

000
001 **FREPHYS: FREQUENCY-AWARE DIFFUSION MODEL**
002 **FOR REMOTE PHYSIOLOGICAL MEASUREMENT**
003
004
005

006 **Anonymous authors**
007 Paper under double-blind review
008
009

010 **ABSTRACT**
011
012

013 Remote photoplethysmography (rPPG) enables non-contact physiological mon-
014 itoring by capturing subtle skin color variations in facial videos. Existing ap-
015 proaches predominantly rely on time-domain modeling to extract cardiac-related
016 periodic signals, but they are highly vulnerable to motion artifacts and illumina-
017 tion changes, where physiological clues are easily obscured by noise. To address
018 these challenges, we propose a **Frequency-aware Physiological** diffusion model,
019 dubbed **FrePhys**, that integrates physiological frequency priors into rPPG estima-
020 tion. Specifically, it first employs a *physiological bandpass filter* to suppress out-
021 of-band noise, followed by *physiological spectrum modulation* and *adaptive spec-*
022 *trum selection* for in-band noise suppression and pulse-related clues enhance-
023 ment. A *cross-domain representation learning* module then fuses frequency-domain in-
024 sights with the deep time-domain features to capture spatial-temporal dependen-
025 cies. Finally, a frequency-aware conditional diffusion process iteratively recon-
026 structs high-fidelity rPPG signals. Extensive experiments on multiple datasets
027 demonstrate that our method significantly outperforms existing state-of-the-art
028 methods, particularly under challenging motion conditions, highlighting the ef-
029 fectiveness of incorporating frequency priors. The source code is available at
030 <https://anonymous.4open.science/r/FrePhys>.
031

032 **1 INTRODUCTION**
033
034

035 Physiological signals, such as heart rate (HR), heart rate variability (HRV), and respiration fre-
036 quency (RF), are essential indicators of physical and mental health. Traditional electrocardio-
037 gram (ECG) and photoplethysmography (PPG) methods require the use of skin-contact devices,
038 which can cause discomfort and inconvenience to subjects. Recently, remote photoplethysmogra-
039 phy (rPPG) (Verkruyse, 2008) has emerged as a promising non-invasive optical technique, enabling
040 applications in health monitoring (Huang et al., 2023), face anti-spoofing (Yu et al., 2021), and psy-
041 chological stress assessment (Gedam & Paul, 2020), among others. However, a key challenge for
042 rPPG remains how to accurately capture subtle skin color changes caused by blood volume fluctua-
043 tions in facial videos recorded by ordinary cameras.
044

045 Early rPPG research (Verkruyse, 2008; Poh et al., 2010; De Haan & Jeanne, 2013; Wang et al.,
046 2016) mainly relied on traditional signal processing methods to recover subtle rPPG signals, which
047 are often limited to specific signal assumptions. Recently, the emerging development of deep learn-
048 ing has fostered numerous sophisticated deep rPPG models (Yu et al., 2019; Niu et al., 2020; Lu
049 et al., 2021; Liu et al., 2023; Qian et al., 2024a; Zou et al., 2025b). While these models perform well
050 in controlled environments, they are often limited in robustness to noisy conditions such as motion
051 and illumination (Qian et al., 2025; Shao et al., 2025). To alleviate this problem, the denoising dif-
052 fusion probabilistic models (DDPMs) have been introduced for rPPG estimation (Chen et al., 2024;
053 Qian et al., 2025), due to their remarkable capacity for modeling noise distributions and recovering
054 clean signals from heavily corrupted observations. However, these pioneering efforts were primarily
055 conducted in the time domain, where noise often exhibits irregular and chaotic patterns, as shown
056 in the upper part of Fig. 1(b) and (c), making it challenging to separate physiological components
057 from noise. Several recent studies have begun to exploit frequency information in rPPG. The most
058 common usage is to impose auxiliary frequency-based losses during training (Yu et al., 2023; Sun &
059 Li, 2024; Zou et al., 2025b). Other approaches employ Fourier transform blocks to enhance feature
060

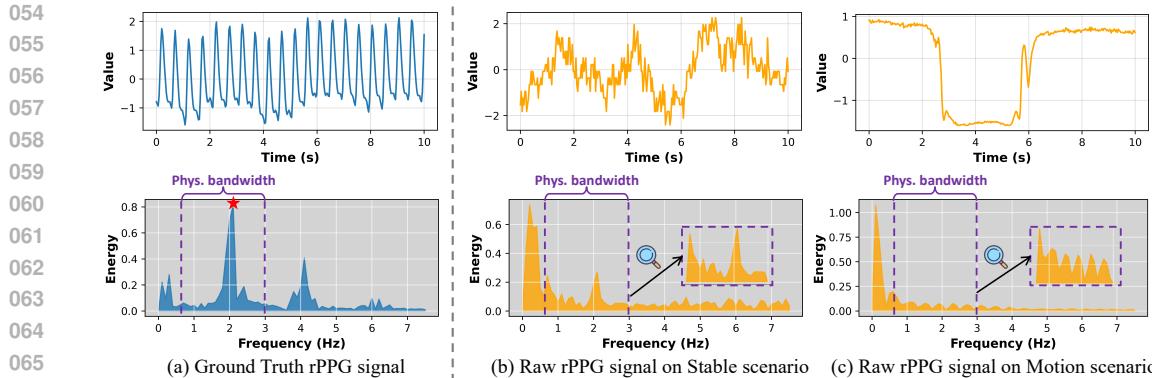


Figure 1: Visualization of the differences between Ground-truth and Raw rPPG signals in time and frequency domains. (a) Ground-truth rPPG signal, where the spectrum exhibits clear physiological priors with a dominant peak (marked by the \star) corresponding to HR, obtained by multiplying the frequency by 60. (b-c) Raw rPPG signals extracted from facial videos under stable and motion conditions by averaging green-channel pixel intensities over time (Wang et al., 2016).

representation (Zou et al., 2025b) or synthesize negative samples (Yue et al., 2023). While these methods demonstrate the utility of frequency information, they fall short of fully leveraging the inherent physiological priors in the frequency domain and largely overlook the distinct challenges introduced by motion-induced noise.

In this work, we take a closer look at the frequency domain and show that rPPG signals, driven by cardiac rhythms, are quasi-periodic and exhibit clear frequency-domain priors (Gideon & Stent, 2021; Speth et al., 2023), as illustrated in Fig. 1(a): (i) **Physiological Band Constraint**: spectral energy is mainly concentrated within a fixed physiological band, typically [0.66, 3.0] Hz, corresponding to the normal HR range; (ii) **Dominant Peak Property**: a strong spectral peak emerges within this band, reflecting the periodic cardiac rhythm, while other in-band noise frequencies carry relatively low energy. For an intuitive illustration, we further visualize raw rPPG signals from facial videos under both stable and motion conditions by computing the mean green-channel intensity over time (Wang et al., 2016), as shown in Fig. 1(b)(c)). In the time domain, noise is heavily entangled with the signal, making separation very difficult. By contrast, the frequency domain reveals two distinct categories of noise: out-of-band components and residual in-band noise, where most noise energy is concentrated on low-frequency components outside the physiological band. The stable conditions exhibit a clear spectral peak within the physiological band, while motion disperses the in-band energy, thereby complicating the denoising process. These observations naturally motivate our central question: **How to suppress both out-of-band and in-band noise while effectively preserving physiologically meaningful spectral information?**

To address these challenges, we propose a novel frequency-aware physiological diffusion model, **FrePhys**, whose key idea is to incorporate physiological frequency priors into the denoising process, thereby combining spectral priors with temporal dynamics for more effective rPPG signal recovery. To suppress out-of-band noise, we design a *physiological bandpass filter* that preserves only the physiological frequency range. To further handle in-band noise while emphasizing meaningful spectral information, we introduce a *physiological spectrum modulation* to enhance true cardiac harmonics and an *adaptive spectrum selection* to dynamically suppress residual components. Furthermore, we introduce a *cross-domain representation learning* module, which leverages cross-attention to fuse spectral priors with temporal representations, thereby guiding the denoising process with both frequency-domain regularities and temporal dynamics.

Contribution Summary: (i) We highlight the importance of explicitly leveraging physiological frequency priors for robust rPPG estimation. (ii) We propose **FrePhys**, a frequency-aware diffusion framework that integrates physiological frequency denoise with cross-domain representation learning. (iii) Unlike previous diffusion-based methods that operate purely in the time domain, our model incorporates frequency-domain conditioning to better capture the quasi-periodic nature of rPPG. (iv) Extensive experiments on four public benchmarks show that our method achieves state-of-the-art performance in both accuracy and robustness.

108 **2 RELATED WORK**

110 Early rPPG estimation methods primarily relied on signal processing techniques, such as
 111 GREEN (Verkruyse, 2008), ICA (Poh et al., 2010), CHROM (De Haan & Jeanne, 2013), and
 112 POS (Wang et al., 2016). With the rise of deep learning, a wide range of models have been in-
 113 troduced, including CNN-based methods (e.g., DeepPhys (Chen & McDuff, 2018), PhysNet (Yu
 114 et al., 2019), CVD (Niu et al., 2020), TS-CAN (Liu et al., 2020)), Transformer-based methods (e.g.,
 115 PhysFormer (Yu et al., 2022), EfficientPhys (Liu et al., 2023), Dual-TL (Qian et al., 2024a)), and
 116 Mamba-based methods (e.g., PhysMamba (Luo et al., 2024), RhythmMamba (Zou et al., 2025b)),
 117 Diffusion-based methods (e.g., DiffPhys (Chen et al., 2024), PhysDiff (Qian et al., 2025)) etc. Be-
 118 yond purely temporal modeling, several works have attempted to incorporate frequency-domain
 119 information, including frequency-aware loss functions (e.g., PhysFormer (Yu et al., 2022), Contrast-
 120 Phys (Sun & Li, 2024)) or frequency representation learning (e.g., Yue et al. (Yue et al., 2023),
 121 RhythmMamba (Zou et al., 2025b)). A more detailed discussion is provided in Appendix A.

122 **Remark.** Our approach fundamentally rethinks how frequency information is used in rPPG. Most
 123 previous works leverage frequency only as an offline post-processing tool for HR computation (Niu
 124 et al., 2020; Lu et al., 2021; Yu et al., 2022; Liu et al., 2023; Qian et al., 2024a), or as auxiliary mod-
 125 ules such as Fourier transform blocks for representation enhancement (Zou et al., 2025b), negative
 126 sample synthesis (Yue et al., 2023), or auxiliary frequency losses during training (Yu et al., 2023;
 127 Sun & Li, 2024; Zou et al., 2025b). In contrast, we directly integrate physiological frequency priors
 128 into the diffusion model through a three-stage filtering mechanism: suppressing out-of-band noise,
 129 enhancing true cardiac harmonics, and adaptively removing in-band residual noise. Moreover, in-
 130 stead of limiting frequency regulation to training, we enforce frequency-aware denoising at every
 131 diffusion step, during both training and inference. To the best of our knowledge, this is the first
 132 work to seamlessly embed physiological frequency priors into diffusion modeling for rPPG, leading
 133 to robust and high-fidelity signal reconstruction under challenging noise conditions.

134 **3 METHODOLOGY**

135 Remote physiological measurement from facial videos can be regarded as a video sequence to signal
 136 sequence problem. Let $\mathbf{V} \in \mathbb{R}^{T \times 3 \times H \times W}$ denote a raw facial video clip containing T frames with 3
 137 color channels and spatial resolution $H \times W$. Following established rPPG preprocessing protocols
 138 (Niu et al., 2020; Qian et al., 2025), we extract N facial regions of interest (ROIs) through landmark
 139 alignment and pixel-level average pooling, constructing a multi-scale temporal map (MSTmap) $\mathbf{X} \in$
 140 $\mathbb{R}^{T \times N \times C}$ as the model input. The objective is to recover the clean periodic rPPG signal $\mathbf{Y} \in \mathbb{R}^T$
 141 from \mathbf{X} , formulated as learning a denoising function $f_\theta : \mathbf{X} \mapsto \mathbf{Y}$, where θ denotes trainable
 142 parameters. In this work, we propose a novel physiological frequency-aware diffusion model to
 143 consider the important clues from the physiological frequency domain. The overview of our method
 144 is illustrated in Fig. 2, where the details are described as follows.

145 **3.1 PHYSIOLOGICAL FREQUENCY DENOISER**

146 **Physiological Bandpass Filter (PBF).** Inspired by the fact that true cardiac activities mainly fall
 147 within a fixed frequency bandwidth, typically [0.66,3.0] Hz (Wang et al., 2016), we devise a *Phys-
 148 iological Bandpass Filter* that directly isolates cardiac frequency components in the spectral space.
 149 Specifically, we first project the frequency condition $\mathbf{C}^P \in \mathbb{R}^{T \times N \times C}$ into a D -dimensional latent
 150 space $\mathbf{Z} \in \mathbb{R}^{T \times N \times D}$, then transform it to frequency domain via the Discrete Fourier Transform \mathcal{F} ,
 151

$$\mathbf{Z}^{F'} = \mathcal{F}(\mathbf{Z}) \in \mathbb{C}^{(\lfloor T/2 \rfloor + 1) \times N \times D}. \quad (1)$$

152 Then, the noisy frequency components outside the physiological bandwidth range can be discarded
 153 using an ideal band-pass filter:

$$\mathbf{Z}^F = \mathbf{Z}^{F'} \odot f(\lambda_i), \quad \text{for } i = 0, \dots, \lfloor T/2 \rfloor \quad (2)$$

154 where \odot denotes the Hadamard product. λ_i denotes the physical frequency corresponding to the
 155 i -th frequency bins and $\lambda_i = i f_s / T$ Hz, with f_s denoting the sampling rate. $f(\lambda_i)$ is an indicator
 156 function, which outputs 1 when $(0.66 \leq \lambda_i \leq 3.0)$ and 0 otherwise.

