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Abstract

Despite the success of ChatGPT, its001
performances on most NLP tasks are still well002
below the supervised baselines. In this work,003
we looked into the causes, and discovered004
that its subpar performance was caused by the005
following factors: (1) mismatch between the006
generation nature of ChatGPT and NLP tasks;007
(2) token limit in the prompt does not allow for008
the full utilization of the supervised datasets;009
(3) insufficient utilization of the reasoning010
power of ChatGPT. (4) intrinsic pitfalls of011
LLMs models, e.g., hallucination, overly focus012
on certain keywords, etc.013

In this work, we propose a collection of general014
modules to address these issues, in an attempt015
to push the limits of ChatGPT on NLP tasks:016
(1) proper task formalization to better align017
with the generation nature of LLMs; (2) one-018
input-multiple-prompts strategy to overcome019
token limitations and maximize training data020
utilization; (3) demonstration retrieval using021
fine-tuned model for k-nearest neighbor (kNN)022
search to improve the selection of semantically023
relevant demonstrations; (4) chain-of-Thoughts024
reasoning that are tailored to addressing the025
task-specific complexity; (5) self-verification026
to address the hallucination issue of LLMs; (6)027
paraphrase voting to improve the robustness of028
model predictions.029

We conduct experiments on 21 datasets of030
10 representative NLP tasks. Using the031
proposed assemble of techniques, we are032
able to significantly boost the performance of033
ChatGPT on the selected NLP tasks, achieving034
performances comparable to or better than035
supervised baselines, or even existing SOTA036
performances.037

1 Introduction038

In recent years, interest in large language models039

(LLMs) such as ChatGPT1 arises from their040

1https://openai.com/blog/chatgpt

significant capabilities across a wide range of 041

natural language tasks. Despite the success 042

achieved by ChatGPT, its performances on most 043

NLP tasks are still significantly below supervised 044

baselines (Qin et al., 2023). This is due to the 045

following reasons: (1) the mismatch between 046

ChatGPT and many NLP tasks: ChatGPT is a 047

text generation model, while many NLP tasks 048

cannot be easily formatted as a text generation task, 049

e.g., named entity recognition (NER), dependency 050

parsing, semantic role labeling, etc. The adaptation 051

from the original NLP task to a text generation 052

task comes at a heavy cost in performance; (2) 053

token limit: there is a hard token limit (4,096) 054

for the input to the ChatGPT, which means only 055

a small fraction of the labeled data can be used 056

in the prompt for in-context learning (ICL); On 057

the contrary, supervised baselines can harness 058

the full labeled dataset; (3) the reasoning power 059

of ChatGPT has not been fully fulfilled with 060

respect to different tasks, which may require 061

different reasoning ability to address the task- 062

specific language complexity; and (4) the intrinsic 063

pitfalls from ChatGPT itself: ChatGPT severely 064

suffers from the hallucination issue (Ji et al., 2023), 065

where in the context of NLP tasks, it tends to 066

overconfidently label null instances with labels that 067

they don’t belong to. 068

In this paper, we explore how we can 069

systematically address the aforementioned issues 070

of ChatGPT, in an attempt to push the limit of its 071

performances on different NLP tasks. We proposed 072

a collection of strategies to systematically address 073

the issues of using ChatGPT on NLP task: (1) 074

Proper Task Formalization strategy is designed 075

to address the mismatch problem. It reconstructs 076

NLP tasks to formats that are more tailored to the 077

generation nature. Prompting ChatGPT to copy the 078

input and transforming labels to tokens surrounded 079

with special symbols can preserve the generation 080

nature of ChatGPT. Transforming N-class multi- 081
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class classification task to N binary classification082

