

000 PARAS2S: BENCHMARKING AND ALIGNING SPOKEN 001 LANGUAGE MODELS FOR PARALINGUISTIC-AWARE 002 SPEECH-TO-SPEECH INTERACTION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Speech-to-Speech (S2S) models have shown promising dialogue capabilities, but
013 their ability to handle paralinguistic cues—such as emotion, tone, and speaker
014 attributes—and to respond appropriately in both content and style remains under-
015 explored. Progress is further hindered by the scarcity of high-quality and expres-
016 sive demonstrations. To address this, we introduce a novel reinforcement learning
017 (RL) framework for paralinguistic-aware S2S, **ParaS2S**, which evaluates and op-
018 timizes both content and speaking style directly at the waveform level. We first
019 construct **ParaS2SBench**, a benchmark comprehensively evaluates S2S models’
020 output for content and style appropriateness from diverse and challenging input
021 queries. It scores the fitness of input-output pairs and aligns well with human
022 judgments, serving as an automatic judge for model outputs. With this scalable
023 scoring feedback, we enable the model to explore and learn from diverse unla-
024 beled speech via Group Relative Policy Optimization (GRPO). Experiments show
025 that existing S2S models fail to respond appropriately to paralinguistic attributes,
026 performing no better than pipeline-based baselines. Our RL-based strong baseline
027 achieves a 11% relative improvement in response content and style’s appropri-
028 ateness on ParaS2SBench over supervised fine-tuning (SFT), surpassing all prior
029 models while requiring substantially fewer warm-up annotations than pure SFT¹.
030

031 1 INTRODUCTION 032

033 Speech is the most natural medium of communication, conveying not only words but also paralin-
034 guistic cues—emotion, tone, and speaker attributes—that jointly shape true intent and guide appro-
035 priate responses (Schuller & Batliner, 2013). This interplay of linguistic and paralinguistic signals
036 motivates speech-to-speech (S2S) models (Xu et al., 2025; Huang et al., 2025b; Zeng et al., 2024)
037 for human-like, empathetic interaction beyond text-based dialogue systems (Achiam et al., 2023;
038 Grattafiori et al., 2024).

039 S2S models show strong dialogue abilities (Fang et al., 2025a;b; Zeng et al., 2024), as seen in
040 Qwen2.5-Omni (Xu et al., 2025) and ChatGPT advanced voice mode.² Built on LLMs, they pre-
041 serve reasoning and conversational abilities while adding speech as a new I/O modality, achieving
042 high scores on benchmarks like VoiceBench (Chen et al., 2024) and Llama Questions (Nachmani
043 et al., 2024). Yet most benchmarks focus on question answering (Nachmani et al., 2024), instruc-
044 tion following (Lu et al., 2025), or speech-to-text understanding tasks (Yang et al., 2024; Sakshi
045 et al., 2025b), overlooking paralinguistic-aware dialogue. StyleTalk (Lin et al., 2024a) and Vox-
046 Dialogue (Cheng et al., 2025) partially address the problem but remain *speech-to-text* benchmarks
047 where evaluation ends at the textual response, leaving no benchmark that directly evaluates S2S
048 models’ response speech for paralinguistic awareness.

049 Beyond the lack of benchmarks, no paralinguistic-aware S2S models currently exist. Our study
050 shows that most S2S models fail to appropriately adjust responses according to different speaking
051 styles (e.g., emotional tone), often inferring speaker state from content alone and producing tone-
052 deaf or awkward replies. This limitation stems from existing spoken dialogue datasets, which rarely

053 ¹ Project page and demo: <https://paras2sbench.github.io/>

²<https://openai.com/index/chatgpt-can-now-see-hear-and-speak/>

054 capture the style dynamics between input and output (Ding et al., 2025; Fang et al., 2025a;b). Col-
 055 lecting such data is expensive, as it requires style annotation and expressive response recording,
 056 making data scarcity the main bottleneck for developing paralinguistic-aware S2S models (Huang
 057 et al., 2025b).

058 Inspired by DeepSeek-R1 (Guo et al., 2025), which acquires reasoning capabilities through RL
 059 without any SFT demonstrations, we ask *whether paralinguistic-aware dialogue capabilities can*
 060 *similarly emerge via RL with minimal supervision*. To answer, we introduce a novel framework for
 061 paralinguistic-aware S2S, **ParaS2S**. ParaS2S comprises a new S2S benchmark **ParaS2SBench** and
 062 a RL learning framework **ParaS2SAlign**. **ParaS2SBench** is designed to jointly evaluate both the
 063 content and speaking style of input and output speech, guided by three key design principles:
 064

- 065 **1. Speech-to-speech evaluation.** Evaluation is performed directly on input and output
 066 speech, assessing whether the model generates responses with both appropriate content
 067 and speaking style given the input speech.
- 068 **2. Contrasting speaking styles.** Following StyleTalk (Lin et al., 2024a), each test query is
 069 paired with two *contrasting* speaking styles that demand distinct responses. For example,
 070 “*I just bumped into my ex.*” may be spoken in either a surprised or sad tone.
- 071 **3. Scenario-controlled queries.** We design each query to have *neutral text content* so that
 072 models cannot guess the speaker’s state from words alone, and to be *paralinguistically*
 073 *relevant* so that the speaking style genuinely changes how the response should be generated.
 074

075 We design a data curation pipeline to automatically generate high-quality speech prompts covering
 076 key paralinguistic aspects—emotion, sarcasm, age, and gender. Using this benchmark, we expose
 077 the common tone-deaf issue in current S2S models, including state-of-the-art (SOTA) open-source
 078 models such as Qwen2.5 Omni (Xu et al., 2025) and Kimi-Audio (Ding et al., 2025), as well as
 079 closed-source systems such as ChatGPT advanced voiced mode (Achiam et al., 2023).

080 To advance model development, we establish **ParaS2SAlign** as the strong baseline in the bench-
 081 mark platform. By leveraging a Speech-to-Text reasoning model (Xie et al., 2025; Radford et al.,
 082 2023) and text LLM, we automate benchmark evaluation and provide an automatic judge for model
 083 outputs that correlates with human scoring. Building on the scalability of this scoring pipeline, we
 084 generate a large-scale preference dataset³ and distill the benchmark pipeline into a single reward
 085 model to enable RL. With Group Relative Policy Optimization (GRPO) (Shao et al., 2024), the
 086 base S2S model learns from diverse unlabeled speech prompts and from its own generated outputs
 087 automatically scored by the reward model, thereby unlocking paralinguistic-aware S2S capabilities
 088 through RL. Our results show that while supervised fine-tuning (SFT) is effective and outperforms
 089 existing models⁴, RL surpasses SFT by more than 11% in response content and style appropriateness
 090 on ParaS2SBench and 7.6% on subjective evaluation. Furthermore, in cost-controlled experiments,
 091 RL requires only 10 hours of demonstration as warm-up and achieves the same performance as pure
 092 SFT using just one fifth of the annotations, highlighting its learning efficiency. Our contributions
 093 are multifold:

- 094 • We present a novel benchmark, **ParaS2SBench**, for paralinguistic-aware S2S dialogue. It
 095 directly evaluates both the content and speaking style of input–output speech pairs at the
 096 waveform level, revealing the common tone-deaf issue in current S2S models.
- 097 • We establish **ParaS2SAlign**, the first RL framework for paralinguistic-aware S2S. By au-
 098 tomating and distilling the benchmark pipeline into a reward model, we enable scalable
 099 learning from unlabeled speech without costly demonstrations, serving as the strong base-
 100 line in the benchmark platform.
- 101 • We demonstrate that RL with GRPO achieves a 11% relative improvement in GPT-based
 102 scores on ParaS2SBench and 12% on real speech queries over SFT. Furthermore, We
 103 highlight the cost efficiency of RL compared to SFT, mitigating the data scarcity of
 104 paralinguistic-aware S2S.
- 105 • We will open-source data, code, and models to lower the barrier for future research.

106 ³This process would be costly if the response speech and preference scores were annotated by humans.

107 ⁴At the cost of requiring expensive and non-scalable demonstrations.

108
109

2 RELATED WORK

110
111

2.1 SPOKEN DIALOGUE MODELS

112
113
114
115
116
117
118
119
120
121
122
123

From S2T to S2S dialogue models. Early Speech-to-Text LLMs equip LLMs with *hearing* capabilities while leveraging textual reasoning for audio interaction (Tang et al., 2024; Hu et al., 2024; Gong et al., 2024). AudioReasoner (Xie et al., 2025) introduces Chain-of-Thought (CoT) reasoning to mitigate hallucination, while Qwen-Audio 1/2 (Chu et al., 2023; 2024) and StepAudio (Huang et al., 2025b) further extend dialogue capabilities to enable spoken agents⁵. Recent works explore Speech-to-Speech LLMs that learn input–output speech interaction end-to-end (Zhang et al., 2023; Défossez et al., 2024). GLM-4-Voice (Zeng et al., 2024) and Step-Audio-AQAA (Huang et al., 2025a) rely on interleaved text and audio tokens for grounded speech generation. LLaMa-Omni (Fang et al., 2025a;b), Freeze-Omni (Wang et al., 2025b) and Mini-Omni (Xie & Wu, 2024) propose fine-tuning techniques to preserve LLM intelligence when adding speech modality. Qwen2.5 Omni (Xu et al., 2025) proposes the thinker-talker architecture, while Kimi-Audio (Ding et al., 2025) introduces a dual-head design for text and audio generation.

124
125
126
127
128
129
130

Paralinguistic-aware dialogue models. Among these models, ParalinGPT (Lin et al., 2024b) and StyleTalk (Lin et al., 2024a) are the first to enable speech-to-text LLMs to respond differently to diverse speaking styles. OmniChat (Cheng et al., 2024) extends the speech-to-text study to multi-turn, paralinguistic-aware dialogues. For speech-to-speech models, GOAT-SLM (Chen et al., 2025) is the only model emphasizing paralinguistic-aware dialogue with a multi-stage SFT pipeline. These works rely on SFT with carefully curated, high-quality data, whereas we explore RL to reduce this reliance.

131
132
133
134
135
136
137

RL for dialogue models. RL has been applied to align spoken dialogue models. Align-SLM (Lin et al., 2025b) follows RL-AIF (Lee et al., 2024) and adopts DPO (Rafailov et al., 2023) to improve long-range semantics. Qwen2.5 Omni (Xu et al., 2025) uses WER as a preference signal to ground speech generation. Step-Audio (Huang et al., 2025b) and Step-Audio-AQAA (Huang et al., 2025a) rely on human feedback, which is annotation-heavy. ParaS2SAlign is the first RL framework to model content–style and input–output dynamics using scalable AI feedback.

