
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Fine-Tuning Language Models with Just Forward Passes

Anonymous Authors1

Abstract

Fine-tuning language models (LMs) has yielded
success on diverse downstream tasks, but as LMs
grow in size, backpropagation requires a pro-
hibitively large amount of memory. Zeroth-order
(ZO) methods can in principle estimate gradients
using only two forward passes but are theorized to
be catastrophically slow for optimizing large mod-
els. In this work, we propose a memory-efficient
zeroth-order optimizer (MeZO), adapting the
classical ZO-SGD method to operate in-place,
thereby fine-tuning LMs with the same memory
footprint as inference. For example, with a single
A100 80GB GPU, MeZO can train a 30-billion
parameter model, whereas fine-tuning with
backpropagation can train only a 2.7B LM with
the same budget. We conduct comprehensive
experiments across model types (masked and au-
toregressive LMs), model scales (up to 66B), and
downstream tasks (classification, multiple-choice,
and generation). Our results demonstrate that
(1) MeZO significantly outperforms in-context
learning and linear probing; (2) MeZO achieves
comparable performance to fine-tuning with
backpropagation across multiple tasks, with up to
12× memory reduction; (3) MeZO is compatible
with both full-parameter and parameter-efficient
tuning techniques such as LoRA and prefix
tuning; (4) MeZO can effectively optimize
non-differentiable objectives (e.g., maximizing
accuracy or F1). We support our empirical
findings with theoretical insights, highlighting
how adequate pre-training and task prompts
enable MeZO to fine-tune huge models, despite
classical ZO analyses suggesting otherwise.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Fine-tuning pre-trained language models (LMs) has been
the dominant methodology for solving many language
tasks (Devlin et al., 2019), adapting to specialized do-
mains (Gururangan et al., 2020), or incorporating human
instructions and preferences (Ouyang et al., 2022). How-
ever, as LMs are scaled up (Brown et al., 2020; OpenAI,
2023), computing gradients for backpropagation requires
a prohibitive amounts of memory – in our test, up to 12×
the memory required for inference – because it needs to
cache activations during the forward pass, gradients during
the backward pass, and, in the case of Adam (Kingma and
Ba, 2015), also store gradient history (see Section 3.1 for a
detailed analysis).

As a result, while it is possible to run inference with a
30-billion (30B) parameter LM on a single Nvidia A100
GPU (with 80GB memory), backpropagation with Adam
is feasible only for a 2.7B LM. Parameter-efficient fine-
tuning methods (PEFT (Hu et al., 2022; Li and Liang, 2021;
Lester et al., 2021)) update just a fraction of the network
parameters, but still need to cache many activations, because
the tuned parameters are scattered throughout the model. In
our tests, fine-tuning an OPT-13B model with full parameter
or PEFT requires 12× and 6× more memory than inference
respectively.

In-context learning (ICL (Brown et al., 2020)) has allowed
solving many tasks with a single inference pass, during
which the model processes labeled examples (demonstra-
tions) in its context and then outputs a prediction on a test
example. While this allows for quick adaptation of the
model to specific use cases, current models allow a limited
context size (and thus, limited demonstrations) and the
performance is sensitive to the formatting and choice of
demonstrations (Liu et al., 2022; Lu et al., 2022). ICL also
often performs worse than fine-tuning of medium-sized
models (Brown et al., 2020). Besides, inference with ICL
is more expensive, as it always requires demonstrations in
context and thus increases the input length.

A classical zeroth-order optimization method (ZO-
SGD (Spall, 1992)) uses only differences of loss values
to estimate the gradients. Thus in principle, the method can
update neural networks with just forward passes, though
naive implementation still doubles the memory overhead

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Fine-Tuning Language Models with Just Forward Passes

SST-2 RTE CB BoolQ WSC WIC MultiRC Copa ReCoRD SQuAD DROP
10

30

50

70

90

Ac
cu

ra
cy

/F
1

(%
)

Zero-shot ICL MeZO FT (12x memory)

Figure 1: OPT-13B results with zero-shot, in-context learning (ICL), MeZO (we report the best among MeZO/MeZO
(LoRA)/MeZO (prefix)), and fine-tuning with Adam (FT). MeZO demonstrates superior results over zero-shot and ICL
and performs on par with FT (within 1%) on 7 out of 11 tasks, despite using only 1/12 memory. See Table 2 for detailed
numbers and Figure 2 for memory profiling.

and classical lower bounds (Nemirovskij and Yudin, 1983;
Duchi et al., 2015) suggest that convergence slows linearly
with model size. As such, ZO methods have been applied in
deep learning settings to find adversarial examples or tune
input embeddings (Sun et al., 2022b;a) but not to directly
optimize large-scale models (see Liu et al. (2020a)).

In this work, we propose a memory-efficient zeroth-order
optimizer (MeZO), which adapts the classical ZO-SGD al-
gorithm and reduces its memory consumption to the same as
inference. We apply MeZO to fine-tune large LMs and show
that, both empirically and theoretically, MeZO can success-
fully optimize LMs with billions of parameters. Specifically,
our contributions are:

1. In MeZO, we adapt the ZO-SGD algorithm (Spall,
1992) and a number of variants to operate in-place
on arbitrarily large models with almost no memory
overhead (see Algorithm 1 and Section 2).

2. We conduct comprehensive experiments across model
types (masked LM and autoregressive LM), model
scales (from 350M to 66B), and downstream
tasks (classification, multiple-choice, and generation).
MeZO consistently demonstrates superiority over
zero-shot, ICL, and linear probing. Moreover, with
RoBERTa-large, MeZO achieves performance close
to standard fine-tuning within 5% gap; with OPT-13B,
MeZO outperforms or performs comparably to fine-
tuning on 7 out of 11 tasks, despite requiring roughly
12× less memory (Figure 1 and Section 3).

3. We demonstrate MeZO’s compatibility with full-
parameter tuning and PEFT (e.g., LoRA (Hu et al.,
2022) and prefix-tuning (Li and Liang, 2021)) in Sec-
tion 3. Further exploration showcases that MeZO can
optimize non-differentiable objectives such as accu-
racy or F1 score, while still requiring only the same

memory as inference (Appendix A.2).

4. Our theory suggests that adequate pre-training ensures
the per-step optimization rate (Theorem 1) and global
convergence rate (Lemma 4) of MeZO depend on a cer-
tain condition number of the landscape (i.e., the local
effective rank, see Assumption 1) instead of numbers
of parameters. This result is in sharp contrast to exist-
ing ZO lower bounds (Nemirovskij and Yudin, 1983;
Duchi et al., 2015) suggesting that the convergence rate
can slow proportionally to the number of parameters
(Section 4).

2. Zeroth-order optimization
Zeroth-order (ZO) optimizers have long been studied in the
context of convex and strongly convex objectives. Consider
a labelled dataset D = {(xi,yi)}i∈[|D|] and a minibatch
B ⊂ D of size B, we let L(θ;B) denote the loss on the
minibatch. We introduce a classical ZO gradient estimate in
this setting.

Definition 1 (Simultaneous Perturbation Stochastic Approx-
imation or SPSA (Spall, 1992)). Given a model with pa-
rameters θ ∈ Rd and a loss function L, SPSA estimates the
gradient on a minibatch B as

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z

≈ zz⊤∇L(θ;B)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is the perturbation
scale. The n-SPSA gradient estimate averages ∇̂L(θ;B)
over n randomly sampled z.

SPSA requires only two forward passes through the model
to compute the gradient estimate (for n-SPSA, each estimate
requires 2n forward passes). It is widely known that the

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Fine-Tuning Language Models with Just Forward Passes

estimate can be used to replace the backpropagation gradient
in any optimizer such as SGD.

Definition 2 (ZO-SGD). ZO-SGD is an optimizer with
learning rate η that updates parameters as θt+1 = θt −
η∇̂L(θ;Bt) where Bt is the minibatch at time t and ∇̂L is
the SPSA gradient estimate.

2.1. Memory-efficient ZO-SGD (MeZO)

The vanilla ZO-SGD algorithm costs twice the memory
of inference, as it needs to store z ∈ Rd. We pro-
pose a memory-efficient implementation of ZO-SGD called
MeZO, as illustrated in Algorithm 1. At each step, we first
sample a random seed s, and then for each of z’s four uses
in Algorithm 1, we reset the random number generator by
s and resample the relevant entry of z. Using this in-place
implementation, MeZO has a memory footprint equivalent
to the inference memory cost.

MeZO can also be combined with other gradient-based opti-
mizers, including SGD with momentum or Adam. Though
naive implementation would require additional memory to
store the gradient moment estimates, MeZO-momentum and
MeZO-Adam alleviate such overhead by recomputing the
moving average of the gradients using saved past losses and
z (see Appendix D for a full discussion).

3. Experiments
Preliminary experiments (Appendix C) show that ZO only
works when using prompts (Brown et al., 2020; Schick and
Schütze, 2021; Gao et al., 2021) (see Appendix F.2) and is
generally insensitive to increasing n, so we use n = 1.

We conduct comprehensive experiments on both medium-
sized masked LMs (RoBERTa-large, 350M (Liu et al.,
2019b)) and large autoregressive LMs (OPT-13B, 30B,
66B (Zhang et al., 2022)) in few-shot and many-shot set-
tings with prompts. We also explore both full-parameter
tuning and PEFT including LoRA (Hu et al., 2022) and
prefix-tuning (Li and Liang, 2021) (see Appendix F.5 for
details). We compare MeZO with zero-shot, in-context
learning (ICL), linear-probing (LP), and fine-tuning with
Adam (FT). MeZO uses substantially less memory than FT
but requires significantly more training steps.

MeZO improves substantially over zero-shot, ICL, and LP
across model types, sizes, and task types, and it performs
comparably to FT over a number of tasks, while drasti-
cally reducing the memory cost by, e.g., 12× on OPT-13B.
Further experiments demonstrate that MeZO can optimize
non-differentiable objectives, such as accuracy and F1 score
(Appendix A.2). We compare the memory consumption of
ICL, FT, LP, and MeZO in Figures 2 and 3. RoBERTa-large
fine-tuning experiments are in Appendix A.1.

��� ���� ���
�� �	�

���#� �%�#$

	

		

			

�
�
�
��
�

!
#
'
��
�
�
�

��#!�$�!%

���

��

���"#���&

��

��� ���� ���
�� �	�

���#� �%�#$

	

		

			

�
�
�
��
�

!
#
'
��
�
�
�

��#!�$�!%

���

��

����"#���&�

����

7x

8x

11x

12x

11x

Figure 2: GPU memory consumption with different OPT
models and tuning methods on MultiRC (400 tokens per
example on average).

Hardware Largest OPT that can fit

FT FT-prefix MeZO

1×A100 (80GB) 2.7B 6.7B 30B
2×A100 (160GB) 6.7B 13B 66B
4×A100 (320GB) 13B 30B 66B
8×A100 (640GB) 30B 66B 175B†

Figure 3: Largest OPT models that one can tune
with specific hardwares and algorithms. † : pro-
jected results without actual testing.

3.1. Memory usage

In this section we profile the memory usage of zero-shot,
ICL, FT, FT (prefix), and MeZO. We test OPT models of
various sizes with Nvidia A100 GPUs (80GB memory) on
MultiRC (average #tokens=400), and report the peak GPU
memory consumption (details in Appendix F.7). As shown
in Figure 2 (refer to Appendix G.5 for detailed numbers),
MeZO exhibits the same memory consumption as zero-shot
while offering memory savings of up to 12 times compared
to standard FT and 6 times compared to FT (prefix). This
advantage enables training larger models within a fixed
hardware budget, as illustrated in Figure 3. Specifically,
using a single A100 GPU, MeZO allows for tuning a model
that is 11 times larger than what is feasible with FT. In
Appendix E studies the theoretical memory-time tradeoffs
of backpropagation and MeZO.