tasks further simplifying the process of extracting083

labels from output. (2) One-input-multiple-prompts084

strategy aims to alleviate the adverse effects of085

token limit and take advantage of more training086

data. It employs multiple prompts for one input087

to accommodate more demonstrations. Each088

prompt is filled with distinct demonstrations and089

fed into ChatGPT separately. The final decision is090

made by voting among all prompt belongs to one091

input. (3) Demonstration Retrieval strategy shares092

the goal of addressing the token limit problem093

as well. It uses representations from the fine-094

tuned model for kNN search to achieve better095

demonstration retrieval. kNN-based retrieval can096

select demonstrations more relevant in semantics097

to the input, making every token in the prompt098

count; (4) Chain-of-Thoughts Reasoning strategy099

is tailored to unleash the reasoning power of100

LLMs addressing the task-specific complexity. By101

prompting LLMs to generate chain-of-thoughts102

explanations for demonstrations before making103

decisions, it can reduce the randomness of model104

decoding and enhance LLMs’ performance. (5)105

Self-verification strategy is dedicated to improve106

the robustness of model predictions and reduce107

hallucination. After obtaining the generated task108

results from ChatGPT, it concatenate the task109

description with the generated result and ask110

ChatGPT answer whether the generated result is111

correct or not. (6) Paraphrase Voting strategy is a112

way to mitigate the surface word domination issue113

of LLMs. Each input is paraphrased by LLMs with114

the same meaning but in different expressions. The115

final decision is made by voting among all output116

generated by LLMs with paraphrased prompts.117

With the combination of the proposed strategies,118

we are able to significantly boost the performance119

of ChatGPT on all selected NLP tasks. We120

conduct experiments on 21 datasets of 10121

representative NLP tasks, including question122

answering, commonsense reasoning, natural123

language inference, sentiment analysis, named124

entity recognition, entity-relation extraction, event125

extraction, dependency parsing, semantic role126

labeling, and part-of-speech tagging. Using the127

proposed assemble of techniques, we are able to128

significantly boost the performance of ChatGPT129

on the selected NLP tasks, achieving performances130

comparable to or better than supervised baselines,131

or even existing SOTA performances.132

2 Methodology 133

In this section, we detail our proposed specific 134

strategies to address the aforementioned 135

disadvantages of the ChatGPT system. 136

2.1 Proper Task Formalization 137

We propose proper task formalization to restructure 138

NLP tasks in a generative manner to meet the 139

generation nature of ChatGPT. The first effective 140

recipe we find effective is to prompt ChatGPT to 141

copy the input while modifying labeled tokens 142

by surrounding them with special symbols. For 143

example, to extract location (LOC) entities in the 144

input "he lives in Seattle" in the NER tasks, the 145

output from ChatGPT surrounds the LOC entity 146

"Seattle" with special symbols ## and @@, making 147

the output “he lives in ## Seattle@@”. This 148

copy-and-modify approach not only preserves the 149

continuity of the output, but also simplifies the 150

process of connecting the output to the extracted 151

tokens, resulting in superior results compared to 152

other methods. 153

The second recipe is to transform the N- 154

class multi-class classification task to N binary 155

classification tasks. The intuition is that, for each 156

class, we are able to show more illustrations with 157

respect to that class with the binary-transformation 158

strategy. 159

2.2 One-input-multiple-prompts 160

For ChatGPT, there is a hard limit of 4,096 token 161

in the input. Therefore, only a very small fraction 162

of training examples can be used. To address this 163

issue, we propose the one-input-multiple-prompts 164

strategy. Let N denotes the number of prompts 165

for each input. Each prompt is filled with distinct 166

demonstrations. Demonstrations are retrieved 167

using random or kNN strategies. Prompts are 168

fed to ChatGPT separately. We thus will get N 169

predictions from ChatGPT. The final result is made 170

via voting among the individual judgments made 171

by ChatGPT for each prompt. By doing this, we 172

can get around the restriction on tokens, allowing 173

us to take the advantage of more training data. 174

2.3 Demonstration Retrieval 175

Another direction to address the limited token 176

issue is to improve the quality of demonstrations 177

to make every token in the prompt count. kNN- 178

based retrieval is based on general sentence-level 179

representations (Gao et al., 2021; Sun et al., 180
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2022; Seonwoo et al., 2022) and retrieves similar181

demonstrations in terms of the general semantic.182

They surely perform better than random retrieval,183

but come with the key disadvantage: they do not184

extract features tailored to the specific task. A185

better alternative is to use the fine-tuned (FT for186

short) model on the training set as the similarity187

measurement function. Specifically, we first fine-188

tune a supervised model (e.g., RoBERTa (Liu et al.,189

2019)) based on the full training set, and use190

representations from the fine-tuned model for kNN191

search. From a global perspective, the FT-retrieval192

strategy bridges the gap between ChatGPT and the193

supervised model: though ChatGPT cannot fully194

use the training data as input due to the token limit,195

we can still setup their connection through the FT196

retrieval since the latter is trained based on the full197

training data.198

2.4 Chain-of-Thoughts Reasoning199

Wei et al. (2022b) propose the chain-of-thoughts200

(COT) strategy to enhance LLMs’ reasoning201

abilities for solving math tasks: COT first202

generates intermediate rationale explanations and203

then followed by the task-related decision. For204

the kNN strategy, which is adopted in most NLP205

scenarios, each instance in the training set has206

a chance to be selected. Therefore, we need to207

prepare intermediate reasoning explanations for208

all training examples. To address this issue, we209

propose to use ChatGPT to generate rationale210

for all training examples. Specifically, at the211

rational-preparing stage, we first transform each212

data (INPUT, LABEL) in the training set to213

(INPUT, RATIONALE EXPLANATIONS, LABEL)214

by prompting ChatGPT to generate intermediate215

rationale explanations that support model decisions.216

At test time, we feed the concatenation of the task217

description, demonstrations that involve rationales,218

and the test instance to ChatGPT, in which case219

ChatGPT should generate a string that includes220

the reasoning process of ChatGPT, followed by its221

task-related decision for the input test.222

2.5 Self-Verification223

ChatGPT suffers from the hallucination issue (Ji224

et al., 2023), which generates false positive225

predictions with high confidence. Using the226

named entity recognition task as an example, the227

hallucination issue refers to ChatGPT extracting228

entities from sentences that do not contain any229

entities.230

We propose the self-verification strategy (SV 231

for short) to address the above issue. After 232

obtaining the generated task results from ChatGPT, 233

we concatenate the task description with the 234

generated result and ask ChatGPT answer whether 235

the generated result is correct or not. ChatGPT 236

will generate a "yes" or "no" to determine whether 237

the generated results are reasonable for the original 238

task. 239

Let’s take the named entity recognition task as 240

an example to illustrate. Given the input "Hunan 241

Office in Beijing". ChatGPT has completed the first 242

step of extracting the location (LOC) entity and 243

identified "Hunan" as a LOC entity. We employ the 244

self-verification strategy to validate the LOC result 245

obtained in the first step. We prompt ChatGPT: 246

INPUT: Hunan# Office in Beijing 247

Based on the context, is the labeled ’Hunan’ in 248

the INPUT a location entity? 249

ChatGPT should generate "no" indicating that 250

"Hunan" is not a location entity. Afterward, we 251

remove "Hunan" from the list of LOC entities 252

predicted by ChatGPT in the first step. 253

2.6 Paraphrase Voting 254

ChatGPT often faces the issue that predictions 255

are dominated by surface words. This is due to 256

the limited demonstrations in prompts. Using 257

the question-answering task as an example for an 258

illustration: given the context "The news agency 259

reports that the goverment ...", and the question 260

"What is the topic of the input text?", ChatGPT 261

is dominated by the phrase "The news agency" 262

and generates "news" as the answer to the given 263

question. 264

To address the surface word domination issue, 265

we propose the paraphrase strategy. Specifically, 266

we use ChatGPT to paraphrase the given text and 267

get multiple versions of the input with the same 268

meaning but in different expressions. Next, we use 269

paraphrases as the input to ChatGPT one at a time, 270

then employ a voting strategy to obtain the final 271

decision. 272

It is worth noting that the paraphrase strategy 273

can only be applicable to sentence-level tasks, but 274

not token-level tasks (e.g., NER, POS). Because 275

words in the generated paraphrases usually cannot 276

be accurately aligned back to the original input. 277
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3 Task Description and Re-formalization278

