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Abstract

Clustering clients with similar objectives together and learning a model per cluster1

is an intuitive and interpretable approach to personalization in federated learning2

(PFL). However, doing so with provable and optimal guarantees has remained an3

open challenge. In this work, we formalize personalized federated learning as a4

stochastic optimization problem where the stochastic gradients on a client may5

correspond to one of K distributions. In such a setting, we show that using i)6

a simple thresholding based clustering algorithm, and ii) local client momentum7

obtains optimal convergence guarantees. In fact, our rates asymptotically match8

those obtained if we knew the true underlying clustering of the clients. Further,9

we extend our algorithm to the decentralized setting where each node performs10

clustering using itself as the center.11

1 Introduction12

We focus on the cross-silo Federated learning setup which allows N clients to collaborate on train-13

ing a global model without exchanging their raw data [6]. The defacto algorithm for this setup is14

federated averaging [9], in which each client i ∈ [N ] has a loss function fi(x) which they wish to15

minimize. At time step t, each client i performs m local stochastic updates starting from the current16

parameters of a global model y0i,t = xt−117

ylt = yl−1
i,t − ηgi(y

l−1
i,t ) for l ∈ {1, . . . ,m} .

These updates are then sent to the central server who averages them to obtain the new centralized18

model as below and broadcasts the updated parameters back to the clients19

xt =
1

N

N∑
i=1

ymt ,

While this framework preserves data privacy (since it only requires exchanging gradients, not raw20

data) and streamlines communication via a central coordinator, it averages the gradients of all clients21

for each parameter update, which might be undesirable due to heterogeneity of data distributions22

across clients [12, 13]. Ideally, the model would be adaptive to different subsets of similar clients.23

That is, only clients with similar data distributions would learn from each other and share updates,24

unaffected by dis-similar clients [11]. To address this, we propose a personalized federated learning25

algorithm, which simultaneously clusters similar clients and optimizes their loss objectives in a26

personalized manner. Before each parameter update, the server first clusters similar clients and then27

computes personalized parameter updates based only on the gradients of clients within that cluster.28

Our contributions.29

• We propose two personalized learning algorithms (one federated and one decentralized)30

which converge at the optimal O(1/
√
niT ) rate for stochastic gradient descent for non-31

convex functions where ni is the number of clients similar to client i.32
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Algorithm 1 Threshold-Clustering
Input Points {x1, ..., xN}; Number of clusters K; Initializations of cluster-mean estimates
{v1,0, ..., vK,0}

1: for round l ∈ [M ] do
2: for cluster k in [K] do
3: Set threshold τk,l.
4: Update cluster-mean estimate:

vk,l =
1

n

N∑
i=1

(
xi1(∥xi − vk,l−1∥ ≤ τk,l) + vk,l−11(∥xi − vk,l−1∥ > τk,l)

)
. (1)

return Cluster-mean estimates {vk = vk,M}k∈[K] and clusters {Ck = {xi : ∥xi − vk,M∥ ≤
τk,M}}k∈[K]

• We introduce a novel clustering subroutine based on thresholding, whose performance im-33

proves with the separation between the cluster means and the number of data points being34

clustered. We also prove nearly matching lower bounds showing its near-optimality.35

• We show experimentally that our clustering algorithm benefits from collaborative learning,36

is competitive with SOTA personalized federated learning algorithms, and is not sensitive37

to the model’s initial weights.38

Related work. Personalization in federated learning has recently enjoyed tremendous attention39

and we refer to [11] for a survey. Of these, [5, 4, 8, 10] have considered clustering methods. Closest40

to our approach are [5], who propose a general framework for cluster-based personalized FL that41

supports both gradient and model averaging. They require that all loss objectives be strongly convex42

whereas our theory requires only smoothness of the loss objectives. With HypCluster, [8] train a43

global model that has strong generalization guarantees. Features of their algorithm are somewhat44

orthogonal to the privacy-preserving spirit of federated learning, as they assume the server can ac-45

cess the clients’ raw data. The algorithm we design to cluster similar clients is closely inspired by46

the clipping procedure in [7] for byzantine robust optimization, which distinguishes ‘good’ from47

‘malicious’ clients by iteratively updating an estimate of the mean of the good clients.48

2 Thresholding-based Clustering49

In order to personalize models for different clients, we propose a robust clustering procedure which50

groups similar clients together. Our algorithm (Algorithm 1) is simple: given a set of points51

{x1, ..., xN} which can be partitioned into K clusters of identically distributed points, we set initial52

estimates of the cluster-centers, {vk,0}k∈[K]. Then, for each cluster-center estimate, we assign a53

value to every point in the dataset: (a) if a point is near the cluster-center estimate, we preserve its54

value; (b) if a point is far away, we set its value to the cluster-center estimate. Finally, to compute55

the updated cluster-center estimate, we average the values of all the points (see update rule (1)).56

Assignment rule (a) ensures that cluster-center updates are influenced by nearby points. Assignment57

rule (b) ensures that our algorithm is robust. Specifically, if our algorithm is confident that its current58

cluster-center estimate is close to the true cluster mean (i.e. there are many points nearby), it will59

confidently improve its estimate by taking a large step in the right direction (where the step size and60

direction are determined mainly by the nearby points). If our algorithm is not confident about being61

close to the cluster mean, it will tentatively improve its estimate by taking a small step in the right62

direction (where the step size and direction are small since the majority of points are far away and63

thus do not change the current estimate).64

The convergence guarantee (Theorem 1) for our clustering method assumes the following:65

• Assumption 1: The cluster-center initializations are sufficiently close to the true cluster66

means.67 For all points xi in cluster k, E∥vk,0 − Exi∥2 ≤ ρ2.

• Assumption 2: The variance of the points being clustered is bounded.68
For all points xi, E∥xi − Exi∥2 ≤ ρ2.

• Assumption 3: The true cluster means are sufficiently well-separated.69
For all points xj ̸∼ xi, ∥Exi − Exj∥ > ∆.
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In the following theorem, we show that, after sometimes only 1 round, Threshold-Clustering learns70

a good estimate of each cluster’s mean.71

Theorem 1. Suppose {xi}i∈[N ] is a set of points that can be partitioned into K clusters such that72

points within each cluster are identically distributed. Suppose also that Assumptions [1,2,3] hold.73

Given cluster-center initializations {vk,0}k∈[K], running Threshold-Clustering for74

l = max
(
1 , max

i∈[N ]
log( ρ

∆ + 1
ni
)/log(1− n2

i

2N2 )
)

rounds on {xi}i∈[N ] guarantees that75

E∥vki − Exi∥2 ≤
(
34C +

48C

ni

)
ρ3

∆
+

4ρ2

ni
,

where ki denotes client i’s true cluster, ni is the number of points in ki, and C is a constant (see76

Appendix A for details).77

Remark 1 (Estimation error). The estimation error in Theorem 1, ignoring constants, is78

E∥vki
− Exi∥2 ≤ O

(
ρ3

∆
+

ρ2

ni

)
. (2)

If we knew the identity of all points within client i’s cluster, we would simply take their mean as the79

cluster-center estimate, incurring estimation error of ρ2
/ni (i.e. the sample-mean’s variance). Since80

we don’t know the identity of points within clusters, the additional factor of ρ3
/∆ in (2) is the price81

we pay to learn the clusters. This additional term scales with the difficulty of the clustering problem.82

If true clusters are well-separated and/or the variance of the points within each cluster is small (i.e.83

∆ is large, ρ2 is small), then the clustering problem is easier and our bound is tighter. If clusters are84

less well-separated and/or the variance of the points within each cluster is large, accurate clustering85

is more difficult and our bound weakens.86

The next theorem shows that the bound in Remark 1 is tight within a factor of (ρ/∆).87

Theorem 2 (Near-optimality of Threshold-Clustering). For any algorithm A, there exists a mix-88

ture of distributions D1 = (µ1, ρ
2) and D2 = (µ2, ρ

2) with ∥µ1 − µ2∥ ≥ ∆ such that the estimator89

µ̂1 produced by A has an error90

E∥µ̂1 − µ1∥2 ≥ Ω

(
ρ4

∆2
+

ρ2

ni

)
.

3 Personalized Learning with Threshold-Clustering91

We now leverage our clustering method to develop personalized models for the clients in each clus-92

ter via stochastic optimization. We present two variants of personalized learning: one in which a93

central server clusters the clients (Personalized Federated Learning (PFL) – Algorithm 2) and one94

in which the clients cluster themselves (Personalized Decentralized Learning (PDL) – Algorithm95

3). These variants are appropriate when the clients and server respectively want to minimize their96

computational burden.97

At a high level, our learning procedures cluster clients with the same data distributions and generate98

a personalized model for each cluster. We assume each client i ∈ [N ] has access to an unbiased99

stochastic gradient100

E[gi(x; ζi)|x] = ∇fi(x),

where fi is client i’s loss objective. All clients in the same cluster have the same loss objective and101

identically distributed gradient stochasticity. Additionally we assume102

• Assumption 4: Loss objectives are L-smooth.103

For all clients i and points x, y, ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
• Assumption 5: Variance of gradients is bounded.104

For all clients i and points x, E∥gi(x; ζi)−∇fi(x)∥ ≤ σ2.