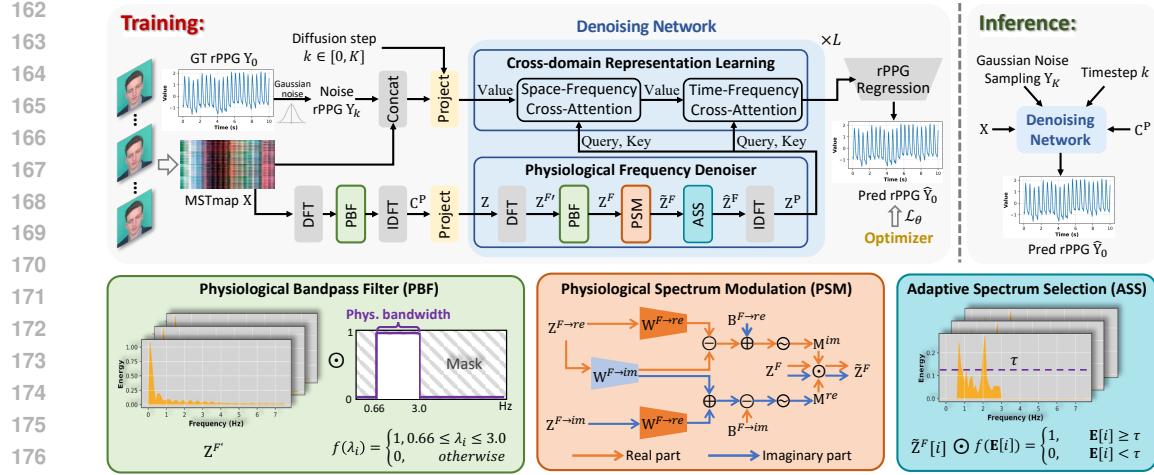


Figure 2: The pipeline of **FrePhys** is implemented by the frequency-aware diffusion model. Given a facial video, we first construct MSTmap \mathbf{X} as the temporal condition and generate the frequency condition \mathbf{C}^P by applying the PBF. During training, we initially generate noise rPPG \mathbf{Y}_k by adding Gaussian noise to Ground Truth rPPG \mathbf{Y}_0 for the k -th step. Then, we input \mathbf{Y}_k , \mathbf{X} , k , and \mathbf{C}^P into the *Denoising Network*. Specifically, the frequency condition \mathbf{C}^P is fed into the *Physiological Frequency Denoiser* module to enhance physiological spectral clues through three key steps: (i) PBF removes out-of-band noise based on the physiological frequency bandwidth [0.66,3.0] Hz; (ii) PSM emphasizes valid physiological harmonics by modeling interactions between real and imaginary components; (iii) ASS dynamically suppresses in-band noise using data-driven energy thresholds. Next, with *Cross-domain Representation Learning*, our **FrePhys** includes frequency-domain denoised information into space and time dependencies modeling to estimate the high-fidelity rPPG signal. During inference, the initial rPPG \mathbf{Y}_K is randomly sampled from Gaussian noise, with frequency condition and denoising network processes mirroring those used in training.

Physiological Spectrum Modulation (PSM). While the *Physiological Bandpass Filter* is effective in removing noise outside the physiological frequency band, another challenge still exists where noise components may overlap or closely resemble physiological signals within this band identified by PBF. Such overlapping frequencies may severely distort the signal, making it difficult to accurately extract physiological features. We apply a learnable *Physiological Spectrum Modulation* in the frequency domain to emphasize true physiological harmonics while suppressing non-physiological components. Specifically, given the physiological frequency representation $\mathbf{Z}^F \in \mathbb{C}^{(\lfloor T/2 \rfloor + 1) \times N \times D}$, we denote its real and imaginary parts as $\mathbf{Z}^{F \rightarrow re}$ and $\mathbf{Z}^{F \rightarrow im}$, separately. To achieve more exhaustive spectrum modulation, we encode the real and imaginary parts separately to generate the modulation signals, which are formulated as:

$$\mathbf{M} = \sigma(\mathbf{Z}^F \mathbf{W}^F + \mathbf{b}^F), \quad (3)$$

where σ is the ReLU activation function, $\mathbf{W}^F = (\mathbf{W}^{F \rightarrow re} + j \cdot \mathbf{W}^{F \rightarrow im}) \in \mathbb{R}^{D \times D}$ is the trainable complex number weight matrix with $\{\mathbf{W}^{F \rightarrow re}, \mathbf{W}^{F \rightarrow im}\} \in \mathbb{C}^{D \times D}$, and $\mathbf{b}^F = (\mathbf{b}^{F \rightarrow re} + j \cdot \mathbf{b}^{F \rightarrow im}) \in \mathbb{C}^D$ is the trainable complex number biases with $\{\mathbf{b}^{F \rightarrow re}, \mathbf{b}^{F \rightarrow im}\} \in \mathbb{C}^D$. According to the rule of multiplication of complex numbers (details can be seen in Appendix B.1), we further unfold into real and imaginary parts as follows:

$$\begin{aligned} \mathbf{M}^{re} &= \sigma(\mathbf{Z}^{F \rightarrow re} \mathbf{W}^{F \rightarrow re} - \mathbf{Z}^{F \rightarrow im} \mathbf{W}^{F \rightarrow im} + \mathbf{b}^{F \rightarrow re}), \\ \mathbf{M}^{im} &= \sigma(\mathbf{Z}^{F \rightarrow im} \mathbf{W}^{F \rightarrow im} + \mathbf{Z}^{F \rightarrow re} \mathbf{W}^{F \rightarrow re} + \mathbf{b}^{F \rightarrow im}). \end{aligned} \quad (4)$$

Afterwards, the generated complex signal is used to modulate counterparts of the original frequency-domain feature, which can be written as,

$$\tilde{\mathbf{Z}}^F = \mathbf{M} \odot \mathbf{Z}^F \in \mathbb{C}^{(\lfloor T/2 \rfloor + 1) \times D}. \quad (5)$$

By Theorem 1, this spectral multiplication operation in Eq. 5 is mathematically equivalent to a global circular convolution in time, endowing each sequence with a content-adaptive receptive field that is

ideal for capturing periodic cardiac rhythms. By means of Eq. 5, the physiological frequency components can be effectively enhanced via direct spectral modulation. The detailed proof of *theorem 1* is illustrated in Appendix C.1.

Theorem 1 (*Frequency-domain Convolution Theorem*) *The multiplication of two signals in the frequency domain is equivalent to the frequency transformation of a circular convolution of these two signals in the temporal domain, which can be summarized as:*

$$\mathcal{F}[\mathbf{M}(v) \otimes \mathbf{Z}(v)] = \mathcal{F}(\mathbf{M}(v)) \odot \mathcal{F}(\mathbf{Z}(v)), \quad (6)$$

where \otimes and \odot represent the circular convolutional operation and element-multiplication operation, respectively, $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ represent two signals for the time variable v , and $\mathcal{F}(\cdot)$ denotes the Discrete Fourier Transform.

Adaptive Spectrum Selection (ASS). While the physiological spectrum modulation block amplifies the cardiac band, some noise components whose frequencies lie close to the physiological range may remain. To robustly isolate the true pulse periodicity, we further introduce an *Adaptive Spectrum Selection* block that learns a data-driven threshold τ in the frequency domain, retaining dominant spectral components and discarding residual noise. Concretely, for modulated physiological spectrum $\tilde{\mathbf{Z}}^F$, we first calculate its per-frequency energy:

$$\mathbf{E}[i] = \sqrt{(\tilde{\mathbf{Z}}^{F \rightarrow re}[i])^2 + (\tilde{\mathbf{Z}}^{F \rightarrow im}[i])^2} = \left\| \tilde{\mathbf{Z}}^F[i] \right\|_2, \quad i = 0, 1, \dots, [T/2]. \quad (7)$$

Then we employ a learnable threshold τ to discern between cardiac pulse and potential noise. We formulate this adaptive thresholding as follows:

$$\hat{\mathbf{Z}}^F[i] = \tilde{\mathbf{Z}}^F[i] \odot f(\mathbf{E}[i]), \quad (8)$$

here, $f(\mathbf{E}[i])$ is a binary mask where frequencies with energy above the threshold ($\mathbf{E}[i] \geq \tau$) are retained, and others are filtered out. Finally, an inverse DFT restores the time-domain signal containing only the dominant cardiac activity:

$$\mathbf{Z}^P = \mathcal{F}^{-1}(\hat{\mathbf{Z}}^F). \quad (9)$$

3.2 CROSS-DOMAIN REPRESENTATION LEARNING

Time domain modeling focuses on local dependencies and transient behaviors, while frequency domain analysis provides insights into the global correlations and periodicity of the data. Therefore, combining these two domains is a promising approach to recover high-fidelity rPPG signals. To effectively integrate intermediate representations \mathbf{Z} in the time domain with frequency-domain priors \mathbf{Z}^P , we propose a cross-domain representation learning module. Specifically, we perform L alternating cross-attention layers that can progressively learn the various input domains for representation learning. In each layer l , the initial physiological frequency representation is first obtained by applying PBF, followed by PSM and ASS modules. Next, the physiological frequency representation \mathbf{Z}^P and intermediate representations \mathbf{Z} are integrated by cross-attention across the spatial and temporal axis, respectively. Formally, this process can be formulated as follows:

$$\begin{aligned} \mathbf{Z}^{P,(l)} &= \text{ASS}(\text{PSM}(\text{PBF}(\mathbf{Z}^{(l)}))), \\ \mathbf{Z}^{(l)'} &= \text{CA}(\mathbf{Z}^{P,(l)}, \mathbf{Z}^{(l)}) + \mathbf{Z}^{(l)}, \\ \mathbf{Z}^{(l+1)} &= \text{CA}(\mathbf{Z}^{P,(l)}, \mathbf{Z}^{(l)'}) + \mathbf{Z}^{(l)'}, \end{aligned} \quad (10)$$

where $\text{CA}(a, b)$ refers to Cross-Attention, with a denotes query and key, and b denotes value.

3.3 FREQUENCY-AWARE DIFFUSION MODEL

Recently, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) have emerged as powerful generative frameworks that progressively refine noisy inputs through learned reverse Markov chains, capturing complex data distributions. Inspired by this, some diffusion-based methods (Qian et al., 2025; Chen et al., 2024) for rPPG estimation have been proposed and achieved SOTA performance. They treat the rPPG estimation task as calculating the conditional rPPG signal probability

270 distribution $q(\mathbf{Y}_0|\mathbf{C})$, where $q(\mathbf{Y}_0)$ is the clean rPPG distribution, and the condition \mathbf{C} for probability distribution calculation is generally the input \mathbf{X} in the time domain. However, these diffusion models mainly focus on time-domain conditioning and overlook the unique spectral prior.

271 To alleviate this limitation, we introduce a novel frequency-aware diffusion model that explicitly
272 incorporates physiological frequency priors to guide the generation of high-fidelity rPPG signals.
273 Specifically, our frequency-aware diffusion model fuses with physiological frequency condition \mathbf{C}^P
274 to learn the conditional rPPG distribution $q(\mathbf{Y}_0|\mathbf{Y}, \mathbf{X}, \mathbf{C}^P)$, through two Markov chain processes
275 of diffusion step K , i.e., the forward process and the reverse process.

276 **Forward Process.** The forward process q incrementally adds Gaussian noise to the ground truth
277 rPPG signal $\mathbf{Y}_0 \in \mathbb{R}^T$ via a fixed Markov chain $\mathbf{Y}_0, \dots, \mathbf{Y}_K$ as follows:

$$278 \quad q(\mathbf{Y}_{1:K}|\mathbf{Y}_0) = \prod_{k=1}^K q(\mathbf{Y}_k|\mathbf{Y}_{k-1}), \quad q(\mathbf{Y}_k|\mathbf{Y}_{k-1}) = \mathcal{N}(\mathbf{Y}_k; \sqrt{1-\beta_k} \mathbf{Y}_{k-1}, \beta_k \mathbf{I}), \quad (11)$$

279 where β_k is a noise schedule, satisfying $\beta_k < \beta_{k-1}$. As K becomes large, $\mathbf{Y}_K \approx \mathcal{N}(0, \mathbf{I})$.

280 Following DDPM (Ho et al., 2020), we sample \mathbf{Y}_k from \mathbf{Y}_0 at any time step k in a closed form:

$$281 \quad q(\mathbf{Y}_k|\mathbf{Y}_0) = \mathcal{N}(\mathbf{Y}_k; \sqrt{\bar{\alpha}_k} \mathbf{Y}_0, (1-\bar{\alpha}_k) \mathbf{I}), \quad (12)$$

282 where $\alpha_k = 1 - \beta_k$ and $\bar{\alpha}_k = \prod_{s=0}^k \alpha_s$. Utilizing the parameterization trick (Kingma & Welling,
283 2013), we express \mathbf{Y}_k as:

$$284 \quad \mathbf{Y}_k = \sqrt{\bar{\alpha}_k} \mathbf{Y}_0 + \sqrt{1-\bar{\alpha}_k} \epsilon, \quad (13)$$

285 where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. The detailed derivations are provided in Appendix D.1.

