARC-AGI Prize competition entered programs to vie for monetary prizes,
 050 including a \$600,000 grand prize for a program that exceeds 85% accuracy—that is, percentage of
 051 correct output grids—on a private test set of 100 tasks¹. The top scoring program, which employed a
 052 fine-tuned LLM and extensive data augmentation, reached about 54% accuracy (Chollet et al., 2024).

053 ¹Average human performance was measured on the comparable, but somewhat easier public evaluation set as
 64% (LeGris et al., 2024).

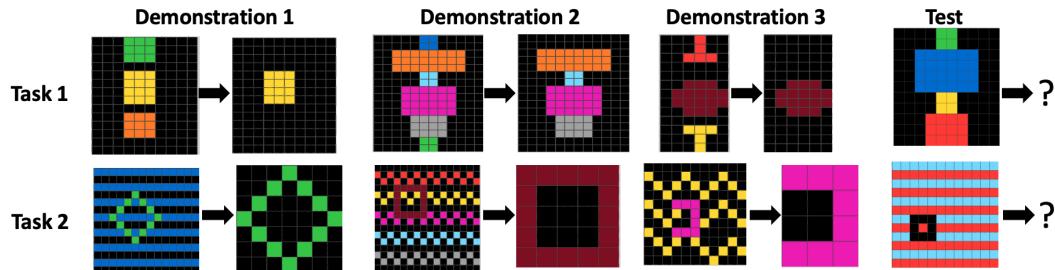


Figure 1: Each row shows a task from the ConceptARC benchmark. Each task shown consists of three demonstrations of a transformation and one test grid. In this study, the solver is tasked with generating a rule that describes the transformations and applying that rule to the test grid.

After the competition, Chollet and colleagues, with collaboration from OpenAI, tested a pre-release version of OpenAI’s o3 model on a different “semi-private” test set of 100 tasks. This model achieved 76% accuracy on its low-effort setting and 88% accuracy on its high-effort setting, with computing cost per task estimated at \$200 and \$20,000 respectively (Chollet et al., 2025). While o3-preview was not qualified to participate in the official competition,² its superior performance was described as “a genuine breakthrough, marking a qualitative shift in AI capabilities compared to the prior limitations of LLMs”(Chollet, 2024). However, despite the high accuracy of o3 on ARC tasks, it is not clear to what extent AI systems have achieved human-like abstract reasoning abilities. Consider the task illustrated in the top row of Figure 1. A human solving this task is likely to be able to generalize across different instantiations of the underlying abstract concepts—identifying and removing the top and bottom objects—no matter the size, shape, color, position, or number of objects. To our knowledge, no prior studies have assessed whether AI systems such as o3 are solving these tasks by using the intended, generalizable abstractions, or if they are inferring less generalizable rules (“shortcuts”) based on unintended correlations in task demonstrations.

Here we assess the abstractions used by several commercial and open-weight models in solving tasks from ConceptARC (Moskvichev et al., 2023), a benchmark in the ARC domain containing tasks organized around basic spatial and semantic concepts, such as “inside vs. outside,” “above vs. below,” “extend to boundary,” and “same vs. different.” For example, the tasks shown in Figure 1 are from ConceptARC’s “top vs. bottom” and “extract object” concept groups, respectively. As described in Moskvichev et al. (2023), ConceptARC was designed to test robust understanding of these concepts by providing tasks—designed to be simple for humans—that deploy each concept in varying contexts and require varying degrees of generalization. Because it isolates simple abstract concepts, we believe this benchmark to be better suited than the original ARC dataset for investigating the concepts used by humans or machines in solving tasks. Although there is likely a big overlap in concepts used in both datasets, ARC frequently employs compositional reasoning, which would make it necessary to disentangle different types of intended abstractions, complicating the evaluation process. A similar evaluation on the original ARC dataset is an interesting avenue for follow-up work.

Previous evaluations using the o3 model (as well as all entries in the 2024 ARC-AGI Prize competition) relied on text-based representations of the demonstration and test grids to solve each ARC task. Each grid is represented as an integer matrix, with entries encoding colors indexed from 0 to 9. However, o3 and related models are reported to possess sophisticated reasoning abilities in both textual and visual modalities (OpenAI, 2025). In our experiments, we investigate the models’ abstract reasoning abilities in both modalities. We also examine how reasoning effort (the token budget allocated for the reasoning stage) and access to external “tools” (here, the ability to generate and execute Python code) affect a model’s ability to discover abstract rules and solve tasks.

In the following sections, we describe our experimental setup and results, and discuss how our findings relate to three central questions: (1) How does the accuracy achieved by AI models on ConceptARC tasks compare to that of humans? (2) To what extent do the rules generated by AI

²OpenAI’s o3 model violated two key competition rules: it could not be run locally on the competition server and its processing required substantially more than the required time limit.

108 models and by humans capture the abstractions intended by the test designers, and to what extent do
 109 they rely on unintended, superficial patterns? (3) How do modality (textual vs. visual), reasoning
 110 effort (token budget), and Python tool access affect how well models can solve these tasks via the
 111 intended abstractions?

112

113

2 METHODOLOGY

114

Dataset and Experiments To create ConceptARC, Moskvichev et al. 2023 chose 16 basic spatial and semantic concepts, and for each concept created 30 tasks that focused on that concept in different instantiations, with different degrees of abstraction, for a total of 480 tasks. Unlike the original ARC corpus, all ConceptARC tasks were designed to be relatively easy for humans, since each relies on a simple abstract concept and a straightforward application of that concept to a novel test grid.

115

We evaluated four proprietary multimodal “reasoning” models on the ConceptARC tasks: OpenAI’s o3 and o4-mini, Google’s Gemini 2.5 Pro, and Anthropic’s Claude Sonnet 4. For comparison, we also evaluated three non-reasoning multimodal models: OpenAI’s GPT-4o, Meta’s Llama 4 Scout, and Alibaba’s Qwen 2.5 VL 72B. To maximize reproducibility, non-reasoning models were run with temperature 0. Because the o3, o4-mini, and Claude Sonnet 4 APIs restrict temperature to 1.0, we used temperature 1.0 for all four reasoning models to maintain comparability. For experiments using the textual modality, we used the same prompt as in Chollet et al.’s 2024 evaluation of o3-preview. For experiments using the visual modality, we used a slightly modified version of this prompt. These prompts are given in full in Appendix A and Appendix B.

116

For both modalities, models were asked to generate a JSON object containing the transformation rule and the corresponding output grid, represented as a matrix of integers. This setup enables two-fold evaluation: (i) grid output accuracy and (ii) the degree to which model-generated rules capture the tasks’ intended abstractions. We evaluated human-generated solutions to these tasks using the same criteria, analyzing unpublished data³ obtained from the study reported by Moskvichev et al. 2023 in which humans (participants on the Prolific Academic platform) were presented with ConceptARC tasks as images and asked to produce both the correct output grids and the rules they used to generate them. For each model setting, each task was given in an independent prompt, with the context window reset (cleared) before a new task was given. Due to resource constraints, we report pass@1 results for both AI models and humans.⁴

117

We evaluated o3 under its low- and medium-effort reasoning settings.⁵ We evaluated Gemini 2.5 Pro and Claude Sonnet 4 with a reasoning budget of 16,000 tokens, which roughly approximates OpenAI’s medium-effort setting. Additionally, for reasoning models we evaluated two tool-access conditions: one in which Python tools were enabled and one in which they were not.

118

Evaluating Responses of Humans and AI Models Evaluating output-grid accuracy in human and model responses is straightforward, since each task’s ground-truth solution is given in the ConceptARC corpus. For each task, humans were given the demonstrations and test grid images and were asked to generate the output grid using a custom editing tool, and models were asked to generate the output grid as a matrix with colors encoded as integers. The resulting grids can be compared automatically with the ground truth; only exact matches are considered correct.

119

While output-grid accuracy has been widely used to assess AI model performance on ARC tasks, to our knowledge, no prior studies have investigated whether output-grid correctness on ARC tasks reflects a grasp of the intended abstract concepts underlying the tasks, or alternatively, the extent to which correctness can be achieved by identifying and exploiting unintended, superficial patterns (“shortcuts”). It is well known that large neural-network models are capable of discovering “spurious” patterns in data and using these patterns to arrive at correct answers (Du et al., 2023; Geirhos et al., 2020). To investigate the extent to which AI models are using human-like abstractions to solve tasks, in our experiments we asked the models to output not only the transformed test grid but also a

120

³ A. Moskvichev, personal correspondence

121

⁴The ARC Prize competition reported pass@2 results, that is, two independent runs on each task. If one of the runs produces a correct output grid, the task is counted as correctly solved. Moskvichev et al. 2023 reported pass@3 results for both humans and the GPT models they tested.

122

⁵OpenAI does not specify the token budget allocated to these settings. Due to resource constraints, we did not test the high-effort setting.

162 natural-language rule describing the transformation. Moskvichev et al. 2023 similarly collected such
 163 rules from their human participants, though only for correctly solved tasks.

