
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FREPHYS: FREQUENCY-AWARE DIFFUSION MODEL
FOR REMOTE PHYSIOLOGICAL MEASUREMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Remote photoplethysmography (rPPG) enables non-contact physiological mon-
itoring by capturing subtle skin color variations in facial videos. Existing ap-
proaches predominantly rely on time-domain modeling to extract cardiac-related
periodic signals, but they are highly vulnerable to motion artifacts and illumina-
tion changes, where physiological clues are easily obscured by noise. To address
these challenges, we propose a Frequency-aware Physiological diffusion model,
dubbed FrePhys, that integrates physiological frequency priors into rPPG estima-
tion. Specifically, it first employs a physiological bandpass filter to suppress out-
of-band noise, followed by physiological spectrum modulation and adaptive spec-
trum selection for in-band noise suppression and pulse-related clues enhancement.
A cross-domain representation learning module then fuses frequency-domain in-
sights with the deep time-domain features to capture spatial–temporal dependen-
cies. Finally, a frequency-aware conditional diffusion process iteratively recon-
structs high-fidelity rPPG signals. Extensive experiments on multiple datasets
demonstrate that our method significantly outperforms existing state-of-the-art
methods, particularly under challenging motion conditions, highlighting the ef-
fectiveness of incorporating frequency priors. The source code is available at
https://anonymous.4open.science/r/FrePhys.

1 INTRODUCTION

Physiological signals, such as heart rate (HR), heart rate variability (HRV), and respiration fre-
quency (RF), are essential indicators of physical and mental health. Traditional electrocardio-
gram (ECG) and photoplethysmography (PPG) methods require the use of skin-contact devices,
which can cause discomfort and inconvenience to subjects. Recently, remote photoplethysmogra-
phy (rPPG) (Verkruysse, 2008) has emerged as a promising non-invasive optical technique, enabling
applications in health monitoring (Huang et al., 2023), face anti-spoofing (Yu et al., 2021), and psy-
chological stress assessment (Gedam & Paul, 2020), among others. However, a key challenge for
rPPG remains how to accurately capture subtle skin color changes caused by blood volume fluctua-
tions in facial videos recorded by ordinary cameras.

Early rPPG research (Verkruysse, 2008; Poh et al., 2010; De Haan & Jeanne, 2013; Wang et al.,
2016) mainly relied on traditional signal processing methods to recover subtle rPPG signals, which
are often limited to specific signal assumptions. Recently, the emerging development of deep learn-
ing has fostered numerous sophisticated deep rPPG models (Yu et al., 2019; Niu et al., 2020; Lu
et al., 2021; Liu et al., 2023; Qian et al., 2024a; Zou et al., 2025b). While these models perform well
in controlled environments, they are often limited in robustness to noisy conditions such as motion
and illumination (Qian et al., 2025; Shao et al., 2025). To alleviate this problem, the denoising dif-
fusion probabilistic models (DDPMs) have been introduced for rPPG estimation (Chen et al., 2024;
Qian et al., 2025), due to their remarkable capacity for modeling noise distributions and recovering
clean signals from heavily corrupted observations. However, these pioneering efforts were primarily
conducted in the time domain, where noise often exhibits irregular and chaotic patterns, as shown
in the upper part of Fig. 1(b) and (c), making it challenging to separate physiological components
from noise. Several recent studies have begun to exploit frequency information in rPPG. The most
common usage is to impose auxiliary frequency-based losses during training (Yu et al., 2023; Sun &
Li, 2024; Zou et al., 2025b). Other approaches employ Fourier transform blocks to enhance feature
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(a) Ground Truth rPPG signal (b) Raw rPPG signal on Stable scenario (c) Raw rPPG signal on Motion scenario

Phys. bandwidth Phys. bandwidthPhys. bandwidth

Figure 1: Visualization of the differences between Ground-truth and Raw rPPG signals in time and
frequency domains. (a) Ground-truth rPPG signal, where the spectrum exhibits clear physiological
priors with a dominant peak (marked by the ★) corresponding to HR, obtained by multiplying the
frequency by 60. (b-c) Raw rPPG signals extracted from facial videos under stable and motion
conditions by averaging green-channel pixel intensities over time (Wang et al., 2016).

representation (Zou et al., 2025b) or synthesize negative samples (Yue et al., 2023). While these
methods demonstrate the utility of frequency information, they fall short of fully leveraging the
inherent physiological priors in the frequency domain and largely overlook the distinct challenges
introduced by motion-induced noise.

In this work, we take a closer look at the frequency domain and show that rPPG signals, driven
by cardiac rhythms, are quasi-periodic and exhibit clear frequency-domain priors (Gideon & Stent,
2021; Speth et al., 2023), as illustrated in Fig. 1(a): (i) Physiological Band Constraint: spectral
energy is mainly concentrated within a fixed physiological band, typically [0.66, 3.0] Hz, corre-
sponding to the normal HR range; (ii) Dominant Peak Property: a strong spectral peak emerges
within this band, reflecting the periodic cardiac rhythm, while other in-band noise frequencies carry
relatively low energy. For an intuitive illustration, we further visualize raw rPPG signals from facial
videos under both stable and motion conditions by computing the mean green-channel intensity over
time (Wang et al., 2016), as shown in Fig. 1(b)(c)). In the time domain, noise is heavily entangled
with the signal, making separation very difficult. By contrast, the frequency domain reveals two
distinct categories of noise: out-of-band components and residual in-band noise, where most noise
energy is concentrated on low-frequency components outside the physiological band. The stable
conditions exhibit a clear spectral peak within the physiological band, while motion disperses the
in-band energy, thereby complicating the denoising process. These observations naturally moti-
vate our central question: How to suppress both out-of-band and in-band noise while effectively
preserving physiologically meaningful spectral information?

To address these challenges, we propose a novel frequency-aware physiological diffusion model,
FrePhys, whose key idea is to incorporate physiological frequency priors into the denoising pro-
cess, thereby combining spectral priors with temporal dynamics for more effective rPPG signal
recovery. To suppress out-of-band noise, we design a physiological bandpass filter that preserves
only the physiological frequency range. To further handle in-band noise while emphasizing mean-
ingful spectral information, we introduce a physiological spectrum modulation to enhance true car-
diac harmonics and an adaptive spectrum selection to dynamically suppress residual components.
Furthermore, we introduce a cross-domain representation learning module, which leverages cross-
attention to fuse spectral priors with temporal representations, thereby guiding the denoising process
with both frequency-domain regularities and temporal dynamics.

Contribution Summary: (i) We highlight the importance of explicitly leveraging physiological
frequency priors for robust rPPG estimation. (ii) We propose FrePhys, a frequency-aware diffusion
framework that integrates physiological frequency denoise with cross-domain representation learn-
ing. (iii) Unlike previous diffusion-based methods that operate purely in the time domain, our model
incorporates frequency-domain conditioning to better capture the quasi-periodic nature of rPPG. (iv)
Extensive experiments on four public benchmarks show that our method achieves state-of-the-art
performance in both accuracy and robustness.
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2 RELATED WORK

Early rPPG estimation methods primarily relied on signal processing techniques, such as
GREEN (Verkruysse, 2008), ICA (Poh et al., 2010), CHROM (De Haan & Jeanne, 2013), and
POS (Wang et al., 2016). With the rise of deep learning, a wide range of models have been in-
troduced, including CNN-based methods (e.g., DeepPhys (Chen & McDuff, 2018), PhysNet (Yu
et al., 2019), CVD (Niu et al., 2020), TS-CAN (Liu et al., 2020)), Transformer-based methods (e.g.,
PhysFormer (Yu et al., 2022), EfficientPhys (Liu et al., 2023), Dual-TL (Qian et al., 2024a)), and
Mamba-based methods (e.g., PhysMamba (Luo et al., 2024), RhythmMamba (Zou et al., 2025b)),
Diffusion-based methods (e.g., DiffPhys (Chen et al., 2024), PhysDiff (Qian et al., 2025)) etc. Be-
yond purely temporal modeling, several works have attempted to incorporate frequency-domain
information, including frequency-aware loss functions (e.g., PhysFormer (Yu et al., 2022), Contrast-
Phys (Sun & Li, 2024)) or frequency representation learning (e.g., Yue et al. (Yue et al., 2023),
RhythmMamba (Zou et al., 2025b)). A more detailed discussion is provided in Appendix A.