• Assumption 6: Momentums of differently distributed clients are well-separated at all105

points.106 For all i ̸∼ j, ∥Emi,t − Emj,t∥ > ∆,

for any choice of α in the definition107

mi,t = αgi(xi,t−1; ζi) + (1− α)mi,t−1.

Here, xi,t denotes client i’s model parameters at round t of SGD.108
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Algorithm 2 Personalized Federated Learning with Threshold-Clustering (PFL-TC)
Input Learning rate η; momentum parameter α; number of clusters K

1: for round t ∈ [T ] do
2: Each client i computes local updates as

g̃i(xi,t) =


gi(xi,t−1) Option 1
(ymi,t − xi,t−1)/η where starting from y0i,t = xi,t−1 , Option 2

ylt = yl−1
i,t − ηgi(y

l−1
i,t ) for l ∈ {1, . . . ,m} .

3: Clients compute local momentums and communicate to server

{mi,t = αg̃i(xi,t−1)− (1− α)mi,t−1}i∈[N ].

4: Server runs Threshold-Clustering({mi,t}i∈[N ],{vkt
0
}k∈[K],K) and obtains estimates,

{vkt}k∈[K], of the cluster means.
5: Server updates parameters for each cluster kt and sends updated parameters to clients

{xi,t = xi,t−1 − ηvkt}i∈kt .

• Assumption 7(Optional): The cluster-center initializations are sufficiently close to the true109

cluster means.110 For all i ∈ [N ], t ∈ [T ], E∥vkt
i ,0

− Emi,t∥2 ≤ cσ2,

for some c ≥ 0 where kti denotes the cluster to which i is assigned in round t of SGD.111

Note that Assumption 7 can be easily realized by using K-means++ [2] initialization prior to running112

our clustering procedure.113

Clustering Momentums: Our algorithms cluster the momentums114

mi,t = αgi(xi,t−1, ζi) + (1− α)mi,t−1

of the clients i ∈ [N ]. Clustering momentums instead of gradients reduces clustering mistakes.115

To see this, say that in one particular round, a client is misclustered and thus assigned the wrong116

parameters. The scaling of g in the momentum by a small α will mitigate the effect of these wrong117

parameters on the client’s gradient update, making it more likely that the client will be clustered118

correctly in the next round. The clustering routines in [5, 8] both instead cluster model parameters,119

which has certain advantages. For instance, in order to cluster momentums, we must assume that120

momentums from differently distributed clients are sufficiently well separated at all points. The121

clustering guarantees in [5] require only that the optima of the loss functions of differently distributed122

clients be sufficiently far apart, a more reasonable assumption. However, we believe our theory can123

easily be adapted to cluster model parameters.124

First we present our federated algorithm, in which a central server clusters the clients, along with its125

convergence guarantees.126

Theorem 3. Given Assumptions [4-7], running PFL-TC with Option 1 for T rounds with learning127

rate128

ηi = min

{
1

3L
,

(
2(fi(xi,0)− f∗

i )
60CLσ2

ni
T

) 1
2

,

(
2(fi(xi,0)− f∗

i )
21600CK2L1.5σ3

∆ T

) 2
5 }

(3)

(where ηi is the learning rate for client i’s true cluster, ni is the number of clients who share client129

i’s distribution, and C is a constant (see Appendix A for details)) guarantees that130

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2

√
120CL(fi(xi,0)− f∗

i )σ
2

niT
+

(
21600CK2L

3
2σ3

∆

) 1
5
(
2(fi(xi,0)− f∗

i )

T

) 4
5

+

(
21600CK2L

3
2σ3

∆

) 2
5
(
2(fi(xi,0)− f∗

i )

T

) 3
5

+
6L(fi(xi,0 − f∗

i )

T
.

(4)
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Algorithm 3 Personalized Decentralized Learning with Threshold-Clustering (PDL-TC)
Input Learning rate η; momentum parameter α; number of clusters K

1: for round t ∈ [T ] do
2: Each client i receives all other clients’ momentums, i.e. for j ̸= i

{mj,t = αgj(xj,t−1)− (1− α)mj,t−1}j∈[N ]\i.

3: Each client i runs Threshold-Clustering({mi,t}i∈[N ],mi,t,1) and obtains an estimate, vkt
i
,

of its own cluster mean.
4: Each client computes their own parameter update

xi,t = xi,t−1 − ηvkt
i
.

Remark 2 (Convergence Rate). The rate of convergence in Theorem 3, ignoring constants and131

higher order terms, is132

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲ O
(√

σ2

niT

)
. (5)

We note a few things. The rate in (5) is the optimal rate in T for stochastic gradient descent on133

non-convex functions [1]. In (4), the leading term’s dependence on
√
σ2/ni is intuitive, since134

convergence error should increase as the variance of points in the cluster increases and decrease as135

the number of points in the cluster increases. Also, the dependence of higher-order terms in (4)136

on the number of clusters K demonstrates that as we increase the number of clusters, clustering137

correctly may become harder (i.e. there are more opportunities to mis-cluster). Finally, the learning138

rate ηi in (3) is the optimal learning rate only for client i’s true cluster. Therefore, we can’t know ηi139

in advance, since the point of running our algorithm is to realize the true clusters. Instead, in practice140

we just set a uniform learning rate across all clusters that works well experimentally. However, the141

fact that, in theory, ηi scales with ni and ∆ is intuitive. As the number of points in i’s cluster142

increases, and as i’s cluster is farther away from the other clusters, our algorithm can more easily143

identify i’s cluster and thus can increase the learning rate for that cluster.144

We now present our personalized decentralized learning method (Algorithm 3), in which clients145

cluster themselves. While this requires more communication than the federated version (N2 instead146

of KN communications per round), (a) it does not require that cluster-center initializations be close147

to true cluster means (Assumption 7) since clients simply initialize their cluster-center estimates148

with their own momentum, and (b) its convergence guarantee (Theorem 4) is independent of K.149

Theorem 4. Given Assumptions [4-6], running PDL-TC over T rounds with learning rate150

ηi = min

{
1

3L
,

(
2(fi(xi,0)− f∗

i )
48CLσ2

ni
T

) 1
2

,

(
2(fi(xi,0)− f∗

i )
1968L1.5σ3

∆ T

) 2
5
}
.

guarantees that151

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2

√
96CL(fi(xi,0)− f∗

i )σ
2

niT
+

(
1968L

3
2σ3

∆

) 1
5
(
2(fi(xi,0)− f∗

i )

T

) 4
5

+

(
1968L

3
2σ3

∆

) 2
5
(
2(fi(xi,0)− f∗

i )

T

) 3
5

+
6L(fi(xi,0 − f∗

i )

T
.

Therefore, the rate of convergence, ignoring constants and higher-order terms, is152

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲ O
(√

σ2

niT

)
.
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Figure 1: We report mean-squared-error
loss of a model trained on the 5 listed
algorithms. We run each algorithm for
5 trials.
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Figure 2: We report the effect of cluster
size, N/K, on a model’s accuracy when
trained with PFL-TC.

4 Preliminary Simulations153

In this section, we compare our algorithms PFL-TC (Algorithm 2) and PDL-TC (Algorithm 3) to154

three baselines, and display the results in Figure 1. For the first baseline (Standalone), all agents train155

only on their own data, and we display the average loss of their models. The other two baselines are156

variants of IFCA, a SOTA algorithm for cluster-based personalized federated learning proposed in157

[5]. In IFCA(model), agents compute their own parameter updates and the server averages them per-158

cluster. In IFCA(grad), the server computes per-cluster parameter updates by averaging gradients159

from the clients. We use the synthetic dataset described in [5] for these experiments.160

Our experimental setup is the following. We set the number of clusters K = 4, the number of clients161

per cluster n = 9, the feature dimensionality d = 10, and we run all experiments for 5 trials. Hence162

N = nK. For each client i in cluster k, we devise a linear model163

yi = aTi x
∗
k,

where ai ∈ Rd×n is a random matrix containing agent i’s samples, and the per-cluster optima164

x∗
k ∈ Rd are generated from a binomial distribution with {0, 100} in each coordinate. Before165

training we initialize the parameters for each client {xi,0}Ni=1 from a standard Gaussian distribution.166

Finally, we evaluate the output {xi,T }Ni=1 of all algorithms with mean-squared-error loss167

1

N

∑
i=1:N, i∈k, k∈[K]

∥xi,T − x⋆
k∥22.