164 Evaluating correctness of natural-language rules still requires human judgment. Accordingly, we
 165 manually annotated both model- and human-generated rules on their quality, distinguishing between
 166 “incorrect” (rules that do not work on the demonstrations, as well as rare cases where the model did
 167 not return a rule), “correct-unintended” (rules that work on the demonstrations and potentially on test
 168 grids, but do not capture the intended abstractions), and “correct-intended” (rules that align with the
 169 intended abstractions). For example, in the first task shown in Figure 1, a sample human-generated
 170 rule is “You will see a number of shapes in a vertical orientation. Copy the grid from the example
 171 then remove the topmost and bottom-most shapes. The middle shapes remain unchanged.” We
 172 rated this rule as correct-intended. o3’s generated rule, from our experiment with textual inputs and
 173 medium reasoning effort, was “remove any object that intersects either the topmost or bottommost
 174 non-empty row, replacing it with zeros,” which we also rated as correct-intended. o3’s generated rule
 175 in our experiment with visual input and medium reasoning effort was “Delete the highest and lowest
 176 coloured components in the grid (the first and last contiguous non-black groups when scanning from
 177 top to bottom); keep the rest unchanged.” Also correct-intended, even though the output grid was
 178 incorrect in this case.

179 In the second task in Figure 1, a sample human-generated rule is “Take the shape that is imposed onto
 180 the background pattern and simply use that shape as the solution.” We rated this as correct-intended.
 181 o3 with textual input and medium effort generated the rule “Find the single colour absent from
 182 both the first row and the first column. Crop the minimal rectangle that contains all occurrences of
 183 this colour, keep that colour and set everything else inside the crop to 0.” We rated this as correct-
 184 unintended, since it correctly described the three demonstrations, but ignored the intended abstraction
 185 of extracting an object. In fact, we noticed that, given the textual representation of a task, o3 most
 186 often phrased its rules in terms of colors or individual pixels rather than objects. o3 with visual input
 187 and medium effort generated the rule “Crop the minimal bounding box around the unique 1-cell-thick
 188 closed loop. Leave the loop’s colour unchanged and recolour every other cell in the crop with the
 189 most frequent colour of the original grid,” which we rated as “incorrect”. It is important to clarify that
 190 we do not inherently consider “correct-unintended” rules to be incorrect; “correct-unintended” simply
 191 refers to mismatch between the generated rule and the one intended by the task designer, which is
 192 based on humanlike “core knowledge” concepts Chollet (2019). We focus on distinguishing such
 193 patterns, in order to give a more meaningful estimation of human-like abstraction.

194 While it is not certain that the natural-language rule a model generates for a given task is a faithful
 195 description of how it solved that task, we manually analyzed the alignment between the generated
 196 rule and output grid for tasks in several experimental settings, and found that in over 90% of the cases
 197 the output grid (correct or not) was faithful to the model’s rule, providing evidence that that these
 198 rules are good proxies for the reasoning process of the model. More details are given in the next
 199 section.

200 3 RESULTS

201 **Output Grid Accuracy** Table 1 and Table 5 (in the Appendix) give the pass@1 output-grid
 202 accuracies of the reasoning models and non-reasoning models we evaluated in both textual and visual
 203 modalities.⁶ In all cases, non-reasoning models attain much lower accuracy than reasoning models, so
 204 here we focus our analysis on the reasoning models. For all models, we see a dramatic performance
 205 gap between the textual and visual settings. Further, especially for o3 and o4-mini, and to a lesser
 206 extent for Claude and Gemini, we observe a jump in visual accuracy when Python tools are enabled.
 207 In contrast, allowing Python tools does not have a similar effect in the textual setting for three of
 208 the models, with o4-mini being the only exception. For o3 and o4-mini, increased reasoning effort
 209 is associated with increased accuracy in the textual modality, with or without tools; in the visual
 210 modality, we observe that the models primarily use the increased reasoning budget to execute more
 211 Python code, which may explain the substantial improvement in medium effort + tools.

212
 213
 214 ⁶Following the ARC-Prize evaluation ARC-Prize (2024), we counted an output grid as correct only if it
 215 perfectly matched the ground truth and the requested format. For a more detailed analysis of format deviations
 see Appendix I.

216
 217 **Table 1: Reasoning models:** Output-grid accuracy (pass@1) for Concept-ARC across models and
 218 experimental settings. Accuracy is shown in %. Each cell shows *textual / visual* accuracy. For o3 and
 219 o4-mini, we use the “low” and “medium” effort settings in the OpenAI API. For Claude and Gemini,
 220 we use a 16K reasoning token budget to approximate o3’s medium effort setting. Temperature is set
 221 to 1 for all models. Bold numbers correspond to the highest visual and textual scores in each column.

Reasoning model	low effort	medium effort	low effort + tools	medium effort + tools
	Textual / Visual	Textual / Visual	Textual / Visual	Textual / Visual
o3	68.3 / 6.7	77.1 / 5.6	67.9 / 18.1	75.6 / 29.2
o4-mini	52.1 / 3.8	70.8 / 8.1	57.3 / 6.7	77.7 / 25.0
Claude Sonnet 4	N/A	60.2 / 5.2	N/A	55.0 / 6.9
Gemini 2.5 Pro	N/A	66.0 / 4.2	N/A	60.4 / 5.8

234 Inspecting the failure cases of the visual setting more closely, we find that models struggle to recognize
 235 the correct grid size from the image inputs. When Python tools are enabled, the models use computer
 236 vision libraries to partially compensate for this difficulty. In both textual and visual modalities,
 237 the majority of incorrect output grids are due to a simple mismatch between the generated and
 238 ground-truth grids, but—particularly in the visual setting—there is a small share of invalid outputs,
 239 either due to uneven row lengths or non-integer tokens in the grid. Figure 6 gives an error-type
 240 distribution for o3.

241 Using unpublished data from Moskvichev et al.’s 2023 study, we found that human-generated output
 242 grids achieved an overall pass@1 accuracy of **73%** on the 480 ConceptARC tasks, lower than that of
 243 the top reasoning models in the textual modality. (We provide per-concept accuracies in Appendix F.)

244 **Rule Evaluation** Our team manually evaluated the rules generated by o3 in all settings and by
 245 Claude Sonnet 4 and Gemini 2.5 Pro in the medium-effort + tools setting, for both textual and visual
 246 modalities. We also evaluated the pass@1 rules generated by humans, using data from the study by
 247 Moskvichev et al. (2023). For each rule (human or machine-generated), an initial classification was
 248 assigned by one member of our team, and reviewed by a second member. For each rule for which
 249 there was disagreement or uncertainty about its classification, our team discussed the rule together
 250 until we came to a consensus. Due to low accuracy of other settings and resource limitations of our
 251 team, we did not evaluate rules from other models or experimental settings. While we were unable to
 252 evaluate all models or experimental settings, the selected evaluations focus on the most relevant and
 253 high-signal conditions. As a result, they provide substantive insight into how different models and
 254 human participants understand the intended abstractions of ConceptARC tasks.

255 Figure 2 shows the results of our rule evaluations on o3, Claude, and Gemini, all using medium-effort
 256 + tools, in both textual and visual modalities, as well as evaluations for human-generated rules.
 257 Specifically, there are two bars for each model: Correct Grid and Incorrect Grid. The height of each
 258 bar corresponds to the percentage of the 480 tasks on which the model’s output grid was correct or
 259 incorrect. Within each bar, the green section corresponds to tasks for which the model’s generated
 260 rule was correct-intended; the yellow section corresponds to correct-unintended rules; and the red
 261 section corresponds to incorrect rules. The left section of the plot gives these results for the textual
 262 modality and the middle section for the visual modality. The rightmost section gives the output
 263 accuracy and rule evaluation results for human-generated rules. The gray areas in the human-result
 264 bars correspond to human-generated solutions for which we were unable to classify the rule, either
 265 because no rule was given by the participant, no rule was collected by the experimenters (this was the
 266 case for all of the Incorrect tasks), or the rule given was too unclear to confidently evaluate.

267 Notably, while o3 in the textual setting rivals humans in output grid accuracy, about 28% of its correct
 268 outputs are based on correct-unintended or incorrect rules—indicating reasoning based on superficial
 269 patterns rather than intended abstract concepts. We found several types of unintended rules used by
 models, including rules that described complicated (and spurious) patterns in the demonstrations,

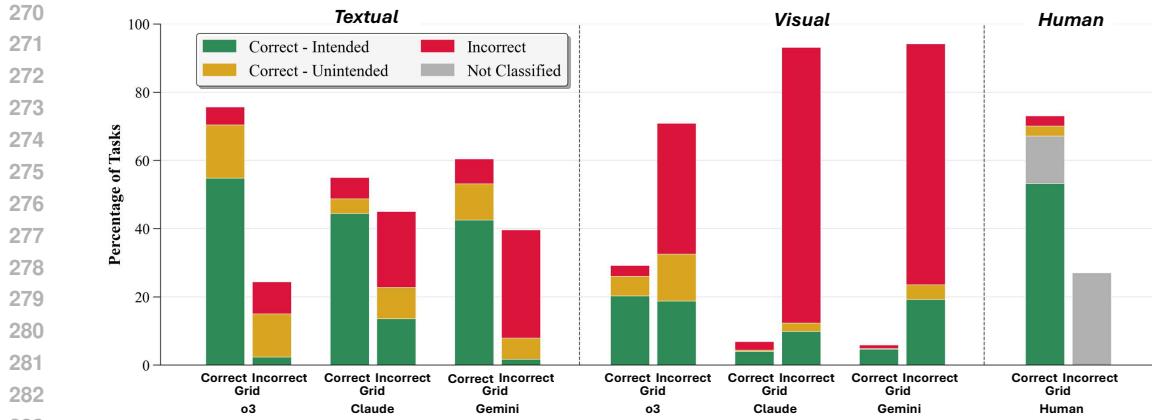


Figure 2: Results of rule evaluations. For each model in each modality (as well as humans), two bars are given, representing the percentage of correct and incorrect grid outputs over the 480 ConceptARC tasks. Each bar shows the fraction of tasks for which the rule is correct-intended, correct-unintended, and incorrect. The gray areas in the human-result bars represent rules that we could not classify—see the section on Rule Evaluation for details. The actual percentages corresponding to regions on the bars are given in Appendix D.

rules that focused on irrelevant features such as (in the textual setting) the specific numbers encoding grid colors, and rules that came close to capturing intended abstractions but included irrelevant spurious associations. Examples of such rules are given in Figure 4. In comparison, we found that only 8% of human’s correct outputs were similarly based on correct-unintended or incorrect rules. While our analysis for human-generated rules is limited due to missing rule data (about 20% of rules for correct outputs were not classifiable), this difference is suggestive and should be clarified in future research. Comparing AI models with one another, in cases where Claude and Gemini were accurate on output, both have a smaller fraction of correct-unintended rules than o3, but both are lower than o3 in output accuracy.

