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Abstract

Diffusion Models (DM) have revolutionized the text-to-image visual generation process.
However, the large computational cost and model footprint of DMs hinders practical de-
ployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight
method to alleviate these burdens without the need for training or fine-tuning. While recent
DM PTQ methods achieve W4A8 on integer-based PTQ, two key limitations remain: First,
while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL,
1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models
like the PixArt series, Hunyuan and others adopt fundamentally different transformer back-
bones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing
in DM PTQ but does not align well with the network weight and activation distribution,
while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the poten-
tial to better align the weight and activation distributions in low-bit settings for DiT. In
this paper, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6
quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique
to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations
depend on input patch data, necessitating robust online activation quantization techniques.
Experimental results demonstrate that FP4DiT outperforms integer-based PTQ at W4A6
and W4A8 precision and generates convincing visual content on PixArt-α, PixArt-Σ and
Hunyuan in terms of several T2I metrics such as HPSv2 and CLIP.

1 Introduction

Diffusion Transformers (DiT) (Peebles & Xie, 2023) are on the forefront of open-source generative visual
synthesis. In contrast to earlier text-to-image (T2I) Diffusion Models (DMs) like Stable Diffusion v1.5 (Rom-
bach et al., 2022) and Stable Diffusion XL (Podell et al., 2024) that utilize a classical U-Net structure, DiTs
such as PixArt-α (Chen et al., 2024b), PixArt-Σ (Chen et al., 2024a) and Stable Diffusion 3 (SD3) (Esser
et al., 2024) leverage streamlined, patch-based Transformer architectures to generate high-resolution images.

Nevertheless, similar to U-Nets, DiTs utilize a lengthy denoising process that incurs a high computational
inference cost. One method to alleviate this burden is quantization (Dettmers et al., 2022; Yao et al.,
2022), which reduces the bit-precision of neural network weights and activations. As the first Post-Training
Quantization (PTQ) schemes for DMs, PTQ4DM (Shang et al., 2023b) and Q-Diffusion (Li et al., 2023)
demonstrate that the range and distribution of U-Net activations crucially depend on the diffusion timestep.
More recent state-of-the-art works like TFMQ-DM (Huang et al., 2023) specialize quantization for U-Net
timestep conditioning which may not generalize to newer DiTs. Further, methods like ViDiT-Q (Zhao et al.,
2024) adapt outlier suppression technique (Xiao et al., 2023) to DiTs, but overlook broader advantages of
prior DM PTQ like weight reconstruction (Nagel et al., 2020; Li et al., 2021).

Moreover, the prevailing datatypes in existing DM PTQ literature (Shang et al., 2023b; Li et al., 2023; Huang
et al., 2023; Zhao et al., 2024; So et al., 2024; Feng et al., 2025; Mills et al., 2025) are integer-based (INT),
which provide uniformly distributed values (Nahshan et al., 2021) unlike the non-uniform distribution of
weights and activations in modern neural networks (Shen et al., 2024). Thus, PTQ for text-to-image (T2I)
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DiTs below W4A8 precision (4-bit weights and 8-bit activations) without severely compromising generation
quality remains an open challenge.

In this paper, we present FP4DiT, which achieves W4A6 PTQ on Diffusion Transformers with non-uniform
Floating-Point Quantization (FPQ) (Kuzmin et al., 2022), thus achieving high quantitative and qualitative
T2I performance. Besides, by introducing FPQ, FP4DiT not only aligns the quantization levels better with
the weight and activation distribution with negligible computational overhead, it also massively reduces the
cost of weight calibration by over 8×. Our detailed contributions are summarized as follows:

1. We apply FPQ to DiT to address the misalignment between the existing DM PTQ literature and
the non-uniform distribution of network weights and activations.

2. We reveal the critical role of preserving the sensitive interval of DiT’s GELU activation function and
propose a mixed-format FPQ method tailored for DiT.

3. We examine the adaptive rounding (AdaRound) (Nagel et al., 2020) mechanism, originally designed
for integer PTQ, and reveal a performance-hampering design limitation when applied to FPQ. In this
paper, we introduce a novel mathematical scaling mechanism that greatly improves the performance
of AdaRound when utilized in the FPQ scenario.

4. We analyze DiT activation distributions and visualize how they contrast to those of convolutional
U-Nets, especially with respect to diffusion timesteps. Specifically, while U-Net activation ranges
shrink with timestep progression, DiT activations ranges instead shift over time. To address this,
we implement an effective online activation quantization (Wu et al., 2023b; Yao et al., 2022) scheme
to accommodate DiT activations.

We apply FP4DiT as a PTQ method on T2I DiT models, namely PixArt-α, PixArt-Σ, and Hunyuan. To
verify the effectiveness of FP4DiT, we conduct extensive experiments on T2I tasks such as the Human
Preference Score v2 (HPSv2) benchmark (Wu et al., 2023a) and MS-COCO dataset (Lin et al., 2014b),
to outperform existing methods like Q-Diffusion (Li et al., 2023), TFMQ-DM (Huang et al., 2023), ViDiT-
Q (Zhao et al., 2024) and Q-DiT (Chen et al., 2025) at the W4A8 and W4A6 precision levels. Additionally,
we perform a human preference study which demonstrates the superiority of FP4DiT-generated images.