138
139

2.2 SPOKEN DIALOGUE BENCHMARKS

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Benchmarks have been proposed to evaluate spoken dialogue models. Table 4 compares key differences across benchmarks. Dynamic-SUPERB (Huang et al., 2024) tests instruction-following on 180 tasks (yu Huang et al., 2025). AudioBench (Wang et al., 2025a) unifies speech/sound understanding and QA. AIR-Bench (Yang et al., 2024) adds speech, sound, music tasks, and a *chat* category. MMAU (Sakshi et al., 2025a) raises difficulty with reasoning-intensive QA. SpokenWOZ (Si et al., 2023) provides large-scale human-to-human dialogue data. VoxEval (Cui et al., 2025) converts MMLU (Hendrycks et al., 2021) to speech to assess model intelligence. VoiceBench (Chen et al., 2024) adds more text-based QA datasets including AlpacaEval (Li et al., 2023), OpenBookQA (Mihaylov et al., 2018), and MMLU-pro (Wang et al., 2024). FullDuplexBench (Lin et al., 2025a) evaluates response timing for full-duplex models. Among these works, ADU-Bench (Gao et al., 2025), SD-eval (Ao et al., 2024), VoxDialogue (Cheng et al., 2025), and StyleTalk (Lin et al., 2024a) evaluate responses under different input speaking styles, but focus only on the dialogue models’ output text.⁶ In contrast, ParaS2SBench performs end-to-end evaluation on both input and output speech, jointly considering content and speaking style.

3 PARAS2SBENCH

156
157
158
159
160
161

ParaS2SBench is a benchmark designed to evaluate paralinguistic-aware S2S models. In Section 3.1, we describe the process of curating training and testing queries that serve as inputs for evaluation.

⁵The response is usually in text, and the *speaking* capability is enabled by a separate TTS module.

⁶StyleTalk predicts both response text and style in textual format, enabling style learning and evaluation. However, it is limited to the few categorical styles supported by Microsoft Azure TTS, and its format assumption prevents evaluation of S2S models.

Figure 1: The overall framework of ParaS2S. (a) illustrates the pipeline of ParaS2SBench; (b) illustrates the framework of ParaS2SAlign.

In Section 3.2, we present the methodology for automatically evaluating model responses given an input query.

3.1 QUERY MINING – SYNTHETIC AND REAL

As shown by Figure 1 (a), ParaS2SBench begins by generating scenario-controlled and challenging queries with LLM that specify both the content and the corresponding speaking style, followed by synthesizing these queries using suitable text-to-speech (TTS) systems. The queries span a wide range of dialogue topics and scenarios, and the speaking styles cover various key paralinguistic factors, including emotion, sarcasm, gender, and age⁷. Mining appropriate queries is necessary for evaluating paralinguistic-aware S2S since many speech queries lack paralinguistic dynamics⁸. Such queries are unsuitable for evaluation, as models can answer correctly without considering style. We design an automatic data curation pipeline to mine the realistic and challenge testing queries. The pipeline relies on ChatGPT, and we include prompts in Appendix. Table 6 shows several examples and the demo page¹ demonstrates more examples.

1. **Candidate Generation.** We first generate a large corpus of queries with ChatGPT, each consisting of a input spoken sentence $c_i \in \Sigma^*$ followed by two *contrasting* speaking styles, $s_i^1, s_i^2 \in \Sigma^*$, that demand different responses. In the generation prompt, we instruct ChatGPT to cover diverse topics and scenarios, including interests, work, studies, relationships, travel, health, religion, fashion, and more.
2. **Script Quality Filtering.** For each spoken content c_i , we construct two queries, (c_i, s_i^1) and (c_i, s_i^2) . For each query (c_i, s_i) , we control the scenario by asking ChatGPT for several checks, including neutrality, reasonability and paralinguistic relevance. Neutrality prevents models from inferring the speaker’s state solely from text c_i ; reasonability ensures the content c_i and style s_i is a reasonable pair; paralinguistic relevance ensures that speaking style non-trivially affects the response. If any test is not passed, the query is discarded. Appendix A.3 provides more explanations.
3. **Speech Synthesis.** We synthesize input waveform $w_i \in R^*$ given the (c_i, s_i) pair. For emotion and sarcasm, we rely on the instruction-based TTS system *gpt-4o-mini-tts*⁹. This system requires a style description, which we generate with ChatGPT based on the style label s_i . Since *gpt-4o-mini-tts* supports only a limited number of speakers, we use CosyVoice (Du et al., 2024) for in-context zero-shot synthesis of gender and age. The voice samples for gender are drawn from LibriSpeech (Panayotov et al., 2015) and CommonVoice (Ardila et al., 2020), while the samples for age are drawn from NNCEs¹⁰. We

⁷We exclude emphasis, volume, and speed because our preliminary study shows they rarely affect human preferences. For example, when given “I want to borrow this book (fast),” people preferred “Sure, please give me your ID” over “Could you slow down? You speak too fast.”

⁸For example, the factual question *Who is the first president of America?* should yield the same answer regardless of the speaker’s background or style.

⁹<https://www.openai.fm/>

¹⁰<https://www.kaggle.com/datasets/kodaliradha20phd7093/nonnative-children-english-speech-nncest-corpus>. We do not use MyST (Pradhan et al., 2024) since the data link is unavailable.

216 discard samples whose WER with the ground truth exceeds a threshold. For emotion,
 217 we further discard samples whose Emotion2vec (Ma et al., 2024) classifier scores are too
 218 low (Cheng et al., 2025).

219 4. **Train/Test Split.** To avoid overlap between training and testing, we use disjoint query
 220 topics and TTS speakers.

221 5. **Human Check.** To ensure test set authenticity, we recruit three annotators to manually
 222 include only speech prompts with correct content and style from the filtered set.

224 The above pipeline curates a synthetic test set covering emotion, sarcasm, age, and gender. To further
 225 examine model behavior in realistic scenarios, we construct a test set using real speech by filtering
 226 queries from existing dialogue datasets. Given the known content and style labels provided by the
 227 dataset, we apply filters to check the length¹¹ and paralinguistic relevance. We rely on two emotion
 228 datasets, IEMOCAP (Busso et al., 2008) and MELD (Poria et al., 2019), as they provide sufficient
 229 queries that meet our constraints. In contrast, we find it challenging to source enough queries for
 230 age and gender from datasets like CommonVoice due to the paralinguistic relevance constraint¹².
 231 Finally, we construct a testing set $D_{\text{test}} = \{(c_i, s_i, w_i)\}$ where $c_i \in \Sigma^*$ is the input spoken content,
 232 $s_i \in \Sigma^*$ is the input speaking style, and $w_i \in R^*$ is the input audio prompt. Table 5 shows the
 233 statistics.

234 3.2 RESPONSE EVALUATION & SCORING

236 Given an input query $(c_i, s_i, w_i) \sim D_{\text{test}}$, the S2S model M samples a response speech $w_o \sim$
 237 $\pi_M(O|w_i)$. To evaluate the response speech, we project both the content and the speaking style of
 238 w_o into natural language, using SOTA Speech-to-Text models C and S , respectively. We rely on
 239 Whisper-v3 (Radford et al., 2023) as C to get the output transcription: $c_o = C(w_o)$. We leverage
 240 AudioReasoner (Xie et al., 2025) as S to extract output speaking tone: $s_o = S(w_o)$. AudioReasoner
 241 equips Qwen-Audio 2 (Chu et al., 2024) with reasoning capabilities by distilling Chain-of-Thought
 242 (CoT) paths from Gemini (Team et al., 2024) to reduce hallucination. Finally, given the input content
 243 c_i and style s_i , along with the extracted output content c_o and style s_o , we use ChatGPT 4.1 to score
 244 the fitness following the guideline r designed by human experts, described in the Appendix.

245
$$f_{\text{gpt}} = \text{GPT}(c_i, s_i, c_o, s_o, r) \quad (1)$$

247 We will show that this scoring pipeline can align with human judgments f_{expert} in Section 5.1. Both
 248 f_{gpt} and f_{expert} are on a 1–5 Likert scale.

250 4 PARAS2SALIGN

252 Although ParaS2SBench provides automatic fitness scores, the scoring process is slow: it requires
 253 a reasoning-based speech-to-text LLM and ChatGPT API calls, so even a small batch of responses
 254 takes several minutes. This makes typical online RL training impractical when rewards are com-
 255 puted directly from the benchmark evaluation pipeline, and also makes it prohibitively expensive to
 256 construct a large-scale preference dataset for direct preference optimization (DPO) (Rafailov et al.,
 257 2023). To address this, we design a three-stage online RL framework that uses a reward model to
 258 approximate the benchmark pipeline and employs GRPO (Shao et al., 2024). Figure 1 (b) illustrates
 259 the framework.

260 We use Kimi-Audio (Ding et al., 2025) as the base model θ_{base} ¹³, while the framework can be
 261 applied to any LM-based S2S model. For Kimi-Audio, the audio input w_i , text input c_i , audio
 262 output w_o , and text output c_o are preprocessed and organized into four token streams: $a_i, t_i \in \mathbb{Z}^{L_i}$
 263 and $a_o, t_o \in \mathbb{Z}^{L_o}$. The input streams (a_i, t_i) are padded to the same length $L_i \in \mathbb{Z}$, and the output
 264 streams to $L_o \in \mathbb{Z}$. The input embeddings of the audio and text streams are summed before being

265 ¹¹In real dialogues, some turns consist of only a few words (e.g., *Haha* or *Sounds good*), which are not
 266 suitable for evaluation. We therefore filter out queries with fewer than five words.

267 ¹²For example, in *Could you read the book for me? (female)*, the gender attribute is negligible.

268 ¹³Since it exhibits high intelligence and strong dialogue capabilities (Chen et al., 2024) and is fully open-
 269 soured. We do not use Qwen2.5-Omni (Xu et al., 2025) because its speech tokenizer is not released, making
 S2S fine-tuning infeasible.