286 **Reverse Process.** The reverse process aims to estimate the posterior $q(\mathbf{Y}_{k-1}|\mathbf{Y}_k)$. Different from
287 PhysDiff (Qian et al., 2025), in our frequency-aware diffusion model, this distribution is approxi-
288 mated by a neural network f_θ conditioned on both the time-domain condition \mathbf{X} and the physiolog-
289 ical frequency condition \mathbf{C}^P :

$$290 \quad p_\theta(\mathbf{Y}_{k-1}|\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P) = \mathcal{N}(\mathbf{Y}_{k-1}; \mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k), \Sigma_\theta). \quad (14)$$

291 Next, we show that incorporating the physiological frequency prior \mathbf{C}^P can effectively reduce the
292 uncertainty in the reverse diffusion process, leading to more accurate rPPG signal reconstruction. It
293 can be formalized in Proposition 1.

294 **Proposition 1** *The conditional entropy is satisfied:*

$$295 \quad \mathbf{H}(\mathbf{Y}_{k-1}|\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P) < \mathbf{H}(\mathbf{Y}_{k-1}|\mathbf{Y}_k, \mathbf{X}), \quad (15)$$

296 indicating that the inclusion of additional physiological frequency condition \mathbf{C}^P in the reverse pro-
297 cess reduces uncertainty. The detailed proof is provided in Appendix C.2.

298 **Accelerated Training.** To enhance the efficiency of our model, we accelerate both the training and
299 sampling processes. Traditional DDPM-based training involves learning to predict the added Gaus-
300 sian noise at each diffusion step, which can be inefficient (Ho et al., 2020). Instead, our denoising
301 network f_θ is designed to directly reconstruct the clean rPPG signal \mathbf{Y}_0 from the noisy input \mathbf{Y}_0 ,
302 conditioned on \mathbf{X}, \mathbf{C}^P , and the timestep k :

$$303 \quad \hat{\mathbf{Y}}_0 = f_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k). \quad (16)$$

304 In practice, for Equation 14, the mean μ_θ and covariance σ_k^2 in reverse process are parameterized
305 as $\mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k) = \frac{\sqrt{\bar{\alpha}_k}(1-\bar{\alpha}_{k-1})}{1-\bar{\alpha}_k} \mathbf{Y}_k + \frac{\sqrt{\bar{\alpha}_{k-1}}\beta_k}{1-\bar{\alpha}_k} f_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k)$, and $\Sigma_\theta = \sigma_k^2 \mathbf{I}$, where
306 $\sigma_k^2 = \frac{1-\bar{\alpha}_{k-1}}{1-\bar{\alpha}_k} \beta_k$. The mathematical details are presented in Appendix D.2. Furthermore, inspired
307 by the Fourier-based loss term, which is beneficial for the accurate reconstruction of the signals (Fons
308 et al., 2022), we propose to guide the diffusion training by applying it to the frequency domain with
309 the Fourier transform. Formally, our training objective integrates both time and frequency-domain
310 constraints:

$$311 \quad \mathcal{L}_\theta(\hat{\mathbf{Y}}_0, \mathbf{Y}_0) = \underbrace{1 - \text{Pearson}(\hat{\mathbf{Y}}_0, \mathbf{Y}_0)}_{\text{time-domain loss}} + \underbrace{\text{MSE}(\mathcal{F}(\hat{\mathbf{Y}}_0), \mathcal{F}(\mathbf{Y}_0))}_{\text{frequency-domain loss}}, \quad (17)$$

312 where *Pearson* represents Pearson correlation coefficient, *MSE* denotes Mean Square Error, and
313 \mathcal{F} denotes the Discrete Fourier Transform.

314 For inference, we start from $\mathbf{Y}_K \sim \mathcal{N}(0, \mathbf{I})$, K , \mathbf{X} , and \mathbf{C}^P . Then, we follow DDIM (Song et al.,
315 2021a; Qian et al., 2025) and perform the reverse process to obtain the final rPPG signal.

324 Table 1: Intra-dataset HR estimation results of models on the UBFC-rPPG, PURE, VIPL-HR, and
 325 MMPD datasets. **bold**: best results.

326 327 Method	328 329 330 331 332 333 334 335 336 337 338 339 Venue	340 UBFC-rPPG MAE \downarrow RMSE \downarrow $\rho \uparrow$			341 PURE MAE \downarrow RMSE \downarrow $\rho \uparrow$			342 MMPD MAE \downarrow RMSE \downarrow $\rho \uparrow$			343 VIPL-HR MAE \downarrow RMSE \downarrow $\rho \uparrow$			
		344 DeepPhy (Chen & McDuff, 2018)	345 ECCV'18	346 2.90	347 3.63	348 -	349 0.83	350 1.54	351 0.99	352 22.27	353 28.92	354 -0.03	355 11.0	356 13.8
348 PhysNet (Yu et al., 2019)	349 BMVC'19	350 2.95	351 3.67	352 0.97	353 2.10	354 2.60	355 0.99	356 4.80	357 11.80	358 0.60	359 10.80	360 14.80	361 0.20	
348 CVD (Niu et al., 2020)	349 ECCV'20	350 2.19	351 3.12	352 0.99	353 1.29	354 2.01	355 0.98	356 -	357 -	358 -	359 5.02	360 7.97	361 0.79	
348 TS-CAN (Liu et al., 2020)	349 NeurIPS'20	350 1.70	351 2.72	352 0.99	353 2.48	354 9.01	355 0.92	356 9.71	357 17.22	358 0.44	359 -	360 -	361 -	
348 Gideon et al. (Gideon & Stent, 2021)	349 ICCV'21	350 1.85	351 4.28	352 0.93	353 2.30	354 2.90	355 0.99	356 -	357 -	358 -	359 9.01	360 14.02	361 0.58	
348 Dual-GAN (Lu et al., 2021)	349 CVP'21	350 0.44	351 0.67	352 0.99	353 0.82	354 1.31	355 0.99	356 -	357 -	358 -	359 4.93	360 7.68	361 0.81	
348 PhysFormer (Yu et al., 2022)	349 CVP'22	350 0.50	351 0.71	352 0.99	353 1.10	354 1.75	355 0.99	356 11.99	357 18.41	358 0.18	359 4.97	360 7.79	361 0.78	
348 EfficientPhys (Liu et al., 2023)	349 WACV'23	350 1.14	351 1.81	352 0.99	353 -	354 -	355 -	356 13.47	357 21.32	358 0.21	359 -	360 -	361 -	
348 Li et al. (Li & Yin, 2023)	349 ICCV'23	350 0.48	351 0.64	352 1.00	353 0.64	354 1.16	355 0.99	356 -	357 -	358 -	359 4.97	360 7.79	361 0.78	
348 Yue et al. (Yue et al., 2023)	349 TPAMI'23	350 0.58	351 0.94	352 0.99	353 1.23	354 2.01	355 0.99	356 -	357 -	358 -	359 -	360 -	361 -	
348 Contrast-Phys+(Sun & Li, 2024)	349 TPAMI'24	350 0.21	351 0.80	352 0.99	353 0.48	354 0.98	355 0.99	356 -	357 -	358 -	359 -	360 -	361 -	
348 DiffPhys (Chen et al., 2024)	349 Bioeng'24	350 1.05	351 1.63	352 0.99	353 1.46	354 5.88	355 0.90	356 -	357 -	358 -	359 -	360 -	361 -	
348 CodePhys (Chu et al., 2025)	349 JBHI'25	350 0.21	351 0.26	352 0.99	353 0.39	354 0.83	355 0.99	356 -	357 -	358 -	359 4.27	360 7.11	361 0.81	
348 RhythmicMamba (Zou et al., 2025b)	349 AAAI'25	350 0.50	351 0.75	352 0.99	353 0.23	354 0.34	355 0.99	356 3.16	357 7.27	358 0.84	359 4.30	360 7.49	361 0.81	
348 PhysDiff (Qian et al., 2025)	349 AAAI'25	350 0.33	351 0.57	352 1.00	353 0.29	354 0.54	355 1.00	356 7.17	357 9.63	358 0.71	359 3.92	360 6.65	361 0.85	
FrePhys (Ours)		-	0.24	0.53	1.00	0.17	0.25	1.00	4.20	6.78	0.86	3.79	6.34	0.86

339 Table 2: HRV and RF estimation results of models on the UBFC-rPPG dataset. LF, HF, and RF
 340 represent low frequency, high frequency, and respiration frequency, respectively. “n.u.” denotes
 341 normalized units.

343 344 Method	345 346 347 348 Venue	349 LF (n.u.)			350 HF (n.u.)			351 LF/HF			352 RF (Hz)			
		353 SD \downarrow	354 RMSE \downarrow	355 $\rho \uparrow$	356 SD \downarrow	357 RMSE \downarrow	358 $\rho \uparrow$	359 SD \downarrow	360 RMSE \downarrow	361 $\rho \uparrow$	362 SD \downarrow	363 RMSE \downarrow	364 $\rho \uparrow$	
348 CVD (Niu et al., 2020)	349 ECCV'20	350 0.053	351 0.056	352 0.740	353 0.053	354 0.065	355 0.740	356 0.169	357 0.168	358 0.812	359 0.017	360 0.018	361 0.252	
348 Dual-GAN (Lu et al., 2021)	349 CVP'21	350 0.034	351 0.035	352 0.891	353 0.034	354 0.034	355 0.891	356 0.131	357 0.136	358 0.881	359 0.010	360 0.010	361 0.395	
348 Gideon et al. (Gideon & Stent, 2021)	349 ICCV'21	350 0.091	351 0.139	352 0.694	353 0.091	354 0.139	355 0.694	356 0.525	357 0.691	358 0.684	359 0.061	360 0.098	361 0.103	
348 Contrast-Phys (Sun & Li, 2022)	349 ECCV'22	350 0.050	351 0.098	352 0.798	353 0.050	354 0.098	355 0.798	356 0.205	357 0.395	358 0.782	359 0.055	360 0.083	361 0.347	
348 Contrast-Phys+ (Sun & Li, 2024)	349 TPAMI'24	350 0.025	351 0.025	352 0.947	353 0.025	354 0.025	355 0.947	356 0.064	357 0.066	358 0.963	359 0.029	360 0.029	361 0.803	
348 PhysDiff (Qian et al., 2025)	349 AAAI'25	350 0.029	351 0.022	352 0.978	353 0.016	354 0.022	355 0.978	356 0.079	357 0.066	358 0.979	359 0.006	360 0.007	361 0.811	
FrePhys (Ours)		-	0.016	0.014	0.988	0.013	0.014	0.988	0.079	0.066	0.989	0.006	0.005	0.845

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

355 **Datasets.** Following (Zou et al., 2025b; Qian et al., 2025), we evaluate our method on four
 356 benchmark datasets: UBFC-rPPG (Bobbia et al., 2019) and PURE (Stricker et al., 2014) are two
 357 small-scale datasets that contain 59 and 42 videos, respectively, in relatively constrained conditions.
 358 MMPD (Tang et al., 2023) dataset is a medium-scale dataset containing 660 videos under 4 distinct
 359 lighting configurations. VIPL-HR (Niu et al., 2019) dataset is a large-scale dataset containing 2,378
 360 videos captured across 9 scenarios and 4 recording devices. The detailed description of datasets is
 361 provided in Appendix F.1.

362 **Evaluation Metrics.** We employ three commonly used metrics, Mean Absolute Error (MAE), Root
 363 Mean Square Error (RMSE), and Pearson’s correlation coefficient ρ , to evaluate the performance of
 364 HR estimation. For the evaluation of HRV features, we follow the approach outlined in (Yu et al.,
 365 2023; Sun & Li, 2024) and employ the Standard Deviation (SD), RMSE, and ρ as evaluation metrics.
 366 The detailed description of evaluation metrics is provided in Appendix F.2.

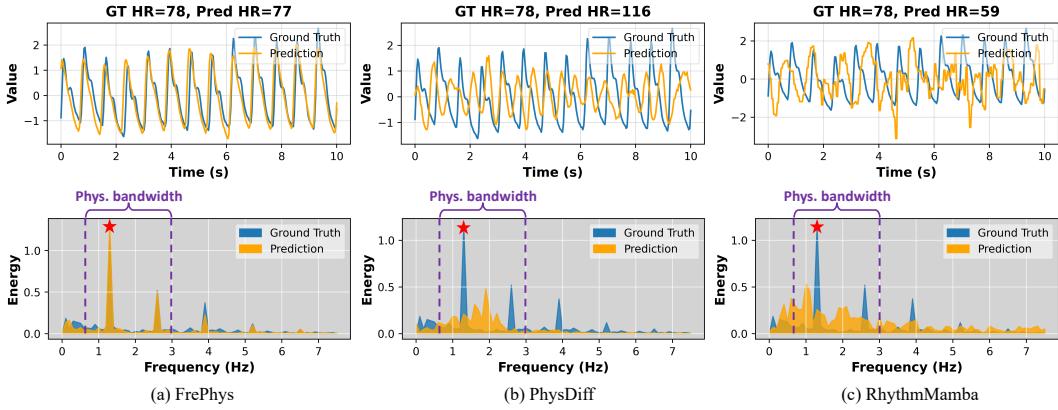
4.2 QUANTITATIVE ANALYSIS

370 In this subsection, we present quantitative comparisons with state-of-the-art methods and conduct
 371 ablation studies on the frequency module to validate its effectiveness. More experiments and visu-
 372 alizations are provided in Appendix G.