In this section, we introduce the 10 representative279

NLP tasks description and corresponding re-280

formalization under ChatGPT. Detailed examples281

of each task formalization is shown in Figure 1.282

3.1 Question Answering283

Question answering (QA) (Seo et al., 2016;284

Xiong et al., 2016; Wang et al., 2017) is a285

task that generates an answer to a given natural286

language question, normally formalized as a multi-287

class (start, end, not part) classification problem.288

Under ChatGPT, QA is formalized as a text289

generation task. We first split the given context into290

individual sentences and assign them a sentence291

index based on their position in the context. Then292

we concatenate the modified context and the given293

question to elicit a response from ChatGPT. The294

generated text string from ChatGPT should consist295

of two components: (1) the index of the sentence296

of which the answer is a substring; and (2) the297

substring that answers the question.298

a strategy akin to multi-task learning.299

3.2 Commonsense Reasoning300

Commonsense reasoning (Bailey et al., 2015;301

Trinh and Le, 2018; Rajani et al., 2019a) is302

a task that uses human consensus and logical303

inference abilities to generate an answer to a given304

natural language question. The commonsense305

reasoning task is normally formalized as a binary306

classification task.307

Under ChatGPT, commonsense reasoning is308

formalized as a text completion task to copy the309

right answer from the given multi-choice options.310

3.3 Natural language inference311

Natural language inference (NLI) (Wang and312

Jiang, 2015; Mou et al., 2015; Liu et al., 2016)313

is a task that aims to determine whether the314

given hypothesis can be logically inferred from315

the given premise and normally formalized as a316

three-class (entailment, contradiction and neural)317

classification problem.318

Under ChatGPT, NLI is formalized as prompting319

ChatGPT to generate yes/no with respect to each320

logical relation (e.g., entailment), given the premise321

and the hypothesis. If the response is yes, it denotes322

that the relation holds between the premise and the323

hypothesis. Since there are three candidate logical324

relations, the prompting process should be repeated 325

three times. 326

3.4 Sentiment Analysis 327

Sentiment analysis (Wilson et al., 2005; Devlin 328

et al., 2018; Basiri et al., 2021) is a task to 329

determine the sentimental polarity (e.g., positive, 330

negative) of a given text. The task is normally 331

formalized as a binary or multi-class classification 332

problem, which assigns a sentiment class label to 333

the given text. 334

Under ChatGPT, the task of sentiment analysis 335

can be formalized as prompting ChatGPT to 336

generate sentiment-indicative text given the input 337

(e.g., decide the sentiment of the following text). 338

The generated sentiment-indicative text contains 339

sentiment keyword (e.g., positive, negative, etc) 340

and will be latter mapped to a sentiment label. 341

3.5 Named Entity Recognition 342

Named entity recognition (NER) (Chiu and 343

Nichols, 2015; Shang et al., 2018; Wang et al., 344

2023b) is a task that extracts named entities of 345

pre-defined categories (e.g., location, organization, 346

etc.) from a given text, normally formalized as a 347

sequence labeling problem. 348

Under ChatGPT, NER is formalized as a text 349

generation task, where given an input text (e.g., 350

"He lives in Chicago"), and a certain entity type 351

(e.g., location), we prompt ChatGPT to surround 352

entities belonging to the entity type in the original 353

sequence with special symbols: 354

He lives in ## Chicago @@, where ## and @@ 355

denote the start and end of a named entity. 356

If there is no location entity in the input, ChatGPT 357

just copies the original input as the output. This 358

strategy was adopted in Wang et al. (2023b). 359

3.6 Entity-Relation Extraction 360

Entity-relation extraction (Mintz et al., 2009; Miwa 361

and Bansal, 2016; Wan et al., 2023) is a task 362

that aims to extract named entities in a given 363

text, and identify relations between the extracted 364

entity pairs. The entity-relation extraction task 365

is normally formalized as a two-stage problem: 366

assigning an entity label then assigning a relation 367

label. 368

Under ChatGPT, the entity-relation extraction is 369

formalized as a two-step text completion task. Step 370

1, similar to that of NER, ChatGPT extracts named 371

entities with respect to a certain type (e.g., location) 372
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by rewriting the input sentence and surrounding the373