270 fed into the Transformer, and from the middle of the model, two prediction heads predict the next
 271 token for each stream.
 272

$$\pi_{\theta}(a_o, t_o | a_i, t_i) = \prod_{n=1}^{|a_o|} \pi_{\theta}(a_{o,n}, t_{o,n} | a_{o,<n}, t_{o,<n}, a_i, t_i) \quad (2)$$

280 For inference, output audio and text tokens are sampled auto-regressively $(a_o, t_o) \sim \pi_{\theta}(O | a_i, t_i)$.
 281 Audio tokens are decoded into the sampled waveform with a flow-matching decoder: $w_o = \rho(a_o)$.
 282

284 4.1 STAGE 1. WARM-UP

286 SFT serves as a crucial warm-up stage for RL, as we observe that existing S2S models lack
 287 paralinguistic-aware dialogue capabilities. Consequently, they fail to sample high-quality responses
 288 and cannot provide a useful learning signal for RL. To construct the SFT dataset D_{sft} , we follow
 289 Section 3.1 to generate a training set of speech queries with both input content c_i and style labels s_i .
 290 For each query (c_i, s_i) , we use ChatGPT to produce the most suitable response (c_o, s_o) , including
 291 both a textual transcription and a tone description. We then synthesize the expressive response w_o
 292 using *gpt-4o-mini-tts*. Because *gpt-4o-mini-tts* can be unstable, we synthesize 10 candidates, apply
 293 WER-based filtering, and perform manual selection to obtain high-quality warm-up demonstrations
 294 w_o . With the input–output mapping $D_{\text{sft}} = \{(w_i, w_o, c_i, c_o)\}$, we train next-token prediction on both
 295 the preprocessed audio stream $a_i \| a_o$ and the text stream $t_i \| t_o$ by optimizing θ for higher likelihood
 296 $\mathbb{E}_{D_{\text{sft}}} [\pi_{\theta}(a_o, t_o | a_i, t_i)]$, initializing from θ_{base} and obtaining θ_{sft} .
 297

298 4.2 STAGE 2. DISTILLING REWARD MODEL

300 To distill our benchmark pipeline into a reward model, we construct a preference dataset D_{prefer} .
 301 We first prepare Q speech queries $\{(c_i^j, s_i^j, w_i^j)\}_{j=1}^Q$ following Section 3.1. The SFT model now
 303 possesses preliminary paralinguistic-aware dialogue capabilities and begins to respond differently
 304 according to the input speaking styles, but unstably. Each query (c_i, s_i, w_i) is preprocessed into
 305 input token streams (a_i, t_i) . We sample K diverse speech responses with high sampling temperature,
 306 $(a_o, t_o) \sim \pi_{\theta}(O | a_i, t_i), w_o = \rho(a_o)$. We then score the resulting $Q \times K$ query–response
 307 pairs following Equation 1 to construct a preference dataset $D_{\text{prefer}} = \{(w_i, w_o, f_{\text{gpt}})\}$, where f_{gpt}
 308 is the fitness score of w_i and w_o , depending on content label c_i , style label s_i , extracted content
 309 $c_o = C(w_o)$ and extracted style $s_o = S(w_o)$. Finally, we use LoRA (Hu et al., 2022) to fine-tune
 310 Qwen2.5-Omni (Xu et al., 2025) as the reward model, which is employed as a Speech-to-Text LLM.
 311 The model takes the query speech, response speech, and scoring guideline r as input, and outputs
 312 a single score on a Likert scale. We denote the reward model as ϕ . The score is treated as a single
 313 character and optimized with the cross entropy loss: $\mathbb{E}_{D_{\text{prefer}}} \phi(f_{\text{gpt}} | w_i, w_o, r)$.
 314

315 4.3 STAGE 3. POST-TRAINING

317 Using the warm-up model θ_{sft} and the reward model ϕ , we enable the model to explore the search
 318 space for higher scores via GRPO (Shao et al., 2024) on the large set of unlabeled speech. We do not
 319 use PPO (Schulman et al., 2017) due to its substantial memory and computational burden of the value
 320 function. Moreover, in our case, only the last token of the response is assigned a final reward, which
 321 complicates the training of the value function that needs to be accurate at every token (Shao et al.,
 322 2024). Given the unlabeled speech prompt dataset $D_{\text{rl}} = \{w_i\}$, we obtain the transcription with
 323 Whisper-v3 and construct input token streams $D'_{\text{rl}} = \{(w_i, a_i, t_i)\}$. We optimize θ_{sft} to maximize
 the objective:

324

325

$$\begin{aligned}
\mathcal{J}_{\text{GRPO}}(\theta) = & \mathbb{E}[(w_i, a_i, t_i) \sim D'_{\text{rl}}, \{(a_o^g, t_o^g)\}_{g=1}^G \sim \pi_{\theta_{\text{old}}}(O \mid a_i, t_i)] \\
& \frac{1}{G} \sum_{g=1}^G \frac{1}{|a_o^g|} \sum_{n=1}^{|a_o^g|} \left\{ \min \left[\frac{\pi_{\theta}(a_{o,n}^g, t_{o,n}^g \mid a_i, t_i, a_{o,<n}^g, t_{o,<n}^g)}{\pi_{\theta_{\text{old}}}(a_{o,n}^g, t_{o,n}^g \mid a_i, t_i, a_{o,<n}^g, t_{o,<n}^g)} \hat{A}^g, \right. \right. \right. \\
& \left. \left. \left. \text{clip} \left(\frac{\pi_{\theta}(a_{o,n}^g, t_{o,n}^g \mid a_i, t_i, a_{o,<n}^g, t_{o,<n}^g)}{\pi_{\theta_{\text{old}}}(a_{o,n}^g, t_{o,n}^g \mid a_i, t_i, a_{o,<n}^g, t_{o,<n}^g)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}^g \right] - \beta \mathbb{D}_{\text{KL}}[\pi_{\theta} \parallel \pi_{\text{ref}}] \right\}, \\
& (3)
\end{aligned}$$

We sample prompts from D'_{rl} , generate G responses, decode tokens into waveforms with ρ , score them with ϕ , compute the normalized advantage $\hat{A}^g = (\phi(w_i, \rho(a_o^g), r) - \mu)/\sigma$, and update the policy θ for higher rewards. μ and σ are the mean and standard deviation of the raw scores within a group. ϵ is the clipping threshold. The KL term and the ablation of β are detailed in Appendix.

334

335

5 EXPERIMENTS

349

Overview. In this section, we aim to answer two core research questions: (1) *Can the automatic benchmark scoring reflect human judgments and serve as an effective evaluation tool?* and (2) *Can RL truly improve performance compared to SFT for this problem?* Section 5.1 provides analyses and answers to the first question and show positive correlation. To thoroughly address the second question, we verify it across several subsections. Section 5.2 demonstrates that RL consistently leads to better performance regardless of the amount of SFT warm-up data, supporting our main claim. Section 5.3 points out that only a few hours of SFT data are sufficient to bootstrap the self-improvement process, indicating that RL indeed helps mitigate the data scarcity of paralinguistic-aware S2S. After validating the effectiveness of the RL algorithm, we move on to the practical concern of data construction cost. Section 5.4 provides best practices for balancing the budget allocation between SFT data and RL data, demonstrating the cost efficiency of the proposed framework. Next, we validate the generalizability of the training framework to real speech in Section 5.5, which is essential as the previous experiments are conducted on synthetic speech. Finally, Section 5.6 verifies that our training framework leads to a SOTA model in paralinguistic-aware dialogue by comparison with existing models. These subsections jointly gauge the effectiveness, generalizability, and cost efficiency of the proposed RL framework.

356

357

Settings. We construct a large-scale speech prompt dataset D_{rl} for RL following Section 3.1, where the transcription and style labels are discarded after speech synthesis. The dataset contains 100k speech prompts. For the less scalable SFT, we build prompt–demonstration pairs for 10k speech prompts, totaling 100 hours of data. For reward model data, which requires input style annotations during scoring, we use up to 10k speech prompts. For each prompt, the SFT model generates 32 completions, yielding 320k prompt–response–score pairs. More details are in Appendix A.4.

363

364

5.1 CAN BENCHMARK SCORES ALIGN WITH HUMAN SCORES?

365

366

Here, we evaluate whether the automatic evaluation benchmark scores align with human scoring. For this study, we sampled a subset from the benchmark for human annotation, with 200 prompts per paralinguistic category. For each speech prompt, we obtain two types of responses:

369

370

TTS-based responses: ChatGPT 4.1 generates the response content and style, and diverse TTS systems synthesize speech to simulate different speaking styles. We include YourTTS (Casanova et al., 2022), CosyVoice (Du et al., 2024), Sesame¹⁴, and *gpt-4o-mini-tts*. These systems range from flat and neutral to expressive, spontaneous, and fine-grained controlled styles. We also add a baseline, *gpt-4o-mini-tts (bad)*, where we instruct ChatGPT 4.1 to produce suboptimal content or style such as tone-deaf content and inappropriate speaking style.

375

376

S2S model-based responses: End-to-end S2S models directly generate speech responses. We include GPT-4o Voice mode, Qwen2.5 Omni, and GLM-4-Voice.

377

¹⁴https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice

378
 379 Table 1: Comparison of GPT-based benchmark scoring and human evaluation across Age, Emotion,
 380 Gender, and Sarcasm tasks, with per-model averages.

	Age		Emotion		Gender		Sarcasm		Avg	
	GPT	Human	GPT	Human	GPT	Human	GPT	Human	GPT	Human
TTS-based										
gpt-4o-mini-tts (good)	4.420	4.380	4.646	4.654	4.739	4.506	4.790	4.337	4.649 (1)	4.469 (1)
gpt-4o-mini-tts (bad)	1.215	1.177	1.159	1.041	1.325	1.590	1.210	1.251	1.227 (8)	1.265 (8)
Sesame	4.412	4.216	4.512	4.324	4.701	4.332	4.71	4.182	4.583 (2)	4.263 (2)
CosyVoice	4.380	3.994	4.417	4.012	4.612	4.201	4.680	3.864	4.522 (3)	4.018 (3)
YourTTS	4.410	4.037	4.302	3.801	4.534	4.230	4.580	3.804	4.457 (4)	3.968 (4)
S2S models										
GPT-4o Voice mode	2.685	2.630	3.711	2.713	3.096	3.682	2.815	2.611	3.077 (6)	2.909 (5)
Qwen2.5 Omni	2.930	2.728	3.680	2.522	2.933	3.493	2.910	2.509	3.113 (5)	2.863 (6)
GLM-4-Voice	2.570	2.493	3.489	2.384	2.821	3.521	2.720	2.301	2.900 (7)	2.675 (7)

391
 392 Table 2: Correlation between benchmark scoring and human scoring.

