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ABSTRACT

Speech-to-Speech (S2S) models have shown promising dialogue capabilities, but
their ability to handle paralinguistic cues—such as emotion, tone, and speaker
attributes—and to respond appropriately in both content and style remains under-
explored. Progress is further hindered by the scarcity of high-quality and expres-
sive demonstrations. To address this, we introduce a novel reinforcement learning
(RL) framework for paralinguistic-aware S2S, ParaS2S, which evaluates and op-
timizes both content and speaking style directly at the waveform level. We first
construct ParaS2SBench, a benchmark comprehensively evaluates S2S models’
output for content and style appropriateness from diverse and challenging input
queries. It scores the fitness of input-output pairs and aligns well with human
judgments, serving as an automatic judge for model outputs. With this scalable
scoring feedback, we enable the model to explore and learn from diverse unla-
beled speech via Group Relative Policy Optimization (GRPO). Experiments show
that existing S2S models fail to respond appropriately to paralinguistic attributes,
performing no better than pipeline-based baselines. Our RL-based strong baseline
achieves a 11% relative improvement in response content and style’s appropri-
ateness on ParaS2SBench over supervised fine-tuning (SFT), surpassing all prior
models while requiring substantially fewer warm-up annotations than pure SFT1.

1 INTRODUCTION

Speech is the most natural medium of communication, conveying not only words but also paralin-
guistic cues—emotion, tone, and speaker attributes—that jointly shape true intent and guide appro-
priate responses (Schuller & Batliner, 2013). This interplay of linguistic and paralinguistic signals
motivates speech-to-speech (S2S) models (Xu et al., 2025; Huang et al., 2025b; Zeng et al., 2024)
for human-like, empathetic interaction beyond text-based dialogue systems (Achiam et al., 2023;
Grattafiori et al., 2024).

S2S models show strong dialogue abilities (Fang et al., 2025a;b; Zeng et al., 2024), as seen in
Qwen2.5-Omni (Xu et al., 2025) and ChatGPT advanced voice mode.2 Built on LLMs, they pre-
serve reasoning and conversational abilities while adding speech as a new I/O modality, achieving
high scores on benchmarks like VoiceBench (Chen et al., 2024) and Llama Questions (Nachmani
et al., 2024). Yet most benchmarks focus on question answering (Nachmani et al., 2024), instruc-
tion following (Lu et al., 2025), or speech-to-text understanding tasks (Yang et al., 2024; Sakshi
et al., 2025b), overlooking paralinguistic-aware dialogue. StyleTalk (Lin et al., 2024a) and Vox-
Dialogue (Cheng et al., 2025) partially address the problem but remain speech-to-text benchmarks
where evaluation ends at the textual response, leaving no benchmark that directly evaluates S2S
models’ response speech for paralinguistic awareness.

Beyond the lack of benchmarks, no paralinguistic-aware S2S models currently exist. Our study
shows that most S2S models fail to appropriately adjust responses according to different speaking
styles (e.g., emotional tone), often inferring speaker state from content alone and producing tone-
deaf or awkward replies. This limitation stems from existing spoken dialogue datasets, which rarely

1 Project page and demo: https://paras2sbench.github.io/
2https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
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capture the style dynamics between input and output (Ding et al., 2025; Fang et al., 2025a;b). Col-
lecting such data is expensive, as it requires style annotation and expressive response recording,
making data scarcity the main bottleneck for developing paralinguistic-aware S2S models (Huang
et al., 2025b).

Inspired by DeepSeek-R1 (Guo et al., 2025), which acquires reasoning capabilities through RL
without any SFT demonstrations, we ask whether paralinguistic-aware dialogue capabilities can
similarly emerge via RL with minimal supervision. To answer, we introduce a novel framework for
paralinguistic-aware S2S, ParaS2S. ParaS2S comprises a new S2S benchmark ParaS2SBench and
a RL learning framework ParaS2SAlign. ParaS2SBench is designed to jointly evaluates both the
content and speaking style of input and output speech, guided by three key design principles:

1. Speech-to-speech evaluation. Evaluation is performed directly on input and output
speech, assessing whether the model generates responses with both appropriate content
and speaking style given the input speech.

2. Contrasting speaking styles. Following StyleTalk (Lin et al., 2024a), each test query is
paired with two contrasting speaking styles that demand distinct responses. For example,
“I just bumped into my ex.” may be spoken in either a surprised or sad tone.

3. Scenario-controlled queries. We design each query to have neutral text content so that
models cannot guess the speaker’s state from words alone, and to be paralinguistically
relevant so that the speaking style genuinely changes how the response should be generated.

We design a data curation pipeline to automatically generate high-quality speech prompts covering
key paralinguistic aspects—emotion, sarcasm, age, and gender. Using this benchmark, we expose
the common tone-deaf issue in current S2S models, including state-of-the-art (SOTA) open-source
models such as Qwen2.5 Omni (Xu et al., 2025) and Kimi-Audio (Ding et al., 2025), as well as
closed-source systems such as ChatGPT advanced voiced mode (Achiam et al., 2023).

To advance model development, we establish ParaS2SAlign as the strong baseline in the bench-
mark platform. By leveraging a Speech-to-Text reasoning model (Xie et al., 2025; Radford et al.,
2023) and text LLM, we automate benchmark evaluation and provide an automatic judge for model
outputs that correlates with human scoring. Building on the scalability of this scoring pipeline, we
generate a large-scale preference dataset3 and distill the benchmark pipeline into a single reward
model to enable RL. With Group Relative Policy Optimization (GRPO) (Shao et al., 2024), the
base S2S model learns from diverse unlabeled speech prompts and from its own generated outputs
automatically scored by the reward model, thereby unlocking paralinguistic-aware S2S capabilities
through RL. Our results show that while supervised fine-tuning (SFT) is effective and outperforms
existing models4, RL surpasses SFT by more than 11% in response content and style appropriateness
on ParaS2SBench and 7.6% on subjective evaluation. Furthermore, in cost-controlled experiments,
RL requires only 10 hours of demonstration as warm-up and achieves the same performance as pure
SFT using just one fifth of the annotations, highlighting its learning efficiency. Our contributions
are multifold:

• We present a novel benchmark, ParaS2SBench, for paralinguistic-aware S2S dialogue. It
directly evaluates both the content and speaking style of input–output speech pairs at the
waveform level, revealing the common tone-deaf issue in current S2S models.

• We establish ParaS2SAlign, the first RL framework for paralinguistic-aware S2S. By au-
tomating and distilling the benchmark pipeline into a reward model, we enable scalable
learning from unlabeled speech without costly demonstrations, serving as the strong base-
line in the benchmark platform.

• We demonstrate that RL with GRPO achieves a 11% relative improvement in GPT-based
scores on ParaS2SBench and 12% on real speech queries over SFT. Furthermore, We
highlight the cost efficiency of RL compared to SFT, mitigating the data scarcity of
paralinguistic-aware S2S.

• We will open-source data, code, and models to lower the barrier for future research.