4. Theory
Our theoretical analysis (Appendix B) highlights why
MeZO can optimize large LMs, although a number of clas-
sical results (Nemirovskij and Yudin, 1983; Jamieson et al.,
2012; Raginsky and Rakhlin, 2011; Agarwal et al., 2012)
suggest that optimization should be catastrophically slow
when training so many parameters. In this section, we show
that when the loss landscape exhibits favorable conditions

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Fine-Tuning Language Models with Just Forward Passes

(Assumption 1), we can derive a convergence rate indepen-
dent of the number of parameters. We show that the loss
decreases per step at a rate independent of the parameter
dimension d (Theorem 1), and that, under stronger con-
ditions, the algorithm converges in time independent of d
(Lemma 4). Together, these results imply that MeZO is
not catastrophically slower than SGD when fine-tuning.1

For ease of illustration, we assume that z is sampled from
a sphere with radius

√
d, and in Appendix H.2 we derive

the rate for a general Gaussian z, which was used in the
experiments. Our main assumption is that the Hessian of
the loss exhibits small local effective rank.2

Assumption 1 (Local r-effective rank). Let G(θt) =
max(x,y)∈D ∥∇L(θt; {(x,y)})∥. There exists a matrix
H(θt) such that:

1. For all θ such that ∥θ − θt∥ ≤ ηdG(θt), we have
∇2L(θ) ⪯H(θt).

2. The effective rank of H(θt), i.e
tr(H(θt))/ ∥H(θt)∥op, is at most r.

With this assumption, we can now present the main results.
Theorem 1 (Dimension-Free Rate). Assume the loss ex-
hibits local r-effective rank (Assumption 1). If θt+1 =

θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-
SPSA estimate with a minibatch of size B, then there exists
a γ = Θ(r/n) such that the expected loss decrease can be
bounded as

E[L(θt+1) | θt]− L(θt) ≤− ηZO ∥∇L(θt)∥2

+
1

2
η2ZOℓ · γ · E[∥∇L(θ;B)∥

2
]

Lemma 1 (Global Convergence of ZO-SGD). Let L(θ) be
µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ)−
L∗) for all θ. Then after

t = O

(r

n
+ 1

)
·
(
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ︸ ︷︷ ︸
SGD rate (Lemma 5)

1Section 3 uses the standard choice of Adam for FT; we provide

SGD experiments in Appendix G.1.
2It is prohibitively expensive to directly measure the effective

rank of the Hessian of a large LM on a reasonably sized dataset.
However, many previous works have shown that the Hessian of
the loss for deep neural networks trained by SGD has remarkably
low effective rank (Papyan, 2018; 2020; Ghorbani et al., 2019; Yao
et al., 2020; Wu et al., 2020; Sagun et al., 2017). In particular,
the bulk of the spectrum concentrates around 0 with only a small
number of outliers, and the number of these outliers is an upper
bound on the effective rank. In addition, prior works (Aghajanyan
et al., 2021; Li et al., 2018) have demonstrated that LM fine-tuning
can occur in a very low dimensional subspace (< 200 parameters),
which further supports the assumption.

iterations of ZO-SGD we have E[L(θt)] ≤ L∗ + ϵ.

5. Related work
Zeroth-order optimization Classical lower bounds de-
pend on the number of parameters d (Jamieson et al., 2012;
Agarwal et al., 2012; Raginsky and Rakhlin, 2011; Duchi
et al., 2015; Shamir, 2017; Nemirovskij and Yudin, 1983;
Wang et al., 2020). (Wang et al., 2018; Balasubramanian
and Ghadimi, 2018; Cai et al., 2022) showed that leveraged
low-dimensional gradient structure to improve efficiency,
though the estimation has at least Ω(sd log d) memory cost.
Salient applications of ZO to deep learning are distributed
methods (Tang and Li, 2019; Hajinezhad and Zavlanos,
2018) and black-box adversarial example generation (Cai
et al., 2021; Liu et al., 2019a; Chen et al., 2017; Liu et al.,
2020b). Some ZO methods that optimize without estimat-
ing the gradient (Golovin et al., 2020; Mania et al., 2018;
Hinton, 2022).

Memory-efficient backpropagation Backpropagation
can be made more efficient by sparsifying gradients (Sun
et al., 2017; Wei et al., 2017), approximating Jaco-
bians (Abdel-Khalik et al., 2008; Choromanski and
Sindhwani, 2017), and subsampling the computational
graph (Oktay et al., 2020; Adelman et al., 2021), though
these methods may accrue large approximation errors
for deep networks. Gradient checkpointing (Chen et al.,
2016), FlashAttention (Dao et al., 2022), and quantization
works (Dettmers et al., 2022a;b) all present other ways to
reduce the memory overhead of handling large models.

Gradient-free adaptation of large language models
BBT and BBTv2 (Sun et al., 2022b;a) use evolutionary
algorithms to achieve gradient-free optimization; however,
due to its sensitivity to high dimensionality, BBT is limited
to only optimize a low-dimension projection of prefixes and
they focus on RoBERTa-large size models and few-shot
settings. Other works in “black-box tuning” of LMs focus
on optimizing discrete prompts without updating the model
(Chai et al., 2022; Deng et al., 2022; Diao et al., 2022; Hou
et al., 2022; Prasad et al., 2022).

6. Conclusion
We are excited to explore the applicability of MeZO to a
number of promising areas, including but not limited to:
pruning, distillation, saliency, interpretability, and dataset
selection for fine-tuning. Non-differentiable objectives are
a particularly exciting area, given recent advances in tuning
large LMs to adapt to human feedback. Conducting theo-
retical analyses for how these efficient gradient estimates
impact the performance of different applications is also of
great interest.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Fine-Tuning Language Models with Just Forward Passes

References
Hany S Abdel-Khalik, Paul D Hovland, Andrew Lyons,

Tracy E Stover, and Jean Utke. A low rank approach
to automatic differentiation. In Advances in Automatic
Differentiation, pages 55–65, 2008.

Menachem Adelman, Kfir Levy, Ido Hakimi, and Mark
Silberstein. Faster neural network training with approxi-
mate tensor operations. Advances in Neural Information
Processing Systems, 34:27877–27889, 2021.

Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar,
and Martin J. Wainwright. Information-theoretic lower
bounds on the oracle complexity of stochastic convex
optimization. IEEE Transactions on Information Theory,
58(5):3235–3249, May 2012.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer.
Intrinsic dimensionality explains the effectiveness of lan-
guage model fine-tuning. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 7319–7328, 2021.

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Web-
son, Colin Raffel, Nihal V Nayak, Abheesht Sharma, Tae-
woon Kim, M Saiful Bari, Thibault Fevry, et al. Prompt-
source: An integrated development environment and
repository for natural language prompts. arXiv preprint
arXiv:2202.01279, 2022.

Krishnakumar Balasubramanian and Saeed Ghadimi.
Zeroth-order (non)-convex stochastic optimization via
conditional gradient and gradient updates. In Advances
in Neural Information Processing Systems, volume 31,
2018.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor. The
second PASCAL recognising textual entailment chal-
lenge. In Proceedings of the Second PASCAL Challenges
Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Gi-
ampiccolo. The fifth PASCAL recognizing textual entail-
ment challenge. In TAC, 2009.

Raghu Bollapragada, Richard Byrd, and Jorge Nocedal.
Adaptive sampling strategies for stochastic optimization.
SIAM Journal on Optimization, 28(4):3312–3343, 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and
Christopher D. Manning. A large annotated corpus for
learning natural language inference. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 632–642, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In Advances in
neural information processing systems, volume 33, pages
1877–1901, 2020.

HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin.
A zeroth-order block coordinate descent algorithm for
huge-scale black-box optimization. In International Con-
ference on Machine Learning, pages 1193–1203, 2021.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang
Zhang. Zeroth-order regularized optimization (zoro):
Approximately sparse gradients and adaptive sampling.
SIAM Journal on Optimization, 32(2):687–714, 2022.

Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu,
and Haifeng Wang. Clip-tuning: Towards derivative-free
prompt learning with a mixture of rewards. arXiv preprint
arXiv:2210.12050, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without train-
ing substitute models. In Proceedings of the 10th ACM
workshop on artificial intelligence and security, pages
15–26, 2017.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016.

Krzysztof M Choromanski and Vikas Sindhwani. On black-
box backpropagation and jacobian sensing. In Advances
in Neural Information Processing Systems, volume 30,
2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
BoolQ: Exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 2924–
2936, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The
PASCAL recognising textual entailment challenge. In
the First International Conference on Machine Learning
Challenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual Entail-
ment, 2005.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Fine-Tuning Language Models with Just Forward Passes

attention with io-awareness. In Advances in Neural In-
formation Processing Systems, volume 35, pages 16344–
16359, 2022.

Marie-Catherine De Marneffe, Mandy Simons, and Judith
Tonhauser. The commitmentbank: Investigating projec-
tion in naturally occurring discourse. In Sinn und Bedeu-
tung, volume 23, pages 107–124, 2019.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric Xing,
and Zhiting Hu. RLPrompt: Optimizing discrete text
prompts with reinforcement learning. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 3369–3391, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication for
transformers at scale. In Advances in Neural Information
Processing Systems, 2022a.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettle-
moyer. 8-bit optimizers via block-wise quantization. In
International Conference on Learning Representations,
2022b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, and
Tong Zhang. Black-box prompt learning for pre-trained
language models. arXiv preprint arXiv:2201.08531,
2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan
Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min
Chan, Weize Chen, et al. Delta tuning: A comprehensive
study of parameter efficient methods for pre-trained lan-
guage models. arXiv preprint arXiv:2203.06904, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. DROP:
A reading comprehension benchmark requiring discrete
reasoning over paragraphs. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
2368–2378, 2019.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright,
and Andre Wibisono. Optimal rates for zero-order convex
optimization: The power of two function evaluations.

IEEE Transactions on Information Theory, 61(5):2788–
2806, 2015.

FairScale authors. Fairscale: A general purpose modular
pytorch library for high performance and large scale train-
ing, 2021.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-
trained language models better few-shot learners. In Pro-
ceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3816–3830, 2021.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An
investigation into neural net optimization via hessian
eigenvalue density. In International Conference on Ma-
chine Learning, pages 2232–2241, 2019.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. The third PASCAL recognizing textual en-
tailment challenge. In the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing, 2007.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee,
Xingyou Song, and Qiuyi Zhang. Gradientless descent:
High-dimensional zeroth-order optimization. In Interna-
tional Conference on Learning Representations, 2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Andreas Griewank and Andrea Walther. Evaluating deriva-
tives: principles and techniques of algorithmic differenti-
ation. SIAM, 2008.

José Grimm, Loı̄c Pottier, and Nicole Rostaing-Schmidt.
Optimal time and minimum space-time product for re-
versing a certain class of programs. PhD thesis, INRIA,
1996.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta,
Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith.
Don’t stop pretraining: Adapt language models to do-
mains and tasks. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pages 8342–8360, 2020.

Davood Hajinezhad and Michael M Zavlanos. Gradient-free
multi-agent nonconvex nonsmooth optimization. In 2018
IEEE Conference on Decision and Control (CDC), pages
4939–4944, 2018.

Geoffrey Hinton. The forward-forward algorithm:
Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Fine-Tuning Language Models with Just Forward Passes

Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang,
and Yang Zhang. Promptboosting: Black-box text
classification with ten forward passes. arXiv preprint
arXiv:2212.09257, 2022.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. In International Conference on Learning Repre-
sentations, 2022.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query
complexity of derivative-free optimization. In Advances
in Neural Information Processing Systems, volume 25,
2012.