	Age	Emotion	Gender	Sarcasm	All
Pearson	0.862	0.76	0.702	0.779	0.773
p-value	3.5e ⁻⁵	2.6e ⁻¹²	1.2e ⁻⁴	3.2e ⁻³	7.5e ⁻⁶

393
 394 TTS-based responses isolate the effect of response tone under identical gold content, while S2S
 395 responses reflect real model behavior. Each prompt-response pair is scored by three human experts
 396 on a Likert scale¹⁵. We also apply automatic scoring to study alignment. In Table 1, S2S responses
 397 lag significantly behind TTS responses due to the tone-deaf content, where the latter benefit from
 398 ground-truth style labels. The scores of S2S responses hover around 3, indicating models fail to
 399 adapt to contrasting speaking styles¹⁶. Second, across all models, the rankings with benchmark
 400 and human scores are nearly identical, with only one switch. The rankings of TTS systems are
 401 consistent: *gpt-4o-mini-tts* > Sesame > CosyVoice > YourTTS¹⁷.

402
 403 Then, we analyze the correlation between the benchmark scoring and human judgment. Each input
 404 query is paired with several TTS-based responses and several S2S model responses. For each
 405 query-response pair, we acquire two fitness scores, one from human experts and another from the
 406 benchmark pipeline, resulting in two arrays of fitness scores. We compute the Pearson correlation
 407 between these two sets of scores following (Chiang & Lee, 2023). Table 7 shows the correlation
 408 across different paralinguistic categories. All the correlations are higher than 0.7 and significant.
 409 These results validate the benchmark pipeline as a judge for RL feedback.

410 5.2 CAN RL IMPROVE PERFORMANCE OVER SFT?

411
 412 We study the effectiveness of RL under different amounts of SFT warm-up data. For reward model
 413 data, we consider a realistic setting: the constrained case, where the reward model is trained using
 414 the same amount of annotation as the SFT data. We also include an unconstrained case, where the
 415 reward model uses all available annotations¹⁸. Figure 2 (a) shows that SFT only already consistently
 416 demonstrates effectiveness: with only 10 hours of data, it surpasses most existing models, including
 417 GPT-4o voice mode, and continues to improve as data scales. However, RL in the constrained case
 418 consistently outperforms SFT across all data regimes: SFT requires more than ten times as much
 419 data to match RL performance. Using the reward model trained on all available preference data
 420 further unlocks additional gains.

421
 422 ¹⁵We first conducted preliminary annotations to align guidelines and maximize agreement, and discarded
 423 official annotations where all three experts disagreed.

424
 425 ¹⁶For prompts with two contrasting styles, models often score 5 for one response and 1 for the other tone-deaf
 426 response, averaging 3.

427
 428 ¹⁷Since the four TTS systems share the same response content, their scoring differences stem from the
 429 speaking style. We observe that AudioReasoner tends to classify CosyVoice and YourTTS outputs as calm,
 430 neutral, or flat, which is less empathetic.

431
 432 ¹⁸The curation of reward model data is still much cheaper than SFT data, as no human selection is involved.

Figure 2: The ParaS2SBench score is the average across 4 categories. The trending of individual category is similar. (a) Comparison of RL and SFT results across different amounts of SFT data; (b) comparison of budget allocation between SFT and reward model (RM) data. The total budget consists of 100 hours of annotation, which are distributed between speech prompts for SFT data and reward model data. The gray dotted line shows the correlation between reward model prediction and the original benchmark pipeline score on a held-out test set.

5.3 HOW MANY ANNOTATIONS CAN RL SAVE?

From Figure 2 (a), only 10 hours of SFT warm-up data are sufficient to unlock the model’s ability to learn from self-generated demonstrations, improving upon the warm-up model by more than 17.1% and achieving performance comparable to using 50 hours of SFT data. Similarly, RL with a 20-hour warm-up performs comparably to 100 hours of SFT data, highlighting the strong label efficiency of our approach. Figure 2 (a) also shows that the warm-up stage is still critical, as the base model cannot sample sufficiently good demonstrations to evolve through RL.

5.4 SHOULD WE INVEST MORE COSTS ON SFT OR REWARD MODEL?

Both the construction of SFT data and the reward model require style annotations for input prompts. Given a fixed number of prompt annotations, we study whether it is more beneficial to allocate them to SFT or reward model data. Figure 2(b) shows that increasing SFT data (and decreasing reward model data) consistently improves RL performance—until the reward model becomes poorly correlated with the benchmark scores. Surprisingly, only 10 hours of annotated speech prompts are sufficient to build a usable reward model. Thus, allocating more budget to SFT data is generally advantageous, since warm-up quality drives GRPO sampling and learning efficiency, while the reward model is easier to learn and still reaches a strong correlation of 0.7 with minimal annotation (e.g. 10 hours).

5.5 GENERALIZABILITY TO REAL SPEECH

To test generalizability to real speech and unseen domains, we evaluate on IEMOCAP (Busso et al., 2008) and MELD (Poria et al., 2019). The former features recordings from professional actors in both scripted and spontaneous scenarios, while the latter comes from TV shows with natural conversations involving diverse speakers, emotions, and background noise. We verify that SFT and GRPO trained on synthetic speech generalize to real speech. Applying GRPO to real speech further improves performance on both in-domain and out-of-domain scenarios (Appendix A.8).

5.6 COMPARING S2S MODELS – AUTOMATIC JUDGE AND HUMAN EVALUATION

Table 3 compares several existing S2S models with ours. The Whisper-GPT-TTS pipeline uses Whisper-v3 to transcribe the input query without considering the speaking style, generates the response text with ChatGPT, and synthesizes speech with *gpt-4o-mini-tts*. This pipeline serves as a baseline where speaking style is ignored. The topline, on the other hand, leverages the ground-truth

486

487

Table 3: Comparing paralinguistic-aware dialogue capabilities with ParaS2SBench score.

	Synthetic					Real			Avg
	Age	Emotion	Gender	Sarcasm	Avg	IEMOCAP	MELD	Avg	
Baseline									
Whisper-GPT-TTS	3.050	3.121	2.916	3.005	3.022	3.562	3.412	3.487	3.176
Closed Source									
GPT-4o Voice mode	3.205	3.633	3.342	2.957	3.284	3.770	3.508	3.639	3.403
Gemini	3.301	3.811	3.413	3.263	3.447	3.813	3.712	3.762	3.552
Open Source									
Qwen2.5 Omni	3.170	3.653	3.236	2.935	3.248	3.626	3.599	3.612	3.369
GLM 4	2.885	3.447	2.976	2.803	3.033	2.934	3.141	3.037	3.034
LLaMa-Omni 2	3.123	3.512	3.064	3.164	3.215	3.425	3.462	3.443	3.291
Freeze-Omni	2.819	2.316	2.884	2.701	2.680	2.835	3.061	2.948	2.769
Kimi-Audio	3.141	2.673	3.091	2.665	2.892	1.365	1.166	1.265	2.350
Ours									
Kimi-Audio SFT	4.393	4.090	3.530	4.291	4.076	4.121	3.307	3.714	3.955
Kimi-Audio GRPO	4.496	4.490	4.239	4.538	4.441	4.394	3.927	4.161	4.382
Topline									
GPT-TTS	4.525	4.691	4.812	4.791	4.705	4.710	4.824	4.766	4.725

500

501

502

503

504

505

transcription and style label of the query to generate both the response content and style with Chat-GPT, and then synthesizes speech using *gpt-4o-mini-tts*. Table 3 shows that almost all existing S2S models perform similarly to the pipeline baseline, suggesting that they do not account for the input speaking style and produce similar responses even for contrasting queries. In contrast, SFT with our carefully crafted data achieves more than a 68% improvement over the base model and surpasses all existing models. Furthermore, applying GRPO yields an additional 11% improvement, approaching topline performance. Overall, Table 3 demonstrates the effectiveness of our learning approach and shows that our model achieves SOTA paralinguistic dialogue capabilities. Finally, human subjective evaluation (Appendix A.9) corroborates these findings, showing similar results across models.

515

516

6 CONCLUSION

517

518

We present ParaS2S, a framework designed for paralinguistic-aware speech-to-speech interaction. We formulate the problem and construct a benchmark dataset covering diverse scenarios and multiple paralinguistic aspects, including both synthetic and real speech. We provide an automatic judge that correlates well with human preferences to enable model scoring. We demonstrate the effectiveness and efficiency of exploring on unlabeled speech and learning from the judge’s signal. With GRPO, we unlock state-of-the-art paralinguistic-aware dialogue capabilities using only 10 hours of warm-up demonstrations, consistently demonstrating superior label efficiency compared to pure SFT. We will release the data, models, and code to lower the barrier for future research.

525

526

527

7 LIMITATION

528

529

530

531

532

533

534

535

536

537

538

539

First, we test the generalizability to real speech using two emotion datasets, IEMOCAP and MELD. However, evaluation for other paralinguistic features—sarcasm, age, and gender—remains unexplored because existing real-speech datasets are largely *paralinguistic-irrelevant*: the best response usually does not depend on the speaker’s style. For instance, a query about the current U.S. president should yield the same answer regardless of whether it is spoken by a male or female voice. Thus, we currently assess real-speech generalizability only for emotion, where the model already shows strong performance. We hope future conversational datasets with richer style variations will enable broader evaluation. Second, we enhance the base model’s expressiveness using SFT data synthesized by TTS. Synthetic responses, however, may limit diversity and expressiveness due to the lack of real paralinguistic-aware dialogue data. Consequently, the model is upper-bounded by the TTS system (OpenAI *gpt-4o-mini-tts*), whose style controllability can be unstable. A natural next step is to collect real speech—both queries and response demonstrations—to capture the nuanced patterns of human-to-human interaction and further improve expressiveness and empathy.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou
546 Li, and Zhizheng Wu. Sd-eval: A benchmark dataset for spoken dialogue understanding beyond
547 words. *Advances in Neural Information Processing Systems*, 37:56898–56918, 2024.

548

549 Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
550 Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A
551 massively-multilingual speech corpus. In *Proceedings of the Twelfth Language Resources and*
552 *Evaluation Conference*, pp. 4218–4222, 2020.

553

554 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
555 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
556 motion capture database. *Language resources and evaluation*, 42(4):335–359, 2008.

557

558 Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Gölge, and
559 Moacir A Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for
560 everyone. In *International conference on machine learning*, pp. 2709–2720. PMLR, 2022.