2 Related Work

Diffusion Transformers (DiT) (Peebles & Xie, 2023) replace the classical convolutional U-Net (Rombach et al.,
2022) backbone with a modified Vision Transformer (ViT) (Dosovitskiy et al., 2020) to increase scalability.
Although the introduction of DiT architectures in newer DMs (Chen et al., 2024b;a; Esser et al., 2024; Li
et al., 2024; Labs; Xie et al., 2024) enables the generation of high-quality visual content (Brooks et al., 2024),
DiTs still suffer from a computationally expensive diffusion process, rendering deployment on edge devices
impractical and cumbersome. Further, addressing this weakness for DiTs poses unique challenges compared
to U-Nets, and is a focus of this work.

Quantization is a neural network compression technique that involves reducing the bit-precision of weights
and activations to lower hardware metrics like model size, inference latency and memory consumption (Nagel
et al., 2021). The objective of quantization research is to reduce bit-precision as much as possible while
preserving overall model performance (Ma et al., 2024). There are two main classes of quantization:
Quantization-Aware-Training (QAT) (Sui et al., 2025; He et al., 2023; Feng et al., 2025) and Post-Training
Quantization (PTQ) (Li et al., 2021; Mills et al., 2025). Specifically, PTQ is more lightweight and neither re-
quires re-training nor substantial amounts of data. Rather, PTQ requires a small amount of data to calibrate
quantization scales (Nagel et al., 2020), typically in a block-wise manner (Li et al., 2021). However, while
most PTQ methods rely on uniformly-distributed integer (INT) quantization techniques (Krishnamoorthi,
2018; Jacob et al., 2018), recent literature highlights the advantages of low-bit floating point quantization
(FPQ) (Wu et al., 2023b; Liu et al., 2023) for Large Language Models (LLM). Therefore, in this paper we
investigate the challenges in applying FPQ to DM PTQ.
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The denoising process of DMs brings new challenges for PTQ compared with traditional computer vision
neural networks. The earliest DM PTQ research (Shang et al., 2023b) reveals the significant activation range
changes across different denoising timesteps. Q-Diffusion (Li et al., 2023) samples calibration data across
different denoising timesteps to address this challenge. TDQ (So et al., 2024) calibrates an individual set of
the quantization parameters across different time steps, offering a more fine-grained approach to managing
temporal dependencies. TFMQ-DM (Huang et al., 2024) highlights the sensitivity of temporal features in
U-Nets and introduce a calibration objective aimed at better preserving temporal characteristics. How-
ever, the above works are specific to U-Net architectures while DiT architectures feature distinct activation
characteristics.

In contrast, LLM quantization (Dettmers et al., 2022; Frantar et al., 2022) operates on generative AI trans-
formers. The key challenge is that multi-billion parameter transformers tend to generate outlier hidden
states that are difficult to effectively quantize while preserving end-to-end performance (Lee et al., 2024a;
Shang et al., 2023a). This can be addressed by leveraging the learnable affine shift of layernorm operations to
adjust transformer attention and feedforward weights (Xiao et al., 2023; Lin et al., 2024b;a). However, DiTs
use Adaptive Layernorm (AdaLN) (Perez et al., 2018), which ties the affine shift to the timestep embedding,
so these methods are less applicable. Additionally, LLM quantization typically features more lightweight
calibration (Ashkboos et al., 2024) as parameter-heavy models make advanced PTQ (Nagel et al., 2020; Li
et al., 2021) costly. However, DiTs typically have fewer parameters and benefit from diverse calibration sets
to cover multiple timesteps. Thus, FP4DiT leverages prior work on PTQ calibration to quantize DiTs.

Finally, some early research exists on DiT PTQ (Chen et al., 2025). HQ-DiT (Liu & Zhang, 2024) apply
FPQ to class-conditional ImageNet (Deng et al., 2009) DiTs, but do not consider text-to-image (T2I) models
like the PixArt (Chen et al., 2024b;a) series. ViDiT-Q (Zhao et al., 2024) utilizes fine-grained techniques
including channel balancing, mixed-precision and LLM outlier suppression, it does not incorporate weight
reconstruction (Nagel et al., 2020; Li et al., 2021) from prior DM PTQ works. In contrast, this work
aggregates knowledge from existing DM PTQ methods and refines them for application on T2I DiT models.

3 Methodology

In this section, we present our PTQ solution for the T2I DiT model. First, we analyze the sensitivity
of the DiT block in the PixArt and Hunyuan model and propose a mixed FP format for the FP4 weight
quantization. Second, we propose a scale-aware AdaRound tailored for FP weight quantization. Lastly, we
investigate and contrast U-Net and DiT activation distribution information.

3.1 Uniform vs. Non-Uniform Quantization

Quantization compresses neural network size by reducing the bit-precision of weights and activations, e.g.
rounding from 32/16-bit datatypes into an n-bit quantized datatype, where n ≤ 8 typically. For instance,
we can perform uniform integer (INT) quantization on a tensor X to round it into a lower-bit representation
X(int) as follows:

X(int) = clip
(⌊

X
s

⌉
+ z, xmin, xmax

)
(1)

where s is scale, z is the zero point, and ⌊·⌉ is operation rounding-to-nearest. INT quantization rounds the
values to a range with 2n points. Specifically, the range is always a uniform grid, whose size decreases by
half each time n decreases by 1.