Remark. Our approach fundamentally rethinks how frequency information is used in rPPG. Most
previous works leverage frequency only as an offline post-processing tool for HR computation (Niu
et al., 2020; Lu et al., 2021; Yu et al., 2022; Liu et al., 2023; Qian et al., 2024a), or as auxiliary mod-
ules such as Fourier transform blocks for representation enhancement (Zou et al., 2025b), negative
sample synthesis (Yue et al., 2023), or auxiliary frequency losses during training (Yu et al., 2023;
Sun & Li, 2024; Zou et al., 2025b). In contrast, we directly integrate physiological frequency priors
into the diffusion model through a three-stage filtering mechanism: suppressing out-of-band noise,
enhancing true cardiac harmonics, and adaptively removing in-band residual noise. Moreover, in-
stead of limiting frequency regulation to training, we enforce frequency-aware denoising at every
diffusion step, during both training and inference. To the best of our knowledge, this is the first
work to seamlessly embed physiological frequency priors into diffusion modeling for rPPG, leading
to robust and high-fidelity signal reconstruction under challenging noise conditions.

3 METHODOLOGY

Remote physiological measurement from facial videos can be regarded as a video sequence to signal
sequence problem. Let V ∈ RT×3×H×W denote a raw facial video clip containing T frames with 3
color channels and spatial resolution H ×W . Following established rPPG preprocessing protocols
(Niu et al., 2020; Qian et al., 2025), we extract N facial regions of interest (ROIs) through landmark
alignment and pixel-level average pooling, constructing a multi-scale temporal map (MSTmap) X ∈
RT×N×C as the model input. The objective is to recover the clean periodic rPPG signal Y ∈ RT

from X, formulated as learning a denoising function fθ : X 7→ Y, where θ denotes trainable
parameters. In this work, we propose a novel physiological frequency-aware diffusion model to
consider the important clues from the physiological frequency domain. The overview of our method
is illustrated in Fig. 2, where the details are described as follows.

3.1 PHYSIOLOGICAL FREQUENCY DENOISER

Physiological Bandpass Filter (PBF). Inspired by the fact that true cardiac activities mainly fall
within a fixed frequency bandwidth, typically [0.66,3.0] Hz (Wang et al., 2016), we devise a Phys-
iological Bandpass Filter that directly isolates cardiac frequency components in the spectral space.
Specifically, we first project the frequency condition CP ∈ RT×N×C into a D-dimensional latent
space Z ∈ RT×N×D, then transform it to frequency domain via the Discrete Fourier Transform F ,

ZF ′
= F(Z) ∈ C(⌊T/2⌋+1)×N×D. (1)

Then, the noisy frequency components outside the physiological bandwidth range can be discarded
using an ideal band-pass filter:

ZF = ZF ′
⊙ f(λi), for i = 0, . . . , ⌊T/2⌋ (2)

where ⊙ denotes the Hadamard product. λi denotes the physical frequency corresponding to the
i-th frequency bins and λi = ifs/T Hz, with fs denoting the sampling rate. f(λi) is an indicator
function, which outputs 1 when (0.66 ≤ λi ≤ 3.0) and 0 otherwise.
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Figure 2: The pipeline of FrePhys is implemented by the frequency-aware diffusion model. Given
a facial video, we first construct MSTmap X as the temporal condition and generate the frequency
condition CP by applying the PBF. During training, we initially generate noise rPPG Yk by adding
Gaussian noise to Ground Truth rPPG Y0 for the k-th step. Then, we input Yk, X, k, and CP into
the Denoising Network. Specifically, the frequency condition CP is fed into the Physiological Fre-
quency Denoiser module to enhance physiological spectral clues through three key steps: (i) PBF
removes out-of-band noise based on the physiological frequency bandwidth [0.66,3.0] Hz; (ii) PSM
emphasizes valid physiological harmonics by modeling interactions between real and imaginary
components; (iii) ASS dynamically suppresses in-band noise using data-driven energy thresholds.
Next, with Cross-domain Representation Learning, our FrePhys includes frequency-domain de-
noised information into space and time dependencies modeling to estimate the high-fidelity rPPG
signal. During inference, the initial rPPG YK is randomly sampled from Gaussian noise, with fre-
quency condition and denoising network processes mirroring those used in training.

Physiological Spectrum Modulation (PSM). While the Physiological Bandpass Filter is effec-
tive in removing noise outside the physiological frequency band, another challenge still exists
where noise components may overlap or closely resemble physiological signals within this band
identified by PBF. Such overlapping frequencies may severely distort the signal, making it dif-
ficult to accurately extract physiological features. We apply a learnable Physiological Spectrum
Modulation in the frequency domain to emphasize true physiological harmonics while suppress-
ing non-physiological components. Specifically, given the physiological frequency representation
ZF ∈ C(⌊T/2⌋+1)×N×D, we denote its real and imaginary parts as ZF→re and ZF→im, separately.
To achieve more exhaustive spectrum modulation, we encode the real and imaginary parts separately
to generate the modulation signals, which are formulated as:

M = σ(ZFWF + bF ), (3)

where σ is the ReLU activation function, WF = (WF→re+ j ·WF→im) ∈ RD×D is the trainable
complex number weight matrix with {WF→re,WF→im} ∈ CD×D, and bF = (bF→re + j ·
bF→im) ∈ CD is the trainable complex number biases with {bF→re,bF→im} ∈ CD. According
to the rule of multiplication of complex numbers (details can be seen in Appendix B.1), we further
unfold into real and imaginary parts as follows:

Mre = σ(ZF→reWF→re − ZF→imWF→im + bF→re),

Mim = σ(ZF→imWF→im + ZF→reWF→re + bF→im).
(4)

Afterwards, the generated complex signal is used to modulate counterparts of the original frequency-
domain feature, which can be written as,

Z̃F = M⊙ ZF ∈ C(⌊T/2⌋+1)×D. (5)

By Theorem 1, this spectral multiplication operation in Eq. 5 is mathematically equivalent to a global
circular convolution in time, endowing each sequence with a content-adaptive receptive field that is
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ideal for capturing periodic cardiac rhythms. By means of Eq. 5, the physiological frequency com-
ponents can be effectively enhanced via direct spectral modulation. The detailed proof of theorem 1
is illustrated in Appendix C.1.

Theorem 1 (Frequency-domain Convolution Theorem) The multiplication of two signals in the fre-
quency domain is equivalent to the frequency transformation of a circular convolution of these two
signals in the temporal domain, which can be summarized as:

F [M(v)⊗ Z(v)] = F(M(v))⊙F(Z(v)), (6)

where⊗ and⊙ represent the circular convolutional operation and element-multiplication operation,
respectively, M(v) and Z(v) represent two signals for the time variable v, and F(·) denotes the
Discrete Fourier Transform.

Adaptive Spectrum Selection (ASS). While the physiological spectrum modulation block am-
plifies the cardiac band, some noise components whose frequencies lie close to the physiological
range may remain. To robustly isolate the true pulse periodicity, we further introduce an Adaptive
Spectrum Selection block that learns a data-driven threshold τ in the frequency domain, retaining
dominant spectral components and discarding residual noise. Concretely, for modulated physiolog-
ical spectrum Z̃F , we first calculate its per-frequency energy:

E[i] =

√
(Z̃F→re[i])2 + (Z̃F→im[i])2 =

∥∥∥Z̃F [i]
∥∥∥
2
, i = 0, 1, . . . , ⌊T/2⌋. (7)

Then we employ a learnable threshold τ to discern between cardiac pulse and potential noise. We
formulate this adaptive thresholding as follows:

ẐF [i] = Z̃F [i]⊙ f(E[i]), (8)

here, f(E[i]) is a binary mask where frequencies with energy above the threshold (E[i] ≥ τ) are
retained, and others are filtered out. Finally, an inverse DFT restores the time-domain signal con-
taining only the dominant cardiac activity:

ZP = F−1(ẐF ). (9)

3.2 CROSS-DOMAIN REPRESENTATION LEARNING

Time domain modeling focuses on local dependencies and transient behaviors, while frequency do-
main analysis provides insights into the global correlations and periodicity of the data. Therefore,
combining these two domains is a promising approach to recover high-fidelity rPPG signals. To
effectively integrate intermediate representations Z in the time domain with frequency-domain pri-
ors ZP, we propose a cross-domain representation learning module. Specifically, we perform L
alternating cross-attention layers that can progressively learn the various input domains for repre-
sentation learning. In each layer l, the initial physiological frequency representation is first obtained
by applying PBF, followed by PSM and ASS modules. Next, the physiological frequency represen-
tation ZP and intermediate representations Z are integrated by cross-attention across the spatial and
temporal axis, respectively. Formally, this process can be formulated as follows:

ZP,(l) = ASS(PSM(PBF(Z(l)))),

Z(l)′ = CA(ZP,(l),Z(l)) + Z(l),

Z(l+1) = CA(ZP,(l),Z(l)′) + Z(l)′ ,

(10)

where CA(a, b) refers to Cross-Attention, with a denotes query and key, and b denotes value.