Also notable is the percentage of incorrect output grids that are based on correct-intended rules. In these cases, the models recognized the intended abstract rule describing the grid transformation, but were unable to apply it correctly to the test grid. In the textual setting, this seems to be most common in Claude, and less so in Gemini and o3. In the visual setting, however, o3 produced correct-intended rules in about 27% of cases in which its output grid was incorrect; Claude and Gemini did so less frequently, but both still at substantial rates. In summary, looking only at a model’s output accuracy in the textual setting—as was done in (Chollet, 2024)—might *overestimate* the model’s ability for abstract reasoning, but in the visual domain, accuracy alone might *underestimate* its abstract reasoning abilities. This hints at a direction for improvement in the visual modality across models: models with the capacity to apply the determined rule correctly would be able to substantially improve their output accuracy. These insights illustrate the importance of going beyond simple accuracy in assessing the capabilities of AI models.

While Figure 2 showed our rule evaluations for different models using medium reasoning effort + tools, Figure 3 shows the effects of varying reasoning effort and tool use for the o3 model, in both textual and visual modalities. There are a few important observations to make. First, in the visual setting, increasing reasoning effort from low to medium alone does not have any substantial effect on output accuracy or rule correctness, which aligns with prior work suggesting that test-time scaling does not have the dramatic effects in visual modalities that have been seen in text-only LLMs (Hao et al., 2025). However, enabling Python tool use does result in substantial improvement in output accuracy and rule correctness, especially at medium reasoning effort, likely because the model is able to use computer vision libraries. In contrast, in the textual setting, increasing reasoning effort has a larger positive effect on both output accuracy and rule correctness than enabling Python tool use.

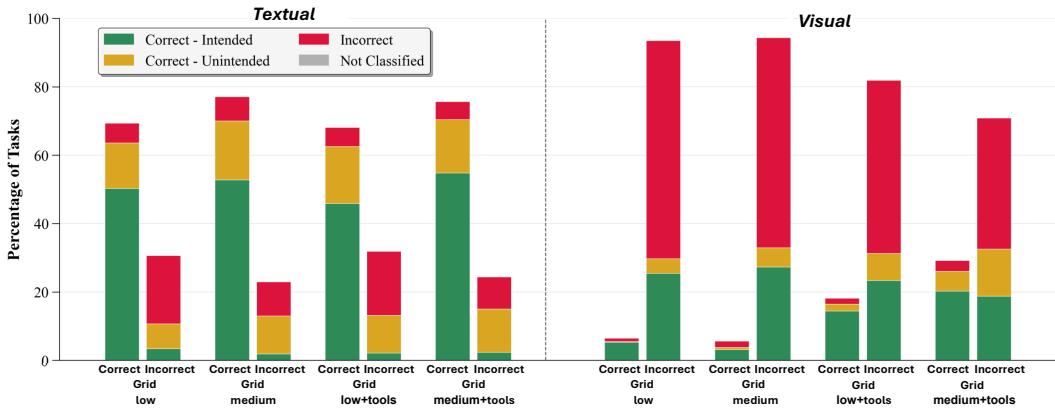


Figure 3: Results of rule evaluations for o3 across all settings. As in Figure 2, two bars showing the percentage of correct and incorrect output grids are included for each setting, with each bar showing the fraction of tasks for which the generated rule is correct-intended, correct-unintended, and incorrect. The actual percentages corresponding to regions on the bars are given in Appendix D.

Rule-Grid Alignment In investigating how accurately the natural-language rules reflect the models’ underlying reasoning, our team manually evaluated the solutions generated by o3, Claude Sonnet 4, and Gemini 2.5 Pro in the medium-effort + tools setting for two additional features: rule–grid alignment and visual errors. Rule–grid alignment describes cases where the model’s stated rule accurately captures the transformation demonstrated in its output grid. Visual errors refers to cases in visual settings where a grid’s incorrectness or inconsistency with its corresponding rule appears to stem from a failure in the model’s perceptual apparatus, rather than from a mismatch between its generated rule and its underlying reasoning. Such errors commonly involved failures to recognize the exact grid dimensions, slight inaccuracies in object placement, or incorrect mappings between colors and their numerical encodings.

To perform these evaluations, one team member provided an initial judgment for each task, after which any uncertain cases were discussed as a group until consensus was reached. The results of these evaluations are presented in Table 2. There are two important observations to make from these results. First, the natural-language rules aligned with their corresponding grids in the vast majority of cases; across all evaluated models and settings, agreement exceeded 90% of tasks. This supports the view that the proposed rules generally reflect the reasoning used to produce the grid solutions. Second, the relatively high rate of visual errors corroborates our earlier observations of failure modes in visual settings. Even the best-performing model and setting exhibited a visual error rate approaching 50%, despite maintaining a high degree of rule–grid alignment. This suggests that the low grid accuracies observed in visual settings may be driven in large part by perceptual limitations, rather than solely by differences in reasoning capacity between visual and textual modalities.

Table 2: Percentage of tasks in which different models exhibited either “rule–grid alignment”—the generated rule accurately described the generated output grid—or, in visual settings, a “visual error,” where an output appeared to feature some type of perceptual mistake. The “medium effort with tools” setting was used for all models. Percentages are calculated over the tasks in each modality for which the model produced both a valid natural-language rule and a valid output grid.

Model (medium effort + tools)	Textual		Visual	
	Rule-Grid Alignment	Rule-Grid Alignment	Visual Error	
o3	98.3	97.3	49.7	
Claude Sonnet 4	91.0	96.1	60.8	
Gemini 2.5 Pro	94.7	93.3	78.7	