3This process would be costly if the response speech and preference scores were annotated by humans.
4At the cost of requiring expensive and non-scalable demonstrations.
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2 RELATED WORK

2.1 SPOKEN DIALOGUE MODELS

From S2T to S2S dialogue models. Early Speech-to-Text LLMs equip LLMs with hearing capa-
bilities while leveraging textual reasoning for audio interaction (Tang et al., 2024; Hu et al., 2024;
Gong et al., 2024). AudioReasoner (Xie et al., 2025) introduces Chain-of-Thought (CoT) reasoning
to mitigate hallucination, while Qwen-Audio 1/2 (Chu et al., 2023; 2024) and StepAudio (Huang
et al., 2025b) further extend dialogue capabilities to enable spoken agents5. Recent works ex-
plore Speech-to-Speech LLMs that learn input–output speech interaction end-to-end (Zhang et al.,
2023; Défossez et al., 2024). GLM-4-Voice (Zeng et al., 2024) and Step-Audio-AQAA (Huang
et al., 2025a) rely on interleaved text and audio tokens for grounded speech generation. LLaMa-
Omni (Fang et al., 2025a;b), Freeze-Omni (Wang et al., 2025b) and Mini-Omni (Xie & Wu,
2024) propose fine-tuning techniques to preserve LLM intelligence when adding speech modality.
Qwen2.5 Omni (Xu et al., 2025) proposes the thinker-talker architecture, while Kimi-Audio (Ding
et al., 2025) introduces a dual-head design for text and audio generation.

Paralinguistic-aware dialogue models. Among these models, ParalinGPT (Lin et al., 2024b)
and StyleTalk (Lin et al., 2024a) are the first to enable speech-to-text LLMs to respond differently
to diverse speaking styles. OmniChat (Cheng et al., 2024) extends the speech-to-text study to multi-
turn, paralinguistic-aware dialogues. For speech-to-speech models, GOAT-SLM (Chen et al., 2025)
is the only model emphasizing paralinguistic-aware dialogue with a multi-stage SFT pipeline. These
works rely on SFT with carefully curated, high-quality data, whereas we explore RL to reduce this
reliance.

RL for dialogue models. RL has been applied to align spoken dialogue models. Align-SLM (Lin
et al., 2025b) follows RLAIF (Lee et al., 2024) and adopts DPO (Rafailov et al., 2023) to improve
long-range semantics. Qwen2.5 Omni (Xu et al., 2025) uses WER as a preference signal to ground
speech generation. Step-Audio (Huang et al., 2025b) and Step-Audio-AQAA (Huang et al., 2025a)
rely on human feedback, which is annotation-heavy. ParaS2SAlign is the first RL framework to
model content–style and input-output dynamics using scalable AI feedback.

2.2 SPOKEN DIALOGUE BENCHMARKS

Benchmarks have been proposed to evaluate spoken dialogue models. Table 4 compares key dif-
ferences across benchmarks. Dynamic-SUPERB (Huang et al., 2024) tests instruction-following on
180 tasks (yu Huang et al., 2025). AudioBench (Wang et al., 2025a) unifies speech/sound under-
standing and QA. AIR-Bench (Yang et al., 2024) adds speech, sound, music tasks, and a chat cate-
gory. MMAU (Sakshi et al., 2025a) raises difficulty with reasoning-intensive QA. SpokenWOZ (Si
et al., 2023) provides large-scale human-to-human dialogue data. VoxEval (Cui et al., 2025) converts
MMLU (Hendrycks et al., 2021) to speech to assess model intelligence. VoiceBench (Chen et al.,
2024) adds more text-based QA datasets including AlpacaEval (Li et al., 2023), OpenBookQA (Mi-
haylov et al., 2018), and MMLU-pro (Wang et al., 2024). FullDuplexBench (Lin et al., 2025a) eval-
uates response timing for full-duplex models. Among these works, ADU-Bench (Gao et al., 2025),
SD-eval (Ao et al., 2024), VoxDialogue (Cheng et al., 2025), and StyleTalk (Lin et al., 2024a) eval-
uate responses under different input speaking styles, but focus only on the dialogue models’ output
text.6 In contrast, ParaS2SBench performs end-to-end evaluation on both input and output speech,
jointly considering content and speaking style.

3 PARAS2SBENCH

ParaS2SBench is a benchmark designed to evaluate paralinguistic-aware S2S models. In Section 3.1,
we describe the process of curating training and testing queries that serve as inputs for evaluation.

5The response is usually in text, and the speaking capability is enabled by a separate TTS module.
6StyleTalk predicts both response text and style in textual format, enabling style learning and evaluation.

However, it is limited to the few categorical styles supported by Microsoft Azure TTS, and its format assump-
tion prevents evaluation of S2S models.
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Figure 1: The overall framework of ParaS2S. (a) illustrates the pipeline of ParaS2SBench; (b) illus-
trates the framework of ParaS2SAlign.

In Section 3.2, we present the methodology for automatically evaluating model responses given an
input query.

3.1 QUERY MINING – SYNTHETIC AND REAL

As shown by Figure 1 (a), ParaS2SBench begins by generating scenario-controlled and challenging
queries with LLM that specify both the content and the corresponding speaking style, followed by
synthesizing these queries using suitable text-to-speech (TTS) systems. The queries span a wide
range of dialogue topics and scenarios, and the speaking styles cover various key paralinguistic
factors, including emotion, sarcasm, gender, and age7. Mining appropriate queries is necessary for
evaluating paralinguistic-aware S2S since many speech queries lack paralinguistic dynamics8. Such
queries are unsuitable for evaluation, as models can answer correctly without considering style. We
design an automatic data curation pipeline to mine the realistic and challenge testing queries. The
pipeline relies on ChatGPT, and we include prompts in Appendix. Table 6 shows several examples
and the demo page1 demonstrates more examples.

1. Candidate Generation. We first generate a large corpus of queries with ChatGPT, each
consisting of a input spoken sentence ci ∈ Σ∗ followed by two contrasting speaking styles,
s1i , s

2
i ∈ Σ∗, that demand different responses. In the generation prompt, we instruct Chat-

GPT to cover diverse topics and scenarios, including interests, work, studies, relationships,
travel, health, religion, fashion, finance, and more.

2. Script Quality Filtering. For each spoken content ci, we construct two queries, (ci, s1i )
and (ci, s

2
i ). For each query (ci, si), we control the scenario by asking ChatGPT for several

checks, including neutrality, reasonability and paralinguistic relevance. Neutrality prevents
models from inferring the speaker’s state solely from text ci; reasonability ensures the
content ci and style si is a reasonable pair; paralinguistic relevance ensures that speak-
ing style non-trivially affects the response. If any test is not passed, the query is discard.
Appendix A.3 provides more explanations.

3. Speech Synthesis. We synthesize input waveform wi ∈ R∗ given the (ci, si) pair.
For emotion and sarcasm, we rely on the instruction-based TTS system gpt-4o-mini-tts9.
This system requires a style description, which we generate with ChatGPT based on the
style label si. Since gpt-4o-mini-tts supports only a limited number of speakers, we use
CosyVoice (Du et al., 2024) for in-context zero-shot synthesis of gender and age. The
voice samples for gender are drawn from LibriSpeech (Panayotov et al., 2015) and Com-
monVoice (Ardila et al., 2020), while the samples for age are drawn from NNCES10. We

7We exclude emphasis, volume, and speed because our preliminary study shows they rarely affect human
preferences. For example, when given “I want to borrow this book (fast),” people preferred “Sure, please give
me your ID” over “Could you slow down? You speak too fast.”

8For example, the factual question Who is the first president of America? should yield the same answer
regardless of the speaker’s background or style.

9https://www.openai.fm/
10https://www.kaggle.com/datasets/kodaliradha20phd7093/nonnative-children-english-speech-nnces-

corpus . We do not use MyST (Pradhan et al., 2024) since the data link is unavailable.
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discard samples whose WER with the ground truth exceeds a threshold. For emotion,
we further discard samples whose Emotion2vec (Ma et al., 2024) classifier scores are too
low (Cheng et al., 2025).

4. Train/Test Split. To avoid overlap between training and testing, we use disjoint query
topics and TTS speakers.

5. Human Check. To ensure test set authenticity, we recruit three annotators to manually
include only speech prompts with correct content and style from the filtered set.