In contrast, Floating-Point Quantization (FPQ) uses standard floating-point numbers as follows:

f = (−1)ds2p−b

(
1 + d1

2 + d2

22 + · · ·+ dm

2m

)
(2)

where ds ∈ {0, 1} is the sign bit and b is the bias. p = d1 + d2 ∗ 2 + · · · + de ∗ 2e−1 represents the e-bit
exponent part while

(
1 + d1

2 + d2
22 + · · ·+ dm

2m

)
represents the m-bit mantissa part. Note that di ∈ {0, 1} for

bits in both the mantissa and the exponent part. The FP format can be seen as multiple consecutive m-bit
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uniform grids with different exponential scales. Therefore, the FPQ is operated similarly to Equation 1, with
distinct scaling factors applied to values across varying magnitudes.
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Figure 1: Value distributions for INT4 and
three variants of FP4: E1M2, E2M1 and
E3M0. Note that E0M3 is INT4. Observe
how INT4 values are evenly distributed,
while FP4 values cluster at the origin as
the number of exponent (E) bits increases.
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Figure 2: T2I DiT block diagram. In
PixArt-α/Σ, all DiT blocks share the same
AdaLN-single MLP for time conditions.
The scale and shift for layer normalization
in DiT blocks depend on the embedding
from AdaLN-single and the layer-specific
training embedding. Colored blocks demar-
cate quantizable weight layers from activa-
tions and normalizations.

Sensitive Interval

Figure 3: The GELU activation and its sen-
sitive interval. With the same amount of
discrete values, non-uniform quantization
can better capture the sensitive interval.

The key advantage of FPQ, especially at low-bit precision for
quantization, is that they enjoy a richer granularity of value
distributions owing to the numerous ways we can vary the
allocation of exponent and mantissa bits. This is analogous
to the introduction of the ‘BFloat16’ (Kalamkar et al., 2019)
format, which achieves superiority over the older IEEE stan-
dard 754 ‘Float16’ (Kahan, 1996) in certain deep machine al-
gorithms (Lee et al., 2024b) by allocating 8-bits towards the
exponent, as the larger ‘Float32’ format does. Broadly, an n-
bit floating point datatype posses n − 1 possible distributions
as m ∈ [0, n − 1], and even adopts the uniform distribution of
the corresponding n-bit integer format when m = n− 1.

Figure 1 visualizes this advantage by showing the discrete value
distribution of INT4 and FP4 under different FP formats. The
bits allocation between the mantissa and exponent significantly
influences the performance of quantization as depicted. While
the flexibility of floating-point format benefits the quantiza-
tion, improper FP format can result in sub-optimal perfor-
mance (Shen et al., 2024). Hence, in the following section,
we present our analysis of the DiT blocks and introduce our
method, which adjusts the FP format when quantizing differ-
ent DiT weights.

3.1.1 Optimized FP Formats in DiT Blocks.

Figure 2 illustrates the structure of a T2I DiT Block. In a DiT
block, the Pointwise Feedforward is unique in that it consists of
a non-linear GELU activation flanked by linear layer before and
after. GELU, plotted in Figure 3 contains a sensitive region
where the function returns a negative output. Interestingly,
Reggiani et al., 2023 (Reggiani et al., 2023) show that focusing
on this sensitive interval helps reduce the mean-squared error
when approximating GELU using Look-Up Tables (LUTs) or
breakpoints. Building on this insight, we apply denser floating
point formats, e.g., E3M0, to the first pointwise linear layer.
This allocates more values closer to zero, i.e., where the GELU
sensitive interval lies, thereby enhancing the precision of the
approximation. We further elaborate on this point in the ap-
pendix.

3.2 AdaRound for FP

By default, quantization is rounding-to-nearest, e.g., Eq. 1.
AdaRound (Nagel et al., 2020) show that rounding-to-nearest
is not always optimal and instead apply second-order Taylor
Expansion on the loss degradation from weight perturbation
∆w caused by quantization:

E[∆L(w)] ≈ ∆wT g(w) + 1
2∆wT H(w)∆w. (3)

The gradient term g(w) is close to 0 as neural networks are
trained to be converged. Hence, the loss degradation is deter-
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Figure 4: (a) The binary gate function of INT AdaRound. All gates are identical because there is only one
scale in INT quantization. (b) The binary gate functions of origin AdaRound on FP quantization. (c) The
binary gate functions of scale-aware AdaRound. The red dashed line indicates the demarcation of rounding
up (right) or down (left). Our scale-aware AdaRound normalizes the slope near the turning point, which
stabilizes the optimization and helps improve the quantization performance.

mined by the Hessian matrix H(w), which defines the interac-
tions between different perturbed weights in terms of their joint impact on the task loss. The rounding-to-
nearest is sub-optimal because it only considers the on-diagonal elements of H(w). However, optimizing via
a full Hessian matrix is infeasible because of its computational and memory complexity issues. To tackle
these issues, the authors make assumptions such as each non-zero block in H(w) corresponds to one layer,
and then propose an objective function:

arg min
V

∥Wx− W̃x∥2
F + λfreg(V), (4)

The optimization objective is to minimize the Frobenius norm of the difference between the full-precision
output Wx and the quantized output W̃x for each layer and freg(V) is a differentiable regularizer to en-
courage the variable V to converge. BRECQ (Li et al., 2021) proposed a similar block-wise optimization
objective that further advances the performance of weight reconstruction in PTQ. In detail, W̃ is defined as
follows:

W̃ = s · clip
(⌊

W

s

⌋
+ h(V), min, max

)
(5)

where min and max denotes the quantization threshold. h(V) is the rectified sigmoid function proposed by
(Louizos et al., 2017):

h(V) = clip (σ(V)(ζ − γ) + γ, 0, 1) (6)
where σ(·) is the sigmoid function and ζ and γ are fixed to 1.1 and -0.1. During optimization the value of
h(V) is continuous, while during inference its value will be set to 0 or 1 indicating rounding up or down.