3.3 FREQUENCY-AWARE DIFFUSION MODEL

Recently, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) have emerged as pow-
erful generative frameworks that progressively refine noisy inputs through learned reverse Markov
chains, capturing complex data distributions. Inspired by this, some diffusion-based methods (Qian
et al., 2025; Chen et al., 2024) for rPPG estimation have been proposed and achieved SOTA perfor-
mance. They treat the rPPG estimation task as calculating the conditional rPPG signal probability

5
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distribution q(Y0|C), where q(Y0) is the clean rPPG distribution, and the condition C for proba-
bility distribution calculation is generally the input X in the time domain. However, these diffusion
models mainly focus on time-domain conditioning and overlook the unique spectral prior.

To alleviate this limitation, we introduce a novel frequency-aware diffusion model that explicitly
incorporates physiological frequency priors to guide the generation of high-fidelity rPPG signals.
Specifically, our frequency-aware diffusion model fuses with physiological frequency condition CP

to learn the conditional rPPG distribution q(Y0|Y,X,CP), through two Markov chain processes
of diffusion step K, i.e., the forward process and the reverse process.

Forward Process. The forward process q incrementally adds Gaussian noise to the ground truth
rPPG signal Y0 ∈ RT via a fixed Markov chain Y0, . . .YK as follows:

q(Y1:K |Y0) =

K∏
k=1

q(Yk|Yk−1), q(Yk|Yk−1) = N (Yk;
√
1− βkYk−1, βkI), (11)

where βk is a noise schedule, satisfying βk < βk−1. As K becomes large, YK ≈ N (0, I).

Following DDPM (Ho et al., 2020), we sample Yk from Y0 at any time step k in a closed form:
q(Yk|Y0) = N (Yk;

√
ᾱkY0, (1− ᾱk)I), (12)

where αk = 1 − βk and ᾱk =
∏k

s=0 αs. Utilizing the parameterization trick (Kingma & Welling,
2013), we express Yk as:

Yk =
√
ᾱkY0 +

√
1− ᾱkϵ, (13)

where ϵ ∼ N (0, I). The detailed derivations are provided in Appendix D.1.

Reverse Process. The reverse process aims to estimate the posterior q(Yk−1|Yk). Different from
PhysDiff (Qian et al., 2025), in our frequency-aware diffusion model, this distribution is approxi-
mated by a neural network fθ conditioned on both the time-domain condition X and the physiolog-
ical frequency condition CP:

pθ(Yk−1|Yk,X,CP) = N (Yk−1;µθ(Yk,X,CP, k),Σθ). (14)
Next, we show that incorporating the physiological frequency prior CP can effectively reduce the
uncertainty in the reverse diffusion process, leading to more accurate rPPG signal reconstruction. It
can be formalized in Proposition 1.

Proposition 1 The conditional entropy is satisfied:
H(Yk−1|Yk,X,CP) < H(Yk−1|Yk,X), (15)

indicating that the inclusion of additional physiological frequency condition CP in the reverse pro-
cess reduces uncertainty. The detailed proof is provided in Appendix C.2.

Accelerated Training. To enhance the efficiency of our model, we accelerate both the training and
sampling processes. Traditional DDPM-based training involves learning to predict the added Gaus-
sian noise at each diffusion step, which can be inefficient (Ho et al., 2020). Instead, our denoising
network fθ is designed to directly reconstruct the clean rPPG signal Y0 from the noisy input Y0,
conditioned on X, CP, and the timestep k:

Ŷ0 = fθ(Yk,X,CP, k). (16)
In practice, for Equation 14, the mean µθ and covariance σ2

k in reverse process are parameterized
as µθ(Yk,X,CP, k) =

√
ᾱk(1−ᾱk−1)

1−ᾱk
Yk +

√
ᾱk−1βk

1−ᾱk
fθ(Yk,X,CP, k), and Σθ = σ2

kI, where
σ2
k = 1−ᾱk−1

1−ᾱk
βk. The mathematical details are presented in Appendix D.2. Furthermore, inspired

by the Fourier-based loss term, which is beneficial for the accurate reconstruction of the signals(Fons
et al., 2022), we propose to guide the diffusion training by applying it to the frequency domain with
the Fourier transform. Formally, our training objective integrates both time and frequency-domain
constraints:

Lθ(Ŷ0,Y0) = 1− Pearson(Ŷ0,Y0)︸ ︷︷ ︸
time-domain loss

+MSE(F(Ŷ0),F(Y0)︸ ︷︷ ︸
frequency-domain loss

), (17)

where Pearson represents Pearson correlation coefficient, MSE denotes Mean Square Error, and
F denotes the Discrete Fourier Transform.

For inference, we start from YK ∼ N (0, I), K, X, and CP. Then, we follow DDIM (Song et al.,
2021a; Qian et al., 2025) and perform the reverse process to obtain the final rPPG signal.
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Table 1: Intra-dataset HR estimation results of models on the UBFC-rPPG, PURE, VIPL-HR, and
MMPD datasets. bold: best results.

UBFC-rPPG PURE MMPD VIPL-HRMethod Venue MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑
DeepPhys (Chen & McDuff, 2018) ECCV’18 2.90 3.63 - 0.83 1.54 0.99 22.27 28.92 -0.03 11.0 13.8 0.72
PhysNet (Yu et al., 2019) BMVC’19 2.95 3.67 0.97 2.10 2.60 0.99 4.80 11.80 0.60 10.80 14.80 0.20
CVD (Niu et al., 2020) ECCV’20 2.19 3.12 0.99 1.29 2.01 0.98 - - - 5.02 7.97 0.79
TS-CAN (Liu et al., 2020) NeurIPS’20 1.70 2.72 0.99 2.48 9.01 0.92 9.71 17.22 0.44 - - -
Gideon et al.(Gideon & Stent, 2021) ICCV’21 1.85 4.28 0.93 2.30 2.90 0.99 - - - 9.01 14.02 0.58
Dual-GAN (Lu et al., 2021) CVPR’21 0.44 0.67 0.99 0.82 1.31 0.99 - - - 4.93 7.68 0.81
PhysFormer (Yu et al., 2022) CVPR’22 0.50 0.71 0.99 1.10 1.75 0.99 11.99 18.41 0.18 4.97 7.79 0.78
EfficientPhys (Liu et al., 2023) WACV’23 1.14 1.81 0.99 - - - 13.47 21.32 0.21 - - -
Li et al.(Li & Yin, 2023) ICCV’23 0.48 0.64 1.00 0.64 1.16 0.99 - - - 4.97 7.79 0.78
Yue et al.(Yue et al., 2023) TPAMI’23 0.58 0.94 0.99 1.23 2.01 0.99 - - - - - -
Contrast-Phys+(Sun & Li, 2024) TPAMI’24 0.21 0.80 0.99 0.48 0.98 0.99 - - - - - -
DiffPhys (Chen et al., 2024) Bioeng.’24 1.05 1.63 0.99 1.46 5.88 0.90 - - - - - -
CodePhys (Chu et al., 2025) JBHI’25 0.21 0.26 0.99 0.39 0.83 0.99 - - - 4.27 7.11 0.81
RhythmMamba (Zou et al., 2025b) AAAI’25 0.50 0.75 0.99 0.23 0.34 0.99 3.16 7.27 0.84 4.30 7.49 0.81
PhysDiff (Qian et al., 2025) AAAI’25 0.33 0.57 1.00 0.29 0.54 1.00 7.17 9.63 0.71 3.92 6.65 0.85

FrePhys (Ours) - 0.24 0.53 1.00 0.17 0.25 1.00 4.20 6.78 0.86 3.79 6.34 0.86

Table 2: HRV and RF estimation results of models on the UBFC-rPPG dataset. LF, HF, and RF
represent low frequency, high frequency, and respiration frequency, respectively. “n.u.” denotes
normalized units.