Rie Johnson and Tong Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 26, 2013.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear
convergence of gradient and proximal-gradient methods
under the polyak-łojasiewicz condition, 2020.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. Looking beyond the
surface: A challenge set for reading comprehension over
multiple sentences. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 252–262, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones,
Tengyu Ma, and Percy Liang. Fine-tuning can distort
pretrained features and underperform out-of-distribution.
In International Conference on Learning Representations,
2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3045–3059, 2021.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
The winograd schema challenge. In Thirteenth interna-
tional conference on the principles of knowledge repre-
sentation and reasoning, 2012.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. In International Conference on Learning
Representations, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 4582–4597, 2021.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the va-
lidity of modeling SGD with stochastic differential equa-
tions (SDEs). In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. What makes good
in-context examples for GPT-3? In Proceedings of Deep
Learning Inside Out (DeeLIO 2022): The 3rd Workshop
on Knowledge Extraction and Integration for Deep Learn-
ing Architectures, pages 100–114, 2022.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. Understanding the difficulty of training
transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 5747–5763, 2020a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting,
Shiyu Chang, and Lisa Amini. Zeroth-order stochas-
tic variance reduction for nonconvex optimization. In
Advances in Neural Information Processing Systems, vol-
ume 31, 2018.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong.
signSGD via zeroth-order oracle. In International Con-
ference on Learning Representations, 2019a.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang,
Alfred O Hero III, and Pramod K Varshney. A primer
on zeroth-order optimization in signal processing and
machine learning: Principals, recent advances, and appli-
cations. IEEE Signal Processing Magazine, 37(5):43–54,
2020b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019b.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. Fantastically ordered prompts and
where to find them: Overcoming few-shot prompt order
sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 8086–8098, 2022.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Fine-Tuning Language Models with Just Forward Passes

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen,
and Sanjeev Arora. A kernel-based view of language
model fine-tuning. arXiv preprint arXiv:2210.05643,
2022.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple
random search of static linear policies is competitive for
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, volume 31, 2018.

Arkadij Semenovič Nemirovskij and David Borisovich
Yudin. Problem complexity and method efficiency in
optimization. 1983.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson,
and Ryan P Adams. Randomized automatic differentia-
tion. arXiv preprint arXiv:2007.10412, 2020.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human
feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022.

Vardan Papyan. The full spectrum of deepnet hessians at
scale: Dynamics with sgd training and sample size. arXiv
preprint arXiv:1811.07062, 2018.

Vardan Papyan. Traces of class/cross-class structure pervade
deep learning spectra. Journal of Machine Learning
Research, 21(252):1–64, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. 2019.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
WiC: the word-in-context dataset for evaluating context-
sensitive meaning representations. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers),
pages 1267–1273, 2019.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. Grips: Gradient-free, edit-based instruction
search for prompting large language models. arXiv
preprint arXiv:2203.07281, 2022.

Maxim Raginsky and Alexander Rakhlin. Information-
based complexity, feedback and dynamics in convex pro-
gramming. IEEE Transactions on Information Theory,
57(10):7036–7056, 2011.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 2383–2392, 2016.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S
Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. 2011.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin,
and Leon Bottou. Empirical analysis of the hessian
of over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017.

Timo Schick and Hinrich Schütze. Exploiting cloze-
questions for few-shot text classification and natural lan-
guage inference. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 255–269, 2021.

Ohad Shamir. An optimal algorithm for bandit and zero-
order convex optimization with two-point feedback. The
Journal of Machine Learning Research, 18(1):1703–1713,
2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositional-
ity over a sentiment treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing, 2013.

J.C. Spall. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
Transactions on Automatic Control, 37(3):332–341, 1992.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuanjing Huang, and Xipeng Qiu. BBTv2: Towards a
gradient-free future with large language models. In Pro-
ceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 3916–3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang,
and Xipeng Qiu. Black-box tuning for language-model-
as-a-service. In International Conference on Machine
Learning, pages 20841–20855, 2022b.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang.
meProp: Sparsified back propagation for accelerated deep
learning with reduced overfitting. In Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70, pages 3299–3308, 2017.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Fine-Tuning Language Models with Just Forward Passes

Yujie Tang and Na Li. Distributed zero-order algorithms
for nonconvex multi-agent optimization. In 2019 57th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 781–786, 2019.

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-
order optimization meets human feedback: Provable
learning via ranking oracles, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, volume 30, 2017.

Ellen M Voorhees and Dawn M Tice. Building a question an-
swering test collection. In the 23rd annual international
ACM SIGIR conference on Research and development in
information retrieval, 2000.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet
Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. Superglue: A stickier benchmark for general-
purpose language understanding systems. In Advances in
neural information processing systems, volume 32, 2019.

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing.
Variance reduction for stochastic gradient optimization.
In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and
Aarti Singh. Stochastic zeroth-order optimization in high
dimensions. In Proceedings of the Twenty-First Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 84, pages 1356–1365, 2018.

Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian
Ma, and Meisam Razaviyayn. Zeroth-order algorithms
for nonconvex minimax problems with improved com-
plexities. arXiv preprint arXiv:2001.07819, 2020.

Bingzhen Wei, Xu Sun, Xuancheng Ren, and Jingjing Xu.
Minimal effort back propagation for convolutional neural
networks. arXiv preprint arXiv:1709.05804, 2017.

Adina Williams, Nikita Nangia, and Samuel Bowman. A
broad-coverage challenge corpus for sentence understand-
ing through inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,

Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jer-
nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander
Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 38–45, 2020.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and
Rong Ge. Dissecting hessian: Understanding common
structure of hessian in neural networks. arXiv preprint
arXiv:2010.04261, 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. Pyhessian: Neural networks through the lens
of the hessian. In 2020 IEEE international conference on
big data (Big data), pages 581–590, 2020.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao,
Kevin Duh, and Benjamin Van Durme. Record: Bridging
the gap between human and machine commonsense read-
ing comprehension. arXiv preprint arXiv:1810.12885,
2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-
trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Fine-Tuning Language Models with Just Forward Passes

Algorithm 1: MeZO

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, batch size B learning rate schedule
{ηt}

for t = 1, ..., T do
Sample batch B ⊂ D and random seed s
θ ← PerturbParameters(θ, ϵ, s)
ℓ+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ϵ, s)
ℓ− ← L(θ;B)
θ ← PerturbParameters(θ, ϵ, s) ▷ Reset parameters before descent

projected_grad← (ℓ+ − ℓ−)/(2ϵ)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi − ηt ∗ projected_grad ∗ z

end
end

Subroutine PerturbParameters(θ, ϵ, s)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + ϵz ▷ Modify parameters in place

end
return θ

A. Additional Results
A.1. Medium-sized masked language models

We conduct experiments with RoBERTa-large on sentiment classification, natural language inference, and topic classification
tasks. We follow (Gao et al., 2021; Malladi et al., 2022) to study the few-shot and many-shot settings, sampling k examples
per class for k = 16 and k = 512 (details in Appendix F). We summarize the results from Figure 4 and Table 16 below.

MeZO works significantly better than zero-shot, linear probing, and other memory-equivalent methods. On all six
diverse tasks, MeZO can optimize the pre-trained model and consistently perform better than zero-shot and linear probing.
We also show for several tasks that MeZO can outperform another ZO algorithm, BBTv2 (Sun et al., 2022a), by up to 11%
absolute (Appendix G.4).3

With enough data, MeZO achieves comparable performance (up to 5% gap) to FT. MeZO achieves close-to-fine-
tuning performance on k = 16, with some tasks only having 2% gaps. When using k = 512 data, the gap between MeZO
and FT further reduced to within 5% across all tasks.

MeZO works well on both full-parameter tuning and PEFT. Full-parameter tuning (MeZO) and PEFT (MeZO with
LoRA and prefix-tuning) achieve comparable performance, while MeZO (prefix) sometimes outperforms MeZO. We also
show in Appendix G.3 that the three variants converge at similar rates, agreeing with our theory in Section 4, which shows
that MeZO converges at a rate independent of the number of parameters being optimized.

We show additional results with more FT (FT with SGD) and MeZO variants in Appendix G.1. We see that (1) ZO-
Adam sometimes outperforms ZO-SGD but is not consistent across tasks; (2) LP and then MeZO, as suggested for
fine-tuning (Kumar et al., 2022), can sometimes improve the performance.

3BBTv2 is sensitive to #parameters and can only train down-projected prefixes instead of the full model.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Fine-Tuning Language Models with Just Forward Passes

SST-2 SST-5 SNLI MNLI RTE TREC
30
40
50
60
70
80
90

100
Ac

cu
ra

cy
 (%

)
k=16 RoBERTa-large

SST-2 SST-5 SNLI MNLI RTE TREC
30
40
50
60
70
80
90

100 k=512 RoBERTa-large

Zero-shot
MeZO (prefix)

LP
FT

MeZO
FT (LoRA)

MeZO (LoRA)
FT (prefix)

Figure 4: Experiments on RoBERTa-large. We report zero-shot, linear probing (LP), and MeZO and fine-tuning (FT) with
full parameter, LoRA, and prefix-tuning. MeZO outperforms zero-shot and LP and approaches FT (within 5% for k = 512)
with much less memory. Detailed numbers in Table 16.

Task SST-2 RTE BoolQ WSC WIC SQuAD

30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO/MeZO (prefix) 90.6 72.6 73.5 63.5 59.1 85.2

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO/MeZO (prefix) 93.6 66.4 73.7 63.5 58.9 85.0

Table 1: Experiments on OPT-30B and OPT-66B (with 1,000 examples). We report the best of MeZO and MeZO (prefix).
See Appendix G.2 for more results. We see that on most tasks MeZO effectively optimizes up to 66B models and outperforms
zero-shot and ICL.

A.2. Training with non-differentiable objectives

We demonstrate the efficacy of MeZO for optimizing non-differentiable objectives through initial experiments. Accuracy and
F1 are used as the respective objectives (details in Appendix F.6). Table 3 reveals that MeZO with accuracy/F1 successfully
optimizes LMs with superior performance to zero-shot. Although minimizing cross entropy results in stronger performance,
these preliminary findings highlight the promising potential of applying MeZO to optimize non-differentiable objectives
without clear differentiable surrogates, such as human preferences (Ouyang et al., 2022).

B. Theory
We follow classical analyses of SGD and replace the mini-batch gradient estimate with SPSA. Consider the minibatch
SGD update θt+1 ← θt − η∇L(θ;Bt) where Bt is a minibatch drawn uniformly from DB . Crucially, the SGD minibatch
gradient estimate is unbiased.

Definition 3 (Unbiased Gradient Estimate). Any minibatch gradient estimate g(θ,B) is said to be unbiased if E[g(θ,B)] =
∇L(θ).

B.1. Per-step analysis

The classical descent lemma uses a Taylor expansion to study how SGD reduces the loss at each optimization step. It
highlights that when the gradient covariance is large, the maximum possible decrease in loss at each optimization step is
small, thereby resulting in slower optimization.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Task type ———————— classification ———————— – multiple choice – — generation —

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6
LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1

MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9
MeZO (LoRA) 89.6 67.9 66.1 73.8 64.4 59.7 61.5 87.0 81.4 83.8 31.4
MeZO (prefix) 90.7 70.8 69.6 73.1 57.7 59.9 63.7 84.0 81.2 84.2 28.9

FT (12x memory) 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 2: Experiments on OPT-13B (with 1,000 examples). ICL: in-context learning; LP: linear probing; FT: full fine-tuning
with Adam. MeZO outperforms zero-shot, ICL, and LP across the board, and achieves comparable (within 1%) or better
performance than FT on 7 out of 11 tasks.