3.2.1 Scale-aware AdaRound.

AdaRound has been widely adopted to improve the performance of quantized neural networks (Li et al.,
2021; 2023) in low-bit settings like 4-bit weights. However, AdaRound assumes weight quantization to low-
bit integer formats, like INT4 rather than low-bit FP formats (van Baalen et al., 2023), where non-uniform
value distribution (Fig. 1) may introduce unique challenges.

Specifically, we identify that the original INT-based AdaRound assumes the scale s is consistent across
different quantized values. However, this does not hold for FPQ, where there are 2E scales. Therefore, we
propose scale-aware AdaRound which improves the performance and leads to faster convergence.

Our scale-aware AdaRound inherits Equation 4 as the learning objective because reducing the layer-wise and
block-wise quantization error is the common goal of FPQ and INT quantization. Differently, We modified
the W̃ as:

W̃ = s · clip
(⌊

W

s

⌋
+ h′(V′), min, max

)
(7)

h′(V′) = clip
(

σ(V′

s
)(ζ − γ) + γ, 0, 1

)
(8)
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Figure 5: (a) Different timestep input values for PixArt-α on 128 images sampled from MS-COCO. The
input does not shrink progressively across timesteps like U-Net DM. (b) The time-embedded scale for the
output of the 7th DiT block’s FeedForward. It is almost constant across timesteps. (c) The output of the
7th DiT block. Its range tends to remain constant but shifts as a function of time.

where h′(·) is the scale-aware rectified sigmoid function and V ′ is a new continuous variable we optimized
over.

The rectified sigmoid function functions as binary gates that control the rounding of weights. Specifically,
the gate function z = s · h(V ) is optimized according to Equation 4. Figure 4a shows those binary gates in
INT AdaRound. The gates are equivalent across all the weights, which matches the even distribution of INT
quantization. In Figure 4b, we show the origin AdaRound’s binary gates under different scales. The gates’
slope depends on their scale, which causes imbalanced update during the gradient descent. In Figure 4c,
we show the binary gates of our scale-aware AdaRound. In contrast, the gates’ slope is normalized to the
same level, which makes the weight reconstruction much more stable and thus aids the quantization. For
the mathematical proof of our scale-aware AdaRound, please refer to the appendix.

3.3 Token-wise Activation Quantization
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Figure 6: The distribution of the ab-
solute maximum for each token’s activa-
tion among 4096 tokens in the PixArt-α
model. The distribution demonstrates a
strong patch dependency in the DiT acti-
vation.

Prior DM PTQ approaches (He et al., 2024; Huang et al.,
2024) use a calibration dataset to learn temporally-aware (He
et al., 2023) activation quantization scales. This approach
is predicated on knowledge of how U-Net activation distribu-
tions change as a function of denoising timesteps, i.e., acti-
vation ranges taper-off towards the end of the denoising pro-
cess (Shang et al., 2023b; Li et al., 2023).

In contrast, we show that this assumption does not hold for
DiT models. First, we collect input activations of PixArt-α
across 20 timesteps, revealing that the activation range remains
stable over time, as shown in Figure 5a. We then analyze the
Adaptive Layernorm (AdaLN) (Perez et al., 2018) in the PixArt
DiT model in Figure 2. Since the feed-forward scale directly
influences the DiT block output range, we visualize the feed-
forward scale in the first layer in Figure 5b and the output of the
7th DiT block in Figure 5c. These figures demonstrate that the
value of activations is primarily controlled by channels opposed
to timesteps, and that the width of the activation range tends

to remain constant, but shifts as a function of time.

Further, we plot the token-wise activation range in Figure 6. This plot visualizes the absolute maximum
activation of each image patch (token) across time. The results indicate that the activation range varies
significantly, even among tokens within the same timestep.
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Recent works by Microsoft (Yao et al., 2022; Wu et al., 2023b) propose an online token-wise activation
quantization that yields superior results when quantizing transformer activations. Table 1 applies this tech-
nique to the DiT scenario. Specifically, we apply simple min-max quantization to reduce weight precision
of PixArt-α to 4-bits (W4), then consider 8-bit (A8) and 6-bit (A6) activation quantization. In both sce-
narios, we observe CLIP performance that is closer to the full precision model using token-wise activation
quantization as opposed to the traditional, temporally-aware scale calibration technique which is designed
for U-Nets. As such, we consider token-wise activation quantization throughout the remainder of this work
by substituting it into U-Net baselines like Q-Diffusion (Li et al., 2023) and TFMQ-DM (Huang et al., 2024).

4 Results

Method Precision CLIP ↑
No Quantization W16A16 0.3075
Temporally-Aware Act. Quant. W4A6 0.2012
Token-wise Act. Quant. W4A6 0.3036
Temporally-Aware Act. Calib. W4A8 0.2410
Token-wise Act. Quant. W4A8 0.3120

Table 1: CLIP score (Hessel et al., 2021) reported
when quantizing PixArt-α to 4-bit weights (W4)
and 8 or 6-bit activations (A8 and A6) using
the online token-wise method and temporarally-
aware scale calibration. Specifically, we generate
1k images per configuration using COCO (Lin
et al., 2014a) prompts and compare against the
validation set. Higher CLIP is better.