The above pipeline curates a synthetic test set covering emotion, sarcasm, age, and gender. To further
examine model behavior in realistic scenarios, we construct a test set using real speech by filtering
queries from existing dialogue datasets. Given the known content and style labels provided by the
dataset, we apply filters to check the length11 and paralinguistic relevance. We rely on two emotion
datasets, IEMOCAP (Busso et al., 2008) and MELD (Poria et al., 2019), as they provide sufficient
queries that meet our constraints. In contrast, we find it challenging to source enough queries for
age and gender from datasets like CommonVoice due to the paralinguistic relevance constraint12.
Finally, we construct a testing set Dtest = {(ci, si, wi)} where ci ∈ Σ∗ is the input spoken content,
si ∈ Σ∗ is the input speaking style, and wi ∈ R∗ is the input audio prompt. Table 5 shows the
statistics.

3.2 RESPONSE EVALUATION & SCORING

Given an input query (ci, si, wi) ∼ Dtest, the S2S model M samples a response speech wo ∼
πM (O|wi). To evaluate the response speech, we project both the content and the speaking style of
wo into natural language, using SOTA Speech-to-Text models C and S, respectively. We rely on
Whisper-v3 (Radford et al., 2023) as C to get the output transcription: co = C(wo). We leverage
AudioReasoner (Xie et al., 2025) as S to extract output speaking tone: so = S(wo). AudioReasoner
equips Qwen-Audio 2 (Chu et al., 2024) with reasoning capabilities by distilling Chain-of-Thought
(CoT) paths from Gemini (Team et al., 2024) to reduce hallucination. Finally, given the input content
ci and style si, along with the extracted output content co and style so, we use ChatGPT 4.1 to score
the fitness following the guideline r designed by human experts, described in the Appendix.

fgpt = GPT (ci, si, co, so, r) (1)

We will show that this scoring pipeline can align with human judgments fexpert in Section 5.1. Both
fgpt and fexpert are on a 1–5 Likert scale.

4 PARAS2SALIGN

Although ParaS2SBench provides automatic fitness scores, the scoring process is slow: it requires
a reasoning-based speech-to-text LLM and ChatGPT API calls, so even a small batch of responses
takes several minutes. This makes typical online RL training impractical when rewards are com-
puted directly from the benchmark evaluation pipeline, and also makes it prohibitively expensive to
construct a large-scale preference dataset for direct preference optimization (DPO) (Rafailov et al.,
2023). To address this, we design a three-stage online RL framework that uses a reward model to
approximate the benchmark pipeline and employs GRPO (Shao et al., 2024). Figure 1 (b) illustrates
the framework.

We use Kimi-Audio (Ding et al., 2025) as the base model θbase
13, while the framework can be

applied to any LM-based S2S model. For Kimi-Audio, the audio input wi, text input ci, audio
output wo, and text output co are preprocessed and organized into four token streams: ai, ti ∈ ZLi

and ao, to ∈ ZLo . The input streams (ai, ti) are padded to the same length Li ∈ Z, and the output
streams to Lo ∈ Z. The input embeddings of the audio and text streams are summed before being

11In real dialogues, some turns consist of only a few words (e.g., Haha or Sounds good), which are not
suitable for evaluation. We therefore filter out queries with fewer than five words.

12For example, in Could you read the book for me? (female), the gender attribute is negligible.
13Since it exhibits high intelligence and strong dialogue capabilities (Chen et al., 2024) and is fully open-

sourced. We do not use Qwen2.5-Omni (Xu et al., 2025) because its speech tokenizer is not released, making
S2S fine-tuning infeasible.

5
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fed into the Transformer, and from the middle of the model, two prediction heads predict the next
token for each stream.

πθ(ao, to | ai, ti) =
|ao|∏
n=1

πθ(ao,n, to,n | ao,<n, to,<n, ai, ti) (2)

For inference, output audio and text tokens are sampled auto-regressively (ao, to) ∼ πθ(O | ai, ti).
Audio tokens are decoded into the sampled waveform with a flow-matching decoder: wo = ρ(ao).

4.1 STAGE 1. WARM-UP

SFT serves as a crucial warm-up stage for RL, as we observe that existing S2S models lack
paralinguistic-aware dialogue capabilities. Consequently, they fail to sample high-quality responses
and cannot provide a useful learning signal for RL. To construct the SFT dataset Dsft, we follow
Section 3.1 to generate a training set of speech queries with both input content ci and style labels si.
For each query (ci, si), we use ChatGPT to produce the most suitable response (co, so), including
both a textual transcription and a tone description. We then synthesize the expressive response wo

using gpt-4o-mini-tts. Because gpt-4o-mini-tts can be unstable, we synthesize 10 candidates, apply
WER-based filtering, and perform manual selection to obtain high-quality warm-up demonstrations
wo. With the input–output mapping Dsft = {(wi, wo, ci, co)}, we train next-token prediction on both
the preprocessed audio stream ai∥ao and the text stream ti∥to by optimizing θ for higher likelihood
EDsft [πθ(ao, to | ai, ti)], initializing from θbase and obtaining θsft.

4.2 STAGE 2. DISTILLING REWARD MODEL

To distill our benchmark pipeline into a reward model, we construct a preference dataset Dprefer.
We first prepare Q speech queries {(cji , s

j
i , w

j
i )}

Q
j=1 following Section 3.1. The SFT model now

possesses preliminary paralinguistic-aware dialogue capabilities and begins to respond differently
according to the input speaking styles, but unstably. Each query (ci, si, wi) is preprocessed into
input token streams (ai, ti). We sample K diverse speech responses with high sampling tempera-
ture, (ao, to) ∼ πθ(O | ai, ti), wo = ρ(ao). We then score the resulting Q × K query–response
pairs following Equation 1 to construct a preference dataset Dprefer = {(wi, wo, fgpt)}, where fgpt
is the fitness score of wi and wo, depending on content label ci, style label si, extracted content
co = C(wo) and extracted style so = S(wo). Finally, we use LoRA (Hu et al., 2022) to fine-tune
Qwen2.5-Omni (Xu et al., 2025) as the reward model, which is employed as a Speech-to-Text LLM.
The model takes the query speech, response speech, and scoring guideline r as input, and outputs
a single score on a Likert scale. We denote the reward model as ϕ. The score is treated as a single
character and optimized with the cross entropy loss: EDprefer ϕ(fgpt | wi, wo, r).

4.3 STAGE 3. POST-TRAINING

Using the warm-up model θsft and the reward model ϕ, we enable the model to explore the search
space for higher scores via GRPO (Shao et al., 2024) on the large set of unlabeled speech. We do not
use PPO (Schulman et al., 2017) due to its substantial memory and computational burden of the value
function. Moreover, in our case, only the last token of the response is assigned a final reward, which
complicates the training of the value function that needs to be accurate at every token (Shao et al.,
2024). Given the unlabeled speech prompt dataset Drl = {wi}, we obtain the transcription with
Whisper-v3 and construct input token streams D′

rl = {(wi, ai, ti)}. We optimize θsft to maximize
the objective:

6
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JGRPO(θ) = E
[
(wi, ai, ti) ∼ D′

rl, {(ago, tgo)}Gg=1 ∼ πθold(O | ai, ti)
]

1

G

G∑
g=1

1

|ago|

|ag
o|∑

n=1

{
min

[
πθ(a

g
o,n, t

g
o,n | ai, ti, ago,<n, t

g
o,<n)

πθold(a
g
o,n, t

g
o,n | ai, ti, ago,<n, t

g
o,<n)

Âg,

clip
(

πθ(a
g
o,n, t

g
o,n | ai, ti, ago,<n, t

g
o,<n)

πθold(a
g
o,n, t

g
o,n | ai, ti, ago,<n, t

g
o,<n)

, 1− ϵ, 1 + ϵ

)
Âg

]
− β DKL[πθ ∥πref]

}
,

(3)

We sample prompts from D′
rl, generate G responses, decode tokens into waveforms with ρ, score

them with ϕ, compute the normalized advantage Âg = (ϕ(wi, ρ(a
g
o), r) − µ)/σ, and update the

policy θ for higher rewards. µ and σ are the mean and standard deviation of the raw scores within a
group. ϵ is the clipping threshold. The KL term and the ablation of β are detailed in Appendix.