entity with special tokens. Step 2, prompt ChatGPT374

to output a yes-or-no decision to determine whether375

a certain relation holds between two specified376

entities.377

3.7 Event Extraction378

Event extraction (EE) (Ahn, 2006; Nguyen and379

Grishman, 2018; Wang et al., 2021b) is a380

task that aims to identify the event type and381

extract information (i.e., trigger, arguments) of382

an identified event in the given text, normally383

formalized as a two-step classification problem.384

Under ChatGPT, the event extraction task is385

formalized as a two-step text completion problem.386

Step 1, we prompt ChatGPT to generate a text387

string to determine whether the input contains the388

trigger word with respect to a certain event type.389

If ChatGPT responds with a substring of the input,390

it denotes that the substring is the trigger with391

respect to the certain event. If ChatGPT generates392

null, it indicates that the input does not contain an393

event with respect to the certain type. Step 2, we394

use ChatGPT to generate a text string, which is395

an argument with respect to a certain role for the396

identified event in Step 1. If ChatGPT generates397

a substring from the input, it denotes that the398

substring is the argument with respect to a certain399

role for the event, and null denotes otherwise.400

3.8 Part-of-speech Tagging401

Part-of-speech (POS) tagging (Brill, 1992;402

Owoputi et al., 2013; Chiche and Yitagesu, 2022)403

is a task that aims to assign a part-of-speech label404

to each word in the given sequence based on its405

morphology (e.g., past tense), semantic meaning406

(e.g., move or action), and syntactic functions (e.g.,407

preposition). The POS task is normally formalized408

as a sequence labeling problem.409

Under ChatGPT, the POS task is formalized410

as a text completion problem, where ChatGPT411

is prompted to generate a POS-indicative text412

for an annotated word in the sentence at a time.413

Specifically, we prompt ChatGPT to generate the414

POS for the marked word in the sentence with all415

POS options given. Suppose there are N words in416

the sentence, the above prompting process should417

be repeated N times.418

3.9 Dependency Parsing419

Dependency parsing (McDonald et al., 2005; Ma420

et al., 2018; Gan et al., 2021) is a task that aims421

to identify whether there are dependency relations 422

between words in a sentence and determine the 423

dependency relations. It is usually formalized as a 424

multi-class classification task. 425

Under ChatGPT, dependency parsing is 426

formalized as a two-step text completion task. Step 427

1, We use ChatGPT to rewrite the input sentence 428

where dependent words for the given head word are 429

marked with special tokens @#, where @ denotes 430

the start of a dependent word, and # denotes the 431

end of a dependent word. Step 2, we use ChatGPT 432

to generate yes or no to determine whether a given 433

dependency relation holds between the head and 434

the dependent word. 435

3.10 Semantic Role Labeling 436

Semantic role labeling (SRL) (Zhou and Xu, 2015; 437

He et al., 2018; Jia et al., 2022) is a task that 438

aims to identify arguments for each predicate in 439

a given sentence, along with determining semantic 440

roles to the identified arguments. SRL is normally 441

formalized as a two-stage problem: a multi-class 442

classification task followed by a sequence labeling 443

problem. 444

Under ChatGPT, the SRL task is formalized as 445

a two-step text completion problem. Step 1, we 446

use ChatGPT to determine the word sense of the 447

predicate by iteratively asking ChatGPT whether 448

the predicate belongs to each sense. Step 2, we 449

use ChatGPT to output an argument that belongs 450

to a certain semantic role with respect to the given 451

predicate. Arguments are substrings of the input 452

sentence. Suppose that there are N semantic roles, 453

we need to ask ChatGPT N times, each of which 454

corresponds to each role. 455

4 Experiments 456

In this section, we introduce the datasets used in 457

10 representative NLP tasks and the experimental 458

results, following with corresponding analysis of 459

the effectiveness of proposed 6 strategies. The 460

overall comparisons of experiment results on ten 461

NLP downstream tasks is shown in Figure 2, where 462

with the proposed strategies, ChatGPT achieves 463

comparable or better results to the supervised 464

RoBERTa on 17 out of 21 datasets across 10 465

representative NLP tasks. 466

4.1 Datasets and Results 467

We conduct experiments on 21 widely-used 468

benchmarks across 10 NLP tasks: (1) Question 469
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SQuADv2 TQA MRQA-OOD
Model (EM) (EM) (F1)

RoBERTa-Large 86.8 81.1 72.4

ChatGPT (few-shot)
+Random demo 70.1 70.9 63.1
+SimCSE kNN 73.5 72.5 65.7
+FT kNN 78.9 75.8 68.3
+FT kNN+Multi 83.6 78.0 71.0
+FT kNN+Multi+Reason 87.2 79.3 75.6
+FT kNN+Multi+Reason+SV 88.2 80.8 76.1

Table 1: Experimental results for the question answering
task. We abbreviate the self-verification strategy as SV.

CSQA StrategyQA
Models (ACC) (ACC)

RoBERTa-Large 79.2 72.0

ChatGPT (few-shot)
+Random demo 74.8 59.5
+SimCSE kNN 74.7 59.6
+FT kNN 76.6 65.4
+FT kNN+Multi 78.0 67.8
+FT kNN+Multi+Reason 78.2 69.4
+FT kNN+Multi+Reason+SV 79.0 69.9

Table 2: Experimental results on commonsense
reasoning datasets.

Answering. SQuADv2 (Rajpurkar et al., 2018),470

TQA (Joshi et al., 2017), and MRQA-OOD.471

Results are shown in Table 1; (2) Commonsense472

Reasoning. CSQA (Talmor et al., 2018) and473

StrategyQA (Geva et al., 2021). Results are474

shown in Table 2; (3) Natural language inference.475

RTE, CommitmentBank (CB) (De Marneffe et al.,476

2019). Results are shown in Table 3; (4)477

Sentiment Analysis. SST-2, IMDb, and Yelp.478

Results are shown in Table 4; (5) Named Entity479

Recognition. CoNLL2003 (Sang and De Meulder,480

2003) and OntoNotes5.0 (Pradhan et al., 2013a).481

Results are shown in Table 5; (6) Entity-Relation482

Extraction. English ACE2004 and ACE2005.483

Results are shown in Table 7. (7) Event484

Extraction. English ACE2005. Results are shown485

in Table 6; (8) Part-of-speech Tagging. WSJ486

Treebank and Tweets dataset. Results are shown in487

Table 8; (9) Dependency Parsing. English Penn488

Treebank v3.0 (Marcus et al., 1993). Results489

are shown in Table 10. (10) Semantic role490

labeling. CoNLL2005 (Carreras and i Villodre,491

2005), CoNLL2009 (Hajic et al., 2009) and492

CoNLL2012 (Pradhan et al., 2013b). Results are493

shown in Table 9.494

4.2 Analysis495

In general, with the proposed series of strategies,496

ChatGPT is able to achieve comparable497

performances to the supervised baselines on498

RTE CB
Models (ACC) (ACC)