In this section we conduct experiments to verify the ef-
ficacy of FP4DiT. We elaborate on our experimental
setup and then compare FP4DiT to several baselines ap-
proaches to highlight its competitiveness in terms of quan-
titative metrics and qualitative image generation output.
Specifically, we consider three text-to-image (T2I) mod-
els: PixArt-α (Chen et al., 2024b), PixArt-Σ (Chen et al.,
2024a) and Hunyuan (Li et al., 2024). We also conduct
several ablation studies to verify the components of our
method. Finally, we report several hardware metrics tab-
ulating the cost savings and throughput of FP4DiT.

4.1 Experimental Settings

We use the HuggingFace Diffusers library (von Platen
et al., 2022) to instantiate the base DiT models in
W16A16 bit-precision and consider the default values for
inference parameters like number of denoising steps and classifier-free guidance (CFG) scale. We quantize
weights to 4-bit precision FP format. Specifically, we set the weight format for the first linear layer in each
pointwise feed-forward to be E3M0. We quantize all other weights to E2M1 for PixArt-α and Hunyuan,
and E1M2 for PixArt-Σ. Further details on this decision are provided in Session 4.3.1. Finally, our weight
quantization is group-wise (Frantar et al., 2022; Park et al., 2022) along the output channel dimension with
a group size of 128.

We perform weight quantization calibration using our scale-aware AdaRound and BRECQ. Weight calibra-
tion requires a small amount of calibration data. We use 128 (64 for Hunyuan) prompts from the MS-COCO
2014 train (Lin et al., 2014a) dataset and calibrate for 2.5k iterations per DiT block or layer. Next, we
perform activation quantization to 8 or 6-bit precision using min-max token-wise quantization from Zero-
Quant (Yao et al., 2022; Wu et al., 2023b). We provide further hyperparameter details in the appendix.

4.2 Main Results

In our experiment, we consider four baseline approaches: Q-Diffusion (Li et al., 2023), TFMQ-DM (Huang
et al., 2024), ViDiT-Q (Zhao et al., 2024) and Q-DiT (Chen et al., 2025). Note that while Q-Diffusion and
TFMQ-DM are originally designed for U-Nets, we modify these approaches to use the same online token-wise
activation quantization as FP4DiT per Table 1, while ViDiT-Q and Q-DiT uses this mechanism by default.
Further, note that ViDiT-Q uses mix-precision meaning some of their layers are not quantized to 4-bits. For
the sake of convenience, we use their mix-precision as a W4 baseline to conduct our experiments.

We generate 512 × 512 resolution images using PixArt-α and 1024 × 1024 for PixArt-Σ and Hunyuan. For
evaluation, we primarily consider the Human Preference Score v2 (HPSv2) (Wu et al., 2023a) benchmark
and MS-COCO 2014 (Lin et al., 2014a) validation set. Specifically, HPSv2 considers four image categories:
animation, concept-art, painting and photography, and estimates the human preference score of an image
generated using a prompt with respect to one category. Each category contains 800 prompts, requiring 3.2k
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Benchmark HPSv2 MS-COCO
Model Method Precision Animation↑ Concept-art↑ Painting↑ Photo↑ Average↑ FID ↓ CLIP↑

PixArt-α

Full Precision W16A16 32.56 31.06 30.76 29.67 31.01 34.05 0.3075
Q-Diffusion W4A8 24.18 23.43 22.91 22.15 23.17 52.20 0.3017
TFMQ-DM W4A8 27.88 26.03 25.14 24.91 25.99 64.73 0.3066
ViDiT-Q W4A8 17.93 17.35 16.81 17.59 17.42 39.11 0.2900
Q-DiT W4A8 28.49 26.91 27.55 26.56 27.38 36.17 0.3062
FP4DiT (ours) W4A8 28.63 26.79 27.59 26.72 27.43 30.37 0.3076
Q-Diffusion W4A6 12.63 13.39 13.32 10.65 12.50 70.96 0.2868
TFMQ-DM W4A6 24.02 23.36 22.72 23.04 23.29 90.09 0.3015
ViDiT-Q W4A6 16.71 16.28 16.23 16.56 16.44 56.54 0.2827
Q-DiT W4A6 24.66 22.59 23.29 23.04 23.40 43.91 0.3015
FP4DiT (ours) W4A6 24.57 23.08 23.30 23.26 23.55 40.61 0.3031

PixArt-Σ

Full Precision W16A16 33.07 31.58 31.54 30.49 31.67 36.94 0.3139
Q-Diffusion W4A8 27.30 26.11 26.06 25.06 26.13 36.89 0.3050
TFMQ-DM W4A8 24.95 23.59 23.19 22.73 23.62 62.98 0.2975
ViDiT-Q W4A8 27.10 26.45 26.24 24.49 26.07 37.17 0.2562
Q-DiT W4A8 27.74 26.23 26.05 24.67 26.17 32.03 0.3048
FP4DiT (ours) W4A8 27.95 26.29 26.16 24.67 26.27 31.58 0.3064
Q-Diffusion W4A6 24.07 22.42 22.47 21.72 22.67 74.83 0.3027
TFMQ-DM W4A6 19.30 18.46 18.85 17.50 18.53 154.13 0.2346
ViDiT-Q W4A6 24.84 23.23 23.48 21.94 23.37 87.47 0.2425
Q-DiT W4A6 25.67 23.57 23.60 22.64 23.87 73.20 0.2894
FP4DiT (ours) W4A6 26.91 25.55 25.22 23.93 25.40 42.21 0.3040