373 **Intra-dataset Evaluation.** We present the HR evaluation results of our method compared to sev-
 374 eral representative baselines on four benchmarks in Tab. 1, adhering to the evaluation protocols
 375 established in prior work (Zou et al., 2025b; Qian et al., 2025). From the table, we observe that
 376 our method sets a new state-of-the-art performance on the more challenging MMPD and VIPL-HR
 377 datasets by a large margin. These findings demonstrate that incorporating physiological frequency
 378 priors enables our approach to effectively mitigate noise interference. In addition to HR estimation,

378
379 Table 3: Cross-dataset HR estimation results of the models trained on PURE/UBFC-rPPG and tested
380 on UBFC-rPPG/PURE/MMPD.

380 381 Method	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Venue	380 381 PURE \rightarrow UBFC-rPPG			380 381 UBFC-rPPG \rightarrow PURE			380 381 PURE \rightarrow MMPD		
		382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 MAE \downarrow	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 RMSE \downarrow	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 $\rho \uparrow$	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 MAE \downarrow	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 RMSE \downarrow	382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 $\rho \uparrow$			
DeepPhys (Chen & McDuff, 2018)	ECCV'18	1.21	2.90	0.99	5.54	18.51	0.66	16.92	24.61	0.05
PhysNet (Yu et al., 2019)	BMVC'19	1.63	3.79	0.98	9.36	20.63	0.62	13.22	19.61	0.23
TS-CAN (Liu et al., 2020)	NeurIPS'20	1.30	2.87	0.99	3.69	13.80	0.82	13.94	21.61	0.20
PhysFormer (Yu et al., 2022)	CVPR'22	1.44	3.77	0.98	12.92	24.36	0.47	14.57	20.71	0.15
EfficientPhys (Liu et al., 2023)	WACV'23	2.13	3.00	0.99	5.47	17.04	0.71	14.03	21.62	0.17
RhythmMamba (Zou et al., 2025b)	AAAI'25	0.95	1.83	0.99	1.98	6.51	0.96	10.44	16.70	0.36
PhysDiff (Qian et al., 2025)	AAAI'25	0.52	0.84	1.00	3.30	6.89	0.96	10.96	14.93	0.28
FréPhys (Ours)	-	0.43	0.79	1.00	0.95	3.15	0.99	10.11	14.34	0.48
								8.91	12.86	0.57

401
402 Figure 3: Time and frequency domain visualizations of rPPG signal predictions on the VIPL dataset
403 under head motion scenario. The results are presented for (a) the proposed method, (b) PhysD-
404 iff (Qian et al., 2025), and (c) RhythmMamba (Zou et al., 2025b). In the frequency-domain plots,
405 the purple dashed box indicates the physiological signal bandwidth ranging from 0.66 to 3.0 Hz,
406 corresponding to typical human cardiac frequencies. \star represents the spectrum peak of HR.407
408 we also evaluate our method on two other critical physiological indicators, i.e., heart rate variability
409 (HRV) and respiration frequency (RF), which require high-quality rPPG signals for accurate peak
410 detection and reliable analysis. As shown in Tab. 2, our method significantly outperforms existing
411 methods across most metrics. This demonstrates that our method not only captures precise cardiac
412 pulsation cycles but also reconstructs high-fidelity rPPG signals in the time domain.413
414 **Cross-dataset Evaluation.** As shown in Tab. 3, we conduct four cross-dataset evaluations to sim-
415 ulate unseen real-world scenarios. The results show that the performance of most models drops
416 significantly when transferred from a simple domain to a complex domain, which is a challenge
417 in this field. Benefiting from physiological spectrum modeling, our method effectively improves
418 generalization and achieves the best performance in all settings.419
420 **Ablation Studies.** We investigate the impact of different
421 components in our method through the following abla-
422 tion studies. As shown in Tab. 4, when physiological fre-
423 quency information is missing, that is, only using time-
424 domain MSTmap input as a condition, the performance
425 degrades significantly. Additionally, it is evident that a
426 series of physiological frequency denoiser modules play
427 a crucial role, which verifies the necessity of each compo-
428 nent within our method. The combination of PBF, PSM,
429 and ASS achieves the best performance, highlighting that
430 its combination brings unique benefits.431
432

4.3 QUALITATIVE ANALYSIS

433
434 **Visualization of rPPG Prediction.** We visualize the rPPG predictions to highlight the improve-
435 ments of our method in rPPG estimation quality. We present a prediction showcase on the VIPL
436 dataset under the head motion scenario, as shown in Fig. 3. PhysDiff (Qian et al., 2025), Rhyth-437
438 Table 4: Ablation study of the individual
439 contributions on VIPL-HR.

PBF	PSM	ASS	MAE	RMSE	ρ
-	-	-	4.22	7.15	0.83
✓	-	-	4.03	6.77	0.82
-	✓	-	3.98	6.55	0.84
-	-	✓	4.10	6.95	0.82
✓	✓	-	3.91	6.42	0.85
✓	-	✓	4.11	6.71	0.84
-	✓	✓	3.95	6.48	0.83
✓	✓	✓	3.79	6.34	0.86

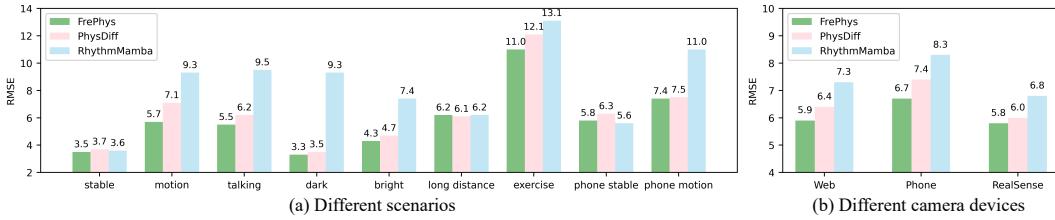


Figure 4: HR estimation results on VIPL-HR under different scenarios and camera devices.

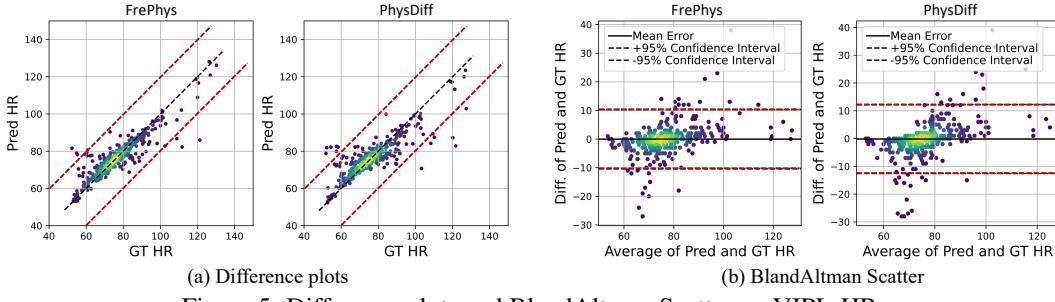


Figure 5: Difference plots and BlandAltman Scatter on VIPL-HR.

mMamba (Zou et al., 2025b) are selected as the representative SOTA methods. We observe that the rPPG signal predicted by PhysDiff and RhythmMamba exhibits numerous burrs, which reflect the limitations of modeling in the time domain, namely, the difficulty in capturing dominant physiological frequency components and being vulnerable to noise. Our FrePhys addresses this limitation effectively, which not only keeps pace with the label sequence but also accurately exhibits a smoother appearance with fewer irregularities. In addition, we also observe that the frequency spectra of PhysDiff and RhythmMamba exhibit relatively dispersed energy distributions. In contrast, our method effectively concentrates spectral energy on several key frequency components corresponding to physiological signals, resulting in an obvious sparsity in the frequency domain. This focused energy distribution highlights our method’s ability to isolate and enhance vital physiological components while suppressing irrelevant noise.

Qualitative Results for Robustness. To evaluate the robustness of our model across diverse scenarios and camera device conditions, we provide detailed results from the VIPL-HR dataset, encompassing 9 distinct scenarios and 3 types of camera devices. As illustrated in Fig. 4, our proposed method consistently outperforms other methods across these varied conditions, which indicates its robustness in remote physiological signal measurement.

Qualitative Results for Consistency. To further evaluate the consistency between predicted HR and ground truth measurements across different ranges, Figure 5 presents both scatter and BlandAltman plots on the VIPL dataset. Compared to the diffusion-based PhysDiff (Qian et al., 2025), our proposed method shows scatter points more closely aligned with the identity line ($y = x$), indicating fewer outliers. Additionally, the BlandAltman plot reveals that our method exhibits narrower confidence intervals, suggesting reduced variability between predicted and actual HR values. These visualizations collectively indicate that our method achieves superior consistency with ground truth HR, highlighting its accuracy across all HR distributions.

5 CONCLUSION

In this paper, we introduced **FrePhys**, a novel frequency-aware diffusion model designed to enhance remote physiological estimation by integrating physiological frequency priors. Addressing the limitations of existing time-domain approaches, particularly their susceptibility to noise from motion artifacts and illumination variations, we leverage frequency-domain insights to improve signal fidelity. Extensive evaluations on multiple public datasets demonstrate that our method outperforms state-of-the-art methods in HR, HRV, and RF estimation tasks. Notably, our method exhibits superior generalization capabilities in cross-dataset scenarios, underscoring its robustness in diverse and challenging conditions.

486

6 ETHICS STATEMENT

488 This work complies with the ICLR Code of Ethics. No human or animal experiments were con-
 489 ducted. All datasets used (UBFC-rPPG, PURE, MMPD, and VIPL-HR) were obtained in accord-
 490 ance with their respective usage policies and do not contain personally identifiable information.
 491 We ensured that our methods do not raise privacy, security, or fairness concerns, and we took care
 492 to minimize potential biases. We are committed to maintaining transparency, integrity, and ethical
 493 responsibility throughout this research.

494

495 7 REPRODUCIBILITY STATEMENT

496 We have taken extensive steps to ensure the reproducibility of our results. An anonymous repository
 497 provides full access to our code and processed datasets. Detailed descriptions of the experimen-
 498 tal setup, including training procedures, model configurations, and hardware specifications, are in-
 499 cluded in the paper. These measures are intended to facilitate replication and foster further research
 500 in this area.

501

502 REFERENCES

503 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
 504 natural images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 505 Recognition (CVPR)*, pp. 18208–18218, 2022.

506 Serge Bobbia, Richard Macwan, Yannick Benezeth, Alamin Mansouri, and Julien Dubois. Unsu-
 507 pervised skin tissue segmentation for remote photoplethysmography. *Pattern Recognition Letters*,
 508 124:82–90, 2019.

509 E Oran Brigham and Richard E Morrow. The fast fourier transform. *IEEE spectrum*, 4(12):63–70,
 510 1967.

511 Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
 512 diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 513 23206–23217, 2023.

514 Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
 515 detection. *arXiv preprint arXiv:2211.09788*, 2022.

516 Shutao Chen, Kwan-Long Wong, Jing-Wei Chin, Tszi-Tai Chan, and Richard HY So. Diffphys:
 517 Enhancing signal-to-noise ratio in remote photoplethysmography signal using a diffusion model
 518 approach. *Bioengineering*, 11(8):743, 2024.

519 Weixuan Chen and Daniel McDuff. Deepphys: Video-based physiological measurement using con-
 520 volutional attention networks. In *Proceedings of the European Conference on Computer Vision*,
 521 pp. 349–365, 2018.

522 Shuyang Chu, Menghan Xia, Mengyao Yuan, Xin Liu, Tapio Seppänen, Guoying Zhao, and Jingang
 523 Shi. Codephys: Robust video-based remote physiological measurement through latent codebook
 524 querying. *IEEE Journal of Biomedical and Health Informatics*, 2025.

525 Gerard De Haan and Vincent Jeanne. Robust pulse rate from chrominance-based rppg. *IEEE Trans-
 526 actions on Biomedical Engineering*, 60(10):2878–2886, 2013.

527 Wan-Cyuan Fan, Yen-Chun Chen, DongDong Chen, Yu Cheng, Lu Yuan, and Yu-Chiang Frank
 528 Wang. Frido: Feature pyramid diffusion for complex scene image synthesis. *arXiv preprint
 529 arXiv:2208.13753*, 2022.

530 Elizabeth Fons, Alejandro Sztrajman, Yousef El-Laham, Alexandros Iosifidis, and Svitlana
 531 Vyetrenko. Hypertime: Implicit neural representation for time series. *arXiv preprint
 532 arXiv:2208.05836*, 2022.

540 Shruti Gedam and Sanchita Paul. Automatic stress detection using wearable sensors and machine
 541 learning: A review. In *2020 11th International Conference on Computing, Communication and*
 542 *Networking Technologies (ICCCNT)*, pp. 1–7. IEEE, 2020.

543

544 John Gideon and Simon Stent. The way to my heart is through contrastive learning: Remote photo-
 545 plethysmography from unlabelled video. In *Proceedings of the IEEE/CVF International Confer-*
 546 *ence on Computer Vision*, pp. 3995–4004, 2021.

547

548 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 549 *neural information processing systems*, 33:6840–6851, 2020.

550

551 Bin Huang, Shen Hu, Zimeng Liu, Chun-Liang Lin, Junfeng Su, Changchen Zhao, Li Wang, and
 552 Wenjin Wang. Challenges and prospects of visual contactless physiological monitoring in clinical
 553 study. *NPJ Digital Medicine*, 6(1):231, 2023.

554 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 555 *arXiv:1312.6114*, 2013.

556

557 Magdalena Lewandowska, Jacek Rumiński, Tomasz Kocejko, and Jędrzej Nowak. Measuring pulse
 558 rate with a webcam—a non-contact method for evaluating cardiac activity. In *Proc. FedCSIS*, pp.
 559 405–410, 2011.

560

561 Xiaobai Li, Jie Chen, Guoying Zhao, and Matti Pietikainen. Remote heart rate measurement from
 562 face videos under realistic situations. In *Proceedings of the IEEE/CVF Conference on Computer*
 563 *Vision and Pattern Recognition (CVPR)*, pp. 4264–4271, 2014.