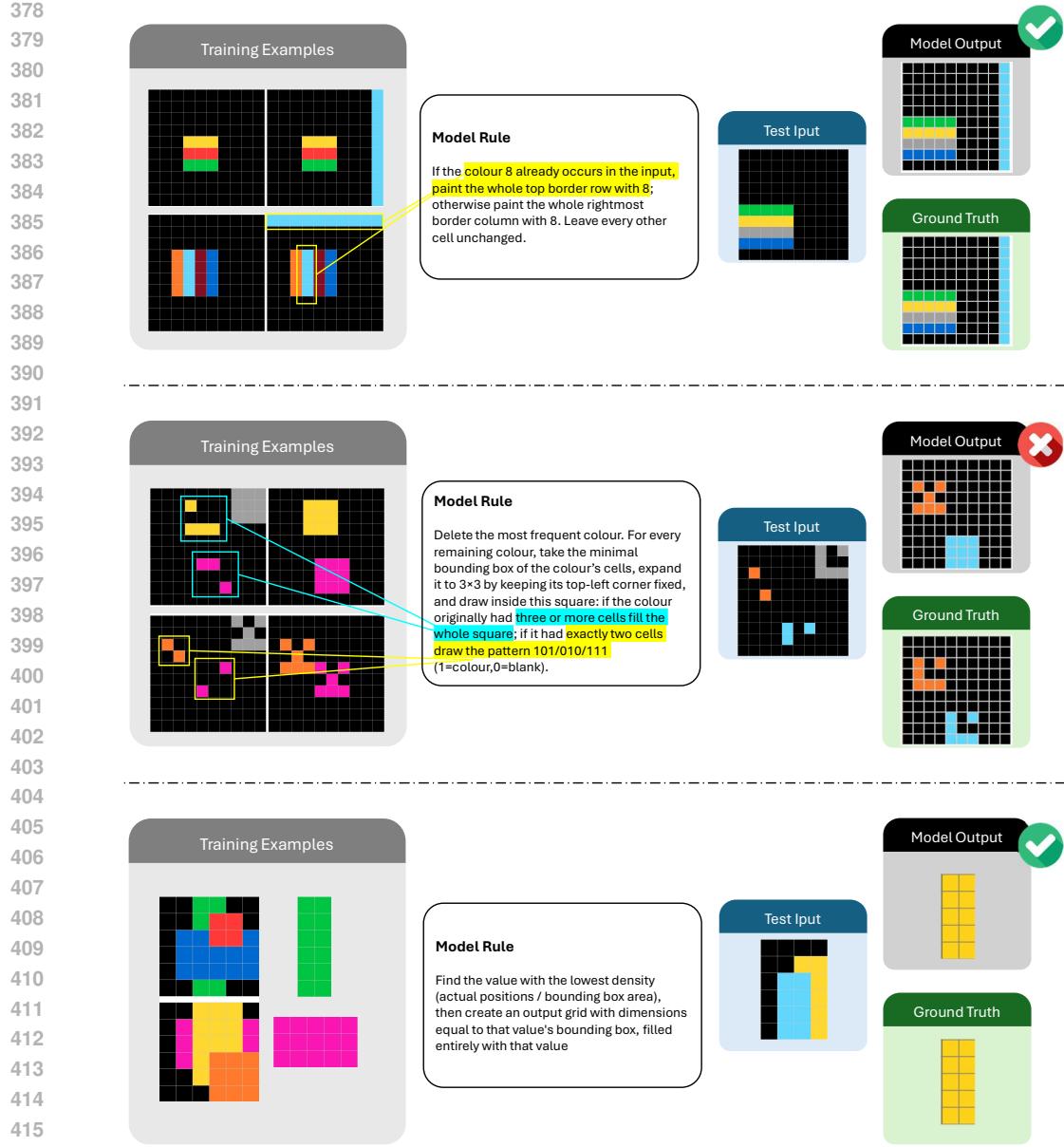


Figure 4: Examples of correct-unintended rules. Top: o3, using medium effort and tools, performs shallow inference for a task from the Horizontal vs. Vertical concept group. The model does not recognize the relation between the orientation of the colored shape components and the blue row, but rather focuses on whether a blue ("8") pixel appears in the grid. In this case, the correct-intended rule works for the given test case, but does not work for other test variants. Middle: o3, using medium effort and tools, on a task from the Complete Shape concept group. The model does not recognize the relation between the colored output shape and the gray prototype and instead overfits to the training examples, producing a correct-intended rule based on shallow features. Bottom: Claude Sonnet 4 uses a density heuristic to approximate the most overlapped figure on a task from the Top vs. bottom 3D group. While this works for some of the test examples, it does not capture the notion of the bottommost shape in a 3D stack, and there are several possible scenarios for which this approach fails.

4 DISCUSSION

Given the results described above, we can now provide preliminary answers to the questions we listed at the beginning of this paper. (1) How does the accuracy obtained by AI models compare

432 with that of humans? Table 1 shows that for textual inputs, o3, with medium reasoning effort,
 433 matches or surpasses human accuracy on ConceptARC tasks, with Claude and Gemini obtaining
 434 lower accuracy, and o4-mini surpassing humans only when Python tools are enabled. This aligns
 435 with results reported in (Chollet et al., 2025; ARC-Prize, 2025).⁷ However, using the visual modality,
 436 the models’ performance still lags significantly behind human accuracy, even when models are given
 437 access to Python tools. (2) To what extent do the rules generated by AI models capture the abstractions
 438 that were intended by ConceptARC’s creators, versus more superficial shortcuts? Figure 2 shows
 439 that for textual inputs and medium reasoning effort with Python tools, about 57% of o3’s generated
 440 rules (regardless of output accuracy) were *correct and intended*; that is, they captured the intended
 441 abstractions of the tasks. However, about 28% of o3’s generated rules were *correct but unintended*,
 442 meaning they were correct with respect to the given demonstrations, and frequently generated correct
 443 output grids, but did not capture the intended abstractions. ConceptARC, like ARC, is built on “core
 444 knowledge” priors, including “objectness” Chollet (2019), but we found that, for example, o3’s rules
 445 often focused on colors and individual pixels rather than objects. Moreover, using integers to encode
 446 colors enabled unintended shortcuts such as relying on numerical values (e.g., the value for green,
 447 3, is greater than the value for red, 2) which were not available in visual modalities. Both Claude
 448 and Gemini’s shares of correct-unintended rules (14% and 17% respectively) were lower than o3’s,
 449 but more than twice the percentage of correct-unintended rules produced by humans (3%). Thus
 450 AI models seem more likely to miss intended abstractions and to solve tasks using more superficial
 451 features than humans. (3) Regarding the effects of textual vs. visual modalities, Table 1 and Figure 2
 452 show that both output-grid and rule correctness drop dramatically in the visual mode. In addition, we
 453 observe that in this mode all three models are considerably better at forming correct-intended rules
 454 than generating correct output grids. As for the effects of reasoning effort and Python tools, Table 1
 455 and Figure 3 show that the former is more helpful for textual inputs and the latter is more helpful
 456 for visual inputs, especially at higher reasoning effort. These results point to possible directions for
 457 strengthening visual reasoning models, especially in more abstract domains.
 458

459 In short, our results show that models still lag humans in abstract reasoning. Using accuracy alone
 460 to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities
 461 in textual modalities and underestimate it in visual modalities. In evaluating capabilities such as
 462 abstract reasoning, our results highlight the importance of going beyond simple accuracy, namely
 463 assessing both robustness and the extent to which a system uses generalizable mechanisms rather
 464 than more superficial shortcuts (Frank, 2023; Ivanova, 2025; Rane et al., 2025). In order to target
 465 these abilities in a meaningful way, we encourage designers of benchmarks and evaluation methods
 466 to take the underlying abstractions, as well as derived rules into consideration, in addition to pure
 467 output correctness. More generally, developing AI models that grasp the abstractions understood
 468 by humans will be essential for these systems to generalize in human-like ways and explain their
 469 reasoning in ways understandable to humans—both key abilities for successful human-AI interaction.
 470 Our insights further suggest that models do not reliably adopt human priors via training on language
 471 and general reasoning. We plan to investigate whether a sole focus on verifying final results does not
 472 yield intended abstractions, and whether this issue might be helped by process-based reward models
 473 or a more direct inclusion of human-generated reasoning traces. An interesting direction for future
 474 research will be to extend our studies to tasks that require more compositional reasoning, such as
 475 those in ARC-AGI-2 Chollet et al. (2025).
 476

5 RELATED WORK

477 Several benchmark datasets have been used to evaluate abstract and visual reasoning abilities in
 478 LLMs and large reasoning models. Among the ones closest to ARC and ConceptARC are Bongard
 479 problems Bongard (1970), letter-string analogies Hofstadter (1985), Raven’s progressive matrices
 480 (RPMs) Raven (1938), and compositional visual reasoning (CVR) Zerroug et al. (2022). Bongard
 481 problems are similar to ConceptARC tasks in that they test understanding of core spatial and semantic
 482 concepts, such as “large vs. small” and “inside vs. outside”. Like ConceptARC tasks, each Bongard
 483 problem is designed to focus on a single such concept. Bongard problems are meant to be solved
 484 using visual inputs, and there have been several studies in which multimodal models have been
 485 tested on subsets or variations of the original problems; these studies have found that, like our results

⁷(Kamradt, 2025) noted the large discrepancy between the accuracy of o3-preview (the pre-release version) and the released version of o3 on ARC-AGI-1. The reasons for this discrepancy are not known.

486 with ConceptARC, the poor performance of VLMs on these problems seem to arise primarily from
 487 difficulties with vision rather than with reasoning Małkiński et al. (2024); Pawlonka et al. (2025);
 488 Wüst et al. (2024). Letter-string analogies were first proposed by Hofstadter 1985 as an idealized
 489 domain for analogy-making. Webb et al. 2023 found that GPT-3 reached human level accuracy ‘on
 490 letter-string analogies, but other studies (testing both GPT-3 and GPT-4) found that LLMs were not
 491 robust to variations of the problems that did not affect humans’ performance Hodel & West (2023);
 492 Lewis & Mitchell (2025). To our knowledge, no studies have been performed using large reasoning
 493 models to solve letter-string analogy problems. Raven’s progressive matrices (RPMs) have long
 494 been used as tests of human fluid intelligence. RPMs, like Bongard problems, require visual inputs.
 495 RAVEN, a dataset consisting of programmatically generated, simplified RPMs Zhang et al. (2019)
 496 has been used to evaluate visual reasoning in VLMs (e.g., Zhang et al. (2024); Zhu et al. (2025)),
 497 which (as in the case of Bongard problems and ConceptARC) seem to struggle more with perceptual
 498 understanding than reasoning. Zerroug et al. 2022 proposed the CVR visual reasoning benchmark,
 499 which is meant to test compositional reasoning abilities based on concepts similar to those used in
 500 ConceptARC, such as “largest,” “inside,” “counting,” and “contact.” They evaluated accuracy on
 501 CVR tasks of several convolutional neural networks as well as visual transformers, none of which
 502 came close to the abilities of humans when given few training examples. To our knowledge, ours is
 503 the only study that evaluates not only the accuracy of models on an abstract reasoning benchmark but
 504 also the degree to which the models capture the abstractions intended by the benchmark’s designers.
 505

506 6 CONCLUSIONS

507 The contributions of this work are threefold. (1) We demonstrated the effects of task representation
 508 (textual or visual), reasoning effort, and Python tool use on the ConceptARC benchmark for abstract
 509 reasoning, finding that in textual modalities with medium reasoning effort, the best AI models
 510 match or surpass humans in output accuracy. (2) We evaluated not only accuracy, but also the
 511 rules that AI models generated to describe their solutions, and found that while they were able to
 512 capture intended abstractions in about half the cases in textual settings, in other cases their rules
 513 relied on more superficial features or patterns that are less generalizable. These results suggest that
 514 relying on accuracy alone to evaluate abstract reasoning capabilities, as was done in the ARC-Prize
 515 challenge, may overestimate the generality of these capabilities. (3) We showed that state-of-the-art
 516 multimodal reasoning models still lack human-like visual reasoning abilities, performing dramatically
 517 worse in the visual than in the textual modality. However, these models were substantially better at
 518 generating correct rules than they were at applying them, which points to directions for improving
 519 visual reasoning in such systems. Improving the abstraction capabilities of AI models is an essential
 520 direction for future research. Recognizing and using human-like abstract concepts is a crucial step for
 521 AI systems to become more generalizable and trustworthy in their reasoning, and also to successfully
 522 communicate with humans about their reasoning processes.