In Figure 1, we see that PFL-TC and PDL-TC achieve lower loss than IFCA(grad). They also have168

significantly lower variance than IFCA(model) and are less sensitive to the model’s initial weights.169

In Figure 2, we set d = 20 and n = 10 so that any client’s local data alone cannot fully determine the170

model weights. The results in this figure suggest that PFL-TC benefits from collaborative learning171

and from increasing the number of clients per cluster. Notably, this behavior is consistent with our172

theoretical guarantee in (4), which states that convergence error is inversely proportional to
√
N/K.173

5 Conclusion174

We develop two simple clustering-based algorithms to achieve personalization in federated learning.175

Our algorithms have optimal convergence guarantees and asymptotically match the achievable rates176

when the true clustering of clients is known. A current limitation of our work is that we require the177

momentums (effectively gradients) of differently distributed clients to be sufficiently well-separated178

at all points. Ideally, we would only have to impose this separation requirement on the optima of dif-179

ferently distributed clients’ loss objectives. We are also working on more large-scale and real-world180

empirical benchmarking of our methods. Future directions involve formalizing the robustness prop-181

erties of our clustering method and designing Byzantine-robust versions of our algorithms. Further,182

6



our analysis can be used to show that our algorithms are incentive-compatible and lead to stable183

coalitions as in [3]. This would form a strong argument towards encouraging participants in a fed-184

erated learning system. Investigating such incentives and fairness concerns is another promising185

future direction.186
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Appendix218

A Proofs219

A.1 Proof of Theorem 3220

A.1.1 Personalized Federated Learning221

We restate the main steps of the algorithm to establish notation for the proofs.222

223

PFL: At round t ∈ [T ]224

1. Clients send momentums225

{mi,t = αgi(xi,t−1, ζi) + (1− α)mi,t−1}i=1:N

to the server. The server runs Threshold-Clustering on {mi,t}i=1:N for Mt rounds, ob-226

taining K clusters {kt} and cluster-mean estimates {vkt,Mt
}kt . The server initialized this227

clustering procedure with cluster-mean estimates {vkt,0}kt .228

2. Server updates parameters for each cluster, kt,229

{xi,t = xi,t−1 − ηvkt,Mt
}i∈kt

and sends them back to the clients, i ∈ kt, in that cluster.230

3. Clients update momentums231

{mi,t+1 = αgi(xi,t, ζi) + (1− α)mi,t}i=1:N .

Threshold-Clustering: At round l ∈ [Mt]232

1. Server constructs K balls of radii {τkt,l}kt around {vkt,l−1}kt .233

2. Server samples St,l from {mi,t}i∈[N ] in per-true-cluster amounts {nk,t,l}k∈[K] (Note: {k}234

always denotes true clusters, whereas {kt} are the clusters obtained in round t). We denote235

Nt,l =
∑K

k=1 nk,t,l = |St,l|, i.e. the total number of points sampled from {mi,t}i∈[N ] in236

thresholding round l; and Nt =
∑Mt

l=1 Nt,l, i.e. the total number of points sampled across237

all rounds of thresholding in optimization step t. Server sets new cluster-mean estimates238

vkt,l =
1

Nt,l

∑Nt,l

j=1 yj,t,l, where239

yj,t,l = mj,t1(∥vkt,l−1 −mj,t∥ ≤ τkt,l) + vkt,l−11(∥vkt,l−1 −mj,t∥ > τkt,l)

for each mj,t ∈ St,l.240

Assumptions:241

1. Server knows in advance that there are K clusters.242

2. mi,0 = 0 for all clients i, and α = 1 and step t = 1 of the optimization procedure.243

3. For all clients i and all x,244

E∥gi(x; ζi)−∇fi(x)∥2 ≤ σ2.

4. For all clients i, j not in the same true cluster and all rounds t ∈ [T ] of the optimization245

cluster,246

∥Emi,t − Emj,t∥ > ∆.

5. For all clients i, in round t ∈ [T ] of the optimization procedure,247

E∥vkt
i ,0

− Emi,t∥2 ≤ σ2,

where kti is the cluster to which i is assigned in round t.248
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It follows from Assumption 3 above that, for all clients i and rounds t ∈ [T ] of the optimization249

procedure,250

E∥mi,t − Emi,t∥2 ≤ ρ2

= ασ2.

Proof.

E∥mi,t − Emi,t∥2 = E∥α(gi(xi,t−1)−∇fi(xi,t−1)) + (1− α)(mi,t−1 − Emi,t−1)∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)2E∥mi,t−1 − Emi,t−1∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)E∥mi,t−1 − Emi,t−1∥2

≤ α2σ2
t−1∑
q=0

(1− α)q

≤ α2σ2 (1− α)t − 1

(1− α)− 1

≤ α2σ2 1

α

= ασ2.

251

Convergence of Threshold-Clustering252

Lemma 1. Let kti be client i’s assigned cluster after thresholding in round t ∈ [T ] of PFL. Then,253

after254

l =

log

(
ρ

α∆ + 1
αni

)
log

(
1− δi

2

)
rounds of Threshold-Clustering,255

E∥vkt
i ,l

− Emi,t∥2 ≤
(
467CK2 +

432CK2

nki

)
ρ3

∆
+

5Cρ2

nki

, (6)

where C is a constant.256

Proof. Let ki be client i’s true cluster.257

E∥vkt
i ,l

− Emi,t∥2 = E
∥∥∥∥ 1

Nt,l

∑
j∈St,l:j∼i

(yj,t,l − Emi,t) +
1

Nt,l

∑
j∈St,l:j ̸∼i

(yj,t,l − Emi,t)

∥∥∥∥2

≤
2(1 + γkt

i ,l
)

N2
t,l

[∥∥∥∥ ∑
j∈St,l:j∼i

E(yj,t,l −mi,t)

∥∥∥∥2 + E
∥∥∥∥ ∑

j∈St,l:j∼i

(yj,t,l − Eyj,t,l)
∥∥∥∥2]

+

(
1 + 1

γkt
i
,l

)
N2

t,l

E
∥∥∥∥ ∑

j∈St,l:j ̸∼i

(yj,t,l − Emi,t)

∥∥∥∥2

≤
2n2

ki,t,l
(1 + γkt

i ,l
)

N2
t,l

[
∥Ej∼i(yj,t,l −mi,t)∥2︸ ︷︷ ︸

T1

+
1

nki,t,l
Ej∼i∥yj,t,l − Ej∼iyj,t,l∥2︸ ︷︷ ︸

T2

]

+

(
1 + 1

γkt
i
,l

)
(Nt,l − nki,t,l)

2

N2
t,l

Ej ̸∼i∥yj,t,l − Emi,t∥2︸ ︷︷ ︸
T3

. (7)

10



Now bound T1, T2, and T3.258

259

We assume at the beginning of each thresholding round l that, for all clients i,260

E∥vkt
i ,l−1 − Emi,t∥2 ≤ c2kt

i ,l
.

We also set261

δk,t,l = (
nk,t,l

Nt,l
)2, where k denotes an arbitrary true cluster262

τ2kt
i ,l

=

√
δki,t,l

(c2
kt
i
,l
+ρ2)∆

ρ , where i denotes an arbitrary client263

• and ensure that, for all i, τ2kt
i ,l

+ c2kt
i ,l

+ ρ2 ≤ ∆2

12 and τ2kt
i ,l

≤ ∆2

18 .264

Bound T1:265

266

We will break this into two cases: 1) where clients i ∼ j have the same history of parame-267

ter updates (i.e. have always been assigned to the same cluster in past rounds), and 2) where they268

don’t. Then we will note that269

∥Ej∼i(yj,t,l −mi,t)∥2 = ∥Ej∼i(yj,t,l −mi,t)|Case 1∥2P(Case 1) + ∥Ej∼i(yj,t,l −mi,t)|Case 2∥2P(Case 2),

and evaluate each of these components.270

271

Case 1: At round t, clients i ∼ j have same history of parameter updates, i.e. xi,t′ = xj,t′272

for all t′ < t. As a reminder about notation, ktj denotes the cluster to which j is assigned after273

thresholding in round t ∈ [T ] of the optimization procedure. In this case274

∥Ej∼i(yj,t,l −mi,t)∥2 ≤ (Ej∼i∥yj,t,l −mj,t∥)2

=

[
Ej∼i[∥vkt

i ,l−1 −mj,t∥1(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
)]

]2
≤
[Ej∼i[∥vkt

i ,l−1 −mj,t∥21(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
)]

τkt
i ,l

]2
≤
[Ej∼i∥vkt

i ,l−1 −mj,t∥2

τkt
i ,l

]2
≤
[
2Ej∼i∥vkt

i ,l−1 − Ej∼imj,t∥2 + 2Ej∼i∥mj,t − Ej∼imj,t∥2

τkt
i ,l

]2
≤
[
2E∥vkt

i ,l−1 − Emi,t∥2 + 2E∥mj,t − Emj,t∥2

τkt
i ,l

]2
≤
[2c2kt

i ,l
+ 2ρ2

τkt
i ,l

]2
=

4(c2kt
i ,l

+ ρ2)2

τ2
kt
i ,l

.