5 EXPERIMENTS

Overview. In this section, we aim to answer two core research questions: (1) Can the automatic
benchmark scoring reflect human judgments and serve as an effective evaluation tool? and (2) Can
RL truly improve performance compared to SFT for this problem? Section 5.1 provides analyses and
answers to the first question and show positive correlation. To thoroughly address the second ques-
tion, we verify it across several subsections. Section 5.2 demonstrates that RL consistently leads to
better performance regardless of the amount of SFT warm-up data, supporting our main claim. Sec-
tion 5.3 points out that only a few hours of SFT data are sufficient to bootstrap the self-improvement
process, indicating that RL indeed helps mitigate the data scarcity of paralinguistic-aware S2S. After
validating the effectiveness of the RL algorithm, we move on to the practical concern of data con-
struction cost. Section 5.4 provides best practices for balancing the budget allocation between SFT
data and RL data, demonstrating the cost efficiency of the proposed framework. Next, we validate
the generalizability of the training framework to real speech in Section 5.5, which is essential as the
previous experiments are conducted on synthetic speech. Finally, Section 5.6 verifies that our train-
ing framework leads to a SOTA model in paralinguistic-aware dialogue by comparison with existing
models. These subsections jointly gauge the effectiveness, generalizability, and cost efficiency of
the proposed RL framework.

Settings. We construct a large-scale speech prompt dataset Drl for RL following Section 3.1,
where the transcription and style labels are discarded after speech synthesis. The dataset contains
100k speech prompts. For the less scalable SFT, we build prompt–demonstration pairs for 10k
speech prompts, totaling 100 hours of data. For reward model data, which requires input style anno-
tations during scoring, we use up to 10k speech prompts. For each prompt, the SFT model generates
32 completions, yielding 320k prompt–response–score pairs. More details are in Appendix A.4.

5.1 CAN BENCHMARK SCORES ALIGN WITH HUMAN SCORES?

Here, we evaluate whether the automatic evaluation benchmark scores align with human scoring.
For this study, we sampled a subset from the benchmark for human annotation, with 200 prompts
per paralinguistic category. For each speech prompt, we obtain two types of responses:

TTS-based responses: ChatGPT 4.1 generates the response content and style, and diverse TTS
systems synthesize speech to simulate different speaking styles. We include YourTTS (Casanova
et al., 2022), CosyVoice (Du et al., 2024), Sesame14, and gpt-4o-mini-tts. These systems range
from flat and neutral to expressive, spontaneous, and fine-grained controlled styles. We also add a
baseline, gpt-4o-mini-tts (bad), where we instruct ChatGPT 4.1 to produce suboptimal content or
style such as tone-deaf content and inappropriate speaking style.

S2S model-based responses: End-to-end S2S models directly generate speech responses. We in-
clude GPT-4o Voice mode, Qwen2.5 Omni, and GLM-4-Voice.

14https://www.sesame.com/research/crossing the uncanny valley of voice
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Table 1: Comparison of GPT-based benchmark scoring and human evaluation across Age, Emotion,
Gender, and Sarcasm tasks, with per-model averages.

Age Emotion Gender Sarcasm Avg
GPT Human GPT Human GPT Human GPT Human GPT Human

TTS-based
gpt-4o-mini-tts (good) 4.420 4.380 4.646 4.654 4.739 4.506 4.790 4.337 4.649 (1) 4.469 (1)
gpt-4o-mini-tts (bad) 1.215 1.177 1.159 1.041 1.325 1.590 1.210 1.251 1.227 (8) 1.265 (8)
Sesame 4.412 4.216 4.512 4.324 4.701 4.332 4.71 4.182 4.583 (2) 4.263 (2)
CosyVoice 4.380 3.994 4.417 4.012 4.612 4.201 4.680 3.864 4.522 (3) 4.018 (3)
YourTTS 4.410 4.037 4.302 3.801 4.534 4.230 4.580 3.804 4.457 (4) 3.968 (4)
S2S models
GPT-4o Voice mode 2.685 2.630 3.711 2.713 3.096 3.682 2.815 2.611 3.077 (6) 2.909 (5)
Qwen2.5 Omni 2.930 2.728 3.680 2.522 2.933 3.493 2.910 2.509 3.113 (5) 2.863 (6)
GLM-4-Voice 2.570 2.493 3.489 2.384 2.821 3.521 2.720 2.301 2.900 (7) 2.675 (7)

Table 2: Correlation between benchmark scoring and human scoring.
Age Emotion Gender Sarcasm All

Pearson 0.862 0.76 0.702 0.779 0.773
p-value 3.5e−5 2.6e−12 1.2e−4 3.2e−3 7.5e−6

TTS-based responses isolate the effect of response tone under identical gold content, while S2S
responses reflect real model behavior. Each prompt–response pair is scored by three human experts
on a Likert scale15. We also apply automatic scoring to study alignment. In Table 1, S2S responses
lag significantly behind TTS responses due to the tone-deaf content, where the latter benefit from
ground-truth style labels. The scores of S2S responses hover around 3, indicating models fail to
adapt to contrasting speaking styles16. Second, across all models, the rankings with benchmark
and human scores are nearly identical, with only one switch. The rankings of TTS systems are
consistent: gpt-4o-mini-tts > Sesame > CosyVoice > YourTTS17.

Then, we analyze the correlation between the benchmark scoring and human judgment. Each in-
put query is paired with several TTS-based responses and several S2S model responses. For each
query–response pair, we acquire two fitness scores, one from human experts and another from the
benchmark pipeline, resulting in two arrays of fitness scores. We compute the Pearson correlation
between these two sets of scores following (Chiang & Lee, 2023). Table 7 shows the correlation
across different paralinguistic categories. All the correlations are higher than 0.7 and significant.
These results validate the benchmark pipeline as a judge for RL feedback.

5.2 CAN RL IMPROVE PERFORMANCE OVER SFT?

We study the effectiveness of RL under different amounts of SFT warm-up data. For reward model
data, we consider a realistic setting: the constrained case, where the reward model is trained using
the same amount of annotation as the SFT data. We also include an unconstrained case, where the
reward model uses all available annotations18. Figure 2 (a) shows that SFT only already consistently
demonstrates effectiveness: with only 10 hours of data, it surpasses most existing models, including
GPT-4o voice mode, and continues to improve as data scales. However, RL in the constrained case
consistently outperforms SFT across all data regimes: SFT requires more than ten times as much
data to match RL performance. Using the reward model trained on all available preference data
further unlocks additional gains.

15We first conducted preliminary annotations to align guidelines and maximize agreement, and discarded
official annotations where all three experts disagreed.

16For prompts with two contrasting styles, models often score 5 for one response and 1 for the other tone-deaf
response, averaging 3.

17Since the four TTS systems share the same response content, their scoring differences stem from the
speaking style. We observe that AudioReasoner tends to classify CosyVoice and YourTTS outputs as calm,
neutral, or flat, which is less empathetic.