561

562 Hongjie Chen, Zehan Li, Yaodong Song, Wenming Deng, Yitong Yao, Yuxin Zhang, Hang Lv,
563 Xuechao Zhu, Jian Kang, Jie Lian, et al. Goat-slm: A spoken language model with paralinguistic
564 and speaker characteristic awareness. *arXiv preprint arXiv:2507.18119*, 2025.

565

566 Yiming Chen, Xianghu Yue, Chen Zhang, Xiaoxue Gao, Robby T Tan, and Haizhou Li. Voicebench:
567 Benchmarking llm-based voice assistants. *arXiv preprint arXiv:2410.17196*, 2024.

568

569 Xize Cheng, Dongjie Fu, Xiaoda Yang, Minghui Fang, Ruofan Hu, Jingyu Lu, Bai Jionghao, Zehan
570 Wang, Shengpeng Ji, Rongjie Huang, Linjun Li, Yu Chen, Tao Jin, and Zhou Zhao. Omnichat:
Enhancing spoken dialogue systems with scalable synthetic data for diverse scenarios, 2024. URL
<https://openreview.net/forum?id=cVg0IjcNoQ>.

571

572 Xize Cheng, Ruofan Hu, Xiaoda Yang, Jingyu Lu, Dongjie Fu, Zehan Wang, Shengpeng Ji, Rongjie
573 Huang, Boyang Zhang, Tao Jin, and Zhou Zhao. Voxdialogue: Can spoken dialogue systems
574 understand information beyond words? In *The Thirteenth International Conference on Learning*
575 *Representations*, 2025. URL <https://openreview.net/forum?id=vbmSSIhKAM>.

576

577 Cheng-Han Chiang and Hung-yi Lee. A closer look into using large language models for auto-
578 matic evaluation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Associa-
579 tion for Computational Linguistics: EMNLP 2023*, pp. 8928–8942, Singapore, December 2023.
580 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.599. URL
<https://aclanthology.org/2023.findings-emnlp.599/>.

581

582 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
583 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
584 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

585

586 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
587 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
2024.

588

589 Wenqian Cui, Xiaoqi Jiao, Ziqiao Meng, and Irwin King. VoxEval: Benchmarking the knowl-
590 edge understanding capabilities of end-to-end spoken language models. In Wanxiang Che, Joyce
591 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd An-
592 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
593 16735–16753, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.818. URL <https://aclanthology.org/2025.acl-long.818/>.

594 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
 595 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
 596 logue. *arXiv preprint arXiv:2410.00037*, 2024.

597 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
 598 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

600 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
 601 Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
 602 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024.

603 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-
 604 omni: Seamless speech interaction with large language models. In *The Thirteenth International
 605 Conference on Learning Representations*, 2025a.

606 Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, and Yang Feng. Llama-omni2: Llm-
 607 based real-time spoken chatbot with autoregressive streaming speech synthesis. *arXiv preprint
 608 arXiv:2505.02625*, 2025b.

609 Kuofeng Gao, Shu-Tao Xia, Ke Xu, Philip Torr, and Jindong Gu. Benchmarking open-ended au-
 610 dio dialogue understanding for large audio-language models. In Wanxiang Che, Joyce Nabende,
 611 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
 612 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4763–4784,
 613 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 614 251-0. doi: 10.18653/v1/2025.acl-long.237. URL [https://aclanthology.org/2025.
 615 acl-long.237/](https://aclanthology.org/2025.acl-long.237/).

616 Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid Karlinsky, and James R Glass. Listen, think,
 617 and understand. In *The Twelfth International Conference on Learning Representations*, 2024.

618 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 619 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 620 of models. *arXiv preprint arXiv:2407.21783*, 2024.

621 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 622 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 623 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

624 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 625 Steinhardt. Measuring massive multitask language understanding. In *International Conference
 626 on Learning Representations*, 2021.

627 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 628 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 629 ference on Learning Representations*, 2022. URL [https://openreview.net/forum?
 630 id=nZeVKeFYf9](https://openreview.net/forum?id=nZeVKeFYf9).

631 Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Lingwei Meng, Hongkun Hao, Jing Pan, Xunying
 632 Liu, Jinyu Li, Sunit Sivasankaran, et al. Wavllm: Towards robust and adaptive speech large
 633 language model. In *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 634 pp. 4552–4572, 2024.

635 Ailin Huang, Bingxin Li, Bruce Wang, Boyong Wu, Chao Yan, Chengli Feng, Heng Wang, Hongyu
 636 Zhou, Hongyuan Wang, Jingbei Li, et al. Step-audio-aqaa: a fully end-to-end expressive large
 637 audio language model. *arXiv preprint arXiv:2506.08967*, 2025a.

638 Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen,
 639 Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent
 640 speech interaction. *arXiv preprint arXiv:2502.11946*, 2025b.

641 Chien-yu Huang, Ke-Han Lu, Shih-Heng Wang, Chi-Yuan Hsiao, Chun-Yi Kuan, Haibin Wu,
 642 Siddhant Arora, Kai-Wei Chang, Jiatong Shi, Yifan Peng, et al. Dynamic-superb: Towards
 643 a dynamic, collaborative, and comprehensive instruction-tuning benchmark for speech. In
 644 *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
 645 (ICASSP)*, pp. 12136–12140. IEEE, 2024.

648 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
 649 Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling re-
 650 enforcement learning from human feedback with ai feedback. In *International Conference on*
 651 *Machine Learning*, pp. 26874–26901. PMLR, 2024.

652 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 653 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 654 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

655 Guan-Ting Lin, Cheng-Han Chiang, and Hung-yi Lee. Advancing large language models to capture
 656 varied speaking styles and respond properly in spoken conversations. In Lun-Wei Ku, Andre
 657 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association*
 658 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 6626–6642, Bangkok, Thailand,
 659 August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.358.
 660 URL <https://aclanthology.org/2024.acl-long.358/>.

661 Guan-Ting Lin, Prashanth Gurunath Shivakumar, Ankur Gandhe, Chao-Han Huck Yang, Yile Gu,
 662 Shalini Ghosh, Andreas Stolcke, Hung-yi Lee, and Ivan Bulyko. Paralinguistics-enhanced large
 663 language modeling of spoken dialogue. In *ICASSP 2024-2024 IEEE International Conference on*
 664 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 10316–10320. IEEE, 2024b.

665 Guan-Ting Lin, Jiachen Lian, Tingle Li, Qirui Wang, Gopala Anumanchipalli, Alexander H Liu, and
 666 Hung-yi Lee. Full-duplex-bench: A benchmark to evaluate full-duplex spoken dialogue models
 667 on turn-taking capabilities. *arXiv preprint arXiv:2503.04721*, 2025a.

668 Guan-Ting Lin, Prashanth Gurunath Shivakumar, Aditya Gourav, Yile Gu, Ankur Gandhe, Hung-yi
 669 Lee, and Ivan Bulyko. Align-SLM: Textless spoken language models with reinforcement learning
 670 from AI feedback. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 671 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational*
 672 *Linguistics (Volume 1: Long Papers)*, pp. 20395–20411, Vienna, Austria, July 2025b. Association
 673 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.997.
 674 URL <https://aclanthology.org/2025.acl-long.997/>.

675 Ke-Han Lu, Chun-Yi Kuan, and Hung yi Lee. Speech-IFEval: Evaluating Instruction-Following and
 676 Quantifying Catastrophic Forgetting in Speech-Aware Language Models. In *Interspeech 2025*, pp.
 677 2078–2082, 2025. doi: 10.21437/Interspeech.2025-619.

678 Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, ShiLiang Zhang, and Xie Chen.
 679 emotion2vec: Self-supervised pre-training for speech emotion representation. In *Findings of the*
 680 *Association for Computational Linguistics ACL 2024*, pp. 15747–15760, 2024.

681 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
 682 tricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference*
 683 *on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.

684 Eliya Nachmani, Alon Levkovich, Roy Hirsch, Julian Salazar, Chulayuth Asawaroengchai, Soroosh
 685 Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and Michelle Tadmor Ramanovich. Spoken question
 686 answering and speech continuation using spectrogram-powered LLM. In *The Twelfth Interna-*
 687 *tional Conference on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=izrOLJov5y)
 688 [forum?id=izrOLJov5y](https://openreview.net/forum?id=izrOLJov5y).

689 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 690 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech*
 691 *and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

692 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 693 Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations.
 694 In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual*
 695 *Meeting of the Association for Computational Linguistics*, pp. 527–536, Florence, Italy, July
 696 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1050. URL <https://aclanthology.org/P19-1050/>.

702 Sameer Pradhan, Ronald Cole, and Wayne Ward. My science tutor (myst)—a large corpus of chil-
 703 dren’s conversational speech. In *Proceedings of the 2024 Joint International Conference on Com-
 704 putational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp. 12040–
 705 12045, 2024.

706 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 707 Robust speech recognition via large-scale weak supervision. In *International conference on ma-
 708 chine learning*, pp. 28492–28518. PMLR, 2023.

710 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 711 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 712 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.

714 S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaseswaran Selvakumar, Oriol Nieto, Ra-
 715 mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. MMAU: A massive multi-task audio un-
 716 derstanding and reasoning benchmark. In *The Thirteenth International Conference on Learning
 717 Representations*, 2025a. URL <https://openreview.net/forum?id=TeVAZXR3yv>.

719 S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaseswaran Selvakumar, Oriol Nieto, Ra-
 720 mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
 721 understanding and reasoning benchmark. In *The Thirteenth International Conference on Learn-
 722 ing Representations*, 2025b.

723 Bjorn Schuller and Anton Batliner. *Computational Paralinguistics: Emotion, Affect and Personality
 724 in Speech and Language Processing*. Wiley Publishing, 1st edition, 2013. ISBN 1119971365.

726 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 727 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

728 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 729 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 730 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

732 Shuzheng Si, Wentao Ma, Haoyu Gao, Yuchuan Wu, Ting-En Lin, Yinpei Dai, Hangyu Li, Rui Yan,
 733 Fei Huang, and Yongbin Li. Spokenwoz: A large-scale speech-text benchmark for spoken task-
 734 oriented dialogue agents. *Advances in Neural Information Processing Systems*, 36:39088–39118,
 735 2023.

736 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
 737 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. In *The
 738 Twelfth International Conference on Learning Representations*, 2024.

740 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 741 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 742 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

743 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, Aiti
 744 Aw, and Nancy Chen. Audiobench: A universal benchmark for audio large language models. In
 745 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
 746 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 747 4297–4316, 2025a.