Model RoBERTa-large (350M) OPT-13B
Task SST-2 SST-5 SNLI TREC SQuAD

Zero-shot 79.0 35.5 50.2 32.0 46.2
Cross entropy (FT) 93.9 55.9 88.7 97.3 84.2
Cross entropy (MeZO) 93.3 53.2 83.0 94.3 84.7
Accuracy/F1 (MeZO) 92.7 48.9 82.7 68.6 78.5

Table 3: MeZO with non-differentiable objectives. For classification (k = 512), we use MeZO with full-parameter and
optimize accuracy; for SQuAD (1,000 examples), we use MeZO (prefix) and F1.

Lemma 2 (Descent Lemma). Let L(θ) be ℓ-smooth.4 For any unbiased gradient estimate g(θ,B),

E[L(θt+1) | θt]− L(θt) ≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · E[∥g(θ,Bt)∥2]. (1)

The descent lemma highlights the importance of the gradient norm, which we derive for MeZO below.

Lemma 3. Let B be a random minibatch of size B. Then, the gradient norm of MeZO is

Ex

[∥∥∥∇̂L(θ;B)∥∥∥2] =
d+ n− 1

n
E
[
∥∇L(θ;B)∥2

]
.

where n is the number of z sampled in n-SPSA (Definition 1) and d is the number of parameters.

Thus, in the usual case where n≪ d, MeZO has a much larger gradient norm than SGD.5 The descent lemma also shows
that to guarantee loss decrease, one needs to choose the learning rate as

η ≤ 2 ∥∇L(θt)∥2

ℓ · E[∥g(θ,B)∥2]
Lemma 3
=======⇒ ηZO =

n

d+ n− 1
ηSGD (2)

where ηZO and ηSGD are the maximum permissible learning rates for MeZO and SGD respectively. Thus we see that without
any further assumptions, MeZO can slow optimization by decreasing the largest permissible learning rate by a factor of d.
Moreover, MeZO reduces the loss decrease that can be obtained at each step and, as a consequence, slows convergence by a
factor of d as well.

Surprisingly, our experiments show that MeZO can quickly optimize pre-trained models with billions of parameters, and
reducing the number of tuned parameters via PEFT techniques does not substantially accelerate optimization (Appendix G.3).

4This is satisfied for the standard cross-entropy objective.
5All of our experiments use n = 1.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Fine-Tuning Language Models with Just Forward Passes

We attribute these phenomena to the Hessian of the loss exhibiting small local effective rank. It is prohibitively expensive to
directly measure the effective rank of the Hessian of a large LM on a reasonably sized dataset. However, many previous
works have shown that the Hessian of the loss for deep neural networks trained by SGD has remarkably low effective rank
(Papyan, 2018; 2020; Ghorbani et al., 2019; Yao et al., 2020; Wu et al., 2020; Sagun et al., 2017). In particular, the bulk
of the spectrum concentrates around 0 with only a small number of outliers, and the number of these outliers is an upper
bound on the effective rank. In addition, prior works (Aghajanyan et al., 2021; Li et al., 2018) have demonstrated that LM
fine-tuning can occur in a very low dimensional subspace (< 200 parameters), which further supports the below assumption.
We formalize the assumption on the effective rank below. In particular, we require an upper bound on the Hessian in a
neighborhood around the current iterate to have effective rank at most r.

Assumption 2 (Local r-effective rank, reproduction of Assumption 1). Let G(θt) = max(x,y)∈D ∥∇L(θt; {(x,y)})∥.
There exists a matrix H(θt) such that:

1. For all θ such that ∥θ − θt∥ ≤ ηdG(θt), we have∇2L(θ) ⪯H(θt).

2. The effective rank of H(θt), i.e tr(H(θt))/ ∥H(θt)∥op, is at most r.

Under this assumption, we show that the convergence rate of ZO-SGD does not depend on the number of parameters.
Instead, the slowdown factor only depends on the effective rank of the Hessian.

Theorem 2 (Dimension-Free Rate, reproduction of Theorem 1). Assume the loss exhibits local r-effective rank (Assump-
tion 1). If θt+1 = θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate with a minibatch of size B,
then there exists a γ = Θ(r/n) such that the expected loss decrease can be bounded as

E[L(θt+1) | θt]− L(θt) ≤ −ηZO ∥∇L(θt)∥2 +
1

2
η2ZOℓ · γ · E[∥∇L(θ;B)∥

2
] (3)

By applying Equation (2), we can directly compare to the SGD descent lemma.

Corollary 1. Choosing the learning rate ηZO = γ−1 · ηSGD, ZO-SGD obtains a loss decrease of

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ∥∇L(θt)∥2 +

1

2
η2SGDℓ · E[∥∇L(θ;B)∥

2
]

]
. (4)

Here we see that comparing to SGD, the slowdown factor of ZO-SGD scales with the local effective rank r, which we argue
is much smaller than the number of parameters d. The above analysis focuses on how much ZO-SGD and SGD decrease the
loss at each step. Below, we show that under stronger assumptions about the loss landscape, we can obtain rates for how
quickly the ZO-SGD algorithm converges to an optimal value.

B.2. Global convergence analysis

We show that the global convergence rate also slows by a factor proportional to the local effective rank under stronger
assumptions about the loss landscape. We assume that the landscape obeys the classical PL inequality: the gradient norm
grows quadratically with the suboptimality of the iterate.

Definition 4 (PL Inequality). Let L∗ = minθ L(θ). The loss L is µ-PL if, for all θ, 1
2 ∥∇L(θ)∥

2 ≥ µ(L(θ)− L∗).

The PL inequality is not as strong as assuming that optimization exhibits kernel-like dynamics, but it ensures that the
landscape is amenable to analysis (Karimi et al., 2020). In addition to the PL inequality, we assume the trace of the gradient
covariance is bounded, so noise does not disrupt the trajectory too drastically.

Definition 5 (Gradient Covariance). The SGD gradient estimate on a minibatch of size B has covariance Σ(θ) =
B(E

[
∇L(θ;B)∇L(θ;B)⊤

]
−∇L(θ)∇L(θ)⊤).

As we show in Appendix H.1, this assumption holds for common loss functions such as square loss or binary cross entropy
for several settings (e.g., kernel behavior (Malladi et al., 2022)). With these two assumptions, we show that ZO-SGD has a
slowdown proportional to the effective rank r, not the parameter dimension.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Fine-Tuning Language Models with Just Forward Passes

Lemma 4 (Global Convergence of ZO-SGD). Let L(θ) be µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ)− L∗)
for all θ. Then after

t = O

(r

n
+ 1

)
·
(
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ︸ ︷︷ ︸
SGD rate (Lemma 5)

iterations of ZO-SGD we have E[L(θt)] ≤ L∗ + ϵ.

C. Algorithmic Ablations
We perform a number of ablations to select the best algorithm. As is standard in ZO literature, we consider the main
computational cost to be the number of forward passes. In our case, the number of forward passes can be affected by the
number of gradient steps taken, any usage of gradient accumulation, and using more noise samples to reduce the variance of
the gradient estimate.

We observed that the performance of MeZO improves monotonically with the number of steps, and there does not appear to
be any overfitting. Hence, when performing algorithmic ablations, we can focus on the efficiency of different algorithms
without considering implicit bias. This is also reflected in our theoretical analysis. To ease the computational load, we fix
the number of forward passes to 10, 000 and compare many different algorithms for RoBERTa-large on a smaller set of
tasks that span sentiment analysis, entailment, and topic classification: SST-2, SNLI, and TREC. We emphasize that 10, 000
is a small budget and is only used as a setting to compare these ZO algorithms to each other. We find that using a linearly
decreasing learning rate schedule during training, as was done for fine-tuning with backpropagation in (Liu et al., 2019b),
does not help or hurt MeZO. Similarly, using a learning rate warmup leads to identical results on these three tasks. For
simplicity, we use a constant learning rate schedule with no warmup for all of the below experiments. We perform few-shot
experiments with k = 16 and average the results across 5 seeds.

Experiment Hyperparameters Values

MeZO Batch size {16, 64} ×
Learning rate {1e−5, 1e−6, 1e−7} ×

ϵ {1e−3, 1e−5} ×
Weight Decay {0, 0.1}

Table 4: The hyperparameter grid used in our ablation experiments. For simplicity, we use a constant learning rate schedule.

C.1. Prompting

We study if adding a prompt is crucial to the ability of MeZO to optimize the network. We use prompts from Gao et al. (2021).
Malladi et al. (2022) claimed the prompt makes the optimization trajectory well-behaved, though we note that the current
paper considers RoBERTa-large and large autoregressive models while the previous work only studied RoBERTa-base.
We note the similarity between kernel behavior and our theoretical setting in Section 4. MeZO succeeds on tasks that are
reported to not exhibit kernel behavior in Malladi et al. (2022), so we investigate whether or not the prompt is necessary.

SST-2 SNLI TREC

Prompt 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
No Prompt 51.9 (2.9) 34.8 (2.1) 19.5 (9.0)

Table 5: Experiments using MeZO to fine-tune models with and without a prompt.

Both experiments followed the grid in Table 4, but we also expanded the grid to include a learning rate of 1e− 4 for the no
prompt case. As a result of these experiments, we fix the setting to prompt-based fine-tuning for all of the below experiments.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Fine-Tuning Language Models with Just Forward Passes

C.2. Sample Schedules

One can sample nt noise vectors at the tth step and use nt-SPSA to compute the gradient estimate. Similar ideas were
proposed in Bollapragada et al. (2018); Cai et al. (2022). We study the effect of linearly increasing and constant sampling
schedules in the ablation setting. The intuition for the linearly increasing schedule is that the optimizer may need a higher
fidelity gradient as it approaches the minimum. Increasing the number of zs can speed up optimization by reducing the
gradient variance, but doing so also increases the number of forward passes required for each optimization step, so there
is a trade-off to study. We note that increasing the number of zs should be accompanied by a proportional scaling of the
learning rate, analogous to the linear scaling rule proposed in (Goyal et al., 2017) (theoretical justification can follow the
SDE technique (Li et al., 2021)). Table 6 shows no consistent benefit in one schedule over the other, and it demonstrates that
increasing the n in n-SPSA while fixing the number of forward passes allowed results in only marginal gains at best.

n Schedule SST-2 SNLI TREC

n = 1 Constant 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
n = 4 Constant 89.5 (1.1) 68.6 (3.2) 62.3 (5.6)
n = 4 Linear 89.6 (1.4) 65.3 (6.4) 66.1 (5.5)
n = 16 Constant 90.4 (0.7) 67.0 (3.4) 62.8 (6.3)
n = 16 Linear 88.9 (1.2) 62.8 (5.9) 64.2 (5.3)

Table 6: Experiments using MeZO with different schedules for n. We scale the learning rate proportionally to the number of
z’s sampled.

D. MeZO Variants
There is a rich history of transferring ideas from first order optimization to enhance ZO algorithms. Below, we highlight
several variants of MeZO that did not achieve as high performance as the algorithm presented in Algorithm 1.

D.1. Memory-efficient n-SPSA

We highlight how MeZO can perform n-SPSA (Definition 1) efficiently for n > 1 in Algorithm 2. In particular, if sampling
n z vectors and averaging the projected gradients, we require storing 2n additional scalars: the random seeds and the
projected gradients. The same caveat about perturbing individual weights versus entire weight matrices still applies here
(see Section 2).