RoBERTa-Large 92.8 98.2

ChatGPT (few-shot)
+Random demo 90.5 90.5
+SimCSE kNN 90.7 90.4
+FT kNN 92.2 93.8
+FT kNN+Multi 92.6 95.2
+FT kNN+Multi+Reason 92.9 95.6
+FT kNN+Multi+Reason+SV 92.9 96.5
+FT kNN+Multi+Reason+SV+Paraphrase 93.1 96.7

Table 3: Experiment results on natural language
inference benchmarks.

SST-2 IMDB Yelp
Models (ACC) (ACC) (ACC)

RoBERTa-Large 95.9 95.4 98.0

ChatGPT (few-shot)
+Random demo 92.6 90.4 95.5
+SimCSE kNN 92.8 90.5 95.7
+FT kNN 94.6 94.4 97.5
+FT kNN+Multi 95.2 94.8 97.8
+FT kNN+Multi+Reason 95.7 94.9 97.9
+FT kNN+Multi+Reason+SV 95.7 94.9 98.2
+FT kNN+Multi+Reason+SV+Paraphrase 96.2 95.1 98.4

Table 4: Experimental results for the sentiment analysis
task.

17 out of 21 datasets across 10 NLP tasks. In 499

QA, under the out-of-domain setting of MRQA, 500

ChatGPT significantly outperforms the supervised 501

RoBERTa model by +3.7, which indicates the 502

significantly better domain-adaptable ability of 503

ChatGPT. 504

One-input-multiple-prompts. In Table 1, we 505

observe that using the multiple-prompt strategy 506

obtains a significant performance boost across 507

three QA datasets, i.e., +4.7, +2.2, +2.7, 508

respectively on SQuAD V2.0, TQA, and MRQA- 509

OOD datasets. We can also observe that it 510

gains significant performance boosts on two 511

commonsense reasoning benchmarks: +1.4 on 512

the CSQA and +2.4 on the StrategyQA datasets. 513

This demonstrates that the multiple-prompt strategy 514

effectively addresses the input token limit issue 515

and allows ChatGPT to take advantage of more 516

annotated examples. 517

Demonstration Retrieval. As shown in 518

Table 1, the SimCSE-kNN retriever outperforms 519

the random retriever, which demonstrates the 520

importance of selecting semantically similar 521

examples as demonstrations for QA. In Table 2 522

using the fine-tuned model to retrieve kNN 523

introduces a huge performance boost compared 524

with the SimCSE and the random selection 525

strategies, i.e., +1.9 and +5.8 on the CSQA and 526

StrategyQA dataset, respectively. Same boost by 527

FT-kNN can be observed from Table 3 to Table 9 as 528
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CoNLL 2003 OntoNotes 5.0
Model (Span-F1) (Span-F1)

RoBERTa-Large 93.0 89.9

ChatGPT (few-shot)
+Random demo 68.4 58.3
+SimCSE kNN 80.2 72.1
+FT kNN 84.8 78.6
+FT kNN+Multi 88.2 81.4
+FT kNN+Multi+Reason 88.4 81.6
+FT kNN+Multi+Reason+SV 88.9 81.9

Table 5: Experimental results on the named entity
recognition benchmarks.

Trigger Argument
Model (Span-F1) (Span-F1)

RoBERTa-Large 74.5 63.6

ChatGPT (few-shot)
+Random demo 60.3 50.2
+SimCSE kNN 65.5 55.0
+FT kNN 72.5 63.3
+FT kNN+Multi 74.3 64.5
+FT kNN+Multi+Reason 74.6 64.7
+FT kNN+Multi+Reason+SV 74.6 64.9

Table 6: Experimental results for the event extraction
task.

well. FT-kNN introduces a significant performance529

boost over SimCSE-kNN. This indicates that530

using the FT model, which is fine-tuned on the531

given training set, retrieves similar examples with532

respect to the specific task, and can help improve533

ChatGPT’s performances.534

Chain-of-Thoughts Reasoning. In Table 1 and535

Table 3, we find that the rational-based prompting536

strategy can further boost the performances, +1.8537

on SQuADv2, +1.1 on TQA, +0.8 on MRQA-OOD538

compared to FTKNN+Multi-Prompts, and +0.3 on539

RTE and +0.4 on CB. This phenomenon is in line540

with our expectation that intermediate rationales541

enhances models’ reasoning abilities.542

Self-verification. In Table 1, the proposed self-543

verification strategy introduces further performance544

boosts, i.e., +1.0, +1.5, and + 1.5 on SQuADv2,545

TQA, and MRQA-OOD, respectively. Self-546

verification strategy yields minor performance547

improvement on datasets in Table 8, Table 10,548

Table 6 and Table 9. The explanation is that549

the performance without SV is already high550

enough that adding SV provides only a marginal551

improvement.552

Paraphrase Voting. Similar to self-verification,553

the reason of paraphrase voting strategy bringing554

only minor performance improvement might be555

diminishing marginal effect. However, we are able556

to achieve consistent performance improvement557

across all datasets in Table 1 and Table 3,558

which indicates that shallow linguistic features559

ACE 2004 ACE 2005
Models (Span-F1) (Span-F1)

RoBERTa-Large 60.4 64.5

ChatGPT (few-shot)
+Random demo 49.8 56.2
+SimCSE kNN 53.2 59.6
+FT kNN 59.2 63.9
+FT kNN+Multi 61.2 65.6
+FT kNN+Multi+Reason 61.7 66.0
+FT kNN+Multi+Reason+SV 62.5 66.4

Table 7: Experimental results for the entity-relation
extraction task.