18The curation of reward model data is still much cheaper than SFT data, as no human selection is involved.
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(a) (b)

Figure 2: The ParaS2SBench score is the average across 4 categories. The trending of individual
category is similar. (a) Comparison of RL and SFT results across different amounts of SFT data;
(b) comparison of budget allocation between SFT and reward model (RM) data. The total budget
consists of 100 hours of annotation, which are distributed between speech prompts for SFT data and
reward model data. The gray dotted line shows the correlation between reward model prediction and
the original benchmark pipeline score on a held-out test set.

5.3 HOW MANY ANNOTATIONS CAN RL SAVE?

From Figure 2 (a), only 10 hours of SFT warm-up data are sufficient to unlock the model’s ability to
learn from self-generated demonstrations, improving upon the warm-up model by more than 17.1%
and achieving performance comparable to using 50 hours of SFT data. Similarly, RL with a 20-hour
warm-up performs comparably to 100 hours of SFT data, highlighting the strong label efficiency
of our approach. Figure 2 (a) also shows that the warm-up stage is still critical, as the base model
cannot sample sufficiently good demonstrations to evolve through RL.

5.4 SHOULD WE INVEST MORE COSTS ON SFT OR REWARD MODEL?

Both the construction of SFT data and the reward model require style annotations for input prompts.
Given a fixed number of prompt annotations, we study whether it is more beneficial to allocate them
to SFT or reward model data. Figure 2(b) shows that increasing SFT data (and decreasing reward
model data) consistently improves RL performance—until the reward model becomes poorly cor-
related with the benchmark scores. Surprisingly, only 10 hours of annotated speech prompts are
sufficient to build a usable reward model. Thus, allocating more budget to SFT data is generally ad-
vantageous, since warm-up quality drives GRPO sampling and learning efficiency, while the reward
model is easier to learn and still reaches a strong correlation of 0.7 with minimal annotation (e.g. 10
hours).

5.5 GENERALIZABILITY TO REAL SPEECH

To test generalizability to real speech and unseen domains, we evaluate on IEMOCAP (Busso et al.,
2008) and MELD (Poria et al., 2019). The former features recordings from professional actors
in both scripted and spontaneous scenarios, while the latter comes from TV shows with natural
conversations involving diverse speakers, emotions, and background noise. We verify that SFT and
GRPO trained on synthetic speech generalize to real speech. Applying GRPO to real speech further
improves performance on both in-domain and out-of-domain scenarios (Appendix A.8).

5.6 COMPARING S2S MODELS – AUTOMATIC JUDGE AND HUMAN EVALUATION

Table 3 compares several existing S2S models with ours. The Whisper-GPT-TTS pipeline uses
Whisper-v3 to transcribe the input query without considering the speaking style, generates the re-
sponse text with ChatGPT, and synthesizes speech with gpt-4o-mini-tts. This pipeline serves as a
baseline where speaking style is ignored. The topline, on the other hand, leverages the ground-truth

9
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Table 3: Comparing paralinguistic-aware dialogue capabilities with ParaS2SBench score.
Synthetic Real Avg

Age Emotion Gender Sarcasm Avg IEMOCAP MELD Avg

Baseline
Whisper-GPT-TTS 3.050 3.121 2.916 3.005 3.022 3.562 3.412 3.487 3.176

Closed Source
GPT-4o Voice mode 3.205 3.633 3.342 2.957 3.284 3.770 3.508 3.639 3.403
Gemini 3.301 3.811 3.413 3.263 3.447 3.813 3.712 3.762 3.552

Open Source
Qwen2.5 Omni 3.170 3.653 3.236 2.935 3.248 3.626 3.599 3.612 3.369
GLM 4 2.885 3.447 2.976 2.803 3.033 2.934 3.141 3.037 3.034
LLaMa-Omni 2 3.123 3.512 3.064 3.164 3.215 3.425 3.462 3.443 3.291
Freeze-Omni 2.819 2.316 2.884 2.701 2.680 2.835 3.061 2.948 2.769
Kimi-Audio 3.141 2.673 3.091 2.665 2.892 1.365 1.166 1.265 2.350

Ours
Kimi-Audio SFT 4.393 4.090 3.530 4.291 4.076 4.121 3.307 3.714 3.955
Kimi-Audio GRPO 4.496 4.490 4.239 4.538 4.441 4.394 3.927 4.161 4.382

Topline
GPT-TTS 4.525 4.691 4.812 4.791 4.705 4.710 4.824 4.766 4.725

transcription and style label of the query to generate both the response content and style with Chat-
GPT, and then synthesizes speech using gpt-4o-mini-tts. Table 3 shows that almost all existing S2S
models perform similarly to the pipeline baseline, suggesting that they do not account for the input
speaking style and produce similar responses even for contrasting queries. In contrast, SFT with our
carefully crafted data achieves more than a 68% improvement over the base model and surpasses all
existing models. Furthermore, applying GRPO yields an additional 11% improvement, approaching
topline performance. Overall, Table 3 demonstrates the effectiveness of our learning approach and
shows that our model achieves SOTA paralinguistic dialogue capabilities. Finally, human subjective
evaluation (Appendix A.9) corroborates these findings, showing similar results across models.

6 CONCLUSION

We present ParaS2S, a framework designed for paralinguistic-aware speech-to-speech interaction.
We formulate the problem and construct a benchmark dataset covering diverse scenarios and multi-
ple paralinguistic aspects, including both synthetic and real speech. We provide an automatic judge
that correlates well with human preferences to enable model scoring. We demonstrate the effective-
ness and efficiency of exploring on unlabeled speech and learning from the judge’s signal. With
GRPO, we unlock state-of-the-art paralinguistic-aware dialogue capabilities using only 10 hours
of warm-up demonstrations, consistently demonstrating superior label efficiency compared to pure
SFT. We will release the data, models, and code to lower the barrier for future research.

7 LIMITATION

First, we test the generalizability to real speech using two emotion datasets, IEMOCAP and MELD.
However, evaluation for other paralinguistic features—sarcasm, age, and gender—remains unex-
plored because existing real-speech datasets are largely paralinguistic-irrelevant: the best response
usually does not depend on the speaker’s style. For instance, a query about the current U.S. president
should yield the same answer regardless of whether it is spoken by a male or female voice. Thus,
we currently assess real-speech generalizability only for emotion, where the model already shows
strong performance. We hope future conversational datasets with richer style variations will enable
broader evaluation. Second, we enhance the base model’s expressiveness using SFT data synthe-
sized by TTS. Synthetic responses, however, may limit diversity and expressiveness due to the lack
of real paralinguistic-aware dialogue data. Consequently, the model is upper-bounded by the TTS
system (OpenAI gpt-4o-mini-tts), whose style controllability can be unstable. A natural next step is
to collect real speech—both queries and response demonstrations—to capture the nuanced patterns
of human-to-human interaction and further improve expressiveness and empathy.
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A APPENDIX

A.1 COMPARING SPOKEN DIALOGUE BENCHMARKS

We outline the differences between S2T and S2S benchmarks in Table 4.

A.2 PARAS2SBENCH STATISTICS AND EXAMPLES

Table 5 shows the statistics of the testing set of ParaS2SBench. Table 6 shows several examples.

A.3 DETAILS FOR QUERY MINING

During the script quality filtering in Section 3.1, we apply three tests to reject the unqualified queries.
We leverage ChatGPT 4.1 for the tests.
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Task type Evaluate Input Evaluate Output Style Dimension

Benchmarks Und. Dia. Content Style Content Style Para. Speaker

Speech-to-Text Evaluation
Dynamic-SUPERB ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

AudioBench ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

AIR-Bench ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

MMAU ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

VoiceBench ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

ADU-Bench ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

SD-Eval ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

VoxDialogue ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

StyleTalk ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Speech-to-Speech Evaluation
VoxEval ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

ParaS2SBench (Ours) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Comparison of spoken dialogue benchmarks. Und. stands for Understanding; Dia. stands
for Dialogue; Para. stands for Paralinguistic information.