Hunyuan

Full Precision W16A16 33.72 31.84 31.52 31.24 32.08 59.08 0.3102
Q-Diffusion W4A8 26.00 24.74 24.84 24.26 24.96 82.43 0.3006
TFMQ-DM W4A8 28.77 27.63 27.67 26.15 27.56 89.39 0.3075
ViDiT-Q W4A8 28.74 26.79 26.49 27.20 27.31 82.22 0.3099
Q-DiT W4A8 28.91 27.27 27.15 26.72 27.52 85.33 0.3088
FP4DiT (ours) W4A8 28.96 27.75 27.47 26.94 27.78 81.94 0.3102
Q-Diffusion W4A6 14.90 14.83 15.32 14.24 14.83 255.69 0.2277
TFMQ-DM W4A6 13.73 13.31 13.16 14.51 13.68 258.02 0.2520
ViDiT-Q W4A6 15.11 15.20 15.41 14.17 14.97 265.52 0.2559
Q-DiT W4A6 13.41 13.15 13.48 12.94 13.24 262.31 0.2312
FP4DiT (ours) W4A6 15.23 14.94 15.57 14.27 15.00 255.06 0.2562

Table 2: Quantitative evaluation results for PixArt-α, PixArt-Σ and Hunyuan in terms of HPSv2, FID, and
CLIP score. Specifically, for each configuration, we generate 10k images (5k for Hunyuan) using COCO 2014
validation set prompts. Best and second best results in bold and italics, respectively.

images to be generated to fully evaluate. The final HPSv2 score is the average estimated human preference
across all four categories. Additionally, for COCO 2014, we measure the FID (Heusel et al., 2017) and
CLIP (Hessel et al., 2021) score using prompts from the validation set.

Table 2 compares our method with the stated baseline approaches at the W4A8 and W4A6 precision levels.
FP4DiT consistently outperforms all other methods across three different base models at every precision
level in terms of each performance metric. On HPSv2, FP4DiT achieves the best average performance
across every model and bit-precision combination. Although other approaches may achieve slightly higher
performance on an individual category, these gaps are small, while FP4DiT leads in terms of FID and CLIP
on the COCO 2014 validation set.

Next, we compare performance across activation bit-precision. For the PixArt-series DiT models, A6 preci-
sion can cause substantial performance degradation for some baselines, while FP4DiT still maintains high
performance. This is specifically noteworthy on PixArt-Σ as baseline approaches suffer a loss in terms of
either FID and/or CLIP performance at A6 compared to A8, but this is not the case for FP4DiT. For the
Hunyuan DiT model, A6 quantization remains highly challenging across the board, however, our method
still achives the best results at this level. Overall though, Table 2 demonstrates the efficacy of FP4DiT in
term of quantitative T2I compared to prominant baseline approaches.
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Figure 7: PixArt-α (up) and PixArt-Σ (down) images and comparison between FP4DiT and related work.
Best viewed in color and zoomed in.

FP 
W16A16

FP4DiT
W4A8

A baby
painter trying
to draw very

simple
picture, white
background

Q-Diffusion
W4A8

TFMQ-DM
W4A8

ViDiT-Q
W4A8

Q-DiT
W4A8

Figure 8: Hunyuan image comparison. Note the details like ‘white background’ and ‘detailed hair texture’
for FP4DiT. Best viewed in color.

Next, Figure 7 provides qualitative image samples on the PixArt models. Note the higher quality of the
images generated by FP4DiT at both the A8 and A6 levels. Specifically, the puppies have more realistic
detail and the generated image more closely aligns with the W16A16 model. This is especially true for the
PixArt-Σ sample images, where the FP4DiT show detailed, but not blurry northern lights while maintaining
detail on the snowy landscape in the foreground.

Further, Figure 8 provides image results on Hunyuan, where we again note the detail present in the FP4DiT
image, while the baseline approaches are much noisier and have yellow backgrounds which are not prompt-
adherent. Finally, additional visualization results can be found in the appendix.

4.2.1 User Preference Study

To further verify the utility of our method, we conduct several human user preference studies to qualitatively
compare FP4DiT to existing baseline approaches. Specifically, for each human user preference study, we have
a set of prompts (i.e., introduced in (Chen et al., 2024b)) as well as quantized variants of a single model (e.g.,
Hunyuan-DiT quantized to W4A8 using ViDiT-Q, Q-DiT and FP4DiT). Each quantized model generates
one image per prompt. For each prompt, we solicit the opinion of a human participant, by presenting them
the set of images produced using the prompt by different methods, and ask them to select which image they
prefer, in terms of perceived prompt adherence and general visual quality. We then tally up the number of
votes each method obtains and compute how often it is selected compared to its competitors, e.g., preference
score (%), where higher is better.

Our first test focused on comparing FP4DiT to other methods explicitly designed for DiT PTQ: ViDiT-Q
and Q-DiT. This study consists of 120 prompts and 17 human participants. We compare generated image
quality for PixArt-Σ at W4A6 precision and Hunyuan at W4A8 precision. Table 3 reports our findings.
FP4DiT is preferred over 50% of the time for PixArt-Σ W4A6 precision level, followed by Q-DiT and then
ViDiT-Q. This result aligns with Table 2 where FP4DiT achieves the best result and Q-DiT outperforms
ViDiT-Q in this setting. For Hunyuan at W4A8 the preference vote share for baseline methods grow, but
they do not overtake FP4DiT, which demonstrates the veracity of our approach.