D.2. Augmenting MeZO with Gradient History

The n-SPSA algorithm merely provides a gradient estimate that can subsequently be used in place of the gradient in any
gradient-based optimizer. Many popular optimizers, such as Adam and SGD with momentum, require storing some historical
information about gradients (e.g., a moving average). This requirement causes such algorithms to require 2× or 3× the
memory that is needed for SGD.

However, one advantage of MeZO is that the gradient history can be recomputed at each step without requiring much
additional memory. In reference to Algorithm 1, note that the gradient only needs projected_grad and the random
seed s used to compute the perturbation z. projected_grad can be recomputed from the two perturbed losses ℓ1 and
ℓ2, so we need to only store 3 scalars per step to reproduce the gradient history (i.e., up to 3T scalars during training). This
is a substantial reduction in added memory overhead that is usually needed for using Adam or momentum instead of vanilla
SGD.

Table 16 illustrates that MeZO-Adam can sometimes improve the performance of MeZO, though each gradient step requires
additional computation (but no additional forward passes). We leave it to future work to investigate when MeZO-Adam may
be more useful than MeZO.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Fine-Tuning Language Models with Just Forward Passes

Algorithm 2: MeZO with n > 1

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, batch size B learning rate schedule
{ηt}, n for n-SPSA estimate (Definition 1)

for t = 1, ..., T do
seeds, projected_grads← [] ▷ Will each contain n scalars
for j = 1, ..., n do

Sample batch B ⊂ DB and random seed s
θ ← PerturbParameters(θ, ϵ, s)
ℓ+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ϵ, s)
ℓ− ← L(θ;B)
θ ← PerturbParameters(θ, ϵ, s) ▷ Reset parameters
projected_grad← (ℓ+ − ℓ−)/(2ϵ)
projected_grads[j]← projected_grad
seeds[j]← s

end

for j = 1, ..., n do
Reset random number generator with seed seeds[j]
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi − (ηt/n) ∗ projected_grads[j] ∗ z ▷ Avg grad for z1, ...,zn

end
end

end

Subroutine PerturbParameters(θ, ϵ, s)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + ϵz ▷ Modify parameters in place

end
return θ

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Fine-Tuning Language Models with Just Forward Passes

Experiment Hyperparameters Values

MeZO-Adam Batch size 64
Learning rate {1e−6, 1e−5, 1e−4, 5e−4, 1e−3}

ϵ 1e−3
Weight Decay 0

Table 7: The hyperparameter grid used for MeZO-Adam. For simplicity, we use a constant learning rate schedule.

D.3. Modifying the Variance of MeZO

Our theory in Section 4 sketches the well-known fact that the variance of the stochastic gradient estimate can impact
the rate of optimization. ZO methods can be combined with standard variance reduction techniques to possibly improve
optimization speed. For example, Liu et al. (2018) designed a variance reduced ZO algorithm, analogous to SVRG (Johnson
and Zhang, 2013), to improve the speed of convergence. Below, we show that several variance reduction methods (e.g.,
using the gradient norm) can be implemented in a memory-efficient manner. However, when controlling for the total budget
of forward passes (i.e., function queries), these methods are not as performant as MeZO. We nevertheless present them to
demonstrate the ease with which MeZO can be adapted, and we suggest these methods may be useful for optimizing more
complex objectives.

First, we define a general SPSA estimate that has the same expectation (i.e., the true gradient) but has a scaled variance.

Definition 6 (Variance-Modified SPSA). Given a matrix D = diag(d), the variance modified SPSA computes

∇̃L(θ;B) = L(θ + ϵ(d−1 ⊙ z);B)− L(θ − ϵ(d−1 ⊙ z);B)
2ϵ

(d⊙ z)

where d ∈ Rd has nonzero entries and d−1 denotes the coordinatewise reciprocal.

The above SPSA variant is an unbiased estimator of the gradient, because E[∇̃L(θ;B)] = E[D−1zz⊤D∇L(θ;B)] =
E[∇L(θ;B)]. We will draw inspiration from classical methods (i.e., “control variates”) and choose d to be a block vector
with gradient norms or parameter norms (Wang et al., 2013). To select the parameter groups, we split the model by layer,
keeping the embedding and the head separate (i.e., RoBERTa-large has 24 + 2 = 26 parameter groups). It is straightforward
to measure the parameter norms without consuming additional memory. We can measure the gradient norms without
performing backpropagation, as shown below.

Proposition 1 (ZO Estimate of Gradient Norm of ℓth Layer). Define zℓ to have z ∼ N (0, 1) in each coordinate correspond-
ing to parameters in the ℓth layer and 0 everywhere else. Then, we can estimate the norm of the gradient of the loss w.r.t. the
ℓth layer∇θℓ

as

∥∇θℓ
L(θ;B)∥2 ≈

∣∣∣∣L(θ + ϵzℓ;B)− L(θ − ϵzℓ;B)
2ϵ

∣∣∣∣
As is true for SPSA, increasing the number of zℓ’s sampled for each value of ℓ and averaging the result reduces the variance
of the estimate. The rationale for this estimate is that for any vector v, Ez[(⟨v, z⟩)2] = ∥v∥22 for Gaussian z. It is clear that
this estimate can be computed in a memory efficient way, although it requires 2L forward passes to compute gradient norms
for L parameter groups.

We show the experimental results for modifying the variance below. We follow the ablation setting and use a fixed budget
of 10, 000 steps (Appendix C). Generally, using the gradient norm to reduce the variance substantially hurts performance
(Table 8). If we “cheat” and allow one backpropagation through the network to estimate the gradient norm, then we see that
reducing the variance using the gradient norm does not substantially hurt or help performance. Modifying the variance using
the parameter norm, analogous to layerwise adaptive rate methods, does not substantially impact the performance of MeZO
(Table 9).

Our observation is that decreasing the variance by setting d as the gradient norm does not improve optimization. This
empirical result agrees with the exposition in Section 4 that the straightforward variance analysis (which yields a dependence

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Fine-Tuning Language Models with Just Forward Passes

on the number of parameters d) is not the best lens to study the rate of optimization when fine-tuning with MeZO. Our
effective rank view in Theorem 1 and Lemma 4 is likely a better characterization of fine-tuning dynamics. We leave it to
future work to explore if these methods can be useful for other more complex objectives.

Recompute d ZO estimate of d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
89.7 (0.8) 65.2 (5.2) 64.3 (6.4)
87.0 (2.5) 49.6 (9.2) 32.6 (7.7)
79.0 (10.3) 48.9 (2.2) 38.7 (7.5)

Table 8: Experiments modifying the variance of MeZO using d as the gradient norm (see Definition 6). We sometimes
recompute d at the start of each epoch or use Proposition 1 to estimate d without requiring backpropagation.

Recompute d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
89.2 (2.1) 65.4 (4.2) 64.8 (5.6)
88.2 (4.7) 65.2 (4.0) 64.7 (5.5)

Table 9: Experiments modifying the variance of MeZO using d as the parameter norm (see Definition 6). We sometimes
recompute d at the start of each epoch.

D.4. Modifying the Expectation of MeZO

The above experiments show that modifying the variance of MeZO cannot consistently accelerate its convergence. However,
a simple modification of Definition 6 allows us to change the expectation of MeZO as well. This can be used to efficiently
estimate coordinate-wise normalized gradient-based optimizer updates (e.g., Adam).

Definition 7 (Expectation-Modified SPSA). Given a matrix D = diag(d), the variance modified SPSA computes

∇̃L(θ;B) = L(θ + ϵ(d−1 ⊙ z);B)− L(θ − ϵ(d−1 ⊙ z);B)
2ϵ

z

where d ∈ Rd.

Now, we see that ∇̃L(θ;B) = E[D−1zz⊤∇L(θ;B)] so the SPSA estimate is no longer an unbiased estimator for ∇L(θ).
If we choose d to be the gradient norm, for example, then SPSA can estimate the normalized gradient. Concurrent work
in Tang et al. (2023) gives another ZO estimate of the normalized gradient while assuming access to only rankings of inputs
(instead of the noisy function evaluations available in our setting). We find that estimating the normalized gradient does not
perform as well as directly estimating the gradient (Table 10). Regardless, we present this algorithm as a way to highlight
that any coordinate-wise operation to the gradient can be applied in a memory-efficient manner.

Method SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
Estimate of normalized gradient (Definition 7) 88.0 (1.2) 60.0 (2.4) 44.0 (14.0)

Table 10: Experiments modifying the expectation of MeZO using d as the gradient norm (see Definition 7). We use the ZO
estimate of the gradient norm (Proposition 1).

E. Memory Analysis
The compute-memory tradeoff of backpropagation is complex to analyze. Griewank and Walther (2008) provides a rigorous
theoretical treatment of the problem. We empirically measure the memory consumption of different methods for commonly

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Fine-Tuning Language Models with Just Forward Passes

used large language models, but here we hope to provide a more rigorous comparison of different gradient estimation
algorithms, independent of the software used to implement them. Below, we summarize some key points that may help
readers to understand how the MeZO compute-memory tradeoff compares to backpropagation.

Given a network, the first step to perform backpropagation is to decompose the model into easily differentiable blocks. We
note that this decomposition is not unique. For each block, one can choose to cache the resulting output during the forward
pass (thereby consuming memory) or instead recompute the output when it is needed (thereby consuming compute). The
below proposition, adapted from Rule 21 in Griewank and Walther (2008), captures this tradeoff.

Proposition 2 (Time-Memory Tradeoff for Backpropagation, Griewank and Walther (2008)). Consider a network containing
N bits. For any time-memory tradeoff hyperparameter c = O(1), there exists a backpropagation algorithm that runs in time
O(cN) and consumes memory proportional to O(N1/c).

Grimm et al. (1996) also gave sharp bounds for the memory-time product. Note that the popular gradient checkpointing (Chen
et al., 2016) method allows one to tune c with limited precision (i.e., one cannot always further split a differentiable block
and observe savings). Experiments in Chen et al. (2016) choose c = 2 to achieve O(

√
N) memory while consuming

O(2N) computation. In the extreme case, gradient checkpointing allows one to use O(N logN) computation and O(logN)
memory.

MeZO always consumes 2N compute and O(1) memory, so it is more compute-efficient at at the same memory cost as
gradient checkpointing. Our exposition in Section 2 discusses that we can perturb groups of parameters together to save
time while consuming additional memory. However, we do not consider that variant here because it is somewhere in the
middle of the compute-memory pareto curve, where we cannot reason about what backpropagation will do. In particular,
MeZO can split groups differently than backpropagation can, since MeZO does not require that each parameter group is
easily differentiable, so it is hard to compare the two algorithms along the entire pareto curve.

We also compare backpropagation for the c = 1 case (i.e., storing everything during the forward pass). When storing
everything, backpropagation consumes O(N) time and O(N) memory. Hence, SPSA consumes slightly more time and
substantially less memory than backpropagation at this end of the tradeoff.

Unlike gradient checkpointing, MeZO computes only an approximation of the gradient. This approximation is only useful
for fine-tuning with a prompt, making it less broadly useful than gradient checkpointing. There are other methods that
approximate the gradient with less memory consumption than gradient checkpointing (see the Related Work section), though
it is unclear how the memory consumption of those algorithms compare to MeZO.

F. Experiment setup
F.1. Datasets

For RoBERTa-large, we consider classification datasets: SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013),
TREC (Voorhees and Tice, 2000), MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015), and RTE (Dagan et al., 2005;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009). We follow Malladi et al. (2022) in limiting the
test set to 1, 000 examples for fast iteration. For training and validation, we have two settings: k = 16 and k = 512, which
mean that we have 16 or 512 examples per class for both training and validation.