564

565 Zhihua Li and Lijun Yin. Contactless pulse estimation leveraging pseudo labels and self-supervision.
 566 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 20588–
 567 20597, 2023.

568

569 Xin Liu, Josh Fromm, Shwetak Patel, and Daniel McDuff. Multi-task temporal shift attention net-
 570 works for on-device contactless vitals measurement. In *Advances in Neural Information Process-*
 571 *ing Systems*, volume 33, pp. 19400–19411, 2020.

572

573 Xin Liu, Brian Hill, Ziheng Jiang, Shwetak Patel, and Daniel McDuff. Efficientphys: Enabling
 574 simple, fast and accurate camera-based cardiac measurement. In *Proceedings of the IEEE/CVF*
 575 *Winter Conference on Applications of Computer Vision*, pp. 5008–5017, 2023.

576

577 Xin Liu, Yuting Zhang, Zitong Yu, Hao Lu, Huanjing Yue, and Jingyu Yang. rppg-mae: Self-
 578 supervised pretraining with masked autoencoders for remote physiological measurements. *IEEE*
 579 *Transactions on Multimedia*, 2024.

580

581 Hao Lu, Hu Han, and S Kevin Zhou. Dual-gan: Joint bvp and noise modeling for remote physiolog-
 582 ical measurement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 583 *Recognition (CVPR)*, pp. 12404–12413, 2021.

584

585 Chaoqi Luo, Yiping Xie, and Zitong Yu. Physmamba: Efficient remote physiological measurement
 586 with slowfast temporal difference mamba. In *Chinese Conference on Biometric Recognition*, pp.
 587 248–259. Springer, 2024.

588

589 Xuesong Niu, Shiguang Shan, Hu Han, and Xilin Chen. Rhythmnet: End-to-end heart rate estima-
 590 tion from face via spatial-temporal representation. *IEEE Transactions on Image Processing*, 29:
 591 2409–2423, 2019.

592

593 Xuesong Niu, Zitong Yu, Hu Han, Xiaobai Li, Shiguang Shan, and Guoying Zhao. Video-based
 594 remote physiological measurement via cross-verified feature disentangling. In *Proceedings of the*
 595 *European Conference on Computer Vision*, pp. 295–310, 2020.

596

597 Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard. Non-contact, automated cardiac pulse
 598 measurements using video imaging and blind source separation. *Optics express*, 18(10):10762–
 599 10774, 2010.

594 Wei Qian, Dan Guo, Kun Li, Xiaowei Zhang, Xilan Tian, Xun Yang, and Meng Wang. Dual-
 595 path tokenlearner for remote photoplethysmography-based physiological measurement with facial
 596 videos. *IEEE Transactions on Computational Social Systems*, 2024a.

597 Wei Qian, Kun Li, Dan Guo, Bin Hu, and Meng Wang. Cluster-phys: Facial clues clustering to-
 598 wards efficient remote physiological measurement. In *Proceedings of the 32nd ACM International
 599 Conference on Multimedia*, pp. 330–339, 2024b.

600 Wei Qian, Gaoji Su, Dan Guo, Jinxing Zhou, Xiaobai Li, Bin Hu, Shengeng Tang, and Meng Wang.
 601 Physdiff: Physiology-based dynamicity disentangled diffusion model for remote physiological
 602 measurement. *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2025.

603 Hang Shao, Lei Luo, Jianjun Qian, Mengkai Yan, Shuo Chen, and Jian Yang. Remote photoplethys-
 604 mography in real-world and extreme lighting scenarios. In *Proceedings of the Computer Vision
 605 and Pattern Recognition Conference*, pp. 10858–10867, 2025.

606 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 607 national Conference on Learning Representations*, pp. 1–20, 2021a.

608 Rencheng Song, Huan Chen, Juan Cheng, Chang Li, Yu Liu, and Xun Chen. Pulsegan: Learning to
 609 generate realistic pulse waveforms in remote photoplethysmography. *IEEE Journal of Biomedical
 610 and Health Informatics*, 25(5):1373–1384, 2021b.

611 Jeremy Speth, Nathan Vance, Patrick Flynn, and Adam Czajka. Non-contrastive unsupervised learn-
 612 ing of physiological signals from video. In *Proceedings of the IEEE/CVF Conference on Com-
 613 puter Vision and Pattern Recognition (CVPR)*, pp. 14464–14474, 2023.

614 Radim Špetlík, Vojtech Franc, and Jirí Matas. Visual heart rate estimation with convolutional neural
 615 network. In *Proceedings of the British Machine Vision Conference*, pp. 3–6, 2018.

616 Ronny Stricker, Steffen Müller, and Horst-Michael Gross. Non-contact video-based pulse rate mea-
 617 surement on a mobile service robot. In *Proc. IISRHIC*, pp. 1056–1062, 2014.

618 Zhaodong Sun and Xiaobai Li. Contrast-phys: Unsupervised video-based remote physiological
 619 measurement via spatiotemporal contrast. In *Proceedings of the European Conference on Com-
 620 puter Vision*, pp. 492–510, 2022.

621 Zhaodong Sun and Xiaobai Li. Contrast-phys+: Unsupervised and weakly-supervised video-based
 622 remote physiological measurement via spatiotemporal contrast. *IEEE Transactions on Pattern
 623 Analysis and Machine Intelligence*, 2024.

624 Jiankai Tang, Kequan Chen, Yuntao Wang, Yuanchun Shi, Shwetak Patel, Daniel McDuff, and Xin
 625 Liu. Mmpd: multi-domain mobile video physiology dataset. In *2023 45th Annual International
 626 Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 1–5. IEEE,
 627 2023.

628 Wim et al. Verkruyse. Remote plethysmographic imaging using ambient light. *Optics Express*, 16
 629 (26):21434–21445, 2008.

630 Wenjin Wang, Albertus C Den Brinker, Sander Stuijk, and Gerard De Haan. Algorithmic principles
 631 of remote ppg. *IEEE Transactions on Biomedical Engineering*, 64:1479–1491, 2016.

632 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
 633 bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 634 forecasting. *Advances in Neural Information Processing Systems*, 36:76656–76679, 2023.

635 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 636 frequency filters for time series forecasting. *Advances in Neural Information Processing Systems*,
 637 37:55115–55140, 2024.

638 Zitong Yu, Xiaobai Li, and Guoying Zhao. Remote photoplethysmograph signal measurement from
 639 facial videos using spatio-temporal networks. In *Proceedings of the British Machine Vision Con-
 640 ference*, pp. 1–12, 2019.

648 Zitong Yu, Xiaobai Li, Pichao Wang, and Guoying Zhao. Transrppg: Remote photoplethysmography
649 transformer for 3d mask face presentation attack detection. *IEEE Signal Processing Letters*,
650 28:1290–1294, 2021.

651

652 Zitong Yu, Yuming Shen, Jingang Shi, Hengshuang Zhao, Philip Torr, and Guoying Zhao. Phys-
653 former: Facial video-based physiological measurement with temporal difference transformer. In
654 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
655 pp. 4186–4196, 2022.

656 Zitong Yu, Yuming Shen, Jingang Shi, Hengshuang Zhao, Yawen Cui, Jiehua Zhang, Philip Torr,
657 and Guoying Zhao. Physformer++: Facial video-based physiological measurement with slowfast
658 temporal difference transformer. *International Journal of Computer Vision*, 131(6):1307–1330,
659 2023.

660 Zijie Yue, Miaojing Shi, and Shuai Ding. Facial video-based remote physiological measurement via
661 self-supervised learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45
662 (11):13844–13859, 2023.

663

664 Bochao Zou, Zizheng Guo, Jiansheng Chen, Junbao Zhuo, Weiran Huang, and Huimin Ma. Rhyth-
665 former: Extracting patterned rppg signals based on periodic sparse attention. *Pattern Recognition*,
666 164:111511, 2025a.

667 Bochao Zou, Zizheng Guo, Xiaocheng Hu, and Huimin Ma. Rhythmmamba: Fast remote physiolog-
668 ical measurement with arbitrary length videos. *Proceedings of the AAAI Conference on Artificial
669 Intelligence (AAAI)*, 2025b.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 **Appendix for FrePhys: Frequency-aware Diffusion Model for**
704 **Remote Physiological Measurement**
705
706
707

708 **Section A Detailed Related Work**
709 **Section B Preliminaries**
710 **Section C Theoretical Proof**
711 **Section D Mathematical Derivation Details**
712 **Section E Model Details**
713 **Section F Reproduction Details**
714 **Section G Additional Experimental Results**
715 **Section H Limitations ans Future Work**
716 **Section I LLM Usage**
717
718

719
720 **A DETAILED RELATED WORK**
721
722

723 **A.1 REMOTE PHYSIOLOGICAL MEASUREMENT**
724

725 The physiological mechanism of rPPG lies in the periodic changes in subcutaneous blood volume
726 driven by cardiac contraction and relaxation. These fluctuations alter the skin’s absorption and scat-
727 tering of light, producing subtle color variations that are imperceptible to the human eye. Early
728 work focused on hand-crafted methods, including blind source separation (BSS) approaches (Poh
729 et al., 2010; Lewandowska et al., 2011) using PCA/ICA to isolate rPPG signals from noise, and
730 model-driven techniques like CHROM and POS (De Haan & Jeanne, 2013; Li et al., 2014), which
731 leverage color space projections based on physiological priors. These methods perform well under
732 constrained settings but degrade significantly with motion or illumination changes. Deep learning
733 methods then began to flourish. HR-CNN (Špetlík et al., 2018) is the first work using deep learning
734 models for rPPG, which proposed a two-step convolutional neural network to estimate HR value.
735 DeepPhys (Chen & McDuff, 2018) then proposed to estimate BVP signals from the normalized dif-
736 ference of adjacent frames and to use raw facial images to adaptively generate attention maps to
737 guide the estimation. CVD (Niu et al., 2020) utilized the multi-scale spatial-temporal map to repre-
738 sent physiological features in raw facial videos and proposed the cross-verified feature disentangling
739 strategy to separate noise features and physiological features. Dual-GAN (Lu et al., 2021) employed
740 two GANs to jointly model BVP prediction and noise distribution to improve robustness across fa-
741 cial regions. To capture long-range temporal dependencies, subsequent research (PhysFormer (Yu
742 et al., 2022), EfficientPhys (Liu et al., 2023), Dual-TL (Qian et al., 2024a), RhythmFormer (Zou
743 et al., 2025a)) turned to the Transformer architecture. To further maintain linear complexity, some
744 Mamba-based work (RhythmMamba (Zou et al., 2025b), PhysMamba (Luo et al., 2024)) then in-
745 troduced the state space model, achieving high performance with low memory usage and improved
746 speed. Due to the scarcity of labeled data, self-supervised learning has gained attention. Contrastive
747 approaches (Gideon & Stent, 2021; Sun & Li, 2024) and masked autoencoding (Liu et al., 2024;
748 Speth et al., 2023) enable robust representation learning from unlabeled videos, showing strong
749 potential for in-the-wild applications.
750

751 **A.2 DIFFUSION MODEL FOR RPPG ESTIMATION**
752
753

754 Diffusion models have emerged as powerful generative frameworks that gradually corrupt training
755 data with noise and learn to reverse this process to generate clean samples. Initially proposed for
756 image generation (Ho et al., 2020), denoising diffusion probabilistic models (DDPMs) have since
757 been successfully applied to a broad range of domains, including cross-modal generation (Avra-
758 amhi et al., 2022; Fan et al., 2022), video editing (Ceylan et al., 2023), and object detection (Chen
759 et al., 2022). In remote physiological measurement, particularly rPPG estimation, the challenges
760 of complex motion, illumination variability, and weak signal strength motivate the need for robust
761

denoising techniques. Diffusion models, with their capacity to model complex data distributions and restore clean signals, offer a promising direction. A recent pioneering work, PhysDiff (Qian et al., 2025), introduces diffusion to the rPPG field by designing a dynamic-aware signal representation. PhysDiff decomposes rPPG signals into two components: trend, representing temporal directionality (capillary expansion/contraction), and amplitude, quantifying signal fluctuation intensity. Building upon this direction, our proposed method explores a frequency-aware perspective for rPPG estimation using diffusion models. Inspired by the frequency modeling being beneficial for sequence signal analysis (Yi et al., 2023; 2024), we try to introduce the physiological frequency prior into rPPG estimation. While PhysDiff emphasizes time-domain signal dynamics, our method shifts focus to the periodic nature of rPPG by modeling frequency-domain features.

B PRELIMINARIES

B.1 MULTIPLICATION OF COMPLEX NUMBERS

Consider two complex numbers $\mathcal{Z}_1 = a + jb$ and $\mathcal{Z}_2 = c + jd$, where a and c denote the real parts of \mathcal{Z}_1 and \mathcal{Z}_2 , respectively, and b and d represent the corresponding imaginary parts. The multiplication of two complex numbers involves applying the distributive property of multiplication over addition, along with the identity $j^2 = -1$, where j is the imaginary unit. The product of \mathcal{Z}_1 and \mathcal{Z}_2 is computed as follows:

$$\begin{aligned} \mathcal{Z}_1 \mathcal{Z}_2 &= (a + jb)(c + jd) \\ &= ac + a(jd) + jb(c) + jb(jd) \\ &= ac + j(ad) + j(bc) + j^2(bd) \\ &= (ac - bd) + j(ad + bc). \end{aligned} \tag{18}$$

B.2 DISCRETE FOURIER TRANSFORM

The *Discrete Fourier Transform* (DFT) (Brigham & Morrow, 1967) is a fundamental tool in signal processing and spectral analysis. It transforms a discrete-time signal from the temporal domain to the frequency domain, enabling a decomposition of the signal into its constituent frequency components. This facilitates the precise identification and analysis of underlying periodic patterns and oscillatory behavior.