LF (n.u.) HF (n.u) LF/HF RF (Hz)Method Venue SD↓ RMSE↓ ρ ↑ SD↓ RMSE↓ ρ ↑ SD↓ RMSE↓ ρ ↑ SD↓ RMSE↓ ρ ↑
CVD (Niu et al., 2020) ECCV’20 0.053 0.056 0.740 0.053 0.065 0.740 0.169 0.168 0.812 0.017 0.018 0.252
Dual-GAN (Lu et al., 2021) CVPR’21 0.034 0.035 0.891 0.034 0.034 0.891 0.131 0.136 0.881 0.010 0.010 0.395
Gideon et al. (Gideon & Stent, 2021) ICCV’21 0.091 0.139 0.694 0.091 0.139 0.694 0.525 0.691 0.684 0.061 0.098 0.103
Contras-Phys (Sun & Li, 2022) ECCV’22 0.050 0.098 0.798 0.050 0.098 0.798 0.205 0.395 0.782 0.055 0.083 0.347
Contrast-Phys+ (Sun & Li, 2024) TPAMI’24 0.025 0.025 0.947 0.025 0.025 0.947 0.064 0.066 0.963 0.029 0.029 0.803
PhysDiff (Qian et al., 2025) AAAI’25 0.029 0.022 0.978 0.016 0.022 0.978 0.079 0.066 0.979 0.006 0.007 0.811

FrePhys (Ours) - 0.016 0.014 0.988 0.013 0.014 0.988 0.079 0.066 0.989 0.006 0.005 0.845

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following (Zou et al., 2025b; Qian et al., 2025), we evaluate our method on four
benchmark datasets: UBFC-rPPG (Bobbia et al., 2019) and PURE (Stricker et al., 2014) are two
small-scale datasets that contain 59 and 42 videos, respectively, in relatively constrained conditions.
MMPD (Tang et al., 2023) dataset is a medium-scale dataset containing 660 videos under 4 distinct
lighting configurations. VIPL-HR (Niu et al., 2019) dataset is a large-scale dataset containing 2,378
videos captured across 9 scenarios and 4 recording devices. The detailed description of datasets is
provided in Appendix F.1.

Evaluation Metrics. We employ three commonly used metrics, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Pearson’s correlation coefficient ρ, to evaluate the performance of
HR estimation. For the evaluation of HRV features, we follow the approach outlined in (Yu et al.,
2023; Sun & Li, 2024) and employ the Standard Deviation (SD), RMSE, and ρ as evaluation metrics.
The detailed description of evaluation metrics is provided in Appendix F.2.

4.2 QUANTITATIVE ANALYSIS

In this subsection, we present quantitative comparisons with state-of-the-art methods and conduct
ablation studies on the frequency module to validate its effectiveness. More experiments and visu-
alizations are provided in Appendix G.

Intra-dataset Evaluation. We present the HR evaluation results of our method compared to sev-
eral representative baselines on four benchmarks in Tab. 1, adhering to the evaluation protocols
established in prior work (Zou et al., 2025b; Qian et al., 2025). From the table, we observe that
our method sets a new state-of-the-art performance on the more challenging MMPD and VIPL-HR
datasets by a large margin. These findings demonstrate that incorporating physiological frequency
priors enables our approach to effectively mitigate noise interference. In addition to HR estimation,
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Table 3: Cross-dataset HR estimation results of the models trained on PURE/UBFC-rPPG and tested
on UBFC-rPPG/PURE/MMPD.

PURE→ UBFC-rPPG UBFC-rPPG→ PURE PURE→MMPD UBFC-rPPG→MMPDMethod Venue MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑
DeepPhys (Chen & McDuff, 2018) ECCV’18 1.21 2.90 0.99 5.54 18.51 0.66 16.92 24.61 0.05 17.50 25.00 0.05
PhysNet (Yu et al., 2019) BMVC’19 1.63 3.79 0.98 9.36 20.63 0.62 13.22 19.61 0.23 10.24 16.54 0.29
TS-CAN (Liu et al., 2020) NeurIPS’20 1.30 2.87 0.99 3.69 13.80 0.82 13.94 21.61 0.20 14.01 21.04 0.24
PhysFormer (Yu et al., 2022) CVPR’22 1.44 3.77 0.98 12.92 24.36 0.47 14.57 20.71 0.15 12.10 17.79 0.17
EfficientPhys (Liu et al., 2023) WACV’23 2.13 3.00 0.99 5.47 17.04 0.71 14.03 21.62 0.17 13.78 22.25 0.09
RhythmMamba (Zou et al., 2025b) AAAI’25 0.95 1.83 0.99 1.98 6.51 0.96 10.44 16.70 0.36 10.63 17.14 0.34
PhysDiff (Qian et al., 2025) AAAI’25 0.52 0.84 1.00 3.30 6.89 0.96 10.96 14.93 0.28 10.76 14.47 0.34

FrePhys (Ours) - 0.43 0.79 1.00 0.95 3.15 0.99 10.11 14.34 0.48 8.91 12.86 0.57

(a) FrePhys (b) PhysDiff (c) RhythmMamba

Phys. bandwidth Phys. bandwidth Phys. bandwidth

Figure 3: Time and frequency domain visualizations of rPPG signal predictions on the VIPL dataset
under head motion scenario. The results are presented for (a) the proposed method, (b) PhysD-
iff (Qian et al., 2025), and (c) RhythmMamba (Zou et al., 2025b). In the frequency-domain plots,
the purple dashed box indicates the physiological signal bandwidth ranging from 0.66 to 3.0 Hz,
corresponding to typical human cardiac frequencies. ⋆ represents the spectrum peak of HR.

we also evaluate our method on two other critical physiological indicators, i.e., heart rate variability
(HRV) and respiration frequency (RF), which require high-quality rPPG signals for accurate peak
detection and reliable analysis. As shown in Tab. 2, our method significantly outperforms existing
methods across most metrics. This demonstrates that our method not only captures precise cardiac
pulsation cycles but also reconstructs high-fidelity rPPG signals in the time domain.

Cross-dataset Evaluation. As shown in Tab. 3, we conduct four cross-dataset evaluations to sim-
ulate unseen real-world scenarios. The results show that the performance of most models drops
significantly when transferred from a simple domain to a complex domain, which is a challenge
in this field. Benefiting from physiological spectrum modeling, our method effectively improves
generalization and achieves the best performance in all settings.

Table 4: Ablation study of the individ-
ual contributions on VIPL-HR.

PBF PSM ASS MAE RMSE ρ

- - - 4.22 7.15 0.83
✓ - - 4.03 6.77 0.82
- ✓ - 3.98 6.55 0.84
- - ✓ 4.10 6.95 0.82
✓ ✓ - 3.91 6.42 0.85
✓ - ✓ 4.11 6.71 0.84
- ✓ ✓ 3.95 6.48 0.83
✓ ✓ ✓ 3.79 6.34 0.86

Ablation Studies. We investigate the impact of different
components in our method through the following abla-
tion studies. As shown in Tab. 4, when physiological fre-
quency information is missing, that is, only using time-
domain MSTmap input as a condition, the performance
degrades significantly. Additionally, it is evident that a
series of physiological frequency denoiser modules play
a crucial role, which verifies the necessity of each compo-
nent within our method. The combination of PBF, PSM,
and ASS achieves the best performance, highlighting that
its combination brings unique benefits.

4.3 QUALITATIVE ANALYSIS

Visualization of rPPG Prediction. We visualize the rPPG predictions to highlight the improve-
ments of our method in rPPG estimation quality. We present a prediction showcase on the VIPL
dataset under the head motion scenario, as shown in Fig. 3. PhysDiff (Qian et al., 2025), Rhyth-
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(a) Different scenarios (b) Different camera devices

Figure 4: HR estimation results on VIPL-HR under different scenarios and camera devices.

(a) Difference plots (b) BlandAltman Scatter

FrePhys PhysDiff PhysDiffFrePhys

Figure 5: Difference plots and BlandAltman Scatter on VIPL-HR.

mMamba (Zou et al., 2025b) are selected as the representative SOTA methods. We observe that
the rPPG signal predicted by PhysDiff and RhythmMamba exhibits numerous burrs, which reflect
the limitations of modeling in the time domain, namely, the difficulty in capturing dominant phys-
iological frequency components and being vulnerable to noise. Our FrePhys addresses this limita-
tion effectively, which not only keeps pace with the label sequence but also accurately exhibits a
smoother appearance with fewer irregularities. In addition, we also observe that the frequency spec-
tra of PhysDiff and RhythmMamba exhibit relatively dispersed energy distributions. In contrast,
our method effectively concentrates spectral energy on several key frequency components corre-
sponding to physiological signals, resulting in an obvious sparsity in the frequency domain. This
focused energy distribution highlights our method’s ability to isolate and enhance vital physiological
components while suppressing irrelevant noise.