Peen WSJ Tweets
Models (ACC) (ACC)

RoBERTa-Large 98.9 92.3

ChatGPT (few-shot)
+Random demo 90.3 84.7
+SimCSE kNN 93.4 88.2
+FT kNN 98.2 92.4
+FT kNN+Multi 98.7 92.6
+FT kNN+Multi+Reason 98.7 92.6
+FT kNN+Multi+Reason+SV 98.9 92.7

Table 8: Experimental results on the part-of-speech
datasets.

(e.g. keywords, common words) mislead model 560

decisions and the paraphrasing strategy can address 561

the issue. 562

5 Related Work 563

5.1 Large language models (LLMs) 564

Large language models are models that aim to 565

learn general language patterns and linguistic 566

features by training in an unsupervised manner 567

on large unannotated corpora (Zhu et al., 2015; 568

Raffel et al., 2019; Lo et al., 2019; Gao et al., 569

2020; Kopf et al., 2023). With the scale 570

increases, LLMs achieve great performance boosts 571

on various NLP tasks while unlocking emergent 572

capabilities (Xie et al., 2021; Wei et al., 2022a). 573

Other efforts (Sanh et al., 2021; Wang et al., 2022; 574

Longpre et al., 2023; Zhang et al., 2023) use human- 575

instructions to boost LLM’s ability. Based on 576

model architectures, LLMs can be categorized into 577

three branches: (1) encoder-only models (Devlin 578

et al., 2018; Liu et al., 2019; Sun et al., 2020; 579

Clark et al., 2020; Feng et al., 2020; Joshi et al., 580

2020; Sun et al., 2020, 2021) like BERT (Devlin 581

et al., 2018) are discriminative models that use 582

a transformer (Vaswani et al., 2017) encoder for 583

getting the representation of a given sequence; (2) 584

decoder-only models (Radford et al., 2019a; Dai 585

et al., 2019; Keskar et al., 2019; Radford et al., 586

7



CoNLL 2009 CoNLL 2005 CoNLL 2012
Predicate Disambiguation Argument Labeling Argument Labeling Argument Labeling

Model (ACC) (F1) (F1) (F1)

RoBERTa-Large 97.3 93.3 89.3 87.6

ChatGPT (few-shot)
+Random demo 83.2 79.0 76.8 76.4
+SimCSE kNN 89.4 84.8 83.1 82.8
+FT kNN 97.4 93.5 88.9 87.4
+FT kNN+Multi 97.8 93.8 89.8 88.2
+FT kNN+Multi+Reason 97.8 94.0 90.4 88.4
+FT kNN+Multi+Reason+SV 97.7 94.1 90.8 88.6

Table 9: Experimental results for the semantic role labeling task.

PTB
Model (UAS) (LAS)

RoBERTa-Large 96.87 95.34

ChatGPT (few-shot)
+Random demo 79.04 77.32
+SimCSE kNN 85.45 84.01
+FT kNN 92.45 90.98
+FT kNN+Multi 93.72 92.20
+FT kNN+Multi+Reason 94.24 92.72
+FT kNN+Multi+Reason+SV 94.88 93.20

Table 10: Experimental results for the dependency
parsing task.