Given a discrete real-valued temporal signal $\mathbf{x} \in \mathbb{R}^T$, its frequency-domain representation $\mathbf{x}^F \in \mathbb{C}^T$ is a complex-valued sequence defined by:

$$\mathbf{x}^F[i] = \sum_{t=0}^{T-1} \mathbf{x}[t] \cdot e^{-j2\pi it/T} = \underbrace{\sum_{t=0}^{T-1} \mathbf{x}[t] \cdot \cos\left(\frac{2\pi it}{T}\right)}_{\text{Real Part}} - j \underbrace{\sum_{t=0}^{T-1} \mathbf{x}[t] \cdot \sin\left(\frac{2\pi it}{T}\right)}_{\text{Imaginary Part}}, \tag{19}$$

where $i \in 0, 1, \dots, T-1$ indexes the discrete frequency bins, and j is the imaginary unit such that $j^2 = -1$. The corresponding physical frequency for the i -th bin is given by $\lambda_i = i f_s / T$ Hz, where f_s is the sampling rate of the signal \mathbf{x} . For real-valued signals, the DFT exhibits conjugate symmetry:

$$\mathbf{x}^F[T-n] = \overline{\mathbf{x}^F[n]}, \quad \text{for } n = 1, \dots, \lfloor T/2 \rfloor, \tag{20}$$

allowing us to retain only the first $\lfloor T/2 \rfloor + 1$ frequency components without loss of information. Hence, in practice, we define the DFT operator as a mapping $\mathcal{F} : \mathbb{R}^T \rightarrow \mathbb{C}^{\lfloor T/2 \rfloor + 1}$ for computational efficiency. Each complex coefficient $\mathbf{x}^F[i]$ in the frequency domain can be uniquely expressed in terms of its amplitude and phase:

$$A[i] = |\mathbf{x}^F[i]| = \sqrt{\text{Re}(\mathbf{x}^F[i])^2 + \text{Im}(\mathbf{x}^F[i])^2}, \quad \phi[i] = \tan^{-1}\left(\frac{\text{Im}(\mathbf{x}^F[i])}{\text{Re}(\mathbf{x}^F[i])}\right), \tag{21}$$

where $\text{Re}(\cdot)$ and $\text{Im}(\cdot)$ denote the real and imaginary parts, respectively. The amplitude $A[i]$ reflects the energy concentration at frequency λ_i , while the phase $\phi[i]$ captures the temporal alignment of the sinusoidal component at that frequency.

810 Since the DFT is a bijective (invertible) transformation, the original time-domain signal $\mathbf{x}[t]$ can
 811 be exactly reconstructed from its frequency-domain representation $\mathbf{x}^F[i]$ via the Inverse Discrete
 812 Fourier Transform (IDFT), expressed as:

$$814 \quad \mathbf{x}[t] = \mathcal{F}^{-1}(\mathbf{x}^F)[t] = \frac{1}{T} \sum_{i=0}^{T-1} \mathbf{x}^F[i] \cdot e^{j2\pi it/T}, \quad t = 0, 1, \dots, T-1. \quad (22)$$

817 C THEORETICAL PROOF

819 C.1 PROOF OF THEOREM 1

821 **Theorem 1** (*Frequency-domain Convolution Theorem*) *The multiplication of two signals in the frequency*
 822 *domain is equivalent to the frequency transformation of a circular convolution of these two*
 823 *signals in the temporal domain, which can be summarized as:*

$$824 \quad \mathcal{F}[\mathbf{M}(v) \otimes \mathbf{Z}(v)] = \mathcal{F}(\mathbf{M}(v)) \odot \mathcal{F}(\mathbf{Z}(v)), \quad (23)$$

826 *where \otimes and \odot represent the circular convolutional operation and element-multiplication operation,*
 827 *respectively, $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ represent two signals for the time variable v , and $\mathcal{F}(\cdot)$ denotes the*
 828 *Discrete Fourier Transform.*

829 *Proof.* Let $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ are two length T signals. Let $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ be two discrete signals of
 830 length T , defined over the time index $v = 0, 1, \dots, T-1$. Let their DFTs be denoted by $\mathcal{F}(\mathbf{M}(v))$
 831 and $\mathcal{F}(\mathbf{Z}(v))$, respectively. We define the circular convolution of $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ as:

$$833 \quad \mathbf{Y}(v) = \mathbf{M}(v) \otimes \mathbf{Z}(v) = \sum_{u=0}^{T-1} \mathbf{M}(u) \cdot \mathbf{Z}((v-u) \bmod T). \quad (24)$$

836 The DFT of the resulting signal $\mathbf{Y}(v)$ is given by:

$$838 \quad \mathcal{F}(\mathbf{Y}(v)) = \sum_{v=0}^{T-1} \mathbf{Y}(v) \cdot e^{-j2\pi iv/T}, \quad i = 0, 1, \dots, T-1, \quad (25)$$

841 where j is the imaginary unit, and i denotes the frequency index. Substituting the expression for
 842 $\mathbf{Y}(v)$ into the DFT, we obtain:

$$843 \quad \begin{aligned} \mathcal{F}(\mathbf{Y}(v)) &= \sum_{v=0}^{T-1} \left(\sum_{u=0}^{T-1} \mathbf{M}(u) \cdot \mathbf{Z}((v-u) \bmod T) \right) e^{-j2\pi iv/T} \\ 844 &= \sum_{u=0}^{T-1} \mathbf{M}(u) \cdot \sum_{v=0}^{T-1} \mathbf{Z}((v-u) \bmod T) \cdot e^{-j2\pi iv/T}. \end{aligned} \quad (26)$$

849 Next, we perform a change of variable by letting $r = (v-u) \bmod T$, which implies $v = (r+u)$
 850 $\bmod T$:

$$851 \quad \begin{aligned} \mathcal{F}(\mathbf{Y}(v)) &= \sum_{u=0}^{T-1} \mathbf{M}(u) \cdot \sum_{r=0}^{T-1} \mathbf{Z}(r) \cdot e^{-j2\pi i(r+u)/T} \\ 852 &= \sum_{u=0}^{T-1} \mathbf{M}(u) \cdot e^{-j2\pi iu/T} \cdot \sum_{r=0}^{T-1} \mathbf{Z}(r) \cdot e^{-j2\pi ir/T}. \end{aligned} \quad (27)$$

857 Rewriting the above expression, we have:

$$859 \quad \mathcal{F}(\mathbf{Y}(v)) = \left(\sum_{u=0}^{T-1} \mathbf{M}(u) \cdot e^{-j2\pi iu/T} \right) \cdot \left(\sum_{r=0}^{T-1} \mathbf{Z}(r) \cdot e^{-j2\pi ir/T} \right) = \mathcal{F}(\mathbf{M}(v)) \odot \mathcal{F}(\mathbf{Z}(v)). \quad (28)$$

862 Thus, the Discrete Fourier Transform of the circular convolution of two signals $\mathbf{M}(v)$ and $\mathbf{Z}(v)$ is
 863 equivalent to the element-wise product of their respective DFTs, i.e., $\mathcal{F}[\mathbf{M}(v) \otimes \mathbf{Z}(v)] = \mathcal{F}(\mathbf{M}(v)) \odot$
 $\mathcal{F}(\mathbf{Z}(v))$. This completes the proof.

864 C.2 PROOF OF PROPOSITION 1
865866 **Proposition 1** *The conditional entropy is satisfied:*

867
$$H(Y_{k-1}|Y_k, X, C^P) < H(Y_{k-1}|Y_k, X), \quad (29)$$

868

869 *indicating that the inclusion of additional physiological frequency condition C^P in the reverse pro-
870 cess reduces uncertainty.*871 *Proof.* We use the notion of conditional entropy from information theory to quantify uncertainty. In
872 the reverse process of DDPM (Ho et al., 2020), the rPPG signal at step k , denoted \bar{Y}_k , is treated as
873 a condition. The uncertainty of the reverse process can thus be expressed as:
874

875
$$H(Y_{k-1} | \bar{Y}_k) = - \int p_\theta(Y_{k-1}, \bar{Y}_k) \log p_\theta(Y_{k-1} | \bar{Y}_k) d\bar{Y}_k. \quad (30)$$

876

877 Similarly, in PhysDiff (Qian et al., 2025), the condition includes only the facial observation sequence
878 X , so the uncertainty is modeled as $H(Y_{k-1} | Y_k, X)$. In our proposed method, the condition is
879 extended to include physiological frequency information C^P , yielding $H(Y_{k-1} | Y_k, X, C^P)$.
880

881 From the basic property of conditional entropy, we know:

882
$$H(Y_{k-1} | Y_k) \leq H(Y_{k-1}). \quad (31)$$

883

884 Using the definition of mutual information, we have:

885
$$I(Y_{k-1}; Y_k) = H(Y_{k-1}) - H(Y_{k-1} | Y_k). \quad (32)$$

886

887 According to Equation 11, we know that $I(Y_{k-1}; Y_k) > 0$, which implies:

888
$$H(Y_{k-1} | Y_k) < H(Y_{k-1}). \quad (33)$$

889

890 Using the chain rule for entropy, we have:

891
$$H(Y_{k-1}, Y_k, X) = H(Y_{k-1} | Y_k, X) + H(Y_k, X). \quad (34)$$

892

893 Rewriting this using conditional entropy identities:

894
$$\begin{aligned} H(Y_{k-1} | Y_k, X) &= H(X | Y_{k-1}, Y_k) + H(Y_{k-1}, Y_k) - H(X | Y_k) - H(Y_k) \\ &= H(Y_{k-1} | Y_k) + H(X | Y_{k-1}, Y_k) - H(X | Y_k). \end{aligned} \quad (35)$$

895

896 From Equation 11, since Y_{k-1} contains one less step of noise compared to Y_k , it is closer to the
897 original observation. Therefore:

898
$$H(X | Y_{k-1}, Y_k) < H(X | Y_k). \quad (36)$$

899

900 Substituting this inequality back gives:

901
$$H(Y_{k-1} | Y_k, X) < H(Y_{k-1} | Y_k). \quad (37)$$

902

903 Following the same reasoning, we can conclude:

904
$$H(Y_{k-1} | Y_k, X, C^P) < H(Y_{k-1} | Y_k, X). \quad (38)$$

905

906 This result confirms that incorporating the physiological prior C^P into the conditioning set reduces
907 the entropy of the target distribution in the reverse process. Consequently, this reduction in un-
908 certainty simplifies the learning task for the diffusion model, potentially leading to more efficient
909 training and enhanced accuracy in rPPG signal estimation. This completes the proof.910 D MATHEMATICAL DERIVATION DETAILS
911912 D.1 DERIVATIONS OF CLOSED-FORM FORWARD PROCESS
913914 Assuming that the clean rPPG target distribution $q(Y_0)$ is known, we can first sample a clean rPPG
915 target as $Y_0 \sim q(Y_0)$. According to the forward process defined in Equation 11, the noisy rPPG
916 signal at step k can be generated as:
917

918
$$Y_k = \sqrt{\alpha_k} Y_{k-1} + \sqrt{1 - \alpha_k} \epsilon_k, \quad \epsilon_k \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (39)$$

918 Similarly, the previous step \mathbf{Y}_{k-1} can be expressed as:
919

$$920 \quad \mathbf{Y}_{k-1} = \sqrt{\alpha_{k-1}} \mathbf{Y}_{k-2} + \sqrt{1 - \alpha_{k-1}} \epsilon_{k-1}, \quad \epsilon_{k-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (40)$$

921 By recursively substituting, we obtain:
922

$$923 \quad \mathbf{Y}_k = \sqrt{\alpha_k} \left(\sqrt{\alpha_{k-1}} \mathbf{Y}_{k-2} + \sqrt{1 - \alpha_{k-1}} \epsilon_{k-1} \right) + \sqrt{1 - \alpha_k} \epsilon_k \\ 924 \quad = \sqrt{\alpha_k \alpha_{k-1}} \mathbf{Y}_{k-2} + \left(\sqrt{\alpha_k (1 - \alpha_{k-1})} \epsilon_{k-1} + \sqrt{1 - \alpha_k} \epsilon_k \right). \\ 925$$

926 Given that $\epsilon_{k-1}, \epsilon_k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the two noise terms are independent Gaussian variables. Therefore,
927 their weighted sum is also Gaussian:
928

$$929 \quad \sqrt{\alpha_k (1 - \alpha_{k-1})} \epsilon_{k-1} \sim \mathcal{N}(\mathbf{0}, \alpha_k (1 - \alpha_{k-1}) \mathbf{I}), \\ 930 \quad \sqrt{1 - \alpha_k} \epsilon_k \sim \mathcal{N}(\mathbf{0}, (1 - \alpha_k) \mathbf{I}), \\ 931$$

932 and their sum follows:
933

$$934 \quad \sqrt{\alpha_k (1 - \alpha_{k-1})} \epsilon_{k-1} + \sqrt{1 - \alpha_k} \epsilon_k \sim \mathcal{N}(\mathbf{0}, [\alpha_k (1 - \alpha_{k-1}) + (1 - \alpha_k)] \mathbf{I}). \quad (43)$$

935 This implies that the overall expression can be rewritten in the same form as before:
936

$$937 \quad \mathbf{Y}_k = \sqrt{\alpha_k \alpha_{k-1}} \mathbf{Y}_{k-2} + \sqrt{1 - \alpha_k \alpha_{k-1}} \epsilon, \quad (44)$$