Qualitative Results for Robustness. To evaluate the robustness of our model across diverse scenar-
ios and camera device conditions, we provide detailed results from the VIPL-HR dataset, encom-
passing 9 distinct scenarios and 3 types of camera devices. As illustrated in Fig. 4, our proposed
method consistently outperforms other methods across these varied conditions, which indicates its
robustness in remote physiological signal measurement.

Qualitative Results for Consistency. To further evaluate the consistency between predicted HR
and ground truth measurements across different ranges, Figure 5 presents both scatter and BlandAlt-
man plots on the VIPL dataset. Compared to the diffusion-based PhysDiff (Qian et al., 2025), our
proposed method shows scatter points more closely aligned with the identity line (y = x), indicat-
ing fewer outliers. Additionally, the BlandAltman plot reveals that our method exhibits narrower
confidence intervals, suggesting reduced variability between predicted and actual HR values. These
visualizations collectively indicate that our method achieves superior consistency with ground truth
HR, highlighting its accuracy across all HR distributions.

5 CONCLUSION

In this paper, we introduced FrePhys, a novel frequency-aware diffusion model designed to enhance
remote physiological estimation by integrating physiological frequency priors. Addressing the lim-
itations of existing time-domain approaches, particularly their susceptibility to noise from motion
artifacts and illumination variations, we leverage frequency-domain insights to improve signal fi-
delity. Extensive evaluations on multiple public datasets demonstrate that our method outperforms
state-of-the-art methods in HR, HRV, and RF estimation tasks. Notably, our method exhibits supe-
rior generalization capabilities in cross-dataset scenarios, underscoring its robustness in diverse and
challenging conditions.
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6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human or animal experiments were con-
ducted. All datasets used (UBFC-rPPG, PURE, MMPD, and VIPL-HR) were obtained in accor-
dance with their respective usage policies and do not contain personally identifiable information.
We ensured that our methods do not raise privacy, security, or fairness concerns, and we took care
to minimize potential biases. We are committed to maintaining transparency, integrity, and ethical
responsibility throughout this research.

7 REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our results. An anonymous repository
provides full access to our code and processed datasets. Detailed descriptions of the experimen-
tal setup, including training procedures, model configurations, and hardware specifications, are in-
cluded in the paper. These measures are intended to facilitate replication and foster further research
in this area.
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Appendix for FrePhys: Frequency-aware Diffusion Model for
Remote Physiological Measurement
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A DETAILED RELATED WORK

A.1 REMOTE PHYSIOLOGICAL MEASUREMENT

The physiological mechanism of rPPG lies in the periodic changes in subcutaneous blood volume
driven by cardiac contraction and relaxation. These fluctuations alter the skin’s absorption and scat-
tering of light, producing subtle color variations that are imperceptible to the human eye. Early
work focused on hand-crafted methods, including blind source separation (BSS) approaches (Poh
et al., 2010; Lewandowska et al., 2011) using PCA/ICA to isolate rPPG signals from noise, and
model-driven techniques like CHROM and POS (De Haan & Jeanne, 2013; Li et al., 2014), which
leverage color space projections based on physiological priors. These methods perform well under
constrained settings but degrade significantly with motion or illumination changes. Deep learning
methods then began to flourish. HR-CNN (Špetlík et al., 2018) is the first work using deep learning
models for rPPG, which proposed a two-step convolutional neural network to estimate HR value.
DeepPhys (Chen & McDuff, 2018) then proposed to estimate BVP signals from the normalized dif-
ference of adjacent frames and to use raw facial images to adaptively generate attention maps to
guide the estimation. CVD (Niu et al., 2020) utilized the multi-scale spatial-temporal map to repre-
sent physiological features in raw facial videos and proposed the cross-verified feature disentangling
strategy to separate noise features and physiological features. Dual-GAN (Lu et al., 2021) employed
two GANs to jointly model BVP prediction and noise distribution to improve robustness across fa-
cial regions. To capture long-range temporal dependencies, subsequent research (PhysFormer (Yu
et al., 2022), EfficientPhys (Liu et al., 2023), Dual-TL (Qian et al., 2024a), RhythmFormer (Zou
et al., 2025a)) turned to the Transformer architecture. To further maintain linear complexity, some
Mamba-based work (RhythmMamba (Zou et al., 2025b), PhysMamba (Luo et al., 2024)) then in-
troduced the state space model, achieving high performance with low memory usage and improved
speed. Due to the scarcity of labeled data, self-supervised learning has gained attention. Contrastive
approaches (Gideon & Stent, 2021; Sun & Li, 2024) and masked autoencoding (Liu et al., 2024;
Speth et al., 2023) enable robust representation learning from unlabeled videos, showing strong
potential for in-the-wild applications.

A.2 DIFFUSION MODEL FOR RPPG ESTIMATION

Diffusion models have emerged as powerful generative frameworks that gradually corrupt training
data with noise and learn to reverse this process to generate clean samples. Initially proposed for
image generation (Ho et al., 2020), denoising diffusion probabilistic models (DDPMs) have since
been successfully applied to a broad range of domains, including cross-modal generation (Avra-
hami et al., 2022; Fan et al., 2022), video editing (Ceylan et al., 2023), and object detection (Chen
et al., 2022). In remote physiological measurement, particularly rPPG estimation, the challenges
of complex motion, illumination variability, and weak signal strength motivate the need for robust
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denoising techniques. Diffusion models, with their capacity to model complex data distributions
and restore clean signals, offer a promising direction. A recent pioneering work, PhysDiff (Qian
et al., 2025), introduces diffusion to the rPPG field by designing a dynamic-aware signal repre-
sentation. PhysDiff decomposes rPPG signals into two components: trend, representing temporal
directionality (capillary expansion/contraction), and amplitude, quantifying signal fluctuation inten-
sity. Building upon this direction, our proposed method explores a frequency-aware perspective for
rPPG estimation using diffusion models. Inspired by the frequency modeling being beneficial for
sequence signal analysis (Yi et al., 2023; 2024), we try to introduce the physiological frequency
prior into rPPG estimation. While PhysDiff emphasizes time-domain signal dynamics, our method
shifts focus to the periodic nature of rPPG by modeling frequency-domain features.

B PRELIMINARIES

B.1 MULTIPLICATION OF COMPLEX NUMBERS

Consider two complex numbers Z1 = a + jb and Z2 = c + jd, where a and c denote the real
parts of Z1 and Z2, respectively, and b and d represent the corresponding imaginary parts. The
multiplication of two complex numbers involves applying the distributive property of multiplication
over addition, along with the identity j2 = −1, where j is the imaginary unit. The product of Z1

and Z2 is computed as follows:

Z1Z2 = (a+ jb)(c+ jd)

= ac+ a(jd) + jb(c) + jb(jd)

= ac+ j(ad) + j(bc) + j2(bd)

= (ac− bd) + j(ad+ bc).

(18)

B.2 DISCRETE FOURIER TRANSFORM

The Discrete Fourier Transform (DFT) (Brigham & Morrow, 1967) is a fundamental tool in signal
processing and spectral analysis. It transforms a discrete-time signal from the temporal domain to the
frequency domain, enabling a decomposition of the signal into its constituent frequency components.
This facilitates the precise identification and analysis of underlying periodic patterns and oscillatory
behavior.

Given a discrete real-valued temporal signal x ∈ RT , its frequency-domain representation xF ∈ CT

is a complex-valued sequence defined by:

xF [i] =

T−1∑
t=0

x[t] · e−j2πit/T =

T−1∑
t=0

x[t] · cos
(
2πit

T

)
︸ ︷︷ ︸

Real Part

−j
T−1∑
t=0

x[t] · sin
(
2πit

T

)
︸ ︷︷ ︸

Imaginary Part

, (19)

where i ∈ 0, 1, . . . , T − 1 indexes the discrete frequency bins, and j is the imaginary unit such
that j2 = −1. The corresponding physical frequency for the i-th bin is given by λi = ifs/T Hz,
where fs is the sampling rate of the signal x. For real-valued signals, the DFT exhibits conjugate
symmetry:

xF [T − n] = xF [n], for n = 1, . . . , ⌊T/2⌋, (20)

allowing us to retain only the first ⌊T/2⌋ + 1 frequency components without loss of information.
Hence, in practice, we define the DFT operator as a mappingF : RT → C⌊T/2⌋+1 for computational
efficiency. Each complex coefficient xF [i] in the frequency domain can be uniquely expressed in
terms of its amplitude and phase:

A[i] = |xF [i]|=
√
Re(xF [i])2 + Im(xF [i])2, ϕ[i] = tan−1

(
Im(xF [i])