2019b; Brown et al., 2020; Chowdhery et al., 2022;587

Ouyang et al., 2022; Zhang et al., 2022a; Scao588

et al., 2022; Zeng et al., 2022; Touvron et al.,589

2023; Taori et al., 2023; Chiang et al., 2023; Peng590

et al., 2023; Anand et al., 2023; OpenAI, 2023)591

like GPT (Radford et al., 2019a) are generative592

models that use the decoder of an auto-regressive593

transformer (Vaswani et al., 2017) for predicting594

the next token in a sequence; (3) encoder-decoder595

models (Lewis et al., 2019; Raffel et al., 2020;596

Xue et al., 2020) like T5 (Raffel et al., 2020)597

are generative models that use both the encoder598

and decoder of the transformer (Vaswani et al.,599

2017) model. Models finish downstream tasks by600

generating new sentences depending on a given601

input.602

5.2 Adapting LLMs to NLP tasks603

In-context Learning (ICL) has been adopted as a604

general strategy to apply LLMs to downstream605

NLP tasks. Brown et al. (2020) prompted606

LLMs to generate textual responses (i.e., label607

words) conditioning on the given prompt with a608

few annotated examples without gradient updates.609

There are a variety of strategies to improve ICL610

performances on NLP tasks: Li and Liang (2021);611

Zhong et al. (2021); Qin and Eisner (2021) propose612

to optimize prompts in the continuous space; Rubin613

et al. (2021); Das et al. (2021); Liu et al. (2021);614

Gonen et al. (2022); Su et al. (2022); Wang et al.615

(2023b); Wan et al. (2023) investigate different616

strategies for selecting in-context examples; Gonen 617

et al. (2022) exploit different strategies for orders 618

of in-context examples. More advanced reasoning 619

strategies Wei et al. (2022b); Zhang et al. (2022b); 620

Han et al. (2021); Fu et al. (2022); Zhou et al. 621

(2022a); Sun et al. (2023b) also use in-context 622

learning as the backbone. 623

6 Conclusion 624

In this paper, we present a comprehensive 625

set of strategies with the aim of advancing 626

the performance boundaries of ChatGPT. 627

These strategies encompass: (1) proper task 628

formalization; (2) one-input-multiple-prompts; (3) 629

demonstrations retrieval; (4) chain-of-thoughts 630

reasoning; (5) self-verification; (6) paraphrase 631

voting. These proposed strategies effectively target 632

the underlying factors that contribute to ChatGPT’s 633

performance falling below optimal levels: (1) 634

addressing the incongruence between ChatGPT’s 635

generative nature and the demands of NLP tasks; 636

(2) overcoming the token limit constraint in input 637

prompts to maximize the utility of supervised 638

datasets; (3) unlocking the untapped reasoning 639

capabilities of ChatGPT; (4) mitigating intrinsic 640

challenges observed in Large Language Models 641

(LLMs), such as hallucination and excessive focus 642

on specific keywords. With the proposed strategies, 643

ChatGPT achieves comparable or better results 644

to the supervised RoBERTa on 17 of 21 datasets 645

across 10 representative NLP tasks. 646

Limitations 647

This paper acknowledges the limitations inherent 648

in using ChatGPT for natural language processing 649

(NLP) tasks. One primary limitation is the model’s 650

dependency on its training data, which may not 651

encompass the entire breadth and diversity of 652

human language, leading to potential biases or 653

gaps in knowledge. ChatGPT, like other large 654

language models, may struggle with understanding 655
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and generating contextually appropriate responses,656

especially in nuanced or highly specialized topics.657

Additionally, the model’s ability to discern and658

replicate factual accuracy is not foolproof, as it can659

inadvertently propagate misinformation present660

in its training data. Another key limitation is661

the handling of real-time data or events post662

its last training update, leaving it unable to663

provide insights on very recent developments. The664

computational resource requirement for operating665

such a model is significant, which could pose666

scalability challenges.667

A Releated work668

A.1 Generation Intermediate Rationales669

Rajani et al. (2019b) improve the interpretability670

of the model without sacrificing its performance671

by training a language model on the "explain-672

then-predict" commonsense answering dataset.673

Recently, Nye et al. (2021) find that a step-674

by-step computation “scratchpads” can improve675

LLM’s performances on arithmetic, polynomial676

evaluation, and program evaluation tasks and677

etc. Wei et al. (2022b) use manually annotated678

"chain-of-thoughts" prompts and greatly improve679

performances of LLM on complex reasoning tasks.680

After that, Li et al. (2022); Fu et al. (2022);681

Ye et al. (2022); Shao et al. (2023) use higher682

reasoning complexity examples as demonstrations683

and further improve LLMs performances on684

complex reasoning tasks. Zhou et al. (2022b);685

Press et al. (2022) decompose a complex problem686

into a series of simpler subproblems and then687

solve them step-by-step toward the final answer.688

Zhang et al. (2022b); Kojima et al. (2022);689

Zelikman et al. (2022); Chen et al. (2022); Sun690

et al. (2023a); Wang et al. (2023a); Sun et al.691

(2023b) propose strategies to use LLMs generate692

explicit intermediate reasoning chains and then693

improve LLMs’ complex reasoning ability with694

self-generated "chain-of-thoughts".695

B Task formalaition under ChatGPT696

B.1 Question Answering697

For example, with the prompt to ChatGPT being:698

Context: (1) The capital of Japan is Tokyo. (2)699

The capital of China is Beijing. (3) The capital700

of South Korea is Seoul.701

Question: What is the capital of South Korea?702

ChatGPT should output703

(3) Seoul 704

where "(3)" denotes the index of the sentence where 705

the answer is located and "Seoul" represents the 706

answer. This strategy provides the model with 707

further guidance by first predicting the index of 708

the sentence within the context, and then deciding 709

which substring in that sentence should be used as 710

the answer, a strategy akin to multi-task learning. 711

Examples of the task formalization are shown in 712

Figure 1 713

B.2 Commonsense Reasoning 714

For example, the question is "Where on a river can 715

you hold a cup upright to catch water on a sunny 716

day?", the answer choices are "(A) waterfall; (B) 717

bridge; (C) valley; (D) pebble" and the prompt to 718

ChatGPT is: 719

Please select the answer to the question from 720

several options. 721

Question: Where on a river can you hold a cup 722

upright to catch water on a sunny day? 723

Options: (A) waterfall; (B) bridge; (C) valley; 724

(D) pebble. 725

The ChatGPT should generate "(D) pebble" which 726

denotes that the pebble is the answer to the given 727

question. Examples of the task formalization are 728

shown in Figure 1. 729

B.3 Natural Language Inference 730

For example, given the premise "Pibul 731

Songgramwas the pro-Japanese military dictator 732

of Thailand during World War 2.", the hypothesis 733

"Pibul was the dictator of Thailand.", and the 734

prompts to ChatGPT is 735

Does the premise entail the hypothesis? Please 736

answer yes or no. 737

Premise: <premise> 738

Hypothesis: <hypothesis> 739

where <premise> and <hypothesis> should be 740

replaced by the given premise and hypothesis, 741

respectively. ChatGPT should output "no" ideally 742

in this case, which denotes that the premise does 743

not entail the hypothesis. Subsequently, the same 744

procedures are used to verify the contradiction 745

and neural relations. Examples of the task 746

formalization are shown in Figure 1. 747
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The task is to answer the given question based on the 
commonsense knowledge. Please respond with the corresponding 
index from the given options as the answer to the given question.