Case 2: At round t, clients i ∼ j have different history of parameter updates, i.e. xi,t ̸= xj,t for275

some t′ < t. This means that at some time t′ < t, i and j were first assigned to different clusters.276

This could have happened in one of three ways: 1) i was assigned to the correct cluster and j to the277

incorrect cluster, 2) j was assigned to the correct cluster and i to the incorrect one, 3) i and j were278

both assigned to different, incorrect clusters.279

Say j was assigned to a specific incorrect cluster kt
′

j′ at time t′. We take am ‘incorrect’ here to mean280

that kt
′

j′ contains at least one client j′ ̸∼ j. Then281

∥mj,t′ − vkt′
j′ ,Mt′

∥ ≤ τkt′
j′ ,Mt′

.

11



If this happens, then282

2∥mj,t′ − Emj,t′∥2 ≥ ∥Emj,t′ − vkt′
j′ ,Mt′

∥2 − 2∥mj,t′ − vkt′
j′ ,Mt′

∥2

≥ ∥Emj,t′ − vkt′
j′ ,Mt′

∥2 − 2τ2
kt′
j′ ,Mt′

≥ 1

3
∥Emj,t′ − Emj′,t′∥2 − ∥Emj′,t′ −mj′,t′∥2 − ∥mj′,t′ − vkt′

j′ ,Mt′
∥2 − 2τ2

kt′
j′ ,Mt′

≥ 1

3
∥Emj,t′ − Emj′,t′∥2 − ∥Emj′,t′ −mj′,t′∥2 − 3τ2

kt′
j′ ,Mt′

≥ ∆2

3
− ∥Emj′,t′ −mj′,t′∥2 − 3τ2

kt′
j′ ,Mt′

.

Equivalently283

2∥mj,t′ − Emj,t′∥2 + ∥mj′,t′ − Emj′,t′∥2 ≥ ∆2

3
− 3τ2

kt′
j′ ,Mt′

.

The probability of this event occurring is284

P
(
2∥mj,t′ − Emj,t′∥2 + ∥mj′,t′ − Emj′,t′∥2 ≥ ∆2

3
− 3τ2

kt′
j′ ,Mt′

)
≤ 2E∥mj,t′ − Emj,t′∥2 + E∥mj′,t′ − Emj′,t′∥2

∆2

3 − 3τ2
kt′
j′ ,Mt′

≤ 3ρ2

∆2

3 − 3τ2
kt′
j′ ,Mt′

.

Since i and j can both be assigned to a maximum of K different clusters,285

P(Case 2) = P(i, j, or both assigned incorrectly, and differently, in round t′ < t) ≤
(

K!

(K − 2)!

)
3ρ2

∆2

3 − 3τ2
kt′
j′ ,Mt′

=
3K(K − 1)ρ2

∆2

3 − 3τ2
kt′
j′ ,Mt′

=
3K2ρ2

∆2

3 − 3τ2
kt′
j′ ,Mt′

≤ 18K2ρ2

∆2
.

The bound on T1 in this case is286

∥Ej∼i(yj,t,l −mi,t)∥2 ≤ Ej∼i∥yj,t,l −mi,t∥2

= E[∥mj,t −mi,t∥21(∥mj,t − vkt
i ,l−1∥ ≤ τkt

i ,l
)]

+ E[∥vkt
i ,l−1 −mi,t∥21(∥mj,t − vkt

i ,l−1∥ > τkt
i ,l
)]

≤ E[∥mj,t −mi,t∥21(∥mj,t − vkt
i ,l−1∥ ≤ τkt

i ,l
)] + E∥vkt

i ,l−1 −mi,t∥2.

For the first part of this bound, if ∥mj,t − vkt
i ,l−1∥ ≤ τkt

i ,l
,287

E∥mj,t −mi,t∥2 ≤ 2E∥mj,t − vkt
i ,l−1∥2 + 2E∥vkt

i ,l−1 −mi,t∥2

≤ 2τ2kt
i ,l

+ 4E∥vkt
i ,l−1 − Emi,t∥2 + 4E∥mi,t − Emi,t∥2

≤ 2τ2kt
i ,l

+ 4c2kt
i ,l

+ 4ρ2.

For the second part of the bound,288

E∥vkt
i ,l−1 −mi,t∥2 ≤ 2E∥vkt

i ,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2

≤ 2c2kt
i ,l

+ 2ρ2.

12



Therefore289

∥Ej∼i(yj,t,l −mi,t)∥2 ≤ 2τ2kt
i ,l

+ 6c2kt
i ,l

+ 6ρ2.

Combining Cases 1 and 2 to finally bound T1,290

∥Ej∼i(yj,t,l −mi,t)∥2 = ∥Ej∼i(yj,t,l −mi,t)|Case 1∥2P(Case 1) + ∥Ej∼i(yj,t,l −mi,t)|Case 2∥2P(Case 2)

≤
4(c2kt

i ,l
+ ρ2)2

τ2
kt
i ,l

+ (2τ2kt
i ,l

+ 6c2kt
i ,l

+ 6ρ2)
18K2ρ2

∆2

≤
4(c2kt

i ,l
+ ρ2)ρ√

δki,t,l∆
+ (2τ2kt

i ,l
+ 6c2kt

i ,l
+ 6ρ2)

18K2ρ2

∆2

≤
4(c2kt

i ,l
+ ρ2)ρ√

δki,t,l∆
+

36K2
√
δki,t,l(c

2
kt
i ,l

+ ρ2)ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2

=

(4(c2kt
i ,l

+ ρ2)√
δki,t,l

+ 36K2
√

δki,t,l(c
2
kt
i ,l

+ ρ2)

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2
.

Bound T2:291

Ej∼i∥yj,t,l − Ej∼iyj,t,l∥2 ≤ E[∥mj,t − Emj,t∥21(∥vkt
i ,l−1 −mj,t∥ ≤ τkt

i ,l
)]

+ E[∥vkt
i ,l−1 − Evkt

i ,l−1∥21(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
)]

≤ ρ2 + E[(2∥vkt
i ,l−1 − Emi,t∥2 + 4E∥mi,t − Emi,t∥2 + 4E∥vkt

i ,l−1 − Emi,t∥2)·
1(∥vkt

i ,l−1 −mj,t∥ > τkt
i ,l
)]

≤ ρ2 + (6c2kt
i ,l

+ 4ρ2)P(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
).

To evaluate the probability in this bound, we have to again handle cases (the same cases as for T1).292

293

Case 1: At round t, clients i ∼ j have same history of parameter updates, i.e. xi,t′ = xj,t′294

for all t′ < t. In this case,295

P(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
|Case 1) = P(∥vkt

i ,l−1 −mi,t∥ > τkt
i ,l
)

≤
E∥vkt

i ,l−1 −mi,t∥2

τ2
kt
i ,l

≤
2E∥vkt

i ,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2

τ2
kt
i ,l

≤
2(c2kt

i ,l
+ ρ2)

τ2
kt
i ,l

.

Case 2: At round t, clients i ∼ j have different history of parameter updates, i.e. xi,t′ ̸= xj,t′ for296

some t′ < t. The proof for Case 2 in bounding T1 can be applied exactly here. That is,297

P(Case 2) ≤ 18K2ρ2

∆2
.

Therefore,298

P(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
)

= P(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
|Case 1)P(Case 1) + P(∥vkt

i ,l−1 −mj,t∥ > τkt
i ,l
|Case 2)P(Case 2)

≤ P(∥vkt
i ,l−1 −mj,t∥ > τkt

i ,l
|Case 1) + P(Case 2)

≤
2c2kt

i ,l
+ 2ρ2

τ2
kt
i ,l

+
18K2ρ2

∆2
.
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Incorporating this bound on the probability into a bound on T2,299

Ej∼i∥yj,t,l − Ej∼iyj,t,l∥2 ≤ ρ2 + (6c2kt
i ,l

+ 4ρ2)

(2(c2kt
i ,l

+ ρ2)

τ2
kt
i ,l

+
18K2ρ2

∆2

)

≤ ρ2 +

(12(c2kt
i ,l

+ ρ2)√
δki,t,l

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2
.