938 where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
939

Continuing this recursive process, we eventually obtain:
940

$$941 \quad \mathbf{Y}_k = \sqrt{\prod_{s=1}^k \alpha_s} \mathbf{Y}_0 + \sqrt{1 - \prod_{s=1}^k \alpha_s} \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (45)$$

944 This result corresponds to the closed-form expression of \mathbf{Y}_k in the forward diffusion process, starting
945 from a clean rPPG signal \mathbf{Y}_0 .
946

947 D.2 DERIVATION OF PARAMETERIZED REVERSE PROCESS

949 We begin with Bayes' theorem to derive the reverse process:
950

$$951 \quad p_\theta(\mathbf{Y}_{k-1} | \mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P) = p_\theta(\mathbf{Y}_k | \mathbf{Y}_{k-1}, \mathbf{X}, \mathbf{C}^P) \frac{p_\theta(\mathbf{Y}_{k-1} | \mathbf{X}, \mathbf{C}^P)}{p_\theta(\mathbf{Y}_k | \mathbf{X}, \mathbf{C}^P)} \quad (46)$$

953 According to Equation 11, the expected $p_\theta(\mathbf{Y}_k | \mathbf{Y}_{k-1}, \mathbf{X}, \mathbf{C}^P)$ is:
954

$$955 \quad p_\theta(\mathbf{Y}_k | \mathbf{Y}_{k-1}, \mathbf{X}, \mathbf{C}^P) \sim \mathcal{N}(\mathbf{Y}_k; \sqrt{\alpha_k} \mathbf{Y}_{k-1}, \beta_k \mathbf{I}). \quad (47)$$

956 Furthermore, based on Equation 13, we also have:
957

$$958 \quad p_\theta(\mathbf{Y}_{k-1} | \mathbf{X}, \mathbf{C}^P) \sim \mathcal{N}(\mathbf{Y}_{k-1}; \sqrt{\bar{\alpha}_{k-1}} \mathbf{Y}_0, (1 - \bar{\alpha}_{k-1}) \mathbf{I}), \\ 959 \quad p_\theta(\mathbf{Y}_k | \mathbf{X}, \mathbf{C}^P) \sim \mathcal{N}(\mathbf{Y}_k; \sqrt{\bar{\alpha}_k} \mathbf{Y}_0, (1 - \bar{\alpha}_k) \mathbf{I}), \\ 960$$

961 Combining the above three Gaussian distributions, we can derive:
962

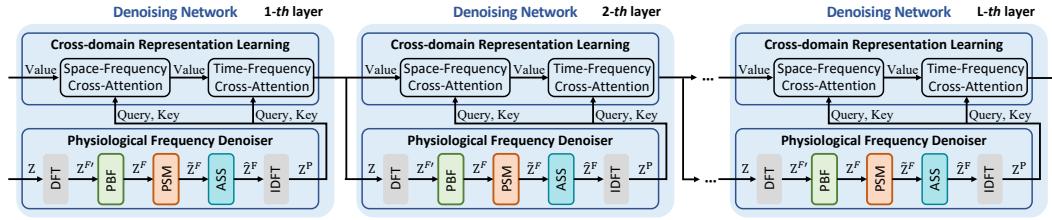
$$963 \quad p_\theta(\mathbf{Y}_{k-1} | \mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P) \propto \mathcal{N}(\mathbf{Y}_k; \sqrt{\alpha_k} \mathbf{Y}_{k-1}, (1 - \alpha_k) \cdot \mathcal{N}(\mathbf{Y}_{k-1}; \sqrt{\bar{\alpha}_{k-1}} \mathbf{Y}_0, (1 - \bar{\alpha}_{k-1}) \mathbf{I})) \quad (49)$$

964 Since the product of two Gaussians is also a Gaussian, we can compute the posterior distribution
965 analytically using the standard Gaussian product rule. Specifically, the reverse process becomes:
966

$$967 \quad p_\theta(\mathbf{Y}_{k-1} | \mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P) = \mathcal{N}(\mathbf{Y}_{k-1}; \mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k), \Sigma_\theta). \quad (50)$$

968 where the mean and covariance are given by:
969

$$970 \quad \Sigma_\theta = \left(\frac{1}{\beta_k} \mathbf{I} + \frac{1}{1 - \bar{\alpha}_{k-1}} \mathbf{I} \right)^{-1} = \frac{(1 - \bar{\alpha}_{k-1}) \beta_k}{1 - \bar{\alpha}_k} \mathbf{I}, \\ 971 \quad \mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k) = \Sigma_\theta \left(\frac{1}{\beta_k} \sqrt{\alpha_k} \mathbf{Y}_k + \frac{1}{1 - \bar{\alpha}_{k-1}} \sqrt{\bar{\alpha}_{k-1}} \mathbf{Y}_0 \right) = \frac{\sqrt{\alpha_k} (1 - \bar{\alpha}_{k-1})}{1 - \bar{\alpha}_k} \mathbf{Y}_k + \frac{\sqrt{\bar{\alpha}_{k-1}} \beta_k}{1 - \bar{\alpha}_k} \mathbf{Y}_0. \quad (51)$$

Figure 6: Implementation details of the stacked denoising network in our **FrePhys**.

However, during inference, the clean signal \mathbf{Y}_0 is not directly accessible. Therefore, we train a neural network $f_\theta(\cdot)$ to predict an approximation $\hat{\mathbf{Y}}_0$ from the noisy input:

$$\hat{\mathbf{Y}}_0 = f_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k), \quad (52)$$

and substitute \mathbf{Y}_0 in the mean computation $\mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k)$ with the predicted $\hat{\mathbf{Y}}_0$. This yields the parameterized reverse process:

$$\mu_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k) = \frac{\sqrt{\bar{\alpha}_k}(1 - \bar{\alpha}_{k-1})}{1 - \bar{\alpha}_k} \mathbf{Y}_k + \frac{\sqrt{\bar{\alpha}_{k-1}}\beta_k}{1 - \bar{\alpha}_k} \hat{\mathbf{Y}}_0, \quad (53)$$

where $\hat{\mathbf{Y}}_0 = f_\theta(\mathbf{Y}_k, \mathbf{X}, \mathbf{C}^P, k)$. The variance is kept fixed as:

$$\Sigma_\theta = \sigma_k^2 \mathbf{I}, \quad \text{with} \quad \sigma_k^2 = \frac{(1 - \bar{\alpha}_{k-1})\beta_k}{1 - \bar{\alpha}_k}. \quad (54)$$

Therefore, this approach enables efficient learning by directly predicting the clean rPPG signal \mathbf{Y}_0 , thereby avoiding explicit noise estimation as in the original DDPM framework (Ho et al., 2020).

E MODEL DETAILS

E.1 DETAILED ARCHITECTURE OF THE DENOISING NETWORK

As shown in Fig. 6, we provide the implementation details of the stacked denoising network..

E.2 CROSS-DOMAIN REPRESENTATION LEARNING

Space-Frequency Cross-Attention. To capture spatial dependencies across facial ROIs guided by physiological frequency clues, we apply a multi-head cross-attention over the ROI dimension at each timestamp. Assuming the inputs of l -th layer are the intermediate feature $\mathbf{Z}^{(l)} \in \mathbb{R}^{T \times N \times D}$ and physiological frequency representation $\mathbf{Z}^{P,(l)} \in \mathbb{R}^{T \times N \times D}$. Then, for each timestamp t , the process of space-frequency interaction learning is formulated as:

$$\begin{aligned} Q_t &= \mathbf{Z}_t^{P,(l)} W_S^Q, \quad K_t = \mathbf{Z}_t^{P,(l)} W_S^K, \quad V_t = \mathbf{Z}_t^{(l)} W_S^V, \\ \mathbf{Z}_t^{S,(l)} &= \text{LayerNorm} \left(\text{Softmax} \left(\frac{Q_t K_t^\top}{\sqrt{D}} \right) V_t + \mathbf{Z}_t^{(l)} \right), \\ \hat{\mathbf{Z}}_t^{S,(l)} &= \text{LayerNorm} \left(\mathbf{Z}_t^{S,(l)} + \text{FeedForward} \left(\mathbf{Z}_t^{S,(l)} \right) \right). \end{aligned} \quad (55)$$

where $W_S^Q, W_S^K, W_S^V \in \mathbb{R}^{D \times D}$ are learnable projection matrices. Finally, the outputs $\hat{\mathbf{Z}}^{T,(l)}$ at all timestamps are concatenated along the temporal dimension to obtain the updated intermediate feature:

$$\mathbf{Z}^{S,(l)} \leftarrow \text{Concat} \left(\{\hat{\mathbf{Z}}_t^{S,(l)}\}_{t=1}^T \right). \quad (56)$$

Time-Frequency Cross-Attention. Complementary to space-frequency cross-attention, time-frequency cross-attention further models the temporal periodic dependencies within individual ROIs

1026 through frequency-guided cross-attention along the time axis. For each ROI n , it can be formulated
 1027 as:

$$\begin{aligned} 1028 \quad Q_n &= \mathbf{Z}_n^{\mathbf{P},(l)} W_T^Q, \quad K_n = \mathbf{Z}_n^{\mathbf{P},(l)} W_T^K, \quad V_n = \mathbf{Z}_n^{\mathbf{S},(l)} W_T^V, \\ 1029 \quad \mathbf{Z}_n^{\mathbf{T},(l)} &= \text{LayerNorm} \left(\text{Softmax} \left(\frac{Q_n K_n^\top}{\sqrt{D}} \right) V_n + \mathbf{Z}_n^{\mathbf{S},(l)} \right), \\ 1030 \quad \hat{\mathbf{Z}}_n^{\mathbf{T},(l)} &= \text{LayerNorm} \left(\mathbf{Z}_n^{\mathbf{T},(l)} + \text{FeedForward} \left(\mathbf{Z}_n^{\mathbf{T},(l)} \right) \right). \\ 1031 \end{aligned} \quad (57)$$

1032 where $W_T^Q, W_T^K, W_T^V \in \mathbb{R}^{D \times D}$ are independent learnable projection matrices. Finally, the outputs
 1033 $\hat{\mathbf{Z}}_t^{\mathbf{T},(l)}$ for all ROIs are concatenated along the spatial dimension to update the intermediate feature:

$$1034 \quad \mathbf{Z}^{(l+1)} \leftarrow \text{Concat} \left(\{\hat{\mathbf{Z}}_n^{\mathbf{T},(l)}\}_{n=1}^N \right). \quad (58)$$

1039 F REPRODUCTION DETAILS

1041 F.1 DATASETS DETAILS

1043 Our experiments for HR estimation are conducted on four publicly available datasets:

1044 **UBFC-rPPG** (Bobbia et al., 2019) is a small-scale yet widely used dataset consisting of 42 facial
 1045 videos from 42 subjects. Participants are recorded while performing time-limited mental arithmetic
 1046 tasks, designed to introduce natural heart rate variability. The videos are of high quality with
 1047 minimal noise or motion artifacts, making UBFC-rPPG an ideal benchmark for evaluating model
 1048 accuracy under relatively clean and controlled conditions. According to the previous protocol (Lu
 1049 et al., 2021; Song et al., 2021b; Qian et al., 2024a; Zou et al., 2025b), we select subjects 38 to 49 as
 1050 the test set, and the remaining subjects are used as the training set.

1051 **PURE** (Stricker et al., 2014) is another small-scale dataset designed for testing under controlled
 1052 motion conditions. It comprises 60 one-minute videos from 10 subjects, each participating in six
 1053 scenarios: 1) sitting still, 2) talking, 3) slow head movement, 4) fast head movement, 5) small
 1054 head rotation, and 6) medium head rotation. This dataset introduces moderate motion artifacts and
 1055 is suitable for evaluating model robustness to dynamic facial movements while maintaining good
 1056 temporal synchronization. Following previous research (Sun & Li, 2022; Zou et al., 2025b; Qian
 1057 et al., 2025), we divided the PURE dataset into a training set and a test set with a 6:4 ratio.

1058 **MMPD** (Tang et al., 2023) is a medium-scale, challenging dataset featuring 660 one-minute videos
 1059 from 33 subjects, each recorded under a wide range of conditions. MMPD is designed to simulate
 1060 real-world complexity by including noise, motion, and illumination variation. In our study, we use
 1061 the full uncompressed version of MMPD, making it a strong testbed for evaluating the generalization
 1062 capabilities of rPPG methods under practical deployment scenarios. Following the protocols out-
 1063 lined in (Zou et al., 2025b;a), the dataset was sequentially split into training, validation, and testing
 1064 sets with a ratio of 7:1:2.

1065 **VIPL-HR** (Niu et al., 2019) is a large-scale rPPG dataset composed of 2,378 facial RGB videos
 1066 from 107 subjects. Videos are recorded using three types of devices: Logitech C310 web-camera, the
 1067 frontal camera of HUAWEI P9 phone, and RealSense F200 camera, under nine different scenarios
 1068 combining varied illumination (e.g., bright, dark) and head motion (e.g., stable, talking, motion).
 1069 Due to its diversity in capture devices, environments, and subject behaviors, VIPL-HR provides
 1070 a robust benchmark for assessing the generalization and reliability of rPPG models in real-world
 1071 conditions. Following previous work (Niu et al., 2019; 2020; Qian et al., 2024b; 2025), we use a
 1072 subject-exclusive 5-fold cross-validation protocol on VIPL-HR in our experiments.