<demonstration-list>

Question: What do all humans want to experience in their own 
home?
Options:
(A) feel comfortable
(B) work hard

Answer: (A) feel comfortable

The task involves identifying the sentence containing the answer 
and extracting a substring from it, with the response consisting of 
the sentence index and the corresponding substring.

<demonstration-list>

Context: (1) The Normans (Norman: Nourmands; French: Normand
s) were … to Normandy, a region in France. 
(2) They were descended from Norse raiders from Denmark…
Question: In what country is Normandy located?

Answer: (1) France

Commonsense ReasoningQuestion Answering

Natural Language Inference Sentiment Analysis

The task is to identify whether the premise entails the hypothesis. 
Please respond with ”yes” or ”no”.

<demonstration-list>

Premise: A woman with a green headscarf, blue shirt and a big grin.
Hypothesis: The woman is very happy.

Answer:

The task is to determine the overall sentiment polarity of the input 
text. 
Please respond with "positive" or "negative". 

<demonstration-list>

Input: Sensitive, insightful and beautifully rendered film.

Sentiment: positiveYes

Named Entity Recognition Part-of-speech Tagging

The task is to identify organization entities in the input.
Please rewrite the input text and surround the start and end of 
organization entities with @@ and ##, respectively.

<demonstration-list>

Input: Can Milan sink any further ? Mr. Jackson pondered … 

Answer: Can @@Milan## sink any further ? Mr. Jackson …

The task is to determine the part-of-speech (POS) of the word in the 
input sentence, with @@ and ## marking the start and end. Please 
respond with one of the following POS options: 
1. CC; Coordinating conjun … 14. NNP; Proper noun, singular … 

<demonstration-list>

Input: @@Vinken## , 61 years old

Answer: 14. NNP; Proper noun, singular

Entity-Relation Extraction

The task is to identify organization entities in the input.
Please rewrite the input text and surround the start and end of 
organization entities with @@ and ##, respectively.

<demonstration-list>

Input: In 2002 , Musk founded SpaceX .

Answer: In 2002 , Musk founded @@SpaceX## .

Step 1: Extract named entities.

Please answer "yes" or "no" to determine whether the relation  is 
valid based on the input.

<demonstration-list>

Input: "In 2002, @@Musk## founded @@SpaceX##." 
Relation: The relation between the entities @@Musk@@ (person 
entity) and @@SpaceX## (organization entity) is 'founded'.

Answer: Yes

Step 2: Identify relation beween entity pairs.

Event Extraction

The task is to determine if the input sentence includes an attack 
event. Please rewrite the input text and surround the start and end 
of the event trigger with @@ and ##, respectively.

<demonstration-list>

Input: On Sunday, a protester stabbed an officer with a paper cutter.

Answer: On Sunday, a protester @@stabbed## an officer…

Step 1: Extract trigger words.

The input contains an attack event, and the event trigger is 
surrounded with @@ and ##. Please identify the argument which is 
the target for the attack event. If it exists, please generate 
corresponding substring in the input text. If not, respond "NULL".

<demonstration-list>

Input: On Sunday, a protester @@stabbed## an officer with a 
paper cutter.

Answer: an officer

Step 2: Identify arguments for the event.

Semantic Role Labeling

The task is to determine word sense of the predicate in the input, 
where the predicate is marked with @@ and ##. Please respond 
with the selected word sense index from the given options.

<demonstration-list>

Input: The stock has been @@beaten## down for two day. 
Options:  A. (Cause) pulsating motion that often makes sound

B. push, cause motion    

Answer:

Step 1: Predicate disambiguation.

The task is to extract argument in the input that means "thing 
moving". 

<demonstration-list>

Input: The stock has been @@beaten## down for two day. 

Answer:

Step 2: Argument extraction.

B. push, cause motion

Dependency Parsing

The task is to identify dependent words in the input.
Please rewrite the input text and surround the start and end of 
dependent words with @@ and ##, respectively.

<demonstration-list>

Input: I @prefer# the morning flight to Denver.

Answer:

Step 1: Link dependent words.

Please answer "yes" or "no" to determine whether the relation  is 
valid based on the input.

<demonstration-list>

Input: @I# @prefer# the morning flight to Denver
Relation: Is the dependency relation between "prefer" and "I" the 
direct object? 

Answer:

Step 2: Classify the relation between dependency words.

@I# prefer the morning @flight# to Denver.

the stock
No

Figure 1: Task Formalizations under ChatGPT, including question answering, commonsense
reasoning, natural language inference, sentiment analysis, named entity recognition, entity-relation
extraction, event extraction, dependency parsing, semantic role labeling, and part-of-speech tagging.
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B.4 Entity-relation Extraction748

For example, given the input sentence "In 2002,749

Musk founded SpaceX", we would like to extract750

entities with respect to the organization type. The751

input to ChatGPT is:752

Please mark the start and end of ORG entities753

in the INPUT with @ and #, respectively.754

INPUT: In 2002, Musk founded SpaceX.755

and ChatGPT should output "In 2002, Musk756

founded @SpaceX#," where @ and # are the757

starting and ending boundaries of ORG entities758

and the substring "SpaceX" is an ORG entity. If759

there is no ORG entity in the given text, ChatGPT760

should copy the input. Suppose the number of761

NER categories is N , the above prompt should be762

repeated N time for one input. The process here is763

similar to that of NER in Section ??.764

Step 2: Prompt ChatGPT to output a yes-or-no765

decision to determine whether a certain relation766

holds between two specified entities. In the767

example above, we have already identified the768

person entity "Musk" and the organization entity769

"SpaceX" at stage