Re(xF [i])

)
, (21)

where Re(·) and Im(·) denote the real and imaginary parts, respectively. The amplitude A[i] reflects
the energy concentration at frequency λi, while the phase ϕ[i] captures the temporal alignment of
the sinusoidal component at that frequency.
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Since the DFT is a bijective (invertible) transformation, the original time-domain signal x[t] can
be exactly reconstructed from its frequency-domain representation xF [i] via the Inverse Discrete
Fourier Transform (IDFT), expressed as:

x[t] = F−1(xF )[t] =
1

T

T−1∑
i=0

xF [i] · ej2πit/T , t = 0, 1, . . . , T − 1. (22)

C THEORETICAL PROOF

C.1 PROOF OF THEOREM 1

Theorem 1 (Frequency-domain Convolution Theorem) The multiplication of two signals in the fre-
quency domain is equivalent to the frequency transformation of a circular convolution of these two
signals in the temporal domain, which can be summarized as:

F [M(v) ⊗ Z(v)] = F(M(v)) ⊙ F(Z(v)), (23)

where⊗ and⊙ represent the circular convolutional operation and element-multiplication operation,
respectively, M(v) and Z(v) represent two signals for the time variable v, and F(·) denotes the
Discrete Fourier Transform.

Proof. Let M(v) and Z(v) are two length T signals. Let M(v) and Z(v) be two discrete signals of
length T , defined over the time index v = 0, 1, . . . , T − 1. Let their DFTs be denoted by F(M(v))
and F(Z(v)), respectively. We define the circular convolution of M(v) and Z(v) as:

Y(v) = M(v)⊗ Z(v) =

T−1∑
u=0

M(u) · Z((v − u) mod T ). (24)

The DFT of the resulting signal Y(v) is given by:

F(Y(v)) =

T−1∑
v=0

Y(v) · e−j2πiv/T , i = 0, 1, . . . , T − 1, (25)

where j is the imaginary unit, and i denotes the frequency index. Substituting the expression for
Y(v) into the DFT, we obtain:

F(Y(v)) =

T−1∑
v=0

(
T−1∑
u=0

M(u) · Z((v − u) mod T )

)
e−j2πiv/T

=

T−1∑
u=0

M(u) ·
T−1∑
v=0

Z((v − u) mod T ) · e−j2πiv/T .

(26)

Next, we perform a change of variable by letting r = (v − u) mod T , which implies v = (r + u)
mod T :

F(Y(v)) =

T−1∑
u=0

M(u) ·
T−1∑
r=0

Z(r) · e−j2πi(r+u)/T

=

T−1∑
u=0

M(u) · e−j2πiu/T ·
T−1∑
r=0

Z(r) · e−j2πir/T .

(27)

Rewriting the above expression, we have:

F(Y(v)) =

(
T−1∑
u=0

M(u) · e−j2πiu/T

)
·

(
T−1∑
r=0

Z(r) · e−j2πir/T

)
= F(M(v))⊙F(Z(v)).

(28)
Thus, the Discrete Fourier Transform of the circular convolution of two signals M(v) and Z(v) is
equivalent to the element-wise product of their respective DFTs, i.e.,F [M(v)⊗Z(v)] = F(M(v))⊙
F(Z(v)). This completes the proof.
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C.2 PROOF OF PROPOSITION 1

Proposition 1 The conditional entropy is satisfied:

H(Yk−1|Yk,X,CP) < H(Yk−1|Yk,X), (29)

indicating that the inclusion of additional physiological frequency condition CP in the reverse pro-
cess reduces uncertainty.

Proof. We use the notion of conditional entropy from information theory to quantify uncertainty. In
the reverse process of DDPM (Ho et al., 2020), the rPPG signal at step k, denoted Yk, is treated as
a condition. The uncertainty of the reverse process can thus be expressed as:

H (Yk−1 | Yk) = −
∫

pθ (Yk−1,Yk) log pθ (Yk−1 | Yk) dYk−1. (30)

Similarly, in PhysDiff (Qian et al., 2025), the condition includes only the facial observation sequence
X, so the uncertainty is modeled as H(Yk−1 | Yk,X). In our proposed method, the condition is
extended to include physiological frequency information CP, yielding H(Yk−1 | Yk,X,CP).

From the basic property of conditional entropy, we know:

H(Yk−1 | Yk) ≤ H(Yk−1). (31)

Using the definition of mutual information, we have:

I(Yk−1;Yk) = H(Yk−1)−H(Yk−1 | Yk). (32)

According to Equation 11, we know that I(Yk−1;Yk) > 0, which implies:

H(Yk−1 | Yk) < H(Yk−1). (33)

Using the chain rule for entropy, we have:

H(Yk−1,Yk,X) = H(Yk−1 | Yk,X) +H(Yk,X). (34)

Rewriting this using conditional entropy identities:

H(Yk−1 | Yk,X) = H(X | Yk−1,Yk) +H(Yk−1,Yk)−H(X | Yk)−H(Yk)

= H(Yk−1 | Yk) +H(X | Yk−1,Yk)−H(X | Yk).
(35)

From Equation 11, since Yk−1 contains one less step of noise compared to Yk, it is closer to the
original observation. Therefore:

H(X | Yk−1,Yk) < H(X | Yk). (36)

Substituting this inequality back gives:

H(Yk−1 | Yk,X) < H(Yk−1 | Yk). (37)

Following the same reasoning, we can conclude:

H(Yk−1 | Yk,X,CP) < H(Yk−1 | Yk,X). (38)

This result confirms that incorporating the physiological prior CP into the conditioning set reduces
the entropy of the target distribution in the reverse process. Consequently, this reduction in un-
certainty simplifies the learning task for the diffusion model, potentially leading to more efficient
training and enhanced accuracy in rPPG signal estimation. This completes the proof.

D MATHEMATICAL DERIVATION DETAILS

D.1 DERIVATIONS OF CLOSED-FORM FORWARD PROCESS

Assuming that the clean rPPG target distribution q(Y0) is known, we can first sample a clean rPPG
target as Y0 ∼ q(Y0). According to the forward process defined in Equation 11, the noisy rPPG
signal at step k can be generated as:

Yk =
√
αkYk−1 +

√
1− αkϵk, ϵk ∼ N (0, I). (39)
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Similarly, the previous step Yk − 1 can be expressed as:

Yk−1 =
√
αk−1Yk−2 +

√
1− αk−1ϵk−1, ϵk−1 ∼ N (0, I). (40)

By recursively substituting, we obtain:

Yk =
√
αk

(√
αk−1Yk−2 +

√
1− αk−1ϵk−1

)
+
√
1− αkϵk

=
√
αkαk−1Yk−2 +

(√
αk(1− αk−1)ϵk−1 +

√
1− αkϵk

)
.

(41)

Given that ϵk−1, ϵk ∼ N (0, I), the two noise terms are independent Gaussian variables. Therefore,
their weighted sum is also Gaussian:√

αk(1− αk−1)ϵk−1 ∼ N (0, αk(1− αk−1)I),√
1− αkϵk ∼ N (0, (1− αk)I),

(42)

and their sum follows:√
αk(1− αk−1)ϵk−1 +

√
1− αkϵk ∼ N (0, [αk(1− αk−1) + (1− αk)] I) . (43)

This implies that the overall expression can be rewritten in the same form as before:

Yk =
√
αkαk−1Yk−2 +

√
1− αkαk−1ϵ, (44)

where ϵ ∼ N (0, I).

Continuing this recursive process, we eventually obtain:

Yk =

√√√√ k∏
s=1

αsY0 +

√√√√1−
k∏

s=1

αsϵ, ϵ ∼ N (0, I). (45)

This result corresponds to the closed-form expression of Yk in the forward diffusion process, start-
ing from a clean rPPG signal Y0.