Bound T3:300

Ej ̸∼i∥yj,t,l − Emi,t∥2 ≤ (1 + βkt
i ,l
)E∥vkt

i ,l−1 − Emi,t∥2 +
(
1 +

1

βkt
i ,l

)
Ej ̸∼i∥yj,t,l − vkt

i ,l−1∥2

≤ (1 + βkt
i ,l
)(ckt

i ,l
)2 +

(
1 +

1

βkt
i ,l

)
Ej ̸∼i∥yj,t,l − vkt

i ,l−1∥2

= (1 + βkt
i ,l
)(ckt

i ,l
)2 +

(
1 +

1

βkt
i ,l

)
Ej ̸∼i[∥mj,t − vkt

i ,l−1∥21{∥mj,t − vkt
i ,l−1∥ ≤ τkt

i ,l
}]

≤ (1 + βkt
i ,l
)(ckt

i ,l
)2 +

(
1 +

1

βkt
i ,l

)
τ2kt

i ,l
Pj ̸∼i(∥mj,t − vkt

i ,l−1∥ ≤ τkt
i ,l
).

If ∥mj,t − vkt
i ,l−1∥ ≤ τkt

i ,l
, then301

∆2 ≤ ∥Emj,t − Emi,t∥2 ≤ 3(∥mj,t − Emj,t∥2 + ∥mj,t − Evkt
i ,l−1∥2 + ∥Evkt

i ,l−1 − Emi,t∥2)
≤ 3(∥mj,t − Emj,t∥2 + 2∥mj,t − Emj,t∥2 + 2∥Emj,t − Evkt

i ,l−1∥2

+ 2E∥vkt
i ,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2)

≤ 3(3∥mj,t − Emj,t∥2 + 2τ2kt
i ,l

+ 2c2kt
i ,l

+ 2ρ2).

The probability of this event is302

P
(
∥mj,t − Emj,t∥2 ≥ ∆2

9
−

2(τ2kt
i ,l

+ c2kt
i ,l

+ ρ2)

3

)
≤ E∥mj,t − Emj,t∥2

∆2

9 −
2τ2

kt
i
,l
+2c2

kt
i
,l
+2ρ2

3

≤ ρ2

∆2

9 −
2(τ2

kt
i
,l
+c2

kt
i
,l
+ρ2)

3

≤ 18ρ2

∆2
.

Therefore303

Ej ̸∼i∥yj,t,l − Emi,t∥2 ≤ (1 + βkt
i ,l
)c2kt

i ,l
+

(
1 +

1

βkt
i ,l

)
τ2kt

i ,l
Pj ̸∼i(∥mj,t − vkt

i ,l−1∥ ≤ τkt
i ,l
)

≤ (1 + βkt
i ,l
)c2kt

i ,l
+

(
1 +

1

βkt
i ,l

)18τ2kt
i ,l
ρ2

∆2

≤ (1 + βkt
i ,l
)c2kt

i ,l
+

(
1 +

1

βkt
i ,l

)18
√

δki,t,l(ρ
2 + c2kt

i ,l
)ρ

∆
.
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Now apply the bounds on T1, T2, and T3 to (7), and set γkt
i ,l

= 1√
δki,t,l

and βkt
i ,l

=
√
δki,t,l.304

E∥vkt
i ,l

− Emi,t∥2

≤
2n2

ki,t,l
(1 + γkt

i ,l
)

N2
t,l

[(4(c2kt
i ,l

+ ρ2)√
δki,t,l

+ 36K2
√

δki,t,l(c
2
kt
i ,l

+ ρ2)

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2︸ ︷︷ ︸
T1

+
1

nki,t,l

(
ρ2 +

(12(c2kt
i ,l

+ ρ2)√
δki,t,l

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2

)
︸ ︷︷ ︸

T2

]

+

(
1 + 1

γkt
i
,l

)
(Nt,l − nki,t,l)

2

N2
t,l

[
(1 + βkt

i ,l
)c2kt

i ,l
+

(
1 +

1

βkt
i ,l

)18
√
δki,t,l(ρ

2 + c2kt
i ,l
)ρ

∆︸ ︷︷ ︸
T3

]

≤ 2δki,t,l

(
1 +

1√
δki,t,l

)[(4(c2kt
i ,l

+ ρ2)√
δki,t,l

+ 36K2
√

δki,t,l(c
2
kt
i ,l

+ ρ2)

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2︸ ︷︷ ︸
T1

+
1

nki,t,l

(
ρ2 + (4c2kt

i ,l
+ 2ρ2)

(
ρ√

δki,t,l∆
+

108Kρ2

∆2

))
︸ ︷︷ ︸

T2

]

+ (1 +
√
δki,t,l)(1−

√
δki,t,l)

2

[
(1 +

√
δki,t,l)c

2
kt
i ,l

+

(
1 +

1√
δki,t,l

)18
√

δki,t,l(ρ
2 + c2kt

i ,l
)ρ

∆︸ ︷︷ ︸
T3

]

≤ 2(δki,t,l +
√
δki,t,l)

[(4(c2kt
i ,l

+ ρ2)√
δki,t,l

+ 36K2
√

δki,t,l(c
2
kt
i ,l

+ ρ2)

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2︸ ︷︷ ︸
T1

+
1

nki,t,l

(
ρ2 +

(12(c2kt
i ,l

+ ρ2)√
δki,t,l

)
ρ

∆
+ 108K2(c2kt

i ,l
+ ρ2)

ρ2

∆2

)
︸ ︷︷ ︸

T2

]
+ (1− δki,t,l)

[
c2kt

i ,l
+

18(c2kt
i ,l

+ ρ2)ρ

∆

]

≤
[(

2(δki,t,l +
√
δki,t,l)

(
4√
δki,t,l

+ 36K2
√
δki,t,l +

12√
δki,t,lnki,t,l

)
+ 18(1− δki,t,l)

)
ρ

∆

+

(
2(δki,t,l +

√
δki,t,l)

(
108K2 +

108K2

nki,t,l

))
ρ2

∆2
+ (1− δki,t,l)

]
c2kt

i ,l

+

[(
2(δki,t,l +

√
δki,t,l)

(
4√
δki,t,l

+ 36K2
√
δki,t,l +

12√
δki,t,lnki,t,l

)
+ 18(1− δki,t,l)

)
ρ

∆

+

(
2(δki,t,l +

√
δki,t,l)

(
108K2 +

108K2

nki,t,l

))
ρ2

∆2
+

2(δki,t,l +
√
δki,t,l)

nki,t,l

]
ρ2

≤
[(

34 + 144K2 +
48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+ (1− δki,t,l)

]
c2kt

i ,l

+

[(
34 + 144K2 +

48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+

4

nki,t,l

]
ρ2.
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Now set ∆ such that the ρ
∆ and ρ2

∆2 coefficients of c2kt
i ,l

are bounded above by δki,t,l

4 . This way, the305

entire coefficient of c2kt
i ,l

will be bounded above by 1− δki,t,l

2 .306

∆ > max
i∈[N ],t∈[T ],l∈[Mt]

max


4

(
34 + 144K2 + 48

nki,t,l

)
ρ

δki,t,l
,

√√√√√4

(
432K2 + 432K2

nki,t,l

)
ρ2

δki,t,l

 .

Then,307

E∥vkt
i ,l

− Emi,t∥2 ≤
(
1− δki,t,l

2

)
c2kt

i ,l
+

((
34 + 144K2 +

48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+

4

nki,t,l

)
ρ2.

(8)

Set c2kt
i ,l+1 to the right side of (8). Unrolling the recursion over l rounds,308

E∥vkt
i ,l

− Emi,t∥2 ≤
(
1− δki,t,l

2

)l

σ2

+

[((
34 + 144K2 +

48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+

4

nki,t,l

)
ρ2
] l−1∑

q=0

(
1− δki,t,l

2

)q

≤
(
1− δki,t,l

2

)l

σ2

+ min
l∈[Mt]

[((
34 + 144K2 +

48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+

4

nki,t,l

)
ρ2
]

·
l−1∑
q=0

(
1− δki,t,l

2

)q

.

Let ni be the number of clients who share client i’s distribution, and let δi = ni

N Then309 (
1− δki,t,l

2

)l

σ2 + min
l∈[Mt]

[((
34 + 144K2 +

48

nki,t,l

)
ρ

∆
+

(
432K2 +

432K2

nki,t,l

)
ρ2

∆2
+

4

nki,t,l

)
ρ2
] l−1∑

q=0

(
1− δki,t,l

2

)q

≤ C

[(
1− δi

2

)l

σ2 +

[((
34 + 144K2 +

48

ni

)
ρ

∆
+

(
432K2 +

432K2

ni

)
ρ2

∆2
+

4

ni

)
ρ2
]]

,

where C is a constant to reflect that the series above converges, δki,t,l is within a constant factor of310

δi, and nki,t,l is within a constant factor of ni. Then, running this thresholding procedure for311

l =

log

(
ρ

α∆ + 1
αni

)
log

(
1− δi

2

)
rounds guarantees that312

E∥vkt
i ,l

− Emi,t∥2 ≤
(
467CK2 +

432CK2

ni

)
ρ3

∆
+

5Cρ2

ni
. (9)

313
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Convergence of PFL314

Proof. Define Bi to be the RHS of (9), and assume the learning rate η ≤ 1
L . For client i, by315

L-smoothness of fi,316

fi(xi,t) ≤ fi(xi,t−1) + ⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+
L

2
∥xi,t − xi,t−1∥2

= fi(xi,t−1)− η⟨∇fi(xi,t−1), vkt
i ,Mt

⟩+ Lη2

2
∥vkt

i ,Mt
∥2

= fi(xi,t−1) +
η

2
∥vkt

i ,Mt
−∇fi(xi,t−1)∥2 −

η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vkt

i ,Mt
∥2

≤ fi(xi,t−1) + η∥vkt
i ,Mt

− Emi,t∥2 + η∥Emi,t −∇fi(xi,t−1)∥2 −
η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vkt

i ,Mt
∥2.