For OPT experiments, we consider the SuperGLUE dataset collection (Wang et al., 2019), including: BoolQ (Clark et al.,
2019), CB (De Marneffe et al., 2019), COPA (Roemmele et al., 2011), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang
et al., 2018), RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), WiC (Pilehvar
and Camacho-Collados, 2019), and WSC (Levesque et al., 2012). We also include SST-2 (Socher et al., 2013) and two
question answering (QA) datasets, SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019). We randomly sample
1,000 examples for training, 500 examples for validation, and 1,000 examples for testing.

F.2. Prompts

Table 11 shows the set of downstream tasks and prompts with which we fine-tune RoBERTa-large, which are adapted from
(Gao et al., 2021).

Table 12 demonstrates the prompts we use for OPT. Note that in OPT experiments we have three types of tasks: classification,
multiple-choice, and question answering. Prompts are adopted from GPT-3 (Brown et al., 2020) and PromptSource with

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Fine-Tuning Language Models with Just Forward Passes

Dataset C Type Prompt Label words

SST-2 2 sentiment cls. <S1> It was [MASK] . {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK] . {great, good, okay, bad, terrible}
TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
MNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK] , <S2> {Yes, No}

Table 11: The prompts of the datasets we used in our RoBERTa-large experiments (Table 16 and Figure 4). The prompts are
adapted from (Gao et al., 2021) and include a template and a set of label words that can fill in the [MASK]token. <S1> and
<S2> refer to the first and the second (if any) input sentence.

minor changes (Bach et al., 2022).

F.3. Hyperparameters

We use the hyperparameters in Table 13 for MeZO experiments on RoBERTa-large (Table 16 and Figure 4). Experiments in
Appendix C informed the grid; in particular, the choice of ϵ seemed to not significantly impact performance, and using a
larger batch size consistently yielded faster optimization. We use the hyperparameters in Table 14 for MeZO experiments on
OPT.

Regarding learning rate scheduling and early stopping, we use linear learning scheduling for all fine-tuning with backpropa-
gation experiments and constant learning rate for all MeZO experiments. For RoBERTa experiments, we evaluate the model
on validation sets every 1/10 of total training steps and save the best validation checkpoint. All FT experiments use 1K steps
and MeZO experiments use 100K steps. For OPT experiments, we evaluate the model on validation sets every 1/5 of the
total training steps and save the best validation checkpoint. All FT experiments train for 5 epochs and all MeZO experiments
use 20K steps. Note that FT experiments mostly converge within 5 epochs but we observe that MeZO performance can still
improve with more training steps.

F.4. Modeling and implementation

For RoBERTa experiments, we follow (Gao et al., 2021) for the prompt-based fine-tuning paradigm for masked language
models. Please refer to the original paper for more details.

In OPT experiments, for classification tasks, we train the model similar to (Gao et al., 2021), i.e., we take the logits
corresponding to the label words and apply cross entropy loss on them; for multiple choice tasks and generation tasks (QA),
we only keep the correct candidate and use teacher forcing to train on the correct examples. We only keep the loss on tokens
in the candidate part and exclude the prompt part.

For OPT inference on classification and multiple-choice tasks, we use the model to get the average log-likelihood (by tokens)
of all the candidates/label words, and predict the one with the highest average log-likelihood. For generation tasks, we use
greedy decoding to generate the answer.

For in-context learning, we use 32 examples in the context. We also try filling in as many examples as possible in the context
but does not improve performance and sometimes lead to unstable results. Thus we keep the 32-example results.

For linear probing of classification tasks, we take the output feature and use scipy package to train a linear classifier.
For multiple-choice tasks and generation tasks, we found that this leads to poor results since the output space is the whole
vocabulary; instead, we do head-tuning, where the whole model is fixed except for the LM projection head. We use a batch
size of 8 and a learning rate of {1e−4 5e−4}, and train the head for 5 epochs.

For experiments on 30B and 66B OPT models, we largely follow the OPT hyperparameters except that we do not evaluate
the intermediate validation performance and directly use the last checkpoint for evaluation, due to the high storage cost of
intermediate checkpoints of large models.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Fine-Tuning Language Models with Just Forward Passes

Dataset Type Prompt

SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 12: The prompts of the datasets we used in our OPT experiments. There are three types of tasks: classification
(cls.), multiple-choice (mch.), and question answering (QA). Prompts are adopted from GPT-3 (Brown et al., 2020) and
PromptSource (Bach et al., 2022) with minor changes. <text> represents input from the dataset and Yes represents label
words. For inference on multiple choice tasks, we put in different candidates in the prompt and calculate the average
log-likelihood for each candidate, and choose the candidate with the highest score. For inference on QA tasks, we use
greedy decoding to generate the answer.

F.5. Parameter-efficient fine-tuning

Fine-tuning and storing a copy of the large language model for each downstream task is expensive. Parameter-efficient
fine-tuning (PEFT) techniques alleviate this problem: instead of tuning all model parameters, PEFT only tunes a small
number of additional parameters (usually less than 1%) and can often achieve comparable or better performance (Li and
Liang, 2021; Lester et al., 2021; Ding et al., 2022). The ZO optimizer is compatible with PEFT methods, since ZO can
operate on any subset of the model parameters. We are interested in the following two common PEFT methods, designed for
transformers (Vaswani et al., 2017).

LoRA (Hu et al., 2022) adds a tunable low-rank delta to a linear layer during fine-tuning. Suppose a linear layer performed
Wx+ b during pre-training with W ∈ Rm×n. When fine-tuning, LoRA introduces two smaller matrices A ∈ Rm×r and
B ∈ Rr×n such that r ≪ min(m,n). The linear layer is then computed as(

W +
α

r
AB

)
x+ b (5)

where r and α are hyperparameters. A and B are trained on the downstream task while W is frozen at its pre-trained value.
In transformers, this modification to the linear layer is applied to the query and value operations of each attention layer.
Empirically, r can be very small, so the number of trainable parameters during fine-tuning is small. We choose r = 8 and
α = 16.

Prefix-tuning (Li and Liang, 2021) adds a prefix of m tunable representations at each layer and freezes the rest of the model.
The representations are added as new keys and values and treated as additional context during the attention operation. We

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Fine-Tuning Language Models with Just Forward Passes

Experiment Hyperparameters Values

MeZO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

ϵ 1e−3
Weight Decay 0

MeZO (prefix) Batch size 64
Learning rate {1e−2, 5e−3, 1e−3}

ϵ 1e−1
Weight Decay 0

prefix tokens 5

MeZO (LoRA) Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

ϵ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

FT with Adam Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−5, 3e−5, 5e−5}
Weight Decay 0

FT with SGD Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}
Weight Decay 0

FT (prefix) Batch size {8, 16, 32}
Learning Rates {1e−2, 3e−2, 5e−2}
Weight Decay 0

prefix tokens 5

FT (LoRA) Batch size {4, 8, 16}
Learning Rates {1e−4, 3e−4, 5e−4}

(r, α) (8, 16)

Table 13: The hyperparameter grids used for RoBERTa-large experiments. MeZO uses a constant learning rate schedule, and
FT uses linear scheduling. All FT experiments use 1K steps and MeZO experiments use 100K steps. We check validation
performance every 1/10 total training steps.

initialize these tunable representations by randomly sampling tokens from the vocabulary and passing them through the
LLM to get their keys and values at different attention layers. We found this crucial to make prefix tuning stable with MeZO,
and this trick additionally boosts the performance of prefix tuning with backpropagation, as shown in Table 15. We also
tried the reparameterization trick in (Li and Liang, 2021), which does not help MeZO training. In our experiments, we find
m = 5 to be sufficient to achieve good performance on most tasks.

We also show that MeZO is compatible with parameter-efficient fine-tuning methods, such as prefix tuning and LoRA.
Surprisingly, the performance of MeZO does not improve substantially when tuning much fewer parameters, as one
might expect from classical analyses (see Section 4). Accordingly, our theoretical analysis in Section 4 suggests that the
convergence rate of ZO-SGD does not depend on the parameter dimension during fine-tuning.

F.6. Training with non-differentiable objectives

The experiments maximizing the accuracy of a RoBERTa-large model were all conducted using the same grid as MeZO in
Table 13.

For OPT experiments on SQuAD with F1 as objective, we use a batch size of 16. For MeZO, we use a learning rate of
{1e−6, 5e−6, 1e−5} and ϵ = 1e−3. For MeZO (prefix), we use a learning rate of {1e−1, 5e−2, 1e−2} and ϵ = 1e−1.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Fine-Tuning Language Models with Just Forward Passes

Experiment Hyperparameters Values

MeZO Batch size 16
Learning rate {1e−6, 1e−7}

ϵ 1e−3

MeZO (prefix) Batch size 16
Learning rate {1e−2, 1e−3}

ϵ 1e−1
prefix tokens 5

MeZO (LoRA) Batch size 16
Learning rate {1e−4, 5e−5}

ϵ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 14: The hyperparameter grids used for OPT experiments. All weight decay is set to 0. FT uses 5 epochs and linear
scheduled learning rates and MeZO uses 20K steps and constant learning rates. We check validation performance and save
the best checkpoint every 1/5 total training steps.

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type —— sentiment —— —— natural language inference —— — topic —

FT (prefix, random init) 90.7 (1.7) 47.2 (2.0) 70.7 (2.8) 62.6 (3.3) 63.5 (4.4) 83.4 (4.7)
FT (prefix, real act init) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Table 15: Prefix-tuning ablations. We compare randomly-initialized prefixes and real word activation prefixes. Using real
word activations significantly outperforms random initialization.

F.7. Memory profiling

In memory profiling, we use standard implementation with Huggingface’s transformers (Wolf et al., 2020) package.
We did not turn on any advance memory-saving options, e.g., gradient checkpointing. We set the per-device batch size
as 1 to test the minimum hardware requirement to run the model with specific optimization algorithms. For multi-GPU
backpropagation, we use fully sharded data parallel (FSDP) (FairScale authors, 2021) provided by PyTorch (Paszke
et al., 2019). For multi-GPU MeZO, we use transformers multi-GPU inference of large models. We use Nvidia’s
nvidia-smi command to monitor the GPU memory usage. We call a run “successful” if there is no out of memory error
from GPUs for at least 100 steps.

G. More experiment results
G.1. RoBERTa-large experiments

Table 16 contains the detailed numbers corresponding to Figure 4 and also reports the performance of MeZO-Adam.

LP-MeZO We also compare MeZO to performing linear probing and then subsequently performing fine-tuning via MeZO,
following the analogous suggestion for fine-tuning in Kumar et al. (2022). We use the MeZO grid described in Table 13.
Note that the linear probing checkpoints used here have early stopping, unlike the ones reported in Table 16. We heuristically
implement early stopping by limiting the number of iterations (from 5000 to 1000) and increasing the convergence tolerance
(from 1e−4 to 0.01) in the scipy solver. Experiments on a few settings show that LP-MeZO can sometimes improve
performance without increasing the memory consumption (see Table 17). However, sometimes, linear probing first can
severely hurt performance.