D.2 DERIVATION OF PARAMETERIZED REVERSE PROCESS

We begin with Bayes’ theorem to derive the reverse process:

pθ(Yk−1|Yk,X,CP) = pθ(Yk|Yk−1,X,CP)
pθ(Yk−1|X,CP)

pθ(Yk|X,CP)
(46)

According to Equation 11, the expected pθ(Yk|Yk−1,X,CP) is:

pθ(Yk|Yk−1,X,CP) ∼ N (Yk;
√
αkYk−1, βkI). (47)

Furthermore, based on Equation 13, we also have:

pθ(Yk−1|X,CP) ∼ N (Yk−1;
√
ᾱk−1Y0, (1− ᾱk−1)I),

pθ(Yk|X,CP) ∼ N (Yk−1;
√
ᾱkY0, (1− ᾱk)I),

(48)

Combining the above three Gaussian distributions, we can derive:

pθ(Yk−1|Yk,X,CP) ∝ N (Yk;
√
αkYk−1, (1− αk) · N (Yk−1;

√
ᾱk−1Y0, (1− ᾱk−1)I) (49)

Since the product of two Gaussians is also a Gaussian, we can compute the posterior distribution
analytically using the standard Gaussian product rule. Specifically, the reverse process becomes:

pθ(Yk−1|Yk,X,CP) = N (Yk−1;µθ(Yk,X,CP, k),Σθ). (50)

where the mean and covariance are given by:

Σθ =
(

1
βk

I+ 1
1−ᾱk−1

I
)−1

= (1−ᾱk−1)βk

1−ᾱk
I,

µθ(Yk,X,CP, k) = Σθ

(
1
βk

√
αkYk + 1

1−ᾱk−1

√
ᾱk−1Y0

)
=

√
αk(1−ᾱk−1)

1−ᾱk
Yk +

√
ᾱk−1βk

1−ᾱk
Y0.

(51)
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Figure 6: Implementation details of the stacked denoising network in our FrePhys.

However, during inference, the clean signal Y0 is not directly accessible. Therefore, we train a
neural network fθ(·) to predict an approximation Ŷ0 from the noisy input:

Ŷ0 = fθ(Yk,X,CP, k), (52)

and substitute Y0 in the mean computation µθ(Yk,X,CP, k) with the predicted Ŷ0. This yields
the parameterized reverse process:

µθ(Yk,X,CP, k) =

√
αk(1− ᾱk−1)

1− ᾱk
Yk +

√
ᾱk−1βk

1− ᾱk
Ŷ0, (53)

where Ŷ0 = fθ(Yk,X,CP, k). The variance is kept fixed as:

Σθ = σ2
kI, with σ2

k =
(1− ᾱk−1)βk

1− ᾱk
. (54)

Therefore, this approach enables efficient learning by directly predicting the clean rPPG signal Y0,
thereby avoiding explicit noise estimation as in the original DDPM framework (Ho et al., 2020).

E MODEL DETAILS

E.1 DETAILED ARCHITECTURE OF THE DENOISING NETWORK

As shown in Fig. 6, we provide the implementation details of the stacked denoising network..

E.2 CROSS-DOMAIN REPRESENTATION LEARNING

Space-Frequency Cross-Attention. To capture spatial dependencies across facial ROIs guided by
physiological frequency clues, we apply a multi-head cross-attention over the ROI dimension at
each timestamp. Assuming the inputs of l-th layer are the intermediate feature Z(l) ∈ RT×N×D and
physiological frequency representation ZP,(l) ∈ RT×N×D. Then, for each timestamp t, the process
of space-frequency interaction learning is formulated as:

Qt = Z
P,(l)
t WQ

S , Kt = Z
P,(l)
t WK

S , Vt = Z
(l)
t WV

S ,

Z
S,(l)
t = LayerNorm

(
Softmax

(
QtK

⊤
t√

D

)
Vt + Z

(l)
t )

)
,

Ẑ
S,(l)
t = LayerNorm

(
Z

S,(l)
t + FeedForward

(
Z

S,(l)
t

))
.

(55)

where WQ
S ,WK

S ,WV
S ∈ RD×D are learnable projection matrices. Finally, the outputs ẐT,(l) at

all timestamps are concatenated along the temporal dimension to obtain the updated intermediate
feature:

ZS,(l) ← Concat
(
{ẐS,(l)

t }Tt=1

)
. (56)

Time-Frequency Cross-Attention. Complementary to space-frequency cross-attention, time-
frequency cross-attention further models the temporal periodic dependencies within individual ROIs
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through frequency-guided cross-attention along the time axis. For each ROI n, it can be formulated
as:

Qn = ZP,(l)
n WQ

T , Kn = ZP,(l)
n WK

T , Vn = ZS,(l)
n WV

T ,

ZT,(l)
n = LayerNorm

(
Softmax

(
QnK

⊤
n√

D

)
Vn + ZS,(l)

n )

)
,

ẐT,(l)
n = LayerNorm

(
ZT,(l)

n + FeedForward
(
ZT,(l)

n

))
.

(57)

where WQ
T ,WK

T ,WV
T ∈ RD×D are independent learnable projection matrices. Finally, the outputs

Ẑ
T,(l)
t for all ROIs are concatenated along the spatial dimension to update the intermediate feature:

Z(l+1) ← Concat
(
{ẐT,(l)

n }Nn=1

)
. (58)

F REPRODUCTION DETAILS

F.1 DATASETS DETAILS

Our experiments for HR estimation are conducted on four publicly available datasets:

UBFC-rPPG (Bobbia et al., 2019) is a small-scale yet widely used dataset consisting of 42 facial
videos from 42 subjects. Participants are recorded while performing time-limited mental arith-
metic tasks, designed to introduce natural heart rate variability. The videos are of high quality with
minimal noise or motion artifacts, making UBFC-rPPG an ideal benchmark for evaluating model
accuracy under relatively clean and controlled conditions. According to the previous protocol (Lu
et al., 2021; Song et al., 2021b; Qian et al., 2024a; Zou et al., 2025b), we select subjects 38 to 49 as
the test set, and the remaining subjects are used as the training set.

PURE (Stricker et al., 2014) is another small-scale dataset designed for testing under controlled
motion conditions. It comprises 60 one-minute videos from 10 subjects, each participating in six
scenarios: 1) sitting still, 2) talking, 3) slow head movement, 4) fast head movement, 5) small
head rotation, and 6) medium head rotation. This dataset introduces moderate motion artifacts and
is suitable for evaluating model robustness to dynamic facial movements while maintaining good
temporal synchronization. Following previous research (Sun & Li, 2022; Zou et al., 2025b; Qian
et al., 2025), we divided the PURE dataset into a training set and a test set with a 6:4 ratio.

MMPD (Tang et al., 2023) is a medium-scale, challenging dataset featuring 660 one-minute videos
from 33 subjects, each recorded under a wide range of conditions. MMPD is designed to simulate
real-world complexity by including noise, motion, and illumination variation. In our study, we use
the full uncompressed version of MMPD, making it a strong testbed for evaluating the generalization
capabilities of rPPG methods under practical deployment scenarios. Following the protocols out-
lined in (Zou et al., 2025b;a), the dataset was sequentially split into training, validation, and testing
sets with a ratio of 7:1:2.

VIPL-HR (Niu et al., 2019) is a large-scale rPPG dataset composed of 2,378 facial RGB videos
from 107 subjects. Videos are recorded using three types of devices: Logitech C310 web-camera, the
frontal camera of HUAWEI P9 phone, and RealSense F200 camera, under nine different scenarios
combining varied illumination (e.g., bright, dark) and head motion (e.g., stable, talking, motion).
Due to its diversity in capture devices, environments, and subject behaviors, VIPL-HR provides
a robust benchmark for assessing the generalization and reliability of rPPG models in real-world
conditions. Following previous work (Niu et al., 2019; 2020; Qian et al., 2024b; 2025), we use a
subject-exclusive 5-fold cross-validation protocol on VIPL-HR in our experiments.

F.2 EVALUATION METRICS

Following standard protocols in prior works (Li et al., 2014; Chen & McDuff, 2018; Niu et al., 2020),
we adopt three commonly used metrics to evaluate the accuracy of heart rate (HR) estimation: mean
absolute error (MAE), root mean square error (RMSE), and Pearson’s correlation coefficient (ρ).

For the evaluation of heart rate variability (HRV) features, including respiration frequency (RF),
low-frequency (LF) power in normalized units (n.u.), high-frequency (HF) power in normalized
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Table 5: Ablation study of different physiological bandwidth.

Physiological Bandwidth MMPD VIPL-HR
MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑

[0.75, 2.5] 4.39 7.17 0.85 3.96 6.58 0.86
[0.75, 3.0] 4.21 6.98 0.86 3.84 6.42 0.86
[0.66, 2.5] 4.22 7.12 0.85 3.89 6.50 0.85
[0.66, 3.0] 4.20 6.78 0.86 3.79 6.34 0.86

units (n.u.), and the LF/HF power ratio, we follow (Lu et al., 2021; Sun & Li, 2024), and utilize
standard deviation (SD), RMSE, and ρ as evaluation metrics. In general, lower values of MAE,
RMSE, and SD indicate better performance (i.e., lower estimation error), while higher values of ρ
(closer to 1) reflect stronger correlation between predictions and ground truth.