(10)

Define ϕi,t = Emi,t −∇fi(xi,t−1). Setting α ≥ 3Lη,317

∥ϕi,t∥2 = ∥Emi,t −∇fi(xi,t−1)∥2

= ∥αEgi(xi,t−1) + (1− α)Emi,t−1 −∇fi(xi,t−1)∥2

= (1− α)2∥Emi,t−1 −∇fi(xi,t−1)∥2

≤ (1− α)2(1 + α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + (1− α)2
(
1 +

1

α

)
∥∇fi(xi,t−1)−∇fi(xi,t−2)∥2

≤ (1− α)2(1 + α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + L2(1− α)

(
1 +

1

α

)
∥xi,t−1 − xi,t−2∥2

≤ (1− α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + L2η2(1− α)

(
1 +

1

α

)
∥vkt−1

i ,Mt−1
∥2

≤ (1− α)∥ϕi,t−1∥2 +
Lη

2
(1− Lη)∥vkt−1

i ,Mt−1
∥2. (11)

Scale (10) by L, take its expectation, and add it to the expectation of (11). Then by Lemma 1,318

LE(fi(xi,t)− fi(x
∗
i )) +

Lη

2
(1− Lη)E∥vkt

i ,Mt
∥2 + (1− Lη)∥ϕi,t∥2︸ ︷︷ ︸

ξi,t

+
Lη

2
E∥∇fi(xi,t−1)∥2

≤ LE(fi(xi,t−1)− fi(x
∗
i )) +

Lη

2
(1− Lη)E∥vkt−1

i ,Mt−1
∥2 + (1− α)∥ϕi,t−1∥2 + LηBi

≤ LE(fi(xi,t−1)− fi(x
∗
i )) +

Lη

2
(1− Lη)E∥vkt−1

i ,Mt−1
∥2 + (1− Lη)∥ϕi,t−1∥2︸ ︷︷ ︸

ξi,t−1

+LηBi. (12)

Summing (12) over t and observing that ∥ϕi,1∥ = ∥Emi,1 −∇fi(xi,0)∥ = 0,319

1

T

T∑
t=1

Lη

2
E∥∇fi(xi,t−1)∥2 =

1

T

( T∑
t=2

Lη

2
E∥∇fi(xi,t−1)∥2 +

Lη

2
E∥∇fi(xi,0)∥2

)

≤ 1

T

( T∑
t=2

(ξi,t−1 − ξi,t) + LηBi

+ LE((fi(xi,0)− fi(x
∗))− (fi(xi,1)− fi(x

∗)))

+ Lη∥Emi,1 −∇fi(xi,0)∥2 + LηBi −
Lη

2
(1− Lη)E∥vkt

i
,Mt∥2

)
≤ L(fi(xi,0)− fi(x

∗))

T
+ 2LηBi.
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Equivalently, setting α = 3Lη320

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4Bi

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4

(
467CK2 +

432CK2

ni

)
ρ3

∆
+

20Cρ2

ni

=
2(fi(xi,0)− f∗

i )

ηT
+ 4

(
467CK2 +

432CK2

ni

)
α

3
2σ3

∆
+

20Cασ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4

(
467CK2 +

432CK2

ni

)
(3Lη)

3
2σ3

∆
+

60CLησ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4

(
467CK2 +

432CK2

ni

)
(3Lη)

3
2σ3

∆
+

60CLησ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 21600CK2 (Lη)

3
2σ3

∆
+

60CLησ2

ni

Choose321

η = min

{
1

3L
,

(
2(fi(xi,0)− f∗

i )
60CLσ2

ni
T

) 1
2

,

(
2(fi(xi,0)− f∗

i )
21600CK2L1.5σ3

∆ T

) 2
5 }

.

Then322

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2

√
120CL(fi(xi,0)− f∗

i )σ
2

niT

+

(
21600CK2L

3
2σ3

∆

) 1
5
(
2(fi(xi,0)− f∗

i )

T

) 4
5

+

(
21600CK2L

3
2σ3

∆

) 2
5
(
2(fi(xi,0)− f∗

i )

T

) 3
5

+
6L(fi(xi,0 − f∗

i )

T
.

323

A.1.2 Personalized Decentralized Learning324

We restate the problem setup and outline the main steps of the algorithm to establish notation for325

the proofs.326

327

Problem Setup: There are N clients i ∈ [N ]. Each client wants to optimize an L-smooth328

objective fi and has access to an unbiased stochastic gradient such that, for all x,329

Eζi [gi(x; ζi)|x] = ∇fi(x).

All clients in the same true cluster have the same objective fi, and for all clients i in the same true330

cluster k, ζi ∼ Pk, for distributions {Pk}k∈[K].331

332

PDL: At round t ∈ [T ]333

1. Clients send momentums334

{mi,t = αgi(xi,t−1, ζi) + (1− α)mi,t−1}i=1:N

to each other. Each client runs thresholding on {mi,t}i=1:N only around their own momen-335

tum mi,t for Mi,t rounds. That is, client i sets vi,t,0 = mi,t and only maintains this cluster.336

After thresholding, client i’s new cluster-mean estimate is vi,t,Mt
.337
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2. Each client i updates their parameters338

xi,t = xi,t−1 − ηvi,t,Mt

and their momentum339

mi,t+1 = αgi(xi,t, ζi) + (1− α)mi,t.

Threshold-Clustering: At round l ∈ [Mi,t]340

1. Client i samples Si,t,l from {mi,t}i∈[N ]. We let Ni,t,l = |Si,t,l| and Ni,t =
∑Mi,t

l=1 Ni,t,l.341

Additionally, let ni,t,l denote the number of clients from i’s distribution in the sample Si,t,l.342

2. client i sets the new estimate of their own cluster center vi,t,l = 1
Ni,t,l

∑Ni,t,l

j=1 yi,j,t,l, where343

yi,j,t,l = mj,t1(∥vi,t,l−1 −mj,t∥ ≤ τi,t,l) + vi,t,l−11(∥vi,t,l−1 −mj,t∥ > τi,t,l)

for each mj,t ∈ Si,t,l.344

Assumptions:345

1. For all clients i,346

E∥gi(x; ζi)−∇fi(x)∥2 ≤ σ2.

2. For all clients i, j not in the same true cluster and all rounds t ∈ [T ] of the optimization347

cluster,348

∥Emi,t − Emj,t∥ > ∆.

3. For all clients i and rounds t ∈ [T ] of the optimization procedure,349

E∥mi,t − Emi,t∥2 ≤ ρ2

= ασ2.

Convergence of Thresholding Procedure350

Lemma 2. For all rounds l of Threshold-Clustering,351

E∥vi,t,l − Emi,t∥2 ≤ C

((
34 +

48

ni

)
ρ

∆
+

4

ni

)
ρ2,

where C is a constant.352

Proof. Let ki denote client i’s true cluster and let ni,t,l = |{j : mj,t ∼ Pmi,t
}|.353

E∥vi,t,l − Emi,t∥2 = E
∥∥∥∥ 1

Ni,t,l

∑
j:mj,t∼Pmi,t

(yi,j,t,l − Emi,t) +
1

Ni,t,l

∑
j:j ̸∼Pmi,t

(yi,j,t,l − Emi,t)

∥∥∥∥2

≤ 2(1 + γi,t,l)

N2
i,t,l

[∥∥∥∥ ∑
j:mj,t∼Pmi,t

E(yi,j,t,l −mi,t)

∥∥∥∥2 + E
∥∥∥∥ ∑

j:mj,t∼Pmi,t

(yi,j,t,l − Eyi,j,t,l)
∥∥∥∥2]

+

(
1 + 1

γi,t,l

)
N2

i,t,l

E
∥∥∥∥ ∑

j:mj,t ̸∼Pmi,t

(yi,j,t,l − Emi,t)

∥∥∥∥2

≤
2n2

i,t,l(1 + γi,t,l)

N2
i,t,l

[
∥Ej:mj,t∼Pmi,t

(yi,j,t,l −mi,t)∥2︸ ︷︷ ︸
T1

+
1

ni,t,l
Ej:mj,t∼Pmi,t

∥yi,j,t,l − Ej:mj,t∼Pmi,t
yi,j,t,l∥2︸ ︷︷ ︸

T2

]

+

(
1 + 1

γi,t,l

)
(Ni,t,l − ni,t,l)

2

N2
i,t,l

Ej:mj,t ̸∼Pmi,t
∥yi,j,t,l − Emi,t∥2︸ ︷︷ ︸
T3

. (13)
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Now bound T1, T2, and T3.354

355

We assume at the beginning of each thresholding round l that, for all clients i,356

E∥vi,t,l−1 − Emi,t∥2 ≤ c2i,t,l.