Table 5: Statistics of prompts, utterances, duration in seconds, and total hours.
# Prompts # Utterance Avg Duration Hours Labels

Synthetic Speech
Emotion 300 600 4.59 0.77 Happy, Surprised, Sad, Angry, Fear, Disgust
Sarcasm 300 600 6.23 1.04 Sincere, Sarcastic
Age 300 600 4.72 0.79 Adult, Child
Gender 300 600 4.48 0.74 Male, Female

Real Speech
IEMOCAP 709 709 10.21 2.01 Happy, Surprised, Sad, Angry, Fear, Disgust
MELD 781 781 11.31 2.45 Happy, Surprised, Sad, Angry, Fear, Disgust

Total 2690 3890 6.92 7.8

Neutrality Test. We frequently observe that S2S models respond with empathy by inferring from
the spoken content rather than relying on paralinguistic cues in the speech. For example, Wow!
That’s big news! is almost always associated with a surprised emotion, and Oh... I got my period
is most likely to be spoken by a female in a sad tone. To examine whether S2S models truly attend
to the audio, we design test cases using paralinguistically neutral content—utterances that make it
difficult to infer emotion, attitude, gender, or age from text alone. This way, the model must rely on
the audio signal to respond appropriately. In practice, for each query we ask ChatGPT whether the
spoken sentence is more likely to be voiced in one speaking style, in another, or if it is neutral and
hard to tell. We then discard queries for which the answer is not neutral.

Reasonability Test. Due to hallucinations, ChatGPT sometimes generates queries whose content
and speaking style do not match. For example, I want to get screened for cervical cancer. (male/fe-
male) is reasonable for a female speaker but sounds odd for a male speaker. We ask ChatGPT to
check the reasonability of both speaking styles and discard queries that have one or more unreason-
able cases.

Paralinguistic Relevance Test. To ensure that the speaking style is non-trivial to the dialogue
scenario and meaningfully affects the response, we test whether different speaking styles lead to
different responses. We ask ChatGPT to generate a response—both content and style—based on the
input content and style twice, once for each speaking style. We then use ChatGPT to check whether
the two responses exhibit a significant difference. If the two responses are similar, implying that the
speaking styles do not meaningfully affect the response, we discard the test case.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Category Example Dialogue

Emotion User (happy): The city is planning to build a new mall near my house.
Model (cheerful): That’s wonderful! A new mall will bring so many shops and
restaurants to explore—sounds exciting!
User (angry): The city is planning to build a new mall near my house.
Model (empathetic): I’m sorry to hear that you’re upset about it. Would you
like to share what concerns you most about the new mall?

Sarcasm User (sincere): It looks like you’ve outdone yourself with these answers!
Model (happy): Thank you! I’m glad my answers were helpful—let me know
if you’d like me to expand on anything.
User (sarcastic): It looks like you’ve outdone yourself with these answers!
Model (apologetic): Hmm, it sounds like you might not be happy with the an-
swers. Could you tell me what was missing or what you’d like done differently?

Age User (adult): I need instructions on buying stock with my money.
Model (confident): Sure! I can walk you through opening a brokerage account,
researching companies, and placing your first order step by step.
User (child): I need instructions on buying stock with my money.
Model (supportive): Investing is exciting! Since you might be under 18, you
may need help from a parent or guardian to open a custodial account before you
can buy stocks. Would you like me to explain how that works?

Gender User (male): Help me pick workout clothes for the gym.
Model (professional): Absolutely! Breathable tank tops, moisture-wicking T-
shirts, and flexible shorts are great choices. Do you prefer a sporty or casual
style?
User (female): Help me pick workout clothes for the gym.
Model (professional): Sure! High-support sports bras, moisture-wicking leg-
gings, and lightweight tops are excellent options. Would you like suggestions
for specific brands?

Table 6: Examples from ParaS2SBench test set. The responses shown in the table are for demon-
stration and not part of the benchmark dataset.

A.4 EXPERIMENT SETTING

Data. We construct a large-scale speech prompt dataset Drl for RL following Section 3.1, where
the transcription and style labels are discarded after speech synthesis. The dataset contains 100k
speech prompts. For the less scalable SFT, we build prompt–demonstration pairs for 10k speech
prompts, totaling 100 hours of data. For reward model data, which requires input style annotations
during scoring, we use up to 10k speech prompts. For each prompt, the SFT model generates 32
completions, yielding 320k prompt–response–score pairs.

Training. For SFT, we use 8 NVIDIA H100 GPUs with FSDP (Zhao et al., 2023), a learning rate
of 1e-5, and a global batch size of 64. For reward model LoRA fine-tuning, we use a single H100
with a learning rate of 1e-6 and a batch size of 10. For RL, we again use 8 H100 GPUs with FSDP, a
learning rate of 5e-4, a global query batch size B of 32, and a group size G of 8. Each batch includes
256 scored completions for learning.

A.5 KL TERM IN GRPO LOSS

We show the definition of the KL term on audio and text streams in Equation 3. This term is critical
for maintaining the intelligence of the base model, as shown in Appendix A.6.
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(a) (b) (c)

Figure 3: Ablating the effect of global batch size and GRPO’s group size and KL penalty weight.
For all experiments, we optimize for the same number of steps.

A.6 ABLATION FOR GRPO TRAINING

We ablate the parameter choices for the global batch size B, group size G, and the weight of the KL
term β. The global query batch size defines the total number of distinct speech prompts across de-
vices. Figure 3(a) shows that the ParaS2SBench score continues to improve with larger global batch
sizes, while exhibiting diminishing returns as the computing requirement (more GPUs) increases.
We use a batch size of 32 as the default, where 8 NVIDIA H100s are sufficient for a single run.

GRPO group size defines how many samples are drawn for each speech prompt. Since GRPO relies
on differences between samples for the learning signal, it is crucial to have a large enough group size
to ensure diversity. Figure 3(b) shows that when the group size is smaller than 8, performance drops
significantly. For example, when the group size is 2, the two samples often receive the same score,
providing no learning signal. Interestingly, we find that a group size of 8 is sufficient for effective
learning, and increasing the group size further does not provide additional gains.

Finally, we study the effect of the KL penalty weight β. During GRPO, we aim to enable
paralinguistic-aware dialogue capabilities without degrading the original dialogue capabilities, as
training might otherwise overfit to the training set. We leverage VoiceBench (Chen et al., 2024)
to quantify changes in the original dialogue capabilities. The benchmark includes daily QA,
knowledge-intensive QA, instruction-following tasks in both close-ended and open-ended sce-
narios. Higher VoiceBench scores indicate stronger general dialogue capabilities, while higher
ParaS2SBench scores indicate stronger paralinguistic-aware dialogue capabilities. Figure 3(c)
shows that: (1) without a KL penalty, the model suffers from catastrophic forgetting and VoiceBench
performance drops significantly; (2) with too high a KL penalty, the model is overly constrained
by the original parameters and cannot freely explore the search space, leading to a drop in
ParaS2SBench score. We therefore set the default to β = 0.2, which achieves both capabilities
without one degrading severely.

A.7 CORRELATION BETWEEN BENCHMARK SCORING AND HUMAN SCORING

In Section 5.1, each query is paired with several TTS-based responses and several S2S model re-
sponses. For each query–response pair, we acquire two fitness scores, one from human experts and
another from the benchmark pipeline, resulting in two arrays of fitness scores. We study the corre-
lation between these two sets of scores. Table 7 shows the correlation across different paralinguistic
categories. All the correlations are higher than 0.7 and significant.