Next, we conduct an additional study comparing FP4DiT to baseline approaches originally designed with
U-Net DMs in mind but which utilize advanced PTQ via AdaRound and BRECQ: Q-Diffusion and TFMQ-
DM. Specifically, we consider 75 random prompts and 15 human participants. The baseline DM is Hunyuan

9
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Model Method Prec. Preference(%) ↑

PixArt-Σ
ViDiT-Q W4A6 17.09
Q-DiT W4A6 30.77
FP4DiT W4A6 52.14

Hunyuan
ViDiT-Q W4A8 19.17
Q-DiT W4A8 35.83
FP4DiT W4A8 45.00

Table 3: DiT PTQ user preference study between
FP4DiT, ViDiT-Q, and Q-DiT on PixArt-Σ W4A6
precision and Hunyuan-DiT W4A8 precision.

Model Method Prec. Preference(%) ↑

Hunyuan

Q-Diffusion W4A8 6.58
TFMQ-DM W4A8 36.84
FP4DiT W4A8 56.58
Q-Diffusion W4A6 32.84
TFMQ-DM W4A6 28.36
FP4DiT W4A6 38.81

Table 4: AdaRound/BRECQ user preference study
between FP4DiT, Q-Diffusion and TFMQ-DM on
Hunyuan DiT with W4A8 and W4A6 quantization.

quantized to either W4A8 or W4A6 precision. Table 4 reports our findings. At A8 precision FP4DiT clearly
outperforms the other methods with a majority of the images being favored, while it also obtains almost
40% of the votes at A6 precision.

4.3 Ablation Studies

Figure 9: E2M1 (up) and E1M2 (down) min-max
FPQ visualization results on PixArt and Hun-
yuan DiT. E2M1 is preferred by PixArt-α and
Hunyuan, while E1M2 is preferred by PixArt-Σ.

We conduct ablation studies on the PixArt-α model to
verify the contribution of each component of FP4DiT.
The experiment settings are consistent with Section 4.2
unless specified. Additional ablation studies can be found
in the appendix.

4.3.1 Effect of FP Format.

Recall the mixed format strategy for FPQ in FP4DiT:
we apply E3M0, which allocates more value closer to the
GELU sensitive interval, to the first pointwise linear layer
and use a unified FP format from E2M1 and E1M2 for
the rest layers. To choose a better one between E2M1 and
E1M2 while avoiding data leakage, instead of quantizing
FP4DiT with two formats and selecting the better one
based on the FID and CLIP, we only employ the basic
min-max quantization scheme (without AdaRound tech-
nique thereby avoiding the use of calibration data) and
leave the activation un-quantize (e.g. W4A16). We use
the PixArt prompts to generate images and apply user
preference studies to determine the format. Method Precision HPSv2 ↑

Full Precision W16A16 31.01
Q-Diffusion W4A16 25.22
Q-Diffusion-FPQ W4A16 8.78
+ Group Quant W4A16 25.05
+ Scale-Aware AdaRound W4A16 26.44
+ Sensitive-aware FF Quant. W4A16 28.21

Table 5: The effect of different methods proposed
for weight quantization on W4A16 PixArt-α.

Figure 9 shows the visualization results of E2M1 and
E1M2 FPQ. For the PixArt-α, E2M1 demonstrates better
suitability, as the cactus in E1M2 loses its texture, result-
ing in a mismatch between the image and the prompt. For
PixArt-Σ and Hunyuan, inappropriate FP format causes
noise on the generated image, leading to suboptimal per-
formance. In conclusion, it is straightforward and un-
ambiguous to determine the unified FP format based on
these visualization results.

4.3.2 Effect of Weight Quantization

To evaluate the effectiveness of our weight quantization method, we perform an ablation study on weight-only
quantization, e.g. W4A16. As depicted in Table 5, our method progressively improves the weight quantiza-
tion: Initially, directly applying FPQ to Q-Diffusion results in a significant degradation. Our research then
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reveals that group quantization is necessary for FPQ. Notably, using the original AdaRound on top of FPQ
impedes its effectiveness. Subsequently, our sensitive-aware mixed format FPQ (E3M0 in pointwise linear)
further improves the post-quantization performance. Eventually, our scale-aware AdaRound advances the
boundaries of optimal performance by considering the multi-scale nature of FP weight reconstruction.

4.3.3 Effect of Scale-Aware AdaRound

2.5k 5k 10k 20k
Steps

0.290

0.295

0.300

0.305

0.310

CL
IP

INT-AdaRound
Scale-aware AdaRound

Figure 10: The performance of different
AdaRound methods with different calibration
budgets on W4A16 PixArt-α quantization gener-
ating 1k images. The stars indicate the optimal
budget for INT and scale-aware AdaRound.

To further verify our scale-aware AdaRound for FP quan-
tization, we compare our scale-aware AdaRound to the
origin AdaRound with INT quantization in the W4A16
setting. Note that the calibration budget is crucial for
the performance of weight reconstruction. BRECQ (Li
et al., 2021) uses 20k as default and this setting is inher-
ited by prior DM quantization research like Q-Diffusion
and TFMQ-DM. Thus, we configured calibration budgets
at {2.5k, 5k, 10k, 20k} to ensure a fair comparison. Fig-
ure 10 outlines the CLIP of different AdaRound methods
on PixArt-α under different calibration budgets. Scale-
aware AdaRound achieving optimal budget with 8 times
fewer calibration steps than INT AdaRound, highlights
its effectiveness in reducing calibration costs without com-
promising reconstruction quality.