748 Xiong Wang, Yangze Li, Chaoyou Fu, Yike Zhang, Yunhang Shen, Lei Xie, Ke Li, Xing Sun,
 749 and Long MA. Freeze-omni: A smart and low latency speech-to-speech dialogue model with
 750 frozen LLM. In *Forty-second International Conference on Machine Learning*, 2025b. URL
 751 <https://openreview.net/forum?id=s1EImzs5Id>.

753 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 754 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 755 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 37:95266–95290, 2024.

756 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 757 streaming. *arXiv preprint arXiv:2408.16725*, 2024.
 758

759 Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
 760 reasoner: Improving reasoning capability in large audio language models. *arXiv preprint*
 761 *arXiv:2503.02318*, 2025.

762 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 763 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.
 764

765 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
 766 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
 767 generative comprehension. In *Proceedings of the 62nd Annual Meeting of the Association for*
 768 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1979–1998, 2024.

769 Chien Yu Huang, Wei-Chih Chen, Shuwen Yang, Andy T. Liu, Chen-An Li, Yu-Xiang Lin, Wei-
 770 Cheng Tseng, Anuj Diwan, Yi-Jen Shih, Jiatong Shi, William Chen, Xuanjun Chen, Chi-Yuan
 771 Hsiao, Puyuan Peng, Shih-Heng Wang, Chun-Yi Kuan, Ke-Han Lu, Kai-Wei Chang, Chih-
 772 Kai Yang, Fabian Alejandro Ritter Gutierrez, Huang Kuan-Po, Siddhant Arora, You-Kuan Lin,
 773 CHUANG Ming To, Eunjung Yeo, Kelvin Chang, Chung-Ming Chien, Kwanghee Choi, Cheng-
 774 Hsieu Hsieh, Yi-Cheng Lin, Chee-En Yu, I-Hsiang Chiu, Heitor Guimaraes, Jionghao Han, Tzu-
 775 Quan Lin, Tzu-Yuan Lin, Homu Chang, Ting-Wu Chang, Chun Wei Chen, Shou-Jen Chen, Yu-
 776 Hua Chen, Hsi-Chun Cheng, Kunal Dhawan, Jia-Lin Fang, Shi-Xin Fang, KUAN YU FANG
 777 CHIANG, Chi An Fu, Hsien-Fu Hsiao, Ching Yu Hsu, Shao-Syuan Huang, Lee Chen Wei, Hsi-
 778 Che Lin, Hsuan-Hao Lin, Hsuan-Ting Lin, Jian-Ren Lin, Ting-Chun Liu, Li-Chun Lu, Tsung-Min
 779 Pai, Ankita Pasad, Shih-Yun Shan Kuan, Suwon Shon, Yuxun Tang, Yun-Shao Tsai, Wei Jui Chi-
 780 ang, Tzu-Chieh Wei, Chengxi Wu, Dien-Ruei Wu, Chao-Han Huck Yang, Chieh-Chi Yang, Jia Qi
 781 Yip, Shao-Xiang Yuan, Haibin Wu, Karen Livescu, David Harwath, Shinji Watanabe, and Hung
 782 yi Lee. Dynamic-SUPERB phase-2: A collaboratively expanding benchmark for measuring the
 783 capabilities of spoken language models with 180 tasks. In *The Thirteenth International Conference*
 784 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=s71zZpAW7T>.
 785

786 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
 787 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv*
 788 *preprint arXiv:2412.02612*, 2024.

789 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
 790 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
 791 ities. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 15757–
 792 15773, 2023.

793 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
 794 Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: Experiences on scaling fully
 795 sharded data parallel. *Proceedings of the VLDB Endowment*, 16(12):3848–3860, 2023.
 796

797 A APPENDIX 798

799 A.1 COMPARING SPOKEN DIALOGUE BENCHMARKS 800

801 We outline the differences between S2T and S2S benchmarks in Table 4.
 802

803 A.2 PARAS2SBENCH STATISTICS AND EXAMPLES 804

805 Table 5 shows the statistics of the testing set of ParaS2SBench. Table 6 shows several examples.
 806

807 A.3 DETAILS FOR QUERY MINING 808

809 During the script quality filtering in Section 3.1, we apply three tests to reject the unqualified queries.
 We leverage ChatGPT 4.1 for the tests.

Benchmarks	Task type		Evaluate Input		Evaluate Output		Style Dimension	
	Und.	Dia.	Content	Style	Content	Style	Para.	Speaker
Speech-to-Text Evaluation								
Dynamic-SUPERB	✓	✗	✓	✓	✓	✗	✓	✓
AudioBench	✓	✗	✓	✓	✓	✗	✓	✓
AIR-Bench	✓	✓	✓	✓	✓	✗	✓	✓
MMAU	✓	✗	✓	✓	✓	✗	✓	✓
VoiceBench	✓	✓	✓	✗	✓	✗	✗	✗
ADU-Bench	✓	✓	✓	✓	✓	✗	✓	✗
SD-Eval	✗	✓	✓	✓	✓	✗	✓	✓
VoxDialogue	✗	✓	✓	✓	✓	✗	✓	✓
StyleTalk	✗	✓	✓	✓	✓	✓	✓	✗
Speech-to-Speech Evaluation								
VoxEval	✓	✗	✓	✓	✓	✗	✓	✓
ParaS2SBench (Ours)	✗	✓	✓	✓	✓	✓	✓	✓

Table 4: Comparison of spoken dialogue benchmarks. Und. stands for Understanding; Dia. stands for Dialogue; Para. stands for Paralinguistic information.

Table 5: Statistics of prompts, utterances, duration in seconds, and total hours.

	# Prompts	# Utterance	Avg Duration	Hours	Labels
Synthetic Speech					
Emotion	300	600	4.59	0.77	Happy, Surprised, Sad, Angry, Fear, Disgust
Sarcasm	300	600	6.23	1.04	Sincere, Sarcastic
Age	300	600	4.72	0.79	Adult, Child
Gender	300	600	4.48	0.74	Male, Female
Real Speech					
IEMOCAP	709	709	10.21	2.01	Happy, Surprised, Sad, Angry, Fear, Disgust
MELD	781	781	11.31	2.45	Happy, Surprised, Sad, Angry, Fear, Disgust
Total	2690	3890	6.92	7.8	

Neutrality Test. We frequently observe that S2S models respond with empathy by inferring from the spoken content rather than relying on paralinguistic cues in the speech. For example, *Wow! That's big news!* is almost always associated with a surprised emotion, and *Oh... I got my period* is most likely to be spoken by a female in a sad tone. To examine whether S2S models truly attend to the audio, we design test cases using paralinguistically neutral content—utterances that make it difficult to infer emotion, attitude, gender, or age from text alone. This way, the model must rely on the audio signal to respond appropriately. In practice, for each query we ask ChatGPT whether the spoken sentence is more likely to be voiced in one speaking style, in another, or if it is neutral and hard to tell. We then discard queries for which the answer is not neutral.

Reasonability Test. Due to hallucinations, ChatGPT sometimes generates queries whose content and speaking style do not match. For example, *I want to get screened for cervical cancer. (male/female)* is reasonable for a female speaker but sounds odd for a male speaker. We ask ChatGPT to check the reasonability of both speaking styles and discard queries that have one or more unreasonable cases.

Paralinguistic Relevance Test. To ensure that the speaking style is non-trivial to the dialogue scenario and meaningfully affects the response, we test whether different speaking styles lead to different responses. We ask ChatGPT to generate a response—both content and style—based on the input content and style twice, once for each speaking style. We then use ChatGPT to check whether the two responses exhibit a significant difference. If the two responses are similar, implying that the speaking styles do not meaningfully affect the response, we discard the test case.

Category	Example Dialogue
Emotion	<p>User (happy): The city is planning to build a new mall near my house.</p> <p>Model (cheerful): That's wonderful! A new mall will bring so many shops and restaurants to explore—sounds exciting!</p> <p>User (angry): The city is planning to build a new mall near my house.</p> <p>Model (empathetic): I'm sorry to hear that you're upset about it. Would you like to share what concerns you most about the new mall?</p>
Sarcasm	<p>User (sincere): It looks like you've outdone yourself with these answers!</p> <p>Model (happy): Thank you! I'm glad my answers were helpful—let me know if you'd like me to expand on anything.</p> <p>User (sarcastic): It looks like you've outdone yourself with these answers!</p> <p>Model (apologetic): Hmm, it sounds like you might not be happy with the answers. Could you tell me what was missing or what you'd like done differently?</p>
Age	<p>User (adult): I need instructions on buying stock with my money.</p> <p>Model (confident): Sure! I can walk you through opening a brokerage account, researching companies, and placing your first order step by step.</p> <p>User (child): I need instructions on buying stock with my money.</p> <p>Model (supportive): Investing is exciting! Since you might be under 18, you may need help from a parent or guardian to open a custodial account before you can buy stocks. Would you like me to explain how that works?</p>
Gender	<p>User (male): Help me pick workout clothes for the gym.</p> <p>Model (professional): Absolutely! Breathable tank tops, moisture-wicking T-shirts, and flexible shorts are great choices. Do you prefer a sporty or casual style?</p> <p>User (female): Help me pick workout clothes for the gym.</p> <p>Model (professional): Sure! High-support sports bras, moisture-wicking leggings, and lightweight tops are excellent options. Would you like suggestions for specific brands?</p>

Table 6: Examples from ParaS2SBench test set. The responses shown in the table are for demonstration and not part of the benchmark dataset.

A.4 EXPERIMENT SETTING

Data. We construct a large-scale speech prompt dataset D_{rl} for RL following Section 3.1, where the transcription and style labels are discarded after speech synthesis. The dataset contains 100k speech prompts. For the less scalable SFT, we build prompt–demonstration pairs for 10k speech prompts, totaling 100 hours of data. For reward model data, which requires input style annotations during scoring, we use up to 10k speech prompts. For each prompt, the SFT model generates 32 completions, yielding 320k prompt–response–score pairs.

Training. For SFT, we use 8 NVIDIA H100 GPUs with FSDP (Zhao et al., 2023), a learning rate of 1e-5, and a global batch size of 64. For reward model LoRA fine-tuning, we use a single H100 with a learning rate of 1e-6 and a batch size of 10. For RL, we again use 8 H100 GPUs with FSDP, a learning rate of 5e-4, a global query batch size B of 32, and a group size G of 8. Each batch includes 256 scored completions for learning.