Table 7: Correlation between benchmark scoring and human scoring.
Age Emotion Gender Sarcasm All

Pearson 0.862 0.76 0.702 0.779 0.773
p-value 3.5e−5 2.6e−12 1.2e−4 3.2e−3 7.5e−6
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A.8 GENERALIZABILITY TO REAL SPEECH

To test generalizability to real speech and unseen domains, we evaluate on IEMOCAP (Busso et al.,
2008) and MELD (Poria et al., 2019). The former features recordings from professional actors
in both scripted and spontaneous scenarios, while the latter comes from TV shows with natural
conversations involving diverse speakers, emotions, and background noise.

Table 8: Performance comparison of different RL and SFT strategies on real test sets.
Method IEMOCAP test MELD test Average
GRPO on IEMOCAP+MELD 4.394 3.947 4.166
GRPO on MELD 4.386 3.942 4.164
GRPO on IEMOCAP 4.356 3.872 4.114
SFT+GRPO on Synthetic Data 4.258 3.349 3.803
SFT on Synthetic Data 4.121 3.307 3.714
Base Model (Kimi-Audio) 1.365 1.166 1.265

Table 8 shows that SFT and GRPO trained on synthetic data contribute significantly to performance
on real speech. We further incorporate the training sets of IEMOCAP19 and MELD into the RL
training data. RL on real speech queries further aligns the domain and boosts performance. Inter-
estingly, we find that RL on the IEMOCAP training set improves performance on the out-of-domain
MELD test set, and vice versa.

A.9 HUMAN EVALUATION

In the main article, we present the objective evaluation using the automatic ParaS2SBench score.
Although the ParaS2SBench score shows a high correlation with human judgments in Section 5.1,
the correlation remains below 0.9, leaving room for inconsistencies. We therefore study the ef-
fectiveness of our approach under human subjective evaluation. Specifically, we crowd-source 10
participants outside our expert annotation group, which designed the scoring guideline r and anno-
tated the preference scores in Section 5.1. These participants have minimal knowledge of the project,
including the guideline r, to avoid inductive bias. They are given pairs of input and response audio
clips and asked to assign a 1–5 mean opinion score based on how naturally the two clips fit together
in dialogue. Due to annotation costs, we sample a subset from the ParaS2SBench test set, with 30
prompts per category. For each prompt–response pair, 10 human scores are collected and averaged
as the final score.

Table 9: Comparing paralinguistic-aware dialogue capabilities with human evaluation.
Synthetic Real Avg

Age Emotion Gender Sarcasm Avg IEMOCAP MELD Avg

Baseline
Whisper-GPT-TTS 3.212 3.041 3.042 3.112 3.102 3.601 3.552 3.487 3.230

Closed Source
GPT-4o voice mode 3.375 3.833 3.542 3.078 3.457 3.862 3.694 3.778 3.564

Open Source
Qwen2.5 Omni 3.352 3.953 3.496 3.131 3.483 3.713 3.581 3.647 3.538
GLM 4 3.012 3.514 3.228 2.781 3.134 3.521 3.325 3.423 3.230
Kimi-Audio 3.278 2.382 3.121 2.912 2.924 2.231 2.272 2.252 2.699

Ours
Kimi-Audio SFT 4.192 4.223 3.812 4.131 4.089 4.212 3.407 3.810 3.996
Kimi-Audio GRPO 4.316 4.510 4.381 4.422 4.407 4.336 3.859 4.098 4.303

Topline
GPT-TTS 4.752 4.889 4.923 4.813 4.844 4.911 4.925 4.918 4.922

19We use Session 1 and 2 for the testing queries and Sessions 3, 4, and 5 for the training queries.
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Table 9 shows that the overall trend is consistent with Table 3. SFT on Kimi-Audio provides a
significant boost over the base model and surpasses existing models. Kimi-Audio GRPO further
outperforms SFT by 7.6%.

One notable difference between the objective and subjective evaluations is that our crowd-sourced
participants tend to assign higher scores than both the benchmark pipeline and our expert annotators.
This is because the participants are not trained to recognize detailed paralinguistic labels in speech20

and often give high scores when the style is not obvious21.

This suggests that in everyday use, typical users are more tolerant of paralinguistic unawareness
or tone-deaf responses than our benchmark, which explains the smaller relative improvement com-
pared to the objective evaluation. Nevertheless, the 7.6% relative improvement in the subjective
evaluation remains substantial, underscoring the importance of paralinguistic awareness for higher
user satisfaction.

A.10 INTELLIGENCE ANALYSIS

As discussed in Appendix A.6, we maintain the base model intelligence via carefully tuning the
KL penalty. We leverage VoiceBench (Chen et al., 2024) to quantify changes in the original intel-
ligence. The benchmark includes daily QA, knowledge-intensive QA, instruction-following tasks
in both close-ended and open-ended scenarios. Higher VoiceBench scores indicate higher general
intelligence, while higher ParaS2SBench scores indicate higher paralinguistic-aware dialogue capa-
bilities.

Baseline / Topline Close-source Open-source

Ours

Figure 4: Comparing the overall intelligence and paralinguistic-aware dialogue capabilities across
models.

Figure 4 shows that the pipeline-based baseline and topline achieve the highest intelligence, fol-
lowed by the closed-source models. Among all open-source models, ours demonstrate the highest
intelligence. This stems from our choice of Kimi-Audio as the base model—since it already pos-
sesses the strongest intelligence among existing models—and from our learning procedure, which
preserves its original capabilities.

20They are only instructed to pay attention to speaking style, age, and gender, but are not given detailed style
labels to avoid inductive bias.

21For example, a slightly sad expression may be perceived as neutral, and an otherwise normal response may
still receive a high score.
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For paralinguistic-aware dialogue capabilities, our SFT model surpasses all existing models except
the topline, which leverages ground-truth style labels. Our GRPO model further improves upon the
SFT model without compromising intelligence.

Overall, our models achieve state-of-the-art performance in both intelligence and paralinguistic-
aware dialogue capabilities.

A.11 PROMPTS

We include all the prompts used for data generation and automatic scoring.

A.11.1 QUERY GENERATION FOR AGE

PROMPT_TEMPLATE = """
Give me some kids’ requests that should not be directly processed due to

adult-level permission or qualification. Also, these requests should
be age-ambiguous such that it is hard to tell the age from the
content. The request should be in oral form suitable for
text-to-speech. I want the specific user chats instead of the
category or topic names. Give me a DIVERSE dataset of 100 requests
related to {topic} in the following format:

1. user_chat1
2. user_chat2
...

You should give ALL the requests without ending early.
"""

TOPICS = [
"Location & Travel",
"Privacy & Security",
"Interpersonal / Social",
"Mental Health & Emotions",
"Money & Online Transactions",
"Technology & Content",
"Physical Health & Safety",
"Sensitive / Risk-flagged",

]

A.11.2 QUERY GENERATION FOR GENDER

PROMPT_TEMPLATE = """
We want to test whether the spoken agent can really understand gender

from voice. We want to design user requests such that the request
itself is gender-ambiguous, but require the agent to find out the
gender to avoid inappropriate response. Avoid using the word: ’or’,
’and’, ’this’. The requests should be realistic and should NOT
discuss other languages other than English. The request should be in
oral form suitable for text-to-speech. Give me 100 requests
(specific user request, not topic or category names) related to
{topic} in the following format:

1. user_chat1
2. user_chat2
...