4.4 Hardware Cost Comparison

Finally, we measure the hardware latency impact of FPQ
compared to more traditional INT quantization and the
W16A16. Specifically, we consider the quantization la-
tency cost to execute some of the common, yet costlier weight/activation operations in a DiT, namely the
self-attention mechanism and feedforward module. Specifically, the linear layers corresponding to the self-
attention mechanism (Q, K, V and output projection) all share the same weight/activation dimensions, while
the feedforward consists of two linear layers which expand and then contract the token/patch embedding di-
mension, respectively. Additionally, weights and activations may not share the same bit precision, imposing
additional dequantization cost.

We develop a CUDA 12.8 kernel and measure hardware latency on an Nvidia 5080, a Blackwell GPU
which supports low-bit FP formats. We consider the self-attention weight/activation dimensions found in
PixArt-α/Σ when generating an 1024 × 1024 image. Table 6 reports our findings. The result indicates
that, despite the general expectation that floating-point computations are more demanding than integer
operations, the latency results are nearly identical across all tested quantization precisions. Specifically,
although A6 precision imposes some additional overhead compared to A8 (either for FP or INT), this is
quite minor, leading to an overall speedup around 1.5x compared to W16A16, much like the popular W4A8
integer quantization (Li et al., 2023; Zhao et al., 2024; Chen et al., 2025).

Leveraging this finding, our FPQ method can achieve superior performance without sacrificing computational
efficiency. In fact, this latency results align with the stated computation rate of different INT and FP
formats across different Nvidia GPUs, which we report in Table 7. Specifically, GPUs can handle INT and
FP quantization with similar computational throughput, which ensures that FP-based quantization does not
introduce additional computational overhead. Lastly, although FP6 shares the same compute throughput
as 8-bit formats (see Table 7), it brings memory saving (25% smaller tensor) which is essential for low-bit
quantization, as transformers often become memory-bound (Xia et al., 2024) during token generation. As a
result, FP6 enhances DiT’s inference efficiency.

We also compare the hardware cost of the quantized FP4DiT model with the full-precision model in terms
of memory and energy consumption using two metrics: model size and Bit-Ops (BOPs) (He et al., 2024).
Specifically, model size refers to the disk space required to store the model checkpoint weights and scales,
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Layer W4A8-FP (ms) W4A6-FP (ms) W4A8-INT (ms) W16A16 (ms)
Feedforward Layer 1 303.42 (1.54×) 313.54 (1.49×) 302.56 (1.54×) 465.99
Feedforward Layer 2 313.31 (1.50×) 318.67 (1.47×) 312.80 (1.50×) 469.91
Self-Attention QKV Proj. 78.33 (1.51×) 79.94 (1.48×) 78.16 (1.51×) 118.28

Table 6: The latency and the speedup of different linear layers in PixArt-α/Σ under different quantization
precision generating a 1024× 1024 image. Result measured on RTX 5080 GPU using CUDA 12.8.

GPU INT8 FP8 FP6 FP4
RTX 4090 (NVIDIA, 2024a) 660.6 TOPS 660.6 TFLOPS – –
H100 (NVIDIA, 2024c) 1979 TOPS 1979 TFLOPS – –
RTX 5090 (NVIDIA, 2024a) 838 TOPS 838 TFLOPS 838 TFLOPS 1676 TFLOPS
HGX B100 (NVIDIA, 2024b) 56 POPS 56 PFLOPS 56 PFLOPS 112 PFLOPS
HGX B200 (NVIDIA, 2024b) 72 POPS 72 PFLOPS 72 PFLOPS 144 PFLOPS

Table 7: GPU throughput rates for different low-bit datatype formats. Horizontal line demarcates older Ada
Lovelace/Hopper GPUs from state-of-the-art Blackwell series. Older series do not support FP6 and FP4.

Model Precision Model Size (MB)↓ TBOPs↓

PixArt-α

W16A16 610.86 35.72
W8A8 305.53 8.938
W4A8 152.87 4.474
W4A6 152.87 3.358
W4A8-G128 (ours) 158.59 4.474
W4A6-G128 (ours) 158.59 3.358

Table 8: The comparison of model size and Bit-Ops of different Precision on PixArt-α. G128 denotes group-
wise weight quantization with a group size of 128. Lower is better.

while BOPs is a quantization-aware extension of the MACs (Chu et al., 2022; Mills et al., 2023) metric
which measures the compute cost of a neural network forward pass. As shown in Table 8, group-wise
weight quantizationintroduces only moderate overhead; nonetheless, our method still substantially reduces
the model size and BOPs.

5 Conclusion

In this paper, we propose FP4DiT, a PTQ method that achieves W4A6 and W4A8 quantization on T2I
DiT using FPQ. We use a mixed FP formats strategy based on the special structure of DiT and propose
scale-aware AdaRound to enhance the weight quantization for FPQ. We analyze the difference between
the activation of U-Net DM and DiT and apply token-wise online activation quantization based on the
findings. Our experiments demonstrate the superior performance of FP4DiT compared to other quantization
methods on the quantative HPSv2 benchmark, MS-COCO dataset and qualitative visualization comparison
at minimial hardware cost.
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