Let Ypred denote the predicted signal, Ygt denote the ground truth signal, and N be the total number
of evaluation instances. The definitions of the adopted metrics are as follows:

Mean Absolute Error (MAE): It measures the average magnitude of the absolute differences be-
tween predicted and ground truth values, reflecting the overall prediction error without considering
its direction.

MAE =
1

N

N∑
n=1

∣∣Yn
gt −Yn

pred

∣∣ . (59)

Root Mean Square Error (RMSE): It evaluates the square root of the mean squared error, empha-
sizing larger errors due to the squaring operation, and is more sensitive to outliers than MAE.

RMSE =

√√√√ 1

N

N∑
n=1

(
Yn

gt −Yn
pred

)2
. (60)

Standard Deviation (SD): It quantifies the dispersion of the prediction errors around their mean,
providing insight into the consistency and reliability of the predictions.

SD =

√√√√ 1

N

N∑
n=1

(
Yn

e − Y e

)2
, (61)

where the error term is defined as Yn
e = Yn

pred −Yn
gt, and Y e denotes the mean error across all N

samples.

Pearson’s Correlation Coefficient (ρ): It assesses the linear relationship between predicted and
ground truth values, with higher values indicating stronger correlation and better temporal align-
ment.

ρ =

∑N
n=1(Y

n
gt −Ygt)(Y

n
pred −Ypred)√∑N

n=1(Y
n
gt −Ygt)2

∑N
n=1(Y

n
pred −Ypred)2

, (62)

where Ygt and Ypred are the sample means of the ground truth and predicted signals, respectively.

F.3 IMPLEMENTATION DETAILS.

The proposed FrePhys is implemented in PyTorch using the Adam optimizer. We train our model
for 50 epochs, and the initial learning rate decay is 1e-3 with a shrink factor of 0.5 after every
5 epochs. The layer of the denoising network L is 4, and the feature dimension D is set to 64.
For hyperparameters of the diffusion model, we follow PhysDiff’s (Qian et al., 2025) setting. The
maximum diffusion timestep K is set to 1000. All experiments are performed on four NVIDIA
GeForce RTX 4090 24G GPUs. The source code is available online.
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(b) BlandAltman Scatter of results on the MMPD dataset

(a) Difference plots of results on the MMPD dataset

FrePhys PhysDiff RhythmMamba

FrePhys PhysDiff RhythmMamba

Figure 7: Difference and BlandAltman scatter plots of results on the MMPD dataset

Table 6: Comparison of different bandpass filters on VIPL-HR. The computational cost test is con-
ducted using a 10-second inference test for all filters on a single NVIDIA 4090 24GB GPU, report-
ing the throughput, inference time, and parameters. PBF achieves the best runtime efficiency while
maintaining comparable performance. Best results are marked in bold.

Filter MAE↓ RMSE↓ ρ ↑ Parameters Flops Throughput Inference Memory
(M)↓ (G)↓ (Kps)↑ time (ms)↓ (M)↓

Butterworth 3.75 6.28 0.86 0.86 7.75 83.84 11.93 874
Chebyshev 3.79 6.32 0.86 0.86 7.75 83.79 11.93 874
Bessel 3.52 6.46 0.85 0.86 7.75 80.59 12.41 874
PBF (ours) 3.79 6.34 0.86 0.86 7.75 85.44 11.70 874

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 IMPACT OF PHYSIOLOGICAL BANDWIDTH

As shown in Table 5, we investigated the impact of different physiological bandwidths on perfor-
mance. The results indicate that the [0.66, 3.0] Hz range yields the best performance. In contrast,
narrower bandwidths lead to performance degradation due to the loss of relevant physiological fre-
quency information.

G.2 IMPACT OF BANDWIDTH FILTER

In addition to our Physiological Bandpass Filter (PBF), we also explored soft filter alternatives.
Specifically, we replaced the hard bandpass setup of PBF with flexible soft filters, including But-
terworth, Chebyshev, and Bessel designs. These soft filters were implemented as non-parametric
binary masks in the frequency domain, enabling smoother frequency responses.

As summarized in Tab. 6, all soft filters share the same parameter size. Among them, the Butter-
worth filter achieved slightly better accuracy than Chebyshev and Bessel, while the overall perfor-
mance gains remained marginal. Importantly, our PBF consistently demonstrated the fastest infer-
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Table 7: Ablation study on the number of cross-attention layers in the Cross-domain Representation
Learning module, showing the trade-off between accuracy and inference cost on VIPL-HR. Best
results are marked in bold.

Layers MAE↓ RMSE↓ ρ ↑ Parameters Flops Throughput Inference Memory
(M)↓ (G)↓ (Kps)↑ time (ms)↓ (M)↓

1 7.42 10.60 0.66 0.27 1.97 401.68 2.49 872
2 4.84 7.82 0.81 0.47 3.40 200.36 4.99 872
3 3.90 6.52 0.86 0.66 5.82 127.58 7.84 874
4 3.79 6.34 0.86 0.86 7.75 85.44 11.70 874
5 3.97 6.60 0.85 1.06 9.68 75.74 13.20 876
6 5.19 7.74 0.82 1.26 11.61 62.24 16.07 876

ence speed and highest throughput. This suggests that while soft filters provide a valid alternative,
the simplicity and efficiency of PBF make it a more practical choice for real-time rPPG applications.

G.3 IMPACT OF CROSS-ATTENTION LAYERS

For the layers of cross-attention, we conducted ablations to analyze the optimal empirical setting of
the cross-attention layer number. As shown in Table 7, performance improves with the layer number
up to a certain point (4 layers), after which diminishing returns are observed along with increased
inference cost. We thus adopt 4 layers as a balanced parameter setting.

G.4 COMPUTATIONAL COST

About testing deployment feasibility, we conducted 10-second inference tests on a single NVIDIA
RTX 4090 GPU (24GB), and report the key computational metrics below. As shown in the Table 8,
our method offers significantly lower computational overhead than existing SOTA methods.

Table 8: Computational cost. The computational cost test is conducted using a 10-second inference
test for all methods on a single NVIDIA 4090 24GB GPU. Best results are marked in bold and the
second best in underline.

Method Parameters Flops Throughput Inference Memory
(M)↓ (G)↓ (Kps)↑ time (ms)↓ (M)↓

DeepPhys (Chen & McDuff, 2018) 1.98 111.67 28.89 34.61 10638
PhysNet (Yu et al., 2019) 0.77 65.74 68.73 14.55 3750
TS-CAN (Liu et al., 2020) 1.98 111.67 26.23 38.13 11834
PhysFormer (Yu et al., 2022) 7.38 47.44 50.79 19.69 6480
EfficientPhys (Liu et al., 2023) 1.91 56.06 41.36 24.18 7814
RhythmMamba (Zou et al., 2025b) 2.00 12.41 27.16 36.82 2450
PhysDiff (Qian et al., 2025) 2.64 22.46 60.23 16.60 1246
FrePhys (ours) 0.86 7.75 85.44 11.70 874

G.5 ADDITIONAL QUALITATIVE RESULTS FOR CONSISTENCY.

To further evaluate the consistency between predicted HR and ground truth measurements across
different ranges, Figure 7 presents both scatter and BlandAltman plots on the MMPD dataset.

H LIMITATIONS AND FUTURE WORK

Although our FrePhys shows strong robustness against general motion, it may still be susceptible
to unseen highly dynamic or non-repetitive motion artifacts, especially those overlapping with the
physiological frequency band. Future work could explore motion disentanglement techniques or
multimodal fusion (e.g., depth or NIR sensors) to further enhance motion robustness. Besides, Dif-
fusion models typically require multiple denoising iterations during inference, making them compu-
tationally heavier than traditional regression-based models. While we adopt acceleration techniques,
real-time deployment on resource-constrained devices remains challenging.
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I LLM USAGE

Large Language Models (LLMs) were used solely to assist with writing and polishing this
manuscript. In particular, we employed an LLM to refine language, improve readability, and en-
hance the overall clarity and flow of the text (e.g., grammar checking, sentence rephrasing). The
LLM was not involved in ideation, research methodology, experimental design, or data analysis. All
scientific concepts, contributions, and results presented in this paper were conceived and executed
entirely by the authors. The role of the LLM was strictly limited to improving linguistic quality.

The authors take full responsibility for the entire content of the manuscript, including any sections
refined with LLM assistance. All usage adhered to ethical standards, and no plagiarism or scientific
misconduct was introduced.
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