A.5 KL TERM IN GRPO LOSS

We show the definition of the KL term on audio and text streams in Equation 3. This term is critical for maintaining the intelligence of the base model, as shown in Appendix A.6.

$$\mathbb{D}_{KL}[\pi_\theta \parallel \pi_{ref}] = \frac{\pi_{ref}(a_{o,n}^g, t_{o,n}^g \mid a^i, t^i, a_{o,<n}^g, t_{o,<n}^g)}{\pi_\theta(a_{o,n}^g, t_{o,n}^g \mid a^i, t^i, a_{o,<n}^g, t_{o,<n}^g)} - \log \frac{\pi_{ref}(a_{o,n}^g, t_{o,n}^g \mid a^i, t^i, a_{o,<n}^g, t_{o,<n}^g)}{\pi_\theta(a_{o,n}^g, t_{o,n}^g \mid a^i, t^i, a_{o,<n}^g, t_{o,<n}^g)} - 1, \quad (4)$$

Figure 3: Ablating the effect of global batch size and GRPO’s group size and KL penalty weight. For all experiments, we optimize for the same number of steps.

A.6 ABLATION FOR GRPO TRAINING

We ablate the parameter choices for the global batch size B , group size G , and the weight of the KL term β . The global query batch size defines the total number of distinct speech prompts across devices. Figure 3(a) shows that the ParaS2SBench score continues to improve with larger global batch sizes, while exhibiting diminishing returns as the computing requirement (more GPUs) increases. We use a batch size of 32 as the default, where 8 NVIDIA H100s are sufficient for a single run.

GRPO group size defines how many samples are drawn for each speech prompt. Since GRPO relies on differences between samples for the learning signal, it is crucial to have a large enough group size to ensure diversity. Figure 3(b) shows that when the group size is smaller than 8, performance drops significantly. For example, when the group size is 2, the two samples often receive the same score, providing no learning signal. Interestingly, we find that a group size of 8 is sufficient for effective learning, and increasing the group size further does not provide additional gains.

Finally, we study the effect of the KL penalty weight β . During GRPO, we aim to enable paralinguistic-aware dialogue capabilities without degrading the original dialogue capabilities, as training might otherwise overfit to the training set. We leverage VoiceBench (Chen et al., 2024) to quantify changes in the original dialogue capabilities. The benchmark includes daily QA, knowledge-intensive QA, instruction-following tasks in both close-ended and open-ended scenarios. Higher VoiceBench scores indicate stronger general dialogue capabilities, while higher ParaS2SBench scores indicate stronger paralinguistic-aware dialogue capabilities. Figure 3(c) shows that: (1) without a KL penalty, the model suffers from catastrophic forgetting and VoiceBench performance drops significantly; (2) with too high a KL penalty, the model is overly constrained by the original parameters and cannot freely explore the search space, leading to a drop in ParaS2SBench score. We therefore set the default to $\beta = 0.2$, which achieves both capabilities without one degrading severely.

A.7 CORRELATION BETWEEN BENCHMARK SCORING AND HUMAN SCORING

In Section 5.1, each query is paired with several TTS-based responses and several S2S model responses. For each query–response pair, we acquire two fitness scores, one from human experts and another from the benchmark pipeline, resulting in two arrays of fitness scores. We study the correlation between these two sets of scores. Table 7 shows the correlation across different paralinguistic categories. All the correlations are higher than 0.7 and significant.

Table 7: Correlation between benchmark scoring and human scoring.

	Age	Emotion	Gender	Sarcasm	All
Pearson	0.862	0.76	0.702	0.779	0.773
p-value	3.5e ⁻⁵	2.6e ⁻¹²	1.2e ⁻⁴	3.2e ⁻³	7.5e ⁻⁶

972 A.8 GENERALIZABILITY TO REAL SPEECH
973974 To test generalizability to real speech and unseen domains, we evaluate on IEMOCAP (Busso et al.,
975 2008) and MELD (Poria et al., 2019). The former features recordings from professional actors
976 in both scripted and spontaneous scenarios, while the latter comes from TV shows with natural
977 conversations involving diverse speakers, emotions, and background noise.
978
979980 Table 8: Performance comparison of different RL and SFT strategies on real test sets.
981

Method	IEMOCAP test	MELD test	Average
GRPO on IEMOCAP+MELD	4.394	3.947	4.166
GRPO on MELD	4.386	3.942	4.164
GRPO on IEMOCAP	4.356	3.872	4.114
SFT+GRPO on Synthetic Data	4.258	3.349	3.803
SFT on Synthetic Data	4.121	3.307	3.714
Base Model (Kimi-Audio)	1.365	1.166	1.265

982
983
984
985
986
987
988 Table 8 shows that SFT and GRPO trained on synthetic data contribute significantly to performance
989 on real speech. We further incorporate the training sets of IEMOCAP¹⁹ and MELD into the RL
990 training data. RL on real speech queries further aligns the domain and boosts performance. Inter-
991 estingly, we find that RL on the IEMOCAP training set improves performance on the out-of-domain
992 MELD test set, and vice versa.
993
994995 A.9 HUMAN EVALUATION
996997 In the main article, we present the objective evaluation using the automatic ParaS2SBench score.
998 Although the ParaS2SBench score shows a high correlation with human judgments in Section 5.1,
999 the correlation remains below 0.9, leaving room for inconsistencies. We therefore study the ef-
1000 fectiveness of our approach under human subjective evaluation. Specifically, we crowd-source 10
1001 participants outside our expert annotation group, which designed the scoring guideline r and anno-
1002 tated the preference scores in Section 5.1. These participants have minimal knowledge of the project,
1003 including the guideline r , to avoid inductive bias. They are given pairs of input and response audio
1004 clips and asked to assign a 1–5 mean opinion score based on how naturally the two clips fit together
1005 in dialogue. Due to annotation costs, we sample a subset from the ParaS2SBench test set, with 30
1006 prompts per category. For each prompt–response pair, 10 human scores are collected and averaged
1007 as the final score.
1008
10091010 Table 9: Comparing paralinguistic-aware dialogue capabilities with human evaluation.
1011

	Synthetic					Real			Avg
	Age	Emotion	Gender	Sarcasm	Avg	IEMOCAP	MELD	Avg	
Baseline									
Whisper-GPT-TTS	3.212	3.041	3.042	3.112	3.102	3.601	3.552	3.487	3.230
Closed Source									
GPT-4o voice mode	3.375	3.833	3.542	3.078	3.457	3.862	3.694	3.778	3.564
Open Source									
Qwen2.5 Omni	3.352	3.953	3.496	3.131	3.483	3.713	3.581	3.647	3.538
GLM 4	3.012	3.514	3.228	2.781	3.134	3.521	3.325	3.423	3.230
Kimi-Audio	3.278	2.382	3.121	2.912	2.924	2.231	2.272	2.252	2.699
Ours									
Kimi-Audio SFT	4.192	4.223	3.812	4.131	4.089	4.212	3.407	3.810	3.996
Kimi-Audio GRPO	4.316	4.510	4.381	4.422	4.407	4.336	3.859	4.098	4.303
Topline									
GPT-TTS	4.752	4.889	4.923	4.813	4.844	4.911	4.925	4.918	4.922

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180

1026
1027 Table 9 shows that the overall trend is consistent with Table 3. SFT on Kimi-Audio provides a
1028 significant boost over the base model and surpasses existing models. Kimi-Audio GRPO further
1029 outperforms SFT by 7.6%.

1030 One notable difference between the objective and subjective evaluations is that our crowd-sourced
1031 participants tend to assign higher scores than both the benchmark pipeline and our expert annotators.
1032 This is because the participants are not trained to recognize detailed paralinguistic labels in speech²⁰
1033 and often give high scores when the style is not obvious²¹.

1034 This suggests that in everyday use, typical users are more tolerant of paralinguistic unawareness
1035 or tone-deaf responses than our benchmark, which explains the smaller relative improvement com-
1036 pared to the objective evaluation. Nevertheless, the 7.6% relative improvement in the subjective
1037 evaluation remains substantial, underscoring the importance of paralinguistic awareness for higher
1038 user satisfaction.

1040 A.10 INTELLIGENCE ANALYSIS

1041 As discussed in Appendix A.6, we maintain the base model intelligence via carefully tuning the
1042 KL penalty. We leverage VoiceBench (Chen et al., 2024) to quantify changes in the original intel-
1043 ligence. The benchmark includes daily QA, knowledge-intensive QA, instruction-following tasks
1044 in both close-ended and open-ended scenarios. Higher VoiceBench scores indicate higher general
1045 intelligence, while higher ParaS2SBench scores indicate higher paralinguistic-aware dialogue cap-
1046 abilities.

1067
1068 Figure 4: Comparing the overall intelligence and paralinguistic-aware dialogue capabilities across
1069 models.

1070
1071 Figure 4 shows that the pipeline-based baseline and topline achieve the highest intelligence, fol-
1072 lowed by the closed-source models. Among all open-source models, ours demonstrate the highest
1073 intelligence. This stems from our choice of Kimi-Audio as the base model—since it already pos-
1074 sses the strongest intelligence among existing models—and from our learning procedure, which
1075 preserves its original capabilities.

1076
1077 ²⁰They are only instructed to pay attention to speaking style, age, and gender, but are not given detailed style
1078 labels to avoid inductive bias.

1079 ²¹For example, a slightly sad expression may be perceived as neutral, and an otherwise normal response may
still receive a high score.

1080 For paralinguistic-aware dialogue capabilities, our SFT model surpasses all existing models except
 1081 the topline, which leverages ground-truth style labels. Our GRPO model further improves upon the
 1082 SFT model without compromising intelligence.

1083 Overall, our models achieve state-of-the-art performance in both intelligence and paralinguistic-
 1084 aware dialogue capabilities.