G.2. OPT experiments

Table 18 present the full results of OPT-30B and OPT-66B, with detailed MeZO numbers.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type —— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16

LP 76.0 (2.8) 40.3 (1.9) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 51.3 (5.5)
MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 58.7 (2.5) 64.0 (3.3) 76.9 (2.7)
MeZO (LoRA) 91.4 (0.9) 43.0 (1.6) 69.7 (6.0) 64.0 (2.5) 64.9 (3.6) 73.1 (6.5)
MeZO (prefix) 90.8 (1.7) 45.8 (2.0) 71.6 (2.5) 63.4 (1.8) 65.4 (3.9) 80.3 (3.6)
MeZO-Adam 90.4 (1.4) 45.4 (1.5) 74.1 (2.7) 64.3 (0.8)† 59.2 (11.1)† 78.3 (1.4)

Gradient-based methods: k = 16

FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.0 (2.3) 66.4 (7.2) 85.0 (2.5)
FT (LoRA) 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 82.7 (4.1)
FT (prefix) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Gradient-free methods: k = 512

LP 91.3 (0.5) 51.7 (0.5) 80.9 (1.0) 71.5 (1.1) 73.1 (1.5) 89.4 (0.5)
MeZO 93.3 (0.7) 53.2 (1.4) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO (LoRA) 93.4 (0.4) 52.4 (0.8) 84.0 (0.8) 77.9 (0.6) 77.6 (1.3) 95.0 (0.7)
MeZO (prefix) 93.3 (0.1) 53.6 (0.5) 84.8 (1.1) 79.8 (1.2) 77.2 (0.8) 94.4 (0.7)
MeZO-Adam 93.3 (0.6) 53.9 (0.8) 85.3 (0.8) 79.6 (0.4) 79.2 (1.2) 95.1 (0.3)

Gradient-based methods: k = 512

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT (LoRA) 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)
FT (prefix) 93.7 (0.3) 54.6 (0.7) 88.3 (0.7) 83.3 (0.5) 82.5 (0.8) 97.4 (0.2)

Table 16: Experiments on RoBERTa-large (350M parameters). LP: Linear probing; ZO, ZO (LoRA), and ZO (prefix): our
memory-efficient ZO-SGD (Section 2.1) with full-parameter tuning, LoRA, and prefix-tuning respectively; FT: fine-tuning
with Adam. All reported numbers are averaged accuracy (standard deviation). All experiments use prompts (Appendix F.2).
ZO outperforms zero-shot and LP by a large margin and approaches FT performance with much less memory cost.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 SST-5 SNLI TREC

Zero-shot 79.0 35.5 50.2 32.0
FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 85.0 (2.5)

MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 76.9 (2.7)
LP-MeZO 91.4 (1.4) 41.9 (3.3) 70.7 (3.4) 54.0 (4.5)

Table 17: Performing linear probing before fine-tuning with MeZO, as suggested previously (Kumar et al., 2022), can
sometimes improve performance without increasing the memory overhead. We use k = 16 for these experiments.

Task SST-2 RTE BoolQ WSC WIC SQuAD

30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO 90.6 66.4 67.2 63.5 56.3 85.2
30B MeZO (prefix) 87.5 72.6 73.5 55.8 59.1 83.9

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO 91.2 65.7 72.7 63.5 58.9 *
66B MeZO (prefix) 93.6 66.4 73.7 57.7 58.6 85.0

Table 18: Experiments on OPT-30B and OPT-66B (with 1,000 examples). *: MeZO requires further tuning to successfully
optimize.

G.3. Convergence of MeZO with full-parameter and PEFT

We demonstrate the convergence rate of MeZO, MeZO (LoRA) and MeZO (prefix) on SST-2 and SNLI for the first 5,000
steps in Figures 5. We see that despite the different number of parameters they optimize, MeZO demonstrates similar
training speed on full parameter and PEFT. This agrees with our theory in Section 4, which shows that MeZO’s optimization
speed is independent of the number of parameters.

G.4. ZO vs BBTv2

We compare ZO with BBTv2 (Sun et al., 2022a) on mutually assessed tasks in Table 19. ZO significantly outperform BBTv2.
Furthermore, BBTv2 is limited to optimize in low-dimensional space and requires prefix-tuning and a down-projection
to reduce the number of optimized parameters. BBTv2 also employs an iterative scheme which only optimizes one layer
at a time. In contrast, ZO works with both full-parameter tuning and PEFT, as shown in our experiments (Section 3) and
theory (Section 4).

Task SST-2 SNLI RTE
Task type —— sentiment —— – natural language inference –

Zero-shot 79.0 50.2 51.4

BBTv2 90.3 (1.7) 57.3 (2.3) 56.7 (3.3)
MeZO 90.5 (1.2) 68.5 (3.9) 64.0 (3.3)
MeZO (LoRA) 91.4 (0.9) 69.7 (6.0) 64.9 (3.6)
MeZO (prefix) 90.8 (1.7) 71.6 (2.5) 65.4 (3.9)

Table 19: ZO vs BBTv2 with RoBERTa-large. BBTv2 performance is from Sun et al. (2022a).

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Fine-Tuning Language Models with Just Forward Passes

0 500 1000 1500 2000 2500 3000
Steps

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Lo

ss
SST-2

MeZO Train
MeZO (LoRA) Train
MeZO (prefix) Train

0 500 1000 1500 2000 2500 3000
Steps

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

SNLI
MeZO Train
MeZO (LoRA) Train
MeZO (prefix) Train

Figure 5: MeZO does not optimize significantly faster when tuning fewer parameters, agreeing with our theory in Section 4.

G.5. Memory profiling

We show the detailed numbers of memory profiling results Table 20, which also corresponds to Figure 2. For how we profile
the memory usage, please refer to Appendix F.7.

Method Zero-shot / MeZO ICL Prefix FT Full-parameter FT

1.3B 1xA100 (4GB) 1xA100 (6GB) 1xA100 (19GB) 1xA100 (27GB)
2.7B 1xA100 (7GB) 1xA100 (8GB) 1xA100 (29GB) 1xA100 (55GB)
6.7B 1xA100 (14GB) 1xA100 (16GB) 1xA100 (46GB) 2xA100 (156GB)
13B 1xA100 (26GB) 1xA100 (29GB) 2xA100 (158GB) 4xA100 (316GB)
30B 1xA100 (58GB) 1xA100 (62GB) 4xA100 (315GB) 8xA100 (633GB)
66B 2xA100 (128GB) 2xA100 (134GB) 8xA100 16xA100

Table 20: Memory usage on the MultiRC (avg #tokens=400) dataset.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Fine-Tuning Language Models with Just Forward Passes

H. Proofs
Proof of Lemma 3. We first note that in the ϵ→ 0 limit, we have

∇̂L(θ;B) = 1

Bn

∑
(x,y)∈B

∑
i∈[n]

ziz
T
i ∇L(θ; {(x,y)}).

Taking expectation over the batch B and the zi, we have E[∇̂L(θ;B)] = ∇L(θ), so ∇̂L(θ;B) is an unbiased estimator of
the gradient.

Computing the second moment, we get

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

1

B2n2

∑
(x1,y1),(x2,y2)∈B

∑
i,j∈[n]

E
[
(ziz

T
i ∇L(θ; {(x1,y1)}))(zjzT

j ∇L(θ; {(x2,y2)}))T
]

Let u,v be two arbitrary vectors. We have that

Ezi,zj [ziz
T
i uv

Tzjz
T
j] = uvT

when i ̸= j, and

Ezi
[ziz

T
i uv

Tziz
T
i] = Ez[z

⊗4](u,v)

=
3d

d+ 2
Sym(I⊗2)(u,v)

=
d

d+ 2
· uTv · I +

2d

d+ 2
· uvT .

Therefore

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

1

B2

∑
(x1,y1),(x2,y2)∈B

(
n− 1

n
+

2d

n(d+ 2)

)
E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
+

d

n(d+ 2)
· E

[
L(θ; {(x1,y1)})TL(θ; {(x2,y2)})

]
I.

Next, note that when (x1,y1) ̸= (x2,y2), we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T ,

and when (x1,y1) = (x2,y2) we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +ΣMB(θ).

Therefore

1

B2

∑
(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +

1

B
Σ(θ),

and plugging this yields

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
1 +

d− 2

n(d+ 2)

)
·
(
∇L(θ)∇L(θ)T +

1

B
Σ(θ)

)
+

d

n(d+ 2)
I ·

(
∥∇L(θ)∥2 + 1

B
tr(Σ(θ))

)
.

(6)

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Fine-Tuning Language Models with Just Forward Passes

Finally, we have

E
[∥∥∥∇̂L(θ;B)∥∥∥2] =

(
1 +

d2 + d− 2

n(d+ 2)

)
·
(
∥∇L(θ)∥2 + 1

B
tr(Σ(θ))

)
=

d+ n− 1

n
· E

[
∥∇L(θ;B)∥2

]
.

Proof of Theorem 1. By Taylor’s theorem with remainder, we have that

L(θt+1) = L(θt) +∇L(θt)T (θt+1 − θt)

+

∫ 1

0

λ(θt+1 − θt)
T∇2L(λθt+1 + (1− λ)θt)(θt+1 − θt)

T dλ

Next, note that

∥θt+1 − θt∥ = η
∥∥∥∇̂L(θ;B)∥∥∥ ≤ η

√
d · 1

Bn

∑∣∣zT
i ∇L(θ; {(x,y)})

∣∣ ≤ ηdG(θt).

Therefore ∥λθt+1 + (1− λ)θt − θt∥ ≤ ηdG(θt). By the assumption we have the upper bound∇2L(λθt+1+(1−λ)θt) ⪯
H(θt), and thus

L(θt+1) ≤ L(θt) +∇L(θt)T (θt+1 − θt) + (θt+1 − θt)
TH(θt)(θt+1 − θt)

= L(θt)− η∇L(θt)T ∇̂L(θt;B) +
1

2
η2∇̂L(θt;B)TH(θt)∇̂L(θt;B).

Taking the conditional expectation with respect to θt and plugging in (8), the formula for the covariance of our ZO estimate
∇̂L(θt;B), yields

E[L(θt+1) | θt] ≤ L(θt)− η ∥∇L(θt)∥2 +
η2

2

〈
H(θt),E

[
∇̂L(θ;B)∇̂L(θ;B)T

]〉
= L(θt)− η ∥∇L(θt)∥2 +

η2

2
· d

n(d+ 2)

(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
tr(H(θt))

+
η2

2

(
1 +

d− 2

n(d+ 2)

)(
∇L(θt)TH(θt)∇L(θt) +

1

B
⟨Σ(θt),H(θt)⟩

)

By assumption, the Hessian upper bound H(θt) satisfies ∥H(θt)∥op ≤ ℓ and tr(H(θt)) ≤ ℓr. Thus

E[L(θt+1) | θt] ≤ L(θt)− η ∥∇L(θt)∥2 +
η2ℓ

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
·
(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
= L(θt)− η ∥∇L(θt)∥2 +

η2ℓ

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
· E

[
∥∇L(θt;B)∥2

]
,

as desired.

H.1. Proofs of Global Convergence

Lemma 5. Let L(θ) be µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ)− L∗) for all θ. Then after

t = O

((
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations of SGD we have E[L(θt)] ≤ L∗ + ϵ.

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Fine-Tuning Language Models with Just Forward Passes

Proof of Lemma 5. The descent lemma for SGD yields

E[L(θt+1) | θt]− L(θt) ≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · E[∥∇L(θt;B)∥2].

Plugging in E[∥∇L(θt;B)∥2] = ∥∇L(θt)∥2 + 1
B tr(Σ(θt)) and selecting a learning rate η ≤ 1

ℓ yields

E[L(θt+1) | θt] ≤ L(θt)−
η

2
∥∇L(θt)∥2 +

η2ℓ

2B
tr(Σ(θt))

Since L is µ-PL, we get

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2ℓ

2B
tr(Σ(θt)).

Since tr(Σ(θt)) ≤ α(L(θt)− L∗), we have

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2ℓα

2B
(L(θt)− L∗).

Altogether,

E[L(θt+1)]− L∗ ≤
(
1− ηµ+

η2ℓα

2B

)
(E[L(θt)]− L∗)

Choosing η = min(1ℓ ,
µB
ℓα), we obtain

E[L(θt+1)]− L∗ ≤
(
1−min(

µ

2ℓ
,
µ2B

2ℓα
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ϵ after

t = max

(
2ℓ

µ
,
2ℓα

µ2B

)
log

(
L(θ0)− L∗

ϵ

)
= O

((
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations.