We also set357

• δi,t,l = (
ni,t,l

Ni,t,l
)2358

• τ2i,t,l =

√
δi,t,l(c

2
i,t,l+ρ2)∆

ρ359

• and ensure that, for all i, τ2i,t,l + c2i,t,l + ρ2 ≤ ∆2

12 .360

Bound T1:361

∥Ej:mj,t∼Pmi,t
(yi,j,t,l −mi,t)∥2 = (Ej:mj,t∼Pmi,t

∥yi,j,t,l −mi,t∥)2

=

[
Ej:mj,t∼Pmi,t

∥yi,j,t,l −mi,t∥
]2

≤
[
E[∥vi,t,l−1 −mi,t∥1{∥vi,t,l−1 −mi,t∥ > τi,t,l}]

]2
≤
[
E[∥vi,t,l−1 −mi,t∥21{∥vi,t,l−1 −mi,t∥ > τi,t,l}]

τi,t,l

]2
≤
[
E∥vi,t,l−1 −mi,t∥2

τi,t,l

]2
=

[
2E∥vi,t,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2

τi,t,l

]2
≤
[
2c2i,t,l + 2ρ2

τi,t,l

]2
≤

4(c2i,t,l + ρ2)2

τ2i,t,l

≤
4(c2i,t,l + ρ2)ρ√

δi,t,l∆
.

Bound T2:362

Ej:mj,t∼Pmi,t
∥yi,j,t,l − Ej:mj,t∼Pmi,t

yi,j,t,l∥2 ≤ E∥mi,t − Emi,t∥2P(∥vi,t,l−1 −mi,t∥ ≤ τi,t,l)

+ E∥vi,t,l−1 − Evi,t,l−1∥2P(∥vi,t,l−1 −mi,t∥ > τi,t,l)

≤ ρ2 + 2(E∥vi,t,l−1 − Emi,t∥2 + ∥Emi,t − Evi,t,l−1∥2)·
P(∥vi,t,l−1 −mi,t∥ > τi,t,l)

≤ ρ2 + 2(E∥vi,t,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2

+ 2E∥vi,t,l−1 − Emi,t∥2)P(∥vi,t,l−1 −mi,t∥ > τi,t,l)

≤ ρ2 + (6c2i,t,l + 4ρ2)P(∥vi,t,l−1 −mi,t∥ > τi,t,l)

≤ ρ2 + (6c2i,t,l + 4ρ2)
2E∥vi,t,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2

τ2i,t,l

≤ ρ2 +
12(c2i,t,l + ρ2)2

τ2i,t,l

≤ ρ2 +
12(c2i,t,l + ρ2)ρ√

δi,t,l∆
.
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Bound T3:363

Ej:mj,t ̸∼Pmi,t
∥yi,j,t,l − Emi,t∥2 ≤ (1 + βi,t,l)E∥vi,t,l−1 − Emi,t∥2 +

(
1 +

1

βi,t,l

)
Ej:mj,t ̸∼Pmi,t

∥yi,j,t,l − vi,t,l−1∥2

≤ (1 + βi,t,l)c
2
i,t,l +

(
1 +

1

βi,t,l

)
Ej:mj,t ̸∼Pmi,t

∥yi,j,t,l − vi,t,l−1∥2

= (1 + βi,t,l)c
2
i,t,l

+

(
1 +

1

βi,t,l

)
Ej:mj,t ̸∼Pmi,t

[∥mj,t − vi,t,l−1∥21{∥mj,t − vi,t,l−1∥ ≤ τi,t,l}]

≤ (1 + βi,t,l)c
2
i,t,l +

(
1 +

1

βi,t,l

)
τ2i,t,l¶j:mj,t ̸∼Pmi,t

(∥mj,t − vi,t,l∥ ≤ τi,t,l)

If ∥mj,t − vi,t,l∥ ≤ τi,t,l, then364

∆2 ≤ ∥Emj,t − Emi,t∥2 ≤ 3(∥mj,t − Emj,t∥2 + ∥mj,t − Evi,t,l−1∥2 + ∥Evi,t,l−1 − Emi,t∥2)
≤ 3(∥mj,t − Emj,t∥2 + 2∥mj,t − Emj,t∥2 + 2∥Emj,t − Evi,t,l−1∥2

+ 2E∥vi,t,l−1 − Emi,t∥2 + 2E∥mi,t − Emi,t∥2)
≤ 3(3∥mj,t − Emj,t∥2 + 2τ2i,t,l + 2c2i,t,l + 2ρ2).

The probability of this event is365

P
(
∥mj,t − Emj,t∥2 ≥ ∆2

9
−

2(τ2i,t,l + c2i,t,l + ρ2)

3

)
≤ E∥mj,t − Emj,t∥2

∆2

9 − 2(τ2
i,t,l+c2i,t,l+ρ2)

3

≤ ρ2

∆2

9 − 2(τ2
i,t,l+c2i,t,l+ρ2)

3

≤ 18ρ2

∆2
.

Therefore366

Ej:mj,t ̸∼Pmi,t
∥yi,j,t,l − Emi,t∥2 ≤ (1 + βi,t,l)c

2
i,t,l +

(
1 +

1

βi,t,l

)
τ2i,t,l¶j:mj,t ̸∼Pmi,t

(∥mj,t − vi,t,l∥ ≤ τi,t,l)

≤ (1 + βi,t,l)c
2
i,t,l +

(
1 +

1

βi,t,l

)
18τ2i,t,l(ρ

2 + c2i,t,l)ρ
2

∆2

≤ (1 + βi,t,l)c
2
i,t,l +

(
1 +

1

βi,t,l

)
18
√

δi,t,l(ρ
2 + c2i,t,l)ρ

∆
.
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Now apply the bounds on T1, T2, and T3 to (13), and set γi,t,l = 1√
δi,t,l

and βi,t,l =
√
δi,t,l.367

E∥vi,t,l − Emi,t∥2

≤
2n2

i,t,l(1 + γi,t,l)

N2
i,t,l

[
4(c2i,t,l + ρ2)ρ√

δi,t,l∆︸ ︷︷ ︸
T1

+
1

ni,t,l

(
ρ2 +

12(c2i,t,l + ρ2)ρ√
δi,t,l∆︸ ︷︷ ︸

T2

)]

+

(
1 + 1

γi,t,l

)
(Ni,t,l − ni,t,l)

2

N2
i,t,l

[
(1 + βi,t,l)c

2
i,t,l +

(
1 +

1

βi,t,l

)
18
√
δi,t,l(ρ

2 + c2i,t,l)ρ

∆︸ ︷︷ ︸
T3

]

≤ 2δi,t,l

(
1 +

1√
δi,t,l

)[
4(c2i,t,l + ρ2)ρ√

δi,t,l∆︸ ︷︷ ︸
T1

+
1

ni,t,l

(
ρ2 +

12(c2i,t,l + ρ2)ρ√
δi,t,l∆︸ ︷︷ ︸

T2

)]

+ (1 +
√
δi,t,l)(1−

√
δi,t,l)

2

[
(1 +

√
δi,t,l)c

2
i,t,l +

(
1 +

1√
δi,t,l

)
18
√
δi,t,l(ρ

2 + c2i,t,l)ρ

∆︸ ︷︷ ︸
T3

]

≤ 2(δi,t,l +
√

δi,t,l)

[
4(c2i,t,l + ρ2)ρ√

δi,t,l∆︸ ︷︷ ︸
T1

+
1

ni,t,l

(
ρ2 +

12(c2i,t,l + ρ2)ρ√
δi,t,l∆︸ ︷︷ ︸

T2

)]
+ (1− δi,t,l)

[
c2i,t,l +

18(c2i,t,l + ρ2)ρ

∆

]

≤
[(

34 +
48

ni,t,l

)
ρ

∆
+ (1− δi,t,l)

]
c2i,t,l +

[(
34 +

48

ni,t,l

)
ρ

∆
+

4

ni,t,l

]
ρ2.