1073 F.2 EVALUATION METRICS

1075 Following standard protocols in prior works (Li et al., 2014; Chen & McDuff, 2018; Niu et al., 2020),
 1076 we adopt three commonly used metrics to evaluate the accuracy of heart rate (HR) estimation: *mean*
 1077 *absolute error* (MAE), *root mean square error* (RMSE), and *Pearson's correlation coefficient* (ρ).

1078 For the evaluation of heart rate variability (HRV) features, including respiration frequency (RF),
 1079 low-frequency (LF) power in normalized units (n.u.), high-frequency (HF) power in normalized

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 5: Ablation study of different physiological bandwidth.

Physiological Bandwidth	MMPD			VIPL-HR		
	MAE↓	RMSE↓	$\rho \uparrow$	MAE↓	RMSE↓	$\rho \uparrow$
[0.75, 2.5]	4.39	7.17	0.85	3.96	6.58	0.86
[0.75, 3.0]	4.21	6.98	0.86	3.84	6.42	0.86
[0.66, 2.5]	4.22	7.12	0.85	3.89	6.50	0.85
[0.66, 3.0]	4.20	6.78	0.86	3.79	6.34	0.86

units (n.u.), and the LF/HF power ratio, we follow (Lu et al., 2021; Sun & Li, 2024), and utilize *standard deviation* (SD), RMSE, and ρ as evaluation metrics. In general, lower values of MAE, RMSE, and SD indicate better performance (i.e., lower estimation error), while higher values of ρ (closer to 1) reflect stronger correlation between predictions and ground truth.

Let \mathbf{Y}_{pred} denote the predicted signal, \mathbf{Y}_{gt} denote the ground truth signal, and N be the total number of evaluation instances. The definitions of the adopted metrics are as follows:

Mean Absolute Error (MAE): It measures the average magnitude of the absolute differences between predicted and ground truth values, reflecting the overall prediction error without considering its direction.

$$MAE = \frac{1}{N} \sum_{n=1}^N |\mathbf{Y}_{gt}^n - \mathbf{Y}_{pred}^n|. \quad (59)$$

Root Mean Square Error (RMSE): It evaluates the square root of the mean squared error, emphasizing larger errors due to the squaring operation, and is more sensitive to outliers than MAE.

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^N (\mathbf{Y}_{gt}^n - \mathbf{Y}_{pred}^n)^2}. \quad (60)$$

Standard Deviation (SD): It quantifies the dispersion of the prediction errors around their mean, providing insight into the consistency and reliability of the predictions.

$$SD = \sqrt{\frac{1}{N} \sum_{n=1}^N (\mathbf{Y}_e^n - \bar{Y}_e)^2}, \quad (61)$$

where the error term is defined as $\mathbf{Y}_e^n = \mathbf{Y}_{pred}^n - \mathbf{Y}_{gt}^n$, and \bar{Y}_e denotes the mean error across all N samples.

Pearson’s Correlation Coefficient (ρ): It assesses the linear relationship between predicted and ground truth values, with higher values indicating stronger correlation and better temporal alignment.

$$\rho = \frac{\sum_{n=1}^N (\mathbf{Y}_{gt}^n - \bar{Y}_{gt})(\mathbf{Y}_{pred}^n - \bar{Y}_{pred})}{\sqrt{\sum_{n=1}^N (\mathbf{Y}_{gt}^n - \bar{Y}_{gt})^2 \sum_{n=1}^N (\mathbf{Y}_{pred}^n - \bar{Y}_{pred})^2}}, \quad (62)$$

where \bar{Y}_{gt} and \bar{Y}_{pred} are the sample means of the ground truth and predicted signals, respectively.

F.3 IMPLEMENTATION DETAILS.

The proposed **FrePhys** is implemented in PyTorch using the Adam optimizer. We train our model for 50 epochs, and the initial learning rate decay is 1e-3 with a shrink factor of 0.5 after every 5 epochs. The layer of the denoising network L is 4, and the feature dimension D is set to 64. For hyperparameters of the diffusion model, we follow PhysDiff’s (Qian et al., 2025) setting. The maximum diffusion timestep K is set to 1000. All experiments are performed on four NVIDIA GeForce RTX 4090 24G GPUs. The source code is available online.

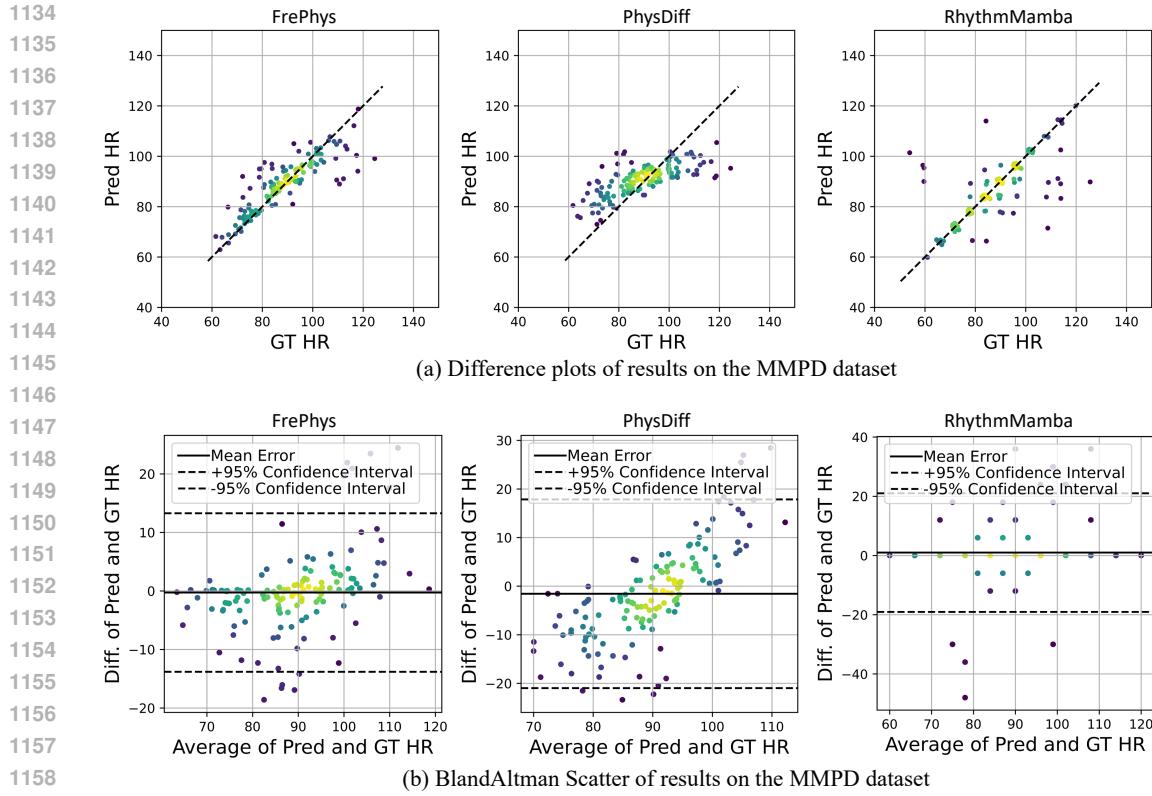


Figure 7: Difference and BlandAltman scatter plots of results on the MMPD dataset

Table 6: Comparison of different bandpass filters on VIPL-HR. The computational cost test is conducted using a 10-second inference test for all filters on a single NVIDIA 4090 24GB GPU, reporting the throughput, inference time, and parameters. PBF achieves the best runtime efficiency while maintaining comparable performance. Best results are marked in bold.

Filter	MAE \downarrow	RMSE \downarrow	$\rho \uparrow$	Parameters (M) \downarrow	Flops (G) \downarrow	Throughput (Kps) \uparrow	Inference time (ms) \downarrow	Memory (M) \downarrow
Butterworth	3.75	6.28	0.86	0.86	7.75	83.84	11.93	874
Chebyshev	3.79	6.32	0.86	0.86	7.75	83.79	11.93	874
Bessel	3.52	6.46	0.85	0.86	7.75	80.59	12.41	874
PBF (ours)	3.79	6.34	0.86	0.86	7.75	85.44	11.70	874

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 IMPACT OF PHYSIOLOGICAL BANDWIDTH

As shown in Table 5, we investigated the impact of different physiological bandwidths on performance. The results indicate that the [0.66, 3.0] Hz range yields the best performance. In contrast, narrower bandwidths lead to performance degradation due to the loss of relevant physiological frequency information.

G.2 IMPACT OF BANDWIDTH FILTER

In addition to our Physiological Bandpass Filter (PBF), we also explored soft filter alternatives. Specifically, we replaced the hard bandpass setup of PBF with flexible soft filters, including Butterworth, Chebyshev, and Bessel designs. These soft filters were implemented as non-parametric binary masks in the frequency domain, enabling smoother frequency responses.

As summarized in Tab. 6, all soft filters share the same parameter size. Among them, the Butterworth filter achieved slightly better accuracy than Chebyshev and Bessel, while the overall performance gains remained marginal. Importantly, our PBF consistently demonstrated the fastest infer-

1188 Table 7: Ablation study on the number of cross-attention layers in the Cross-domain Representation
 1189 Learning module, showing the trade-off between accuracy and inference cost on VIPL-HR. Best
 1190 results are marked in bold.

Layers	MAE \downarrow	RMSE \downarrow	$\rho \uparrow$	Parameters (M) \downarrow	Flops (G) \downarrow	Throughput (Kps) \uparrow	Inference time (ms) \downarrow	Memory (M) \downarrow
1	7.42	10.60	0.66	0.27	1.97	401.68	2.49	872
2	4.84	7.82	0.81	0.47	3.40	200.36	4.99	872
3	3.90	6.52	0.86	0.66	5.82	127.58	7.84	874
4	3.79	6.34	0.86	0.86	7.75	85.44	11.70	874
5	3.97	6.60	0.85	1.06	9.68	75.74	13.20	876
6	5.19	7.74	0.82	1.26	11.61	62.24	16.07	876

1198
 1199
 1200 ence speed and highest throughput. This suggests that while soft filters provide a valid alternative,
 1201 the simplicity and efficiency of PBF make it a more practical choice for real-time rPPG applications.
 1202

1203 G.3 IMPACT OF CROSS-ATTENTION LAYERS

1204 For the layers of cross-attention, we conducted ablations to analyze the optimal empirical setting of
 1205 the cross-attention layer number. As shown in Table 7, performance improves with the layer number
 1206 up to a certain point (4 layers), after which diminishing returns are observed along with increased
 1207 inference cost. We thus adopt 4 layers as a balanced parameter setting.
 1208

1209 G.4 COMPUTATIONAL COST

1210 About testing deployment feasibility, we conducted 10-second inference tests on a single NVIDIA
 1211 RTX 4090 GPU (24GB), and report the key computational metrics below. As shown in the Table 8,
 1212 our method offers significantly lower computational overhead than existing SOTA methods.
 1213

1214 Table 8: Computational cost. The computational cost test is conducted using a 10-second inference
 1215 test for all methods on a single NVIDIA 4090 24GB GPU. Best results are marked in bold and the
 1216 second best in underline.

Method	Parameters (M) \downarrow	Flops (G) \downarrow	Throughput (Kps) \uparrow	Inference time (ms) \downarrow	Memory (M) \downarrow
DeepPhys (Chen & McDuff, 2018)	1.98	111.67	28.89	34.61	10638
PhysNet (Yu et al., 2019)	0.77	65.74	68.73	14.55	3750
TS-CAN (Liu et al., 2020)	1.98	111.67	26.23	38.13	11834
PhysFormer (Yu et al., 2022)	7.38	47.44	50.79	19.69	6480
EfficientPhys (Liu et al., 2023)	1.91	56.06	41.36	24.18	7814
RhythmMamba (Zou et al., 2025b)	2.00	<u>12.41</u>	27.16	36.82	2450
PhysDiff (Qian et al., 2025)	2.64	22.46	60.23	16.60	<u>1246</u>
FrePhys (ours)	<u>0.86</u>	7.75	85.44	11.70	874

1228 G.5 ADDITIONAL QUALITATIVE RESULTS FOR CONSISTENCY.

1229 To further evaluate the consistency between predicted HR and ground truth measurements across
 1230 different ranges, Figure 7 presents both scatter and BlandAltman plots on the MMPD dataset.
 1231

1234 H LIMITATIONS AND FUTURE WORK

1235 Although our **FrePhys** shows strong robustness against general motion, it may still be susceptible
 1236 to unseen highly dynamic or non-repetitive motion artifacts, especially those overlapping with the
 1237 physiological frequency band. Future work could explore motion disentanglement techniques or
 1238 multimodal fusion (e.g., depth or NIR sensors) to further enhance motion robustness. Besides, Dif-
 1239 fusion models typically require multiple denoising iterations during inference, making them compu-
 1240 tationally heavier than traditional regression-based models. While we adopt acceleration techniques,
 1241 real-time deployment on resource-constrained devices remains challenging.

1242 **I LLM USAGE**
12431244 Large Language Models (LLMs) were used solely to assist with writing and polishing this
1245 manuscript. In particular, we employed an LLM to refine language, improve readability, and en-
1246 hance the overall clarity and flow of the text (e.g., grammar checking, sentence rephrasing). The
1247 LLM was not involved in ideation, research methodology, experimental design, or data analysis. All
1248 scientific concepts, contributions, and results presented in this paper were conceived and executed
1249 entirely by the authors. The role of the LLM was strictly limited to improving linguistic quality.1250 The authors take full responsibility for the entire content of the manuscript, including any sections
1251 refined with LLM assistance. All usage adhered to ethical standards, and no plagiarism or scientific
1252 misconduct was introduced.1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295