523 7 LIMITATIONS

524 The work we reported here has a number of limitations. Our study involves only the ConceptARC
 525 dataset. It is possible that tasks in the original ARC test sets are more resistant to the kinds of rule
 526 “shortcuts” seen in our results; however, to our knowledge, there has been no prior research on this
 527 topic. Due to resource limitations, we did not experiment with the “high-effort” reasoning setting for
 528 o3 or larger reasoning-token budgets for Claude and Gemini—these settings could very well produce
 529 significantly more correct-intended rules and higher accuracies. In addition, our classification of
 530 human- and machine-generated rules was done manually, and involved some subjectivity; we do
 531 not know of any objective or algorithmic means to usefully classify these natural-language rules
 532 into our various categories. However, to mitigate individual subjectivity, our team discussed and
 533 came to consensus on all potentially ambiguous classifications. Also due to resource limitations,
 534 we used pass@1 accuracies for both humans and machines, which differs from the pass@2 and
 535 pass@3 accuracies reported in other ARC evaluations. Additionally, we used the same prompt as
 536 in the ARC-Prize evaluation of o3 (Chollet, 2024) for the textual setting, and a slightly modified
 537 version for the visual setting. It may be that other prompts would elicit better performance for these
 538 systems. The data we obtained for human-generated rules was not complete—no rules were collected
 539 for incorrect outputs, and even for the correct outputs, in some cases the human-generated rules were
 not classifiable due to reasons described earlier in the paper.

540 ETHICS STATEMENT

541
 542 This paper uses data from a set of human studies described in Moskvichev et al. (2023). The authors
 543 of that study obtained an IRB exemption from the University of New Mexico IRB to perform their
 544 study. The data we obtained contained no identifying or other private information about the study
 545 participants. We did not identify any other ethics issues with the studies reported here.

546
 547 REPRODUCIBILITY STATEMENT

548 Upon publication we will publish a web page for this paper with all data and code. The ConceptARC
 549 dataset is already publicly available at the website <https://github.com/victorvikram/ConceptARC>. The only reasons our results may not be fully reproducible are the non-deterministic
 550 nature of the AI models we evaluated, especially due to the fact that our reasoning models were
 551 restricted to Temperature 1, and the unpredictability of model releases and deprecations by the
 552 companies that created the proprietary models we used. In addition to derived rules and output grids,
 553 we collected all reasoning traces by different grids, either directly, or with the most detailed summary
 554 setting (OpenAI does not provide reasoning tokens directly). Further, we collected all Python calls by
 555 the models, which we interleaved with reasoning data in chronological order, to ensure that model
 556 outputs are fully documented.

557 REFERENCES

558
 559
 560
 561 ARC-Prize. ARC-AGI benchmarking, 2024. <https://github.com/arcprize/arc-agi-benchmarking>.

562
 563 ARC-Prize. ARC-AGI leaderboard, 2025. <https://arcprize.org/leaderboard>.

564
 565 M. M. Bongard. *Pattern Recognition*. Spartan Books, 1970.

566
 567 Susan Carey. *The Origin of Concepts*. MIT Press, Cambridge, MA, 2011.

568 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.

569
 570 François Chollet. OpenAI o3 Breakthrough High Score on ARC-AGI-Pub, 2024. <https://arcprize.org/blog/oai-o3-pub-breakthrough>.

571
 572 François Chollet. The Abstraction and Reasoning Corpus (ARC), 2025. <https://github.com/fchollet/ARC>.

573
 574 François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC Prize 2024: Technical
 575 Report. *arXiv preprint arXiv:2412.04604*, 2024.

576
 577 François Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. ARC-AGI-2:
 578 A new challenge for frontier AI reasoning systems. *arXiv preprint arXiv:2505.11831*, 2025.

579
 580 Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large language
 581 models in natural language understanding. *Communications of the ACM*, 67(1):110–120, 2023.

582
 583 Harry E. Foundalis. Index of Bongard Problems, 2025. <http://www.foundalis.com/res/bps/bpidx.htm>.

584
 585 Michael C. Frank. Baby steps in evaluating the capacities of large language models. *Nature Reviews
 Psychology*, 2(8):451–452, 2023.

586
 587 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
 588 Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. *Nature Machine
 Intelligence*, 2(11):665–673, 2020.

589
 590 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
 591 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
 592 benchmark. *Proceedings of the International Conference on Machine Learning, ICML 2025*, 2025.

594 Damian Hodel and Jevin West. Response: Emergent analogical reasoning in large language models.
 595 *arXiv preprint arXiv:2308.16118*, 2023.
 596

597 Douglas R. Hofstadter. *Metamagical Themes: Questing for the Essence of Mind and Pattern*,
 598 chapter 24. Basic Books, New York, NY, 1985.

599 Douglas R. Hofstadter. *Fluid Concepts and Creative Analogies: Computer Models of the Fundamental*
 600 *Mechanisms of Thought*. Basic Books, New York, 1995.

601

602 Douglas R. Hofstadter. Epilogue: Analogy as the core of cognition. In Dedre Gentner, Keith J.
 603 Holyoak, and Boicho N. Kokinov (eds.), *The Analogical Mind: Perspectives from Cognitive*
 604 *Science*. MIT Press, 2001.

605 Anna A. Ivanova. How to evaluate the cognitive abilities of LLMs. *Nature Human Behaviour*, 9(2):
 606 230–233, 2025.

607

608 Gregory Kamradt. Analyzing o3 and o4-mini with ARC-AGI, 2025. <https://arcprize.org/blog/analyzing-o3-with-arc-agi>.

609

610 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
 611 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.

612

613 Solim LeGris, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. H-ARC: A robust estimate
 614 of human performance on the Abstraction and Reasoning Corpus benchmark. *arXiv preprint*
 615 *arXiv:2409.01374*, 2024.

616 Martha Lewis and Melanie Mitchell. Evaluating the robustness of analogical reasoning in GPT
 617 models. *Transactions on Machine Learning Research*, 2025.

618

619 Mikołaj Małkiński, Szymon Pawlonka, and Jacek Mańdziuk. Reasoning limitations of multimodal
 620 large language models. a case study of bongard problems. *arXiv preprint arXiv:2411.01173*, 2024.

621 Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The ConceptARC benchmark:
 622 Evaluating understanding and generalization in the ARC domain. *Transactions on Machine*
 623 *Learning Research*, 2023.

624

625 OpenAI. Thinking With Images, 2025. <https://openai.com/index/thinking-with-images/>.

626

627 Szymon Pawlonka, Mikołaj Małkiński, and Jacek Mańdziuk. Bongard-rwr+: Real-world representa-
 628 tions of fine-grained concepts in bongard problems. *arXiv preprint arXiv:2508.12026*, 2025.

629

630 Sunayana Rane, Cyrus Kirkman, Amanda Royka, Graham Todd, Ryan Law, Jacob Gates Foster, and
 631 Erica Cartmill. Principles of animal cognition for LLM evaluations: A case study on transitive
 632 inference. In *Proceedings of the International Conference on Machine Learning, ICML-2025*,
 633 2025.

634

635 J. C. Raven. *Progressive Matrices Test: A perceptual test of intelligence: Individual form*. H.K.
 636 Lewis & Company, 1938.

637

638 Taylor Webb, Keith J. Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
 639 models. *Nature Human Behaviour*, 7(9):1526–1541, 2023.

640

641 Antonia Wüst, Tim Woydt, Lukas Helfff, Inga Ibs, Wolfgang Stammer, Devendra S Dhami, Con-
 642 stantin A Rothkopf, and Kristian Kersting. Bongard in wonderland: Visual puzzles that still make
 643 ai go mad? *arXiv preprint arXiv:2410.19546*, 2024.

644

645 Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A benchmark
 646 for compositional visual reasoning. *Advances in Neural Information Processing Systems*, 35:
 647 29776–29788, 2022.

648

649 Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. RAVEN: A dataset for relational
 650 and analogical visual reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 651 *and Pattern Recognition*, pp. 5317–5327, 2019.

648 Yizhe Zhang, He Bai, Ruixiang Zhang, Jiatao Gu, Shuangfei Zhai, Josh Susskind, and Navdeep Jaitly.
649 How far are we from intelligent visual deductive reasoning? *arXiv preprint arXiv:2403.04732*,
650 2024.