Now set ∆ such that the ρ
∆ coefficient of c2i,t,l is bounded above by δi,t,l

2 . This way, the entire368

coefficient of c2i,t,l will be bounded above by 1− δi,t,l
2 .369

∆ > max
i∈[N ],t∈[T ],l∈[Mt]

2

(
34 + 48

ni,t,l

)
ρ

δi,t,l
.

Then,370

E∥vi,t,l − Emi,t∥2 ≤
(
1− δi,t,l

2

)
c2i,t,l +

((
34 +

48

ni,t,l

)
ρ

∆
+

4

ni,t,l

)
ρ2.

(14)

Set c2i,t,l+1 to the right side of (14). Unrolling the recursion over l rounds, and remembering that371

c2i,t,0 = 0,372

E∥vi,t,l − Emi,t∥2 ≤
[((

34 +
48

ni,t,l

)
ρ

∆
+

4

ni,t,l

)
ρ2
] l−1∑

q=0

(
1− δi,t,l

2

)q

≤ C

((
34 +

48

ni

)
ρ

∆
+

4

ni

)
ρ2,

where C is a constant to reflect that the series above converges, and ni,t,l is within a constant factor373

of ni. Therefore, we can conclude that after a single round of thresholding (i.e. l = 1),374

E∥vi,t,l − Emi,t∥2 ≤ C

((
34 +

48

ni

)
ρ

∆
+

4

ni

)
ρ2. (15)

375
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Convergence of PDL376

Proof. Define Bi to be the RHS of (15), and assume the learning rate η ≤ 1
L . For client i, by377

L-smoothness of fi,378

fi(xi,t) ≤ fi(xi,t−1) + ⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+
L

2
∥xi,t − xi,t−1∥2

= fi(xi,t−1)− η⟨∇fi(xi,t−1), vi,t,Mt⟩+
Lη2

2
∥vi,t,Mt∥2

= fi(xi,t−1) +
η

2
∥vi,t,Mt −∇fi(xi,t−1)∥2 −

η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vi,t,Mt∥2

≤ fi(xi,t−1) + η∥vi,t,Mt
− Emi,t∥2 + η∥Emi,t −∇fi(xi,t−1)∥2 −

η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vi,t,Mt

∥2.
(16)

Define ϕi,t = Emi,t −∇fi(xi,t−1). Setting α ≥ 3Lη,379

∥ϕi,t∥2 = (1− α)2∥Emi,t−1 −∇fi(xi,t−1)∥2

≤ (1− α)2(1 + α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + (1− α)2
(
1 +

1

α

)
∥∇fi(xi,t−1)−∇fi(xi,t−2)∥2

≤ (1− α)2(1 + α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + L2(1− α)

(
1 +

1

α

)
∥xi,t−1 − xi,t−2∥2

≤ (1− α)2(1 + α)∥Emi,t−1 −∇fi(xi,t−2)∥2 + L2η2(1− α)

(
1 +

1

α

)
∥vi,t−1,Mt−1

∥2

≤ (1− α)∥Emi,t−1 −∇fi(xi,t−2)∥2 +
Lη

2
(1− Lη)∥vi,t−1,Mt−1∥2

≤ (1− α)∥ϕi,t−1∥2 +
Lη

2
(1− Lη)∥vi,t−1,Mt−1

∥2. (17)

Scale (16) by L, take its expectation, and add it to the expectation of (17). Then by Lemma 2,380

LE(fi(xi,t)− fi(x
∗)) +

Lη

2
(1− Lη)E∥vi,t,Mt

∥2 + (1− Lη)∥ϕi,t∥2︸ ︷︷ ︸
ξi,t

+
Lη

2
E∥∇fi(xi,t−1)∥2

≤ LE(fi(xi,t−1)− fi(x
∗)) +

Lη

2
(1− Lη)E∥vi,t−1,Mt−1

∥2 + (1− α)∥ϕi,t−1∥2 + LηBi

≤ LE(fi(xi,t−1)− fi(x
∗)) +

Lη

2
(1− Lη)E∥vi,t−1,Mt−1∥2 + (1− Lη)∥ϕi,t−1∥2︸ ︷︷ ︸

ξi,t−1

+LηBi.

(18)

Summing (18) over t and observing that ∥ϕi,1∥ = ∥Emi,1 −∇fi(xi,0)∥ = 0,381

1

T

T∑
t=1

Lη

2
E∥∇fi(xi,t−1)∥2 =

1

T

( T∑
t=2

Lη

2
E∥∇fi(xi,t−1)∥2 +

Lη

2
E∥∇fi(xi,0)∥2

)

≤ 1

T

( T∑
t=2

(ξi,t−1 − ξi,t) + LηBi

+ LE((fi(xi,0)− fi(x
∗))− (fi(xi,1)− fi(x

∗))) + LηBi

+ Lη∥Emi,1 −∇fi(xi,0)∥2 −
Lη

2
(1− Lη)E∥vi,1,M1∥2

)
≤ L(fi(xi,0)− fi(x

∗))

T
+ 2LηBi.
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Equivalently, setting α = 3Lη382

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4Bi

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4C

((
34 +

48

ni

)
ρ

∆
+

4

ni

)
ρ2

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4C

(
34 +

48

ni

)
ρ3

∆
+

16Cρ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4C

(
34 +

48

ni

)
α

3
2σ3

∆
+

16Cασ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 4C

(
34 +

48

ni

)
(3Lη)

3
2σ3

∆
+

48CLησ2

ni

≤ 2(fi(xi,0)− f∗
i )

ηT
+ 1968(Lη)

3
2
σ3

∆
+

48CLησ2

ni
.

Choose383

η = min

{
1

3L
,

(
2(fi(xi,0)− f∗

i )
48CLσ2

ni
T

) 1
2

,

(
2(fi(xi,0)− f∗

i )
1968L1.5σ3

∆ T

) 2
5
}
.

Then384

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≤ 2

√
96CL(fi(xi,0)− f∗

i )σ
2

niT

+

(
1968L

3
2σ3

∆

) 1
5
(
2(fi(xi,0)− f∗

i )

T

) 4
5

+

(
1968L

3
2σ3

∆

) 2
5
(
2(fi(xi,0)− f∗

i )

T

) 3
5

+
6L(fi(xi,0 − f∗

i )

T
.

385

A.2 Proof of Theorem 1386

See proof of Lemma 2, replacing ρ with σ, and adding the assumption that, in expectation, cluster-387

center initializations are σ2 close to the true cluster means: E∥vki,0 − Exi∥2 ≤ σ2.388

A.3 Proof of Theorem 2389

Proof. Let390

D1 =

{
δ w.p. p
0 w.p. 1− p

and391

D2 =

{
δ w.p. 1− p
0 w.p. p

and define the mixture M = 1
2D1 + 1

2D2. Also consider the mixture M̃ = 1
2 D̃1 + 1

2 D̃2, where392

D̃1 = 0 and D̃2 = δ. It is impossible to distinguish whether a sample comes from M or M̃.393

Therefore, if you at least know a sample came from either M or M̃ but not which one, the best you394

can do is to estimate µ1 with µ̂1 = δp
2 , half-way between the mean of D1, which is δp, and the mean395

of D̃1, which is 0. In this case396

E∥µ̂1 − µ1∥2 =
δ2p2

4
.
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If p ≤ 1
2 , then397

∆ = (1− p)δ − pδ = (1− 2p)δ. (19)
Also,398

ρ2 = δ2p(1− p). (20)
Equating δ2 in (19) and (20),399

∆2

(1− 2p)2
=

ρ2

p(1− p)
,

which can be rearranged to400

(4ρ2 +∆2)p2 − (4ρ2 +∆2)p+ ρ2 = 0.

Solving for p,401

p =
1

2
− ∆

2
√

4ρ2 +∆2
. (21)

Note that,402

δ2p2

4
=

ρ2p2

4p(1− p)

=
ρ2p

4(1− p)
. (22)

Plugging the expression for p from (21) into (22), we can see that403

δ2p2

4
=

ρ2

4

(√
4ρ2 +∆2 −∆

∆

)
=

ρ2

4

(√
1 +

4ρ2

∆2
− 1

)
≥ ρ2

4

(
2ρ2

∆2
− 2ρ4

∆4

)
.

The last step used an immediately verifiable inequality that
√
1 + x ≥ 1+ x

2 − x2

8 for all x ∈ [0, 8].404

Finally, we can choose ∆2 ≥ 2ρ2 to give the result that405

E∥µ̂1 − µ1∥2 ≥ δ2p2

4
≥ ρ4

4∆2
.

Finally, suppose that there is only a single cluster with K = 1. Then, given n stochastic samples.406

standard information theoretic lower bounds show that we will have an error at least407

E∥µ̂1 − µ1∥2 ≥ ρ2

4n
.

Combining these two lower bounds yields the proof of the theorem.408
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