1086 A.11 PROMPTS

1088 We include all the prompts used for data generation and automatic scoring.

1090 A.11.1 QUERY GENERATION FOR AGE

```
1092 PROMPT_TEMPLATE = """
1093 Give me some kids' requests that should not be directly processed due to
1094 adult-level permission or qualification. Also, these requests should
1095 be age-ambiguous such that it is hard to tell the age from the
1096 content. The request should be in oral form suitable for
1097 text-to-speech. I want the specific user chats instead of the
1098 category or topic names. Give me a DIVERSE dataset of 100 requests
1099 related to {topic} in the following format:
1100
1101 1. user_chat1
1102 2. user_chat2
1103 ...
1104
1105 You should give ALL the requests without ending early.
1106 """
1107
1108 TOPICS = [
1109     "Location & Travel",
1110     "Privacy & Security",
1111     "Interpersonal / Social",
1112     "Mental Health & Emotions",
1113     "Money & Online Transactions",
1114     "Technology & Content",
1115     "Physical Health & Safety",
1116     "Sensitive / Risk-flagged",
1117 ]
```

1115 A.11.2 QUERY GENERATION FOR GENDER

```
1117 PROMPT_TEMPLATE = """
1118 We want to test whether the spoken agent can really understand gender
1119 from voice. We want to design user requests such that the request
1120 itself is gender-ambiguous, but require the agent to find out the
1121 gender to avoid inappropriate response. Avoid using the word: 'or',
1122 'and', 'this'. The requests should be realistic and should NOT
1123 discuss other languages other than English. The request should be in
1124 oral form suitable for text-to-speech. Give me 100 requests
1125 (specific user request, not topic or category names) related to
1126 {topic} in the following format:
1127
1128 1. user_chat1
1129 2. user_chat2
1130 ...
1131
1132 You should give ALL the requests without ending early.
1133 """
1134
1135 TOPICS = [
1136     "Cultural and Religious Advice",
1137     "Medical and Health Advice",
```

```
1134     "Gender-specific Activity",  
1135     "Fashion, Beauty, and Grooming",  
1136 ]
```

A.11.3 QUERY GENERATION FOR EMOTION

```
PROMPT_TEMPLATE = """
Can you give me some user chats with you that the chat's content itself
is emotion-ambiguous and can be normally voiced by OPPOSITE
emotions. Avoid the word: ChatGPT, AI. The request should be
realistic, detailed and specific. The request should also be in oral
form suitable for text-to-speech. I want the specific user chats
instead of the category or topic names. Give me the user request and
the two OPPOSITE emotions. Give me 100 requests that can be voiced
by both {emotion1} and {emotion2}, related to {topic}, in the
following format (do not repeat the demo):
1. The city is planning to build a new mall near my house. (emotion1,
emotion2)
2. ...
3. ...
You should give ALL the requests without ending early.
"""

TOPICS = [
    "Personal Life",
    "Current Events & News",
    "Entertainment",
    "Hobbies & Interests",
    "Work & Studies",
    "Internet Culture",
    "Travel",
    "Food & Drinks",
    "Relationships",
    "Technology & Gadgets",
    "Health & Fitness",
    "Education",
    "Finance & Money",
    "Fashion & Style",
    "Life Advice",
    "Cultural Differences",
    "Dreams & Sleep",
    "Holidays & Celebrations",
    "Childhood Memories",
    "Future Plans",
```

A.11.4 QUERY GENERATION FOR SARCASM

```
1175 PROMPT = """
1180 You are generating user chat requests that, in plain text, read as
1181 entirely positive, cheerful, or supportive, yet could plausibly be
1182 sarcastic depending on tone of voice or context. They must be
1183 realistic for human-AI interactions and slightly longer (1^2
1184 sentences), with natural variety.
1185 Requirements:
1186 - DO NOT use obvious sarcasm markers: "yeah right", "sureee", "as if",
1187 "totally...", ellipses for irony, scare quotes, ALL CAPS emphasis,
exaggerated punctuation, or emoji/emoticons.
```

```

1188 - Avoid overly negative words (e.g., "hate", "awful", "broken", "slow",
1189   "crash").
1190 - Keep everyday, conversational, and specific; reflect real
1191   user-assistant chats.
1192 - All items must relate to the topic: {topic}.
1193 - Output EXACTLY 100 items as a numbered list starting at 1. One line
1194   per item.

1195 Bad (too obvious) examples (DO NOT imitate):
1196 - Oh GREAT, another error, just what I needed!!!
1197 - Yeah right, your 'amazing' update totally helped.

1198 Good (subtly ambiguous, still positive) examples (DO imitate the vibe,
1199   not the content):
1200 - I'm so glad you're handling this -- can you walk me through your plan
1201   so I don't mess up anything on my end?
1202 - That's exactly what I expected from you; love the confidence -- should
1203   I hit 'apply' now or double-check the details first?
1204 - Wow, you're really on top of things today! Could you also sync what
1205   you did with the previous settings so everything stays consistent?

1206 Now produce the list in this format:
1207
1208 1. <item 1>
1209 2. <item 2>
1210 ...
1211 100. <item 100>
1212
1213 You should give ALL the requests without ending early.
1214 """
1215 TOPICS = [
1216   "Personal Life",
1217   "Current Events & News",
1218   "Entertainment",
1219   "Hobbies & Interests",
1220   "Work & Studies",
1221   "Internet Culture",
1222   "Travel",
1223   "Food & Drinks",
1224   "Relationships",
1225   "Technology & Gadgets",
1226   "Health & Fitness",
1227   "Education",
1228   "Finance & Money",
1229   "Fashion & Style",
1230   "Life Advice",
1231   "Cultural Differences",
1232   "Dreams & Sleep",
1233   "Holidays & Celebrations",
1234   "Childhood Memories",
1235   "Future Plans",
1236 ]

```

A.11.5 SCORING GUIDELINE

This is the scoring guideline designed by the human annotation expert, r , in Section 3.2. The user information includes the transcription as well as the emotion, sarcasm, gender, and age labels. The agent information includes the response transcription and a description of the speaking tone.

```
PROMPT = """
```

```
You are a human dialogue expert. You will be given a pair of user
request audio and an agent response audio. Please focus on the
user's speech attributes, including content, emotion, age, gender,
```

1242 sarcasm, and decide whether the agent's response is a good fit in a
 1243 natural dialogue. Here is a guideline defining the good response of
 1244 an agent. You need to score the response's quality from different
 1245 dimensions: Continuation Fitness.

1246 *General guideline of Continuation Fitness*

- 1247 - MOS on how well the response speech fits the user speech.
- 1248 - Listen carefully to spoken content and speaking style of the user
 1249 speech and the response speech. Decide whether the response speech,
 1250 including how and what the agent says, is a natural continuation to
 1251 the user's spoken content and speaking style (emotion, age, gender,
 1252 sarcasm). Here are some general rules and examples:
 - 1253 1. The agent should be friendly, helpful, and considerate, with high
 EQ.
 - 1254 2. Besides the replying content, please also listen carefully to the
 1255 response's speaking style: emotion, tone, volume and speed, and
 1256 decide whether the speaking style is appropriate.
 - 1257 3. The agent should be aware of the user's emotions to provide
 1258 emotional companionship. For example, when the user is happy, the
 1259 agent can share that happiness; when the user is sad, the agent
 1260 should be sad and empathic.
 - 1261 4. If the user is a child, the agent should respond with caution and
 1262 ensure safety. For example, it should redirect the user if he or
 1263 she attempts to purchase alcohol online.
 - 1264 5. The agent should be aware of the user's gender and personalize
 1265 responses. For example, it may offer different suggestions for
 1266 swimwear.
 - 1267 6. Suggesting items more related to male for female, or vice versa, is
 1268 considered very awkward. For example, suggesting masculinised
 1269 perfume for a female is awkward.
 - 1270 7. The agent should recognize sarcasm and understand the user's true
 1271 intent. For example, when a user gives a sarcastic compliment, the
 1272 agent should recognize that the underlying sentiment is negative.
 1273 Hence, it would be weird if the agent feels happy for the
 1274 compliment.

1275 You should rate the response's quality in 5 points.

1276 *5 Points - Perfect (Enhanced):*

1277 The user's age, gender, or speaking style characteristics are recognized
 1278 and reflected in the response with appropriate enhancements. The
 1279 user's query contains clear emotional cues, and the response
 1280 provides empathetic feedback. The user's query has a clear sarcastic
 1281 tone, and the response offers a high-EQ reassurance or
 1282 clarification. The user's query is a sincere compliment, and the
 1283 response is thankful.

1284 Examples: When the user is happy, the response shares the joy; when the
 1285 user is sad, the response offers appropriate comfort. If a minor
 1286 attempts to purchase alcoholic beverages online, the model provides
 1287 correct guidance. For a young user, the response uses trendy slang
 1288 popular among young people. Provides gender-suitable response (i.e.
 1289 different swimwear suggestions) based on the user's gender. When
 1290 receiving a sarcastic comment, the model identifies the underlying
 1291 negative sentiment and responds accordingly.

1292 *4 Points - Excellent (No Enhancement):*

1293 The user's paralinguistic cues are addressed so the replying content is
 1294 good, but the response's vocal tone does not enhance the user's
 1295 experience.

1296 Examples: A neutral-tone response to a female user inquiring about
 1297 cancer screening. A neutral-tone response to a neutral question. The
 1298 response's content picks up the user's sarcastic comment, but the
 1299 tone is not appropriate.

1300 3 Points - Average:

1296 The user's paralinguistic cues or other speaking style features are
 1297 considered, but the response does not provide correct personalized
 1298 content, though it is not jarring: Mechanical empathy, awkward
 1299 praise, etc.
 1300 Examples: A happy or sad response to a neutral question.

1301 2 Points - Poor:
 1302 The user's paralinguistic cues or other speaking style features are
 1303 considered but poorly addressed. Emotion mismatch: if the agent
 1304 identifies the wrong user emotion. e.g. Reply to a fearful user as
 1305 if he/she is sad; Reply to a angry user as if he/she is fearful.
 1306 Style partially mismatched.
 1307 Examples: A flat response to a sad question. Using slang when responding
 1308 to an elderly user.

1309 1 Point - Very Poor:
 1310 The user's paralinguistic cues or other speaking style features are
 1311 considered but addressed incorrectly. Reverse empathy, condescending
 1312 tone. e.g. Reply to a sad user as if he/she is happy; Reply to a
 1313 happy user as if he/she is sad. Completely mismatched style, e.g.,
 1314 responding to an adult in a completely childish tone. Misinterpret a
 1315 sincere compliment as a negatvie comment, and give apologetic,
 1316 clarifying, or reassuring comment. Misinterpret a sarcastic
 1317 compliment as sincere, and give positive or thankful comment.
 1318 Examples: A cheerful response to a sad user. Using language that is too
 1319 complex for a child. Giving male-specific recommendation to a
 1320 female, or vise versa.

1321 The information of the user:
 1322 {transcription}{emotion}{sarcasm}{age}{gender}

1323 Here is the information of the agent:
 1324 {transcription}{tone}

1325 Please give the 5-point score and a VERY brief reason in the format: The
 1326 reason is _; The score is _ .
 1327 """

1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349