651

652 Ke Zhu, Yu Wang, Jiangjiang Liu, Qunyi Xie, Shanshan Liu, and Gang Zhang. On data synthesis and
653 post-training for visual abstract reasoning. *arXiv preprint arXiv:2504.01324*, 2025.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A TEXTUAL PROMPT**
703704 Find the common rule that maps an input grid to an output grid, given the examples below.
705706 **Example 1**707 *Input:*

```

708 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
709 0 0 0 4 4 4 4 0 0 0 0 0 0
710 0 0 0 4 4 4 4 0 0 0 0 0 0
711 0 0 0 4 4 4 4 0 0 0 0 0 0
712 0 0 0 0 0 0 0 0 0 0 0 0 0
713 0 0 0 0 0 0 0 0 0 0 0 0 0
714 2 2 2 2 2 2 2 2 2 2 2 2 2
715 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 4 4 4 0 0 4 4 4
0 0 0 4 4 4 4 0 0 4 4 4
0 0 0 4 4 4 4 0 0 4 4 4

```

716 *Output:*

```

717 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
718 0 0 0 4 4 4 4 0 0 0 0 0 0
719 0 0 0 4 4 4 4 0 0 0 0 0 0
720 0 0 0 4 4 4 4 0 0 0 0 0 0
721 0 0 0 0 0 0 0 0 0 0 0 0 0
722 0 0 0 0 0 0 0 0 0 0 0 0 0
723 2 2 2 2 2 2 2 2 2 2 2 2 2
724 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

```

725 **Example 2**726 *Abbreviated*727 **Example 3**728 *Abbreviated*729 **No Tools Variant**730 Below is a test input grid. Predict the corresponding output grid by applying the rule you
731 found. Do not generate any Python code or use any external tools to solve this task.732 **Tools Variant**733 Below is a test input grid. Predict the corresponding output grid by applying the rule you
734 found. Use python if needed.735 *Test Input:*

```

736 0 6 6 0 0 6 6 6 6 0 6
737 0 6 6 0 0 6 6 6 6 0 6
738 1 1 1 0 0 6 6 6 0 0
739 4 4 4 4 4 4 4 4 4 4
740 0 0 0 0 0 0 0 0 0 0
741 0 0 0 0 0 0 0 0 0 0
742 0 6 6 6 0 0 6 6 6 0
743 0 6 6 6 0 0 6 6 6 0
744 0 6 6 6 0 0 0 0 0 0
745 0 0 0 0 0 0 0 0 0 0
746 0 0 0 0 0 0 4 4 4 4
747 0 6 6 6 6 0 0 0 0 0
748 0 6 6 6 6 0 0 0 0 0
749 0 6 6 6 6 0 0 0 0 0

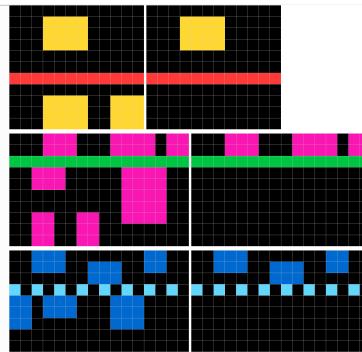
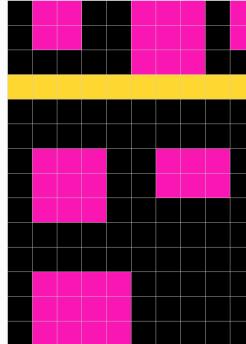
```

750 **Return only this minified JSON (no markdown, no extra keys):**751

```
{"rule": "<Transformation rule>", "grid": "<final grid>"}
```

756 **B VISUAL PROMPT**
757758 The left side of the first image shows 3 grids, where each grid square is colored with one of
759 10 possible colors: black, blue, red, green, yellow, gray, magenta, orange, cyan or brown. The
760 right side of the first image also contains 3 grids, each of which is a transformed version of the
761 corresponding grid on the left. There is a single rule that describes these 3 transformations.
762763 **No Tools Variant**
764765 Determine the rule, and then apply that rule to the grid in the second image. Do not
766 generate any Python code or use any external tools to solve this task.
767768 **Tools Variant**
769770 Determine the rule, and then apply that rule to the grid in the second image. Use python if
771 needed.
772773 You may describe the final grid through natural language using the indices of the different colors,
774 for example:
775776

```
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
4 4 4 4 4 4
0 0 0 0 0 0
```

777 which would be a 6x5 grid with a horizontal blue line in row 2 and a horizontal yellow line in
778 row 4. The rest of the grid is black.
779790 *Image 1: Training examples*
791804 *Image 2: Test grid*
805806 — Return **only** this minified JSON object: "rule": "<Transformation rule>","grid": "<final grid>"
807 No markdown, no extra keys, no code fences. —
808

809

810
811 C PROMPTS FOR NON-REASONING MODELS

812 The prompts we used for non-Reasoning models were minimally modified to require an additional
 813 field containing a reasoning trace in the final JSON object. Otherwise, the prompts were consistent
 814 with those used for reasoning models, including variations for visual settings and settings with tools
 815 enabled.

816
817 D DATA FOR RULE EVALUATION PLOTS
818
819

820 Table 3: Data used to create Figure 2. For o3, Claude, Gemini, and human-generated rules, each
 821 cell reports the percentage of tasks in a rule classification (Correct-Intended, Correct-Unintended,
 822 Incorrect), partitioned by the modality (Textual vs. Visual) and by the correctness of the output grid
 823 (Correct Grid vs. Incorrect Grid). Model percentages are computed over 480 total tasks. Human
 824 percentages are computed over approximately 4,175 total tests. Rules were not collected for incorrect
 825 grids in the original experiment, and so all human responses with incorrect grids are listed here
 826 as Not Classified; these percentages are estimates based on the 73% grid accuracy reported by the
 827 original experimenters. The final row of statistics for humans show the rule classification breakdown
 828 excluding not-classified rules.

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Model (Output Correctness)	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Textual			830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Visual		
	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Correct- Intended	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Correct- Unintended	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Incorrect	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Correct- Intended	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Correct- Unintended	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Incorrect
o3 (Correct Grid)	54.8	15.6	5.2	20.2	5.8	3.1
o3 (Incorrect Grid)	2.3	12.7	9.4	18.8	13.8	38.3
Claude Sonnet 4 (Correct Grid)	44.4	4.4	6.3	4.0	0.4	2.5
Claude Sonnet 4 (Incorrect Grid)	13.5	9.2	22.3	9.8	2.5	80.8
Gemini 2.5 Pro (Correct Grid)	42.5	10.6	7.3	4.6	0.2	1.0
Gemini 2.5 Pro (Incorrect Grid)	1.7	6.3	31.7	19.2	4.4	70.6
<hr/>						
	Correct- Intended	Correct- Unintended	Incorrect	Not Classified		
Human (Correct Grid)	53	3	3	14		
Human (Incorrect Grid)	–	–	–	27		
Human (Excl. Not-Classified)	90.0	5.1	4.9	–		

864
 865 Table 4: Data used to create Figure 3. For all o3 settings, each cell reports the percentage of tasks in
 866 a rule classification (Correct-Intended, Correct-Unintended, Incorrect), partitioned by the modality
 867 (Textual vs. Visual) and by the correctness of the output grid (Correct Grid vs. Incorrect Grid). All
 868 percentages are computed over 480 total tasks.

o3 Setting (Output Correctness)	Textual			Visual		
	Correct- Intended	Correct- Unintended	Incorrect	Correct- Intended	Correct- Unintended	Incorrect
Low effort (Correct Grid)	49.4	13.1	5.8	5.3	0.2	1.0
Low effort (Incorrect Grid)	4.2	7.5	20.0	25.5	4.2	63.8
Medium effort (Correct Grid)	52.7	17.3	7.1	3.1	0.6	1.9
Medium effort (Incorrect Grid)	1.9	11.0	10.0	27.3	5.6	61.5
Low effort + tools (Correct Grid)	45.8	16.5	5.6	14.4	2.1	1.7
Low effort + tools (Incorrect Grid)	2.1	11.3	18.8	23.3	7.9	50.6
Medium effort + tools (Correct Grid)	54.8	15.6	5.2	20.2	5.8	3.1
Medium effort + tools (Incorrect Grid)	2.3	12.7	9.4	18.8	13.8	38.3

E OUTPUT ACCURACY FOR NON-REASONING MODELS

887 As shown in Table 5 the accuracies of the non-reasoning models were dramatically lower than those
 888 of the reasoning models (Table 1). For GPT-4o, in almost all cases in both modalities, the model
 889 generated an output grid that was incorrect. For Llama 4 Scout and Qwen 2.5 VL 72B, the same was
 890 true in the textual modality; however, for Qwen, in almost all cases in the visual modality, the model
 891 was not able to generate an answer at all and did not return the requested JSON format. This was true
 892 to a lesser extent for Llama 4 Scout. It is a topic for future research to determine why these models
 893 had difficulty generating answers in any valid format.

894
 895 Table 5: **Non-reasoning models:** Output-grid accuracy (pass@1) on Concept-ARC across models
 896 and experimental settings. Accuracy is shown in %. Each cell shows accuracy in the *visual / textual*
 897 modality. Temperature is set to 0.0 for all models. Bold numbers correspond to the highest score in
 898 each column. The Llama and Qwen interfaces did not provide options for Python tool use.