Proof of Lemma 4. By Corollary 1, ZO-SGD with ηZO = γ−1ηSGD yields

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ∥∇L(θt)∥2 +

1

2
η2SGDℓ · E[∥∇L(θ;B)∥

2
]

]
.

As in the proof for SGD, choosing ηSGD ≤ 1
ℓ yields

E[L(θt+1) | θt]− L(θt) ≤ γ−1 ·
[
−ηSGD

2
∥∇L(θt)∥2 +

η2SGDℓ

2B
tr(Σ(θt))

]
.

Therefore under µ-PL and the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption we obtain

E[L(θt+1)]− E[L(θt)] ≤ γ−1 ·
[
−ηSGDµ+

η2SGDℓα

2B

]
· (E[L(θt)]− L∗)

=⇒ E[L(θt+1)]− L∗ ≤
(
1− γ−1

(
ηSGDµ−

η2SGDℓα

2B

))
(E[L(θt)]− L∗).

Choosing ηSGD = min(1ℓ ,
µB
ℓα) yields

E[L(θt+1)]− L∗ ≤
(
1− γ−1 ·min(

µ

2ℓ
,
µ2B

2ℓα
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ϵ after

t = γ ·max

(
2ℓ

µ
,
2ℓα

µ2B

)
log

(
L(θ0)− L∗

ϵ

)
= O

((r

n
+ 1

)
·
(
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Fine-Tuning Language Models with Just Forward Passes

H.1.1. VERIFICATION OF ASSUMPTIONS

We show that the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption holds for certain losses.

First, consider optimizing the model f(x;θ) with square loss, so that

L(θ) = 1

N

∑
i∈[N]

(f(xi;θ)− yi)
2.

One then has that

Σ(θ) =
2

N

∑
i∈[N]

(f(xi;θ)− yi)
2∇f(xi;θ)∇f(xi;θ)

T −∇L(θ)∇L(θ)T .

Therefore

tr(Σ(θ)) ≤ 2

N

∑
i∈[N]

(f(xi;θ)− yi)
2 ∥∇f(xi;θ)∥2

≤ 2L(θ)
∑
i∈[N]

∥∇f(xi;θ)∥2 .

Assume that the data can be interpolated, i.e L∗ = 0. If the function is L-Lipschitz, i.e ∥∇f(x;θ)∥ ≤ L, then the condition
holds with α = 2NL2. If we are in the kernel regime, i.e f(xi;θ) = ϕ(xi)

Tθ for some feature map ϕ, then

∇2L(θ) = 2

N

∑
i∈[N]

f(xi;θ)∇f(xi;θ)
T .

Thus

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ Nℓr · L(θ).

So the condition holds for α = Nℓr.

Next, consider the cross entropy loss function, i.e

L(θ) = 1

N

∑
i∈[N]

exp(−yif(xi;θ)).

One then has that

Σ(θ) =
1

N

∑
i∈[N]

exp(−2yif(xi;θ))y
2
i∇f(xi;θ)∇f(xi;θ)

T − L(θ)L(θ)T ,

Assume that the targets yi are bounded in [−1, 1] (which is true for binary classification tasks), and that L∗ = 0 (which can
be achieved if |f(x;θ)| can be sent to∞) we have that

tr(Σ(θ)) ≤ 1

N

∑
i∈[N]

exp(−2yif(xi;θ)) ∥∇f(xi;θ)∥2 .

In the kernel regime, f(xi;θ) = ϕ(xi)
Tθ, and thus

∇2L(θ) = 1

N

∑
i∈[N]

exp(−yif(xi;θ))∇f(xi;θ)∇f(xi;θ)
T .

Therefore

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ Nℓr · L(θ).

Therefore the condition holds with α = Nℓr as well.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Fine-Tuning Language Models with Just Forward Passes

H.2. Proofs for Gaussian perturbations

The first lemma computes the second moment of the covariance estimate ∇̂L(θ;B) when z is drawn N (0, I).

Lemma 6. Let zi ∼ N (0, I) i.i.d. Then

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
1 +

1

n

)
·
(
∇L(θ)∇L(θ)T +

1

B
ΣMB(θ)

)
+

1

n
I ·

(
∥∇L(θ)∥2 + 1

B
tr(ΣMB(θ))

)
.

(7)

Proof. As in the proof of Lemma 3, we have that in the ϵ→ 0 limit

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

1

B2n2

∑
(x1,y1),(x2,y2)∈B

∑
i,j∈[n]

E
[
(ziz

T
i ∇L(θ; {(x1,y1)}))(zjzT

j ∇L(θ; {(x2,y2)}))T
]

For vectors u,v, we have that

Ezi,zj
[ziz

T
i uv

Tzjz
T
j] = uvT

when i ̸= j, and

Ezi
[ziz

T
i uv

Tziz
T
i] = Ez[z

⊗4](u,v) = 3Sym(I⊗2)(u,v) = uTv · I + 2uvT .

Therefore

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

1

B2

∑
(x1,y1),(x2,y2)∈B

(
n− 1

n
+

2

n

)
E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
+

1

n
· E

[
L(θ; {(x1,y1)})TL(θ; {(x2,y2)})

]
I.

In the proof of Lemma 3 we showed that

1

B2

∑
(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +

1

B
Σ(θ).

Plugging this yields

E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
n+ 1

n

)
·
(
∇L(θ)∇L(θ)T +

1

B
Σ(θ)

)
+

1

n
I ·

(
∥∇L(θ)∥2 + 1

B
tr(Σ(θ))

)
.

(8)

We can prove an analog to Theorem 1 in the case where the zi are Gaussian. One challenge is that ∥θt+1 − θt∥ is no longer
bounded; instead we the r-local effective rank assumption only holds with high probability, and thus to bound the expected
loss decrease we must control the probability of the ∥θt+1 − θt∥ being large.

Consider the following modified version of the local r-effective rank assumption, where the upper bound on the Hessian is
measured over a ball of radius twice as large as the one in Assumption 1.

Assumption 3 (Local r-effective rank, Gaussian). Let G(θt) = max(x,y)∈D ∥∇L(θt; {(x,y)})∥. There exists a matrix
H(θt) such that:

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Fine-Tuning Language Models with Just Forward Passes

1. For all θ such that ∥θ − θt∥ ≤ 2ηdG(θt), we have ∇2L(θ) ⪯H(θt).

2. The effective rank of H(θt), i.e tr(H(θt))/ ∥H(θt)∥op, is at most r.

Theorem 3 (Dimension-Free Rate, Gaussian z). Assume the loss exhibits local r-effective rank (Assumption 3). If
θt+1 = θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate with a minibatch of size B, then there
exists a γ = Θ(r/n) such that the expected loss decrease can be bounded as

E[L(θt+1) | θt]− L(θt)

≤ −ηZO ∥∇L(θt)∥2 +
1

2
η2ZOℓ · γ · E[∥∇L(θt;B)∥

2
] + η2ZOℓG(θt)

2 exp(−Ω(nd)).

Proof of Theorem 3. Let A be the event that ∥θt+1 − θt∥ ≤ 2ηdG(θt). On A, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)T ∇̂L(θ;B) +
1

2
η2∇̂L(θt;B)TH(θ)∇̂L(θt;B).

Likewise, since L is ℓ-smooth, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)T ∇̂L(θ;B) +
1

2
η2ℓ

∥∥∥∇̂L(θt;B)∥∥∥2 .
Therefore

E[L(θt+1) | θt] ≤ L(θt+1)− η ∥∇L(θt)∥2 +
1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T · 1(A)

]
,H(θt)

〉
+

1

2
η2ℓE

[∥∥∥∇̂L(θt;B)∥∥∥2 · 1(¬A)]
= L(θt+1)− η ∥∇L(θt)∥2 +

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
,H(θt)

〉
1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, ℓI −H(θt)

〉
.

The latter term can be bounded as follows

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, ℓI −H(θt)

〉
≤ η2ℓE

[∥∥∥∇̂L(θ;B)∥∥∥2 · 1(¬A)]
≤ η2ℓE

[∥∥∥∇̂L(θ;B)∥∥∥4] 1
2

Pr[¬A]1/2.

The gradient estimate ∇̂L(θ;B) satisfies∥∥∥∇̂L(θ;B)∥∥∥ ≤ 1

n

∑
i∈[n]

∣∣zT
i ∇L(θ;B)

∣∣ · ∥zi∥
The expectation term is upper bounded as

E
[∥∥∥∇̂L(θ;B)∥∥∥4] ≤ 1

n

∑
i∈[n]

E
[∣∣zT∇L(θ;B)

∣∣4 · ∥z∥4]
≤ E

[∣∣zT∇L(θ;B)
∣∣8]1/2 E [

∥z∥8
]1/2

≤
√
105(d+ 6)2G(θt)

4,

where we have plugged in explicit formulas for moments of Gaussian and χ2 random variables.

Next, note that on the event ¬A, we have

2ηdG(θt) ≤ ∥θt+1 − θt∥ = η
∥∥∥∇̂L(θt;B)∥∥∥ ≤ η · 1

n

∑
i∈[n]

∥zi∥2 G(θt).

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Fine-Tuning Language Models with Just Forward Passes

Therefore

Pr[¬A] ≤ Pr

∑
i∈[n]

∥zi∥2 ≥ 2nd

Lemma 7 (Standard χ2-tail bound). Let Z be a χ2 random variable with k degrees of freedom. Then

Pr[Z ≥ k + u] ≤ exp

(
−min

(
u2

16k
,
u

16

))

Since
∑

i∈[n] ∥zi∥
2 is a χ2 random variable with nd degrees of freedom, we thus have that

Pr[¬A] ≤ exp

(
−nd

16

)
.

Altogether,

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, ℓI −H(θt)

〉
≤ η2ℓ1051/4(d+ 6)G(θt)

2 exp(−nd

32
)

= η2ℓG(θt)
2 exp(−Ω(nd)).

Finally, plugging in (7), along with the fact that ∥H(θt)∥op ≤ ℓ and tr(H(θt)) ≤ ℓr,

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)T

]
,H(θt)

〉
=

r + n+ 1

n
· ℓ

(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
=

r + n+ 1

n
· E

[
∥∇L(θt;B)∥2

]
Thus letting γ = r+n+1

n yields

E[L(θt+1) | θt]− L(θt)

≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · γ · E[∥∇L(θt;B)∥2] + η2ℓG(θt)

2 exp(−Ω(nd)),

as desired.

33

	Introduction
	Zeroth-order optimization
	Memory-efficient ZO-SGD (MeZO)

	Experiments
	Memory usage

	Theory
	Related work
	Conclusion
	Additional Results
	Medium-sized masked language models
	Training with non-differentiable objectives

	Theory
	Per-step analysis
	Global convergence analysis

	Algorithmic Ablations
	Prompting
	Sample Schedules

	MeZO Variants
	Memory-efficient n-SPSA
	Augmenting MeZO with Gradient History
	Modifying the Variance of MeZO
	Modifying the Expectation of MeZO

	Memory Analysis
	Experiment setup
	Datasets
	Prompts
	Hyperparameters
	Modeling and implementation
	Parameter-efficient fine-tuning
	Training with non-differentiable objectives
	Memory profiling

	More experiment results
	RoBERTa-large experiments
	OPT experiments
	Convergence of MeZO with full-parameter and PEFT
	ZO vs BBTv2
	Memory profiling

	Proofs
	Proofs of Global Convergence
	Verification of assumptions

	Proofs for Gaussian perturbations