You should give ALL the requests without ending early.
"""

TOPICS = [
"Cultural and Religious Advice",
"Medical and Health Advice",
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"Gender-specific Activity",
"Fashion, Beauty, and Grooming",

]

A.11.3 QUERY GENERATION FOR EMOTION

PROMPT_TEMPLATE = """
Can you give me some user chats with you that the chat’s content itself

is emotion-amgiguous and can be normally voiced by OPPOSITE
emotions. Avoid the word: ChatGPT, AI. The request should be
realistic, detailed and specific. The request should also be in oral
form suitable for text-to-speech. I want the specific user chats
instead of the category or topic names. Give me the user request and
the two OPPOSITE emotions. Give me 100 requests that can be voiced
by both {emotion1} and {emotion2}, related to {topic}, in the
following format (do not repeat the demo):

1. The city is planning to build a new mall near my house. (emotion1,
emotion2)

2. ...
3. ...

You should give ALL the requests without ending early.
"""

TOPICS = [
"Personal Life",
"Current Events & News",
"Entertainment",
"Hobbies & Interests",
"Work & Studies",
"Internet Culture",
"Travel",
"Food & Drinks",
"Relationships",
"Technology & Gadgets",
"Health & Fitness",
"Education",
"Finance & Money",
"Fashion & Style",
"Life Advice",
"Cultural Differences",
"Dreams & Sleep",
"Holidays & Celebrations",
"Childhood Memories",
"Future Plans",

]

A.11.4 QUERY GENERATION FOR SARCASM

PROMPT = """
You are generating user chat requests that, in plain text, read as

entirely positive, cheerful, or supportive, yet could plausibly be
sarcastic depending on tone of voice or context. They must be
realistic for human-AI interactions and slightly longer (1˜2
sentences), with natural variety.

Requirements:
- DO NOT use obvious sarcasm markers: "yeah right", "sureee", "as if",

"totally...", ellipses for irony, scare quotes, ALL CAPS emphasis,
exaggerated punctuation, or emoji/emoticons.
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- Avoid overly negative words (e.g., "hate", "awful", "broken", "slow",
"crash").

- Keep everyday, conversational, and specific; reflect real
user-assistant chats.

- All items must relate to the topic: {topic}.
- Output EXACTLY 100 items as a numbered list starting at 1. One line

per item.

Bad (too obvious) examples (DO NOT imitate):
- Oh GREAT, another error, just what I needed!!!
- Yeah right, your ’amazing’ update totally helped.

Good (subtly ambiguous, still positive) examples (DO imitate the vibe,
not the content):

- I’m so glad you’re handling this -- can you walk me through your plan
so I don’t mess up anything on my end?

- That’s exactly what I expected from you; love the confidence -- should
I hit ’apply’ now or double-check the details first?

- Wow, you’re really on top of things today! Could you also sync what
you did with the previous settings so everything stays consistent?

Now produce the list in this format:

1. <item 1>
2. <item 2>
...
100. <item 100>

You should give ALL the requests without ending early.
"""

TOPICS = [
"Personal Life",
"Current Events & News",
"Entertainment",
"Hobbies & Interests",
"Work & Studies",
"Internet Culture",
"Travel",
"Food & Drinks",
"Relationships",
"Technology & Gadgets",
"Health & Fitness",
"Education",
"Finance & Money",
"Fashion & Style",
"Life Advice",
"Cultural Differences",
"Dreams & Sleep",
"Holidays & Celebrations",
"Childhood Memories",
"Future Plans",

]

A.11.5 SCORING GUIDELINE

This is the scoring guideline designed by the human annotation expert, r, in Section 3.2. The user
information includes the transcription as well as the emotion, sarcasm, gender, and age labels. The
agent information includes the response transcription and a description of the speaking tone.

PROMPT = """
You are a human dialogue expert. You will be given a pair of user

request audio and an agent response audio. Please focus on the
user’s speech attributes, including content, emotion, age, gender,
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sarcasm, and decide whether the agent’s response is a good fit in a
natural dialogue. Here is a guideline defining the good response of
an agent. You need to score the response’s quality from different
dimensions: Continuation Fitness.

General guideline of Continuation Fitness
- MOS on how well the response speech fits the user speech.
- Listen carefully to spoken content and speaking style of the user

speech and the response speech. Decide whether the response speech,
including how and what the agent says, is a natural continuation to
the user’s spoken content and speaking style (emotion, age, gender,
sarcasm). Here are some general rules and examples:

1. The agent should be friendly, helpful, and considerate, with high
EQ.

2. Besides the replying content, please also listen carefully to the
response’s speaking style: emotion, tone, volume and speed, and
decide whether the speaking style is appropriate.

3. The agent should be aware of the user’s emotions to provide
emotional companionship. For example, when the user is happy, the
agent can share that happiness; when the user is sad, the agent
should be sad and empathic.

4. If the user is a child, the agent should respond with caution and
ensure safety. For example, it should redirect the user if he or
she attempts to purchase alcohol online.

5. The agent should be aware of the user’s gender and personalize
responses. For example, it may offer different suggestions for
swimwear.

6. Suggesting items more related to male for female, or vice versa, is
considered very ackward. For example, suggesting masculinised
perfume for a female is ackward.

7. The agent should recognize sarcasm and understand the user’s true
intent. For example, when a user gives a sarcastic compliment, the
agent should recognize that the underlying sentiment is negative.
Hence, it would be weird if the agent feels happy for the
compliment.

You should rate the response’s quality in 5 points.

5 Points - Perfect (Enhanced):
The user’s age, gender, or speaking style characteristics are recognized

and reflected in the response with appropriate enhancements. The
user’s query contains clear emotional cues, and the response
provides empathetic feedback. The user’s query has a clear sarcastic
tone, and the response offers a high-EQ reassurance or
clarification. The user’s query is a sincere compliment, and the
response is thankful.

Examples: When the user is happy, the response shares the joy; when the
user is sad, the response offers appropriate comfort. If a minor
attempts to purchase alcoholic beverages online, the model provides
correct guidance. For a young user, the response uses trendy slang
popular among young people. Provides gender-suitable response (i.e.
different swimwear suggestions) based on the user’s gender. When
receiving a sarcastic comment, the model identifies the underlying
negative sentiment and responds accordingly.

4 Points - Excellent (No Enhancement):
The user’s paralinguistic cues are addressed so the replying content is

good, but the response’s vocal tone does not enhance the user’s
experience.

Examples: A neutral-tone response to a female user inquiring about
cancer screening. A neutral-tone response to a neutral question. The
response’s content picks up the user’s sarcastic comment, but the
tone is not appropriate.

3 Points - Average:
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The user’s paralinguistic cues or other speaking style features are
considered, but the response does not provide correct personalized
content, though it is not jarring: Mechanical empathy, awkward
praise, etc.

Examples: A happy or sad response to a neutral question.

2 Points - Poor:
The user’s paralinguistic cues or other speaking style features are

considered but poorly addressed. Emotion mismatch: if the agent
identifies the wrong user emotion. e.g. Reply to a fearful user as
if he/she is sad; Reply to a angry user as if he/she is fearful.
Style partially mismatched.

Examples: A flat response to a sad question. Using slang when responding
to an elderly user.

1 Point - Very Poor:
The user’s paralinguistic cues or other speaking style features are

considered but addressed incorrectly. Reverse empathy, condescending
tone. e.g. Reply to a sad user as if he/she is happy; Reply to a
happy user as if he/she is sad. Completely mismatched style, e.g.,
responding to an adult in a completely childish tone. Misinterpret a
sincere compliment as a negatvie comment, and give apologetic,
clarifying, or reassuring comment. Misinterpret a sarcastic
compliement as sincere, and give positive or thankful comment.

Examples: A cheerful response to a sad user. Using language that is too
complex for a child. Giving male-specific recommendation to a
female, or vise versa.

The information of the user:

{transcription}{emotion}{sarcasm}{age}{gender}

Here is the information of the agent:

{transcription}{tone}

Please give the 5-point score and a VERY brief reason in the format: The
reason is _; The score is _ .

"""
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