Non-Reasoning model	No Python Tools		With Python Tools	
	Textual / Visual		Textual / Visual	
GPT-4o	14.6 / 0.0		8.3 / 0.2	
Llama 4 Scout	6.7 / 0.0		N/A	
Qwen 2.5 VL 72B	9.2 / 0.0		N/A	

F CONCEPT PERFORMANCE OVERVIEW

900 ConceptARC (Moskvichev et al., 2023) is organized around 16 basic spatial and semantic concepts.
 901 Each concept group consists of 10 tasks that focus around that concept in different ways, testing the
 902 derived knowledge on three separate test input grids. Table 6 and Table 7 give the per-concept-group
 903 accuracies (each out of 30 grids) of the reasoning models we evaluated (using medium reasoning
 904 effort and Python tools), as well as human accuracies on these concept groups from Moskvichev et al.
 905 (2023). Humans were tested using visual images of demonstration and test grids, but human accuracy
 906 is repeated in both tables for easy comparison.

918 F.1 CONCEPT PERFORMANCE COMPARISON FOR TEXTUAL MODALITY
919
920921 Table 6: **Concept performance (Textual):** Per-concept accuracy (%) on Concept-ARC for medium
922 effort + tools. Best value per concept in bold.
923

Concept	Gemini 2.5 Pro	o3	o4-mini	Claude Sonnet 4	Human
AboveBelow	60	90	83.3	63.3	69
Center	70	93.3	96.7	83.3	84
CleanUp	23.3	46.7	60	46.7	89
CompleteShape	56.7	70	66.7	50	71
Copy	66.7	70	90	56.7	78
Count	86.7	80	80	76.7	61
ExtendToBoundary	60	90	83.3	50	81
ExtractObjects	56.7	76.7	86.7	43.3	67
FilledNotFilled	73.3	76.7	83.3	63.3	82
HorizontalVertical	53.3	70	70	63.3	68
InsideOutside	66.7	80	73.3	43.3	68
MoveToBoundary	63.3	80	70	40	78
Order	50	70	70	40	76
SameDifferent	56.7	83.3	86.7	53.3	68
TopBottom2D	76.7	86.7	93.3	56.7	79
TopBottom3D	46.7	53.3	56.7	50	70

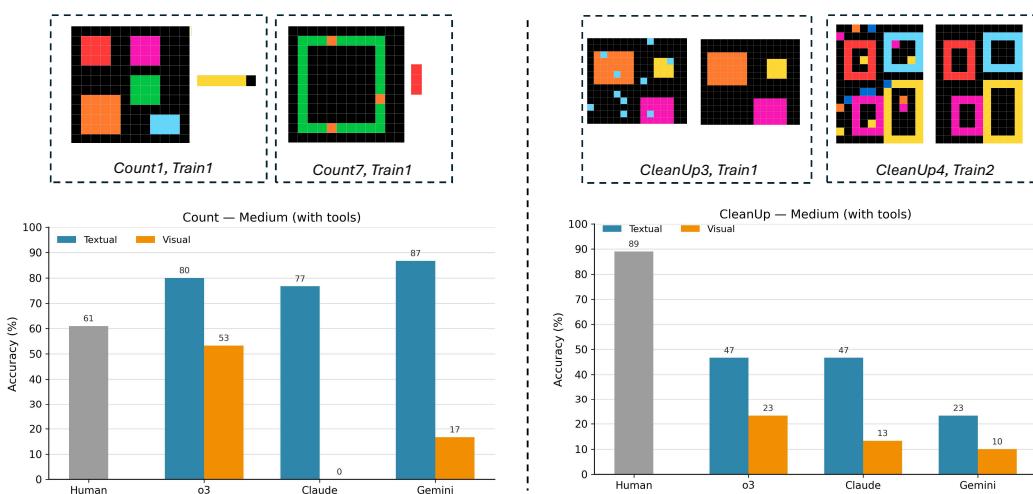
941
942 F.2 CONCEPT PERFORMANCE COMPARISON FOR VISUAL MODALITY
943
944945 Table 7: **Concept performance (Visual):** Per-concept accuracy (%) on Concept-ARC for medium
946 effort + tools. Best value per concept in bold.
947

Concept	Gemini 2.5 Pro	o3	o4-mini	Claude Sonnet 4	Human
AboveBelow	0	20	10	0	69
Center	6.7	43.3	26.7	6.7	84
CleanUp	10	23.3	26.7	13.3	89
CompleteShape	3.3	30	23.3	16.7	71
Copy	3.3	20	23.3	3.3	78
Count	16.7	53.3	50	0	61
ExtendToBoundary	0	20	13.3	3.3	81
ExtractObjects	3.3	30	36.7	0	67
FilledNotFilled	6.7	30	20	0	82
HorizontalVertical	3.3	33.3	20	6.7	68
InsideOutside	6.7	16.7	13.3	10	68
MoveToBoundary	3.3	30	10	16.7	76
Order	10	33.3	36.7	13.3	60
SameDifferent	6.7	26.7	26.7	6.7	68
TopBottom2D	13.3	33.3	50	3.3	79
TopBottom3D	0	23.3	13.3	10	70

945
946 F.3 CONCEPT DIFFICULTY EVALUATION
947

948 While, we do not discover a significant correlation between concept difficulty in visual or textual
949 modality, or with human participants, we identify some overarching trends in concept difficulty. We
950 show a full concept performance comparison in the tables Table 6 and Table 7, but specifically point
951 out the performance differences over the concepts “Count” and “CleanUp.” We generally compare
952 against the highest performing setting per concept for each performance. Count tasks frequently

972 involve the production of simple, singular output rows or columns, denoting the count of specific
 973 characteristics (e.g shapes, colors, corners). Correspondingly, output grids are often small and easy
 974 to generate. In the visual modality, this is the performance closest to humans for both o3 (-7.7%)
 975 and Gemini (-44%), and in the textual modality, this concept also results in the biggest positive
 976 difference(o3:+32.3%; Gemini:+25.7%; Claude:+15.7%). In contrast, tasks in the CleanUp concept
 977 group require the removal of several colors, shapes, or isolated pixels, as well as full reproduction of
 978 the remaining input grid. In this concept group, even o3 using medium effort + tools is significantly
 979 outperformed by human participants in the visual setting (-65.7%). Similarly, answers to CleanUp
 980 tasks constitute the largest negative performance gap in the textual modality (-46.3%). The gap
 981 between the other models is even larger. This is a strong indicator that, regardless of modality, models
 982 struggle significantly with producing complex output grids.



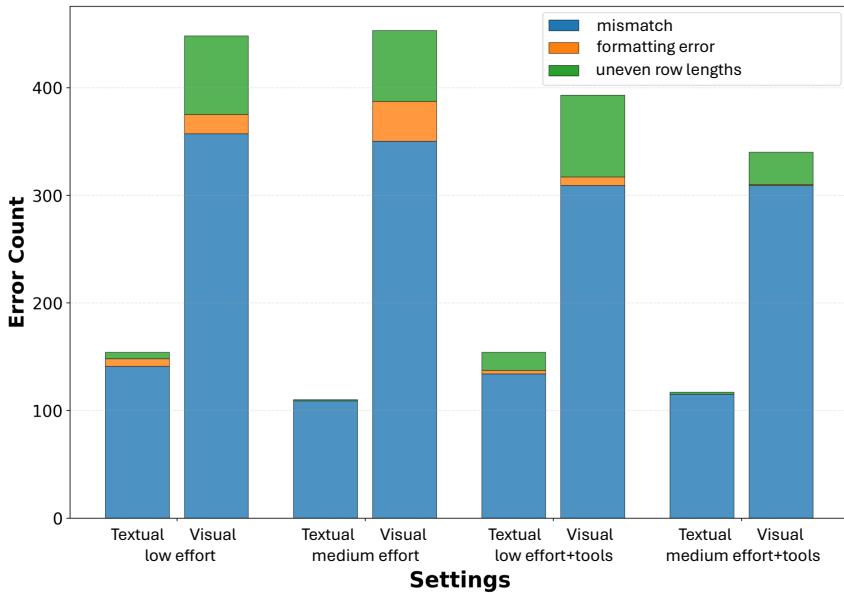
1001 Figure 5: We show two example demonstrations from the concept with the highest and lowest gap
 1002 between Human and Model performance, CleanUp and Count. Further, we show concept-wise output
 1003 grid accuracy across three reasoning models in a medium with tools setting (note that we compare
 1004 against the strongest setting in subsection F.3 instead).

1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **G CORRECT-INTENDED COVERAGE**
1027
10281029 **Table 8: Correct-intended task coverage:** Number of tasks covered correctly by category and
1030 modality, with coverage rates listed as a percentage of the 480 total ConceptARC tasks. Here, a
1031 task is considered "covered" if the model in question produced a correct-intended rule in *any* of its
1032 solutions for that task in the given modality. The "AnyModel" rows show task coverage aggregated
1033 across all three reasoning models, and the entry for humans shows the coverage of tasks for which at
1034 least one human subject produced a correct-intended rule.

Category	Modality	Covered	Percentage
Humans	Overall	475	98.96
o3	Textual	410	85.42
o3	Visual	281	58.54
Claude	Textual	343	71.46
Claude	Visual	80	16.67
Gemini	Textual	293	61.04
Gemini	Visual	136	28.33
AnyModel	Textual	451	93.96
AnyModel	Visual	320	66.67

1045
1046 **G.1 CORRECT-INTENDED COVERAGE IMPLICATIONS**
10471048 Table 8 clearly shows that, while models (in textual modality) all have a decent coverage, pooling
1049 their answers only leads to a moderate increase as compared to the best performing single model
1050 (+8%). While the overall coverage is notably lower in visual modality, the increase when pooling the
1051 three models again is comparable to textual (+8%). As we do not have individual human performance
1052 data, we unfortunately cannot compute similar statistics for pooling single human performances.
1053 However, these results again point out stronger abstractive reasoning abilities in a human panel,
1054 which only failed to derive the correct abstract transformation in 5 test examples.1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083 **H ERROR-TYPE OVERVIEW**
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102 Figure 6: Overview of different error types for o3 in different experimental settings. For each setting,
 1103 we display textual modality results on the left bar and visual modality on the right bar. The most
 1104 common error type is a simple mismatch error in which the output grid and the ground truth grid are
 1105 not identical, including incorrect grid dimensions and single-pixel mismatches. We also encountered
 1106 some parsing errors, which most often originated from incorrect formatting (see Appendix I). Another
 1107 parsing error originated from uneven row lengths, which made it impossible to render the candidate
 1108 grids in the needed rectangle format.

1109
1110 **I OUTPUT GRID ACCURACIES REASSESSED FOR INCORRECT GRID FORMATS**
1111

1112 To compute the accuracies reported in Table 5 and Table 1, we followed the ARC-Prize evaluation
 1113 method ARC-Prize (2024): we counted an output grid as correct only if it perfectly matched
 1114 the ground-truth output grid and was in the format requested in the prompt (see Appendix A and
 1115 Appendix B). However, upon exhaustive examination of the output grids generated by different
 1116 models, we found that, in some cases, models generated these answer grids in different formats than
 1117 that requested in the prompt; these answers were assessed as incorrect. The incorrect output grid
 1118 formats included surrounding grid rows with brackets, using commas or slashes as row separators,
 1119 and several other variations.

1120 We re-assessed each case of such formatting to see if the *intended* grid was actually correct. Table 9
 1121 gives, for each model and experimental setting, the original output-grid accuracy from Table 1 or
 1122 Table 5 and the revised output-grid accuracy when incorrect formats are allowed. Table 9 shows
 1123 that accepting alternate grid formats leads to minor increases in accuracy in most cases, with a few
 1124 exceptions in which the accuracy rose by more than 5%: o4-mini low-effort, o4-mini low-effort +
 1125 tools, and Claude Sonnet 4 medium-effort, which had the largest increase: 60.2% to 72.5%.

1126 Figure 7 gives a plot corresponding to Figure 2 but with the revised accuracies. Comparing this
 1127 to Figure 2, we do not see any substantial changes in the fractions of correct-intended, correct-
 1128 unintended, and incorrect rules associated with each bar.

1129 In summary, while models sometimes generate their answer grid in a different format than what we
 1130 requested, whether we accept these formats as valid answers and assess their correctness does not
 1131 have a large effect on our overall results.

1132 In a smaller number of cases, all in the visual setting, models would generate a natural-language
 1133 description of the output grid rather than the grid itself. We did not consider these to be in a valid
 1134 answer format and counted such outputs as incorrect.

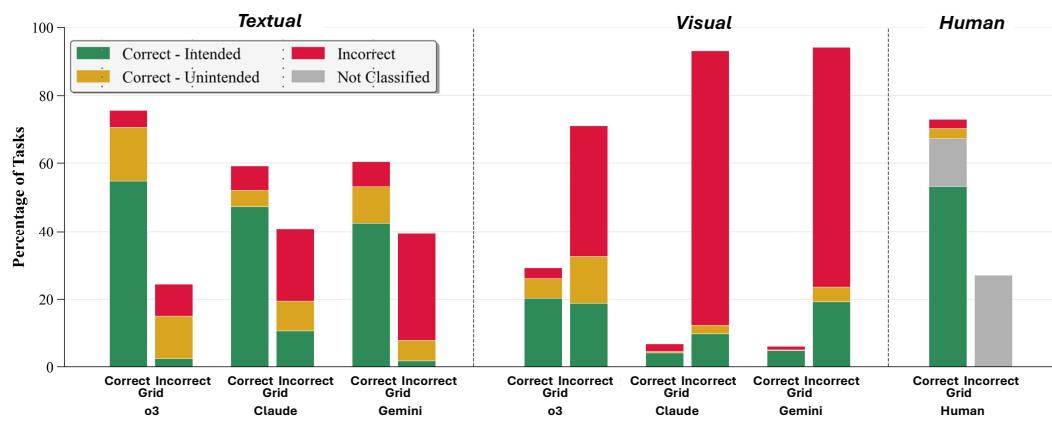
1134

1135

1136

1137 Table 9: **Output grid accuracies with alternative grid formats included.** For each model and
1138 setting, we give *original accuracy / re-assessed accuracy*. Original accuracies are from Table 5 and
1139 Table 1.

Model	Setting	Textual	Visual
		Original / Re-assessed	Original / Re-assessed
o3	low effort	68.3 / 69.4	6.5 / 6.5
o3	medium effort	77.1 / 77.1	5.6 / 5.6
o3	low effort + tools	67.9 / 68.1	18.2 / 18.2
o3	medium effort + tools	75.6 / 75.6	29.2 / 29.2
o4-mini	low effort	52.1 / 59.6	3.8 / 3.8
o4-mini	medium effort	70.8 / 73.8	8.1 / 8.1
o4-mini	low effort + tools	57.3 / 62.5	6.7 / 6.7
o4-mini	medium effort + tools	77.7 / 78.8	25.0 / 25.0
Claude Sonnet 4	medium	60.2 / 72.5	5.2 / 5.2
Claude Sonnet 4	medium + tools	55.0 / 59.2	6.9 / 6.9
Gemini 2.5 Pro	medium effort	66.0 / 66.0	4.2 / 4.2
Gemini 2.5 Pro	medium effort + tools	60.4 / 60.4	5.8 / 5.8
GPT-4o	No tools	14.6 / 14.6	0.0 / 0.0
GPT-4o	With tools	8.3 / 13.1	0.2 / 0.2
Llama 4 Scout	No tools	6.7 / 8.5	0.0 / 0.0
Qwen 2.5 VL 72B	No tools	9.2 / 10.0	0.0 / 0.0

1184 Figure 7: **Re-assessed rule evaluations.** Results of rule evaluations, similar to that shown in Figure 2,
1185 but here with re-assessed accuracies.
1186

1187

1188 **J DISTRIBUTION OF UNINTENDED ABSTRACTIONS ACROSS CONCEPTS**
1189

1190 Upon discovering the usage of shortcuts, we were interested in analyzing the distribution of these
 1191 among different concepts. In particular, models might be systematically employing unintended
 1192 abstractions on tasks they lack meaningful priors for. Under textual modalities, when models arrived
 1193 at a "Correct" rule, they produced Correct-Unintended results in about 28.5% those cases with a
 1194 standard deviation of 16.5%. The concepts with the highest share of unintended abstractions were
 1195 *TopBottom3D* (70.2%), *CleanUp* (51.2%) and *HorizontalVertical* (42.1%). For the visual modality,
 1196 the average usage of correct-unintended rules was 26.55%, with a standard deviation of 13.7%.
 1197 Again, the concepts with the highest share are *TopBottom3D* (60.9%) and *CleanUp* (40%), but also
 1198 *SameDifferent* (47.83%). *HorizontalVertical* had a reduced share of unintended rules, with only 34%,
 1199 ranking at fourth-most.

1200 We generally refer to the share of unintended abstractions of correct rules here (intended and
 1201 unintended), rather than of all rules, in order to account for the difference in rule correctness between
 1202 modalities. As Table 6 and Table 7 show, *TopBottom3D* is one of the most difficult concepts for models
 1203 when measured by accuracy (second-lowest in textual, third-lowest in visual), so it is not surprising
 1204 that they largely rely on unintended abstractions when solving corresponding tasks. Analyzing the
 1205 proposed rules more closely, few of them actually addressed 3-dimensional arrangement, but instead
 1206 relied on heuristics, such as density or bounding-box interceptions.

1207 While *CleanUp* produced the lowest overall accuracy in textual modality, it achieved the fourth-
 1208 highest in visual modality, so it is intuitive to find increased shortcut-usage using text representations.
 1209 The high share of unintended rules in vision-based inputs is somewhat surprising, but is likely due to
 1210 difficulties with recognizing global patterns. This is an issue with both modalities, as models tend
 1211 to employ local, or nested rules, which were overfit to the training demonstrations. In particular,
 1212 models frequently recognize simple line-based patterns, such as alternating horizontal or vertical lines,
 1213 but struggle with recognizing separated objects, without clear unifying, global properties besides
 1214 objectness. In the other named concepts, and on various tasks in general, we recognize several
 1215 recurring heuristics, including the employment of bounding boxes, four/eight-neighbor connectivity,
 1216 as well as path finding. These unintended abstractions seemed to be part of a general-purpose
 1217 tool-box, which models employed for various purposes and not specific to single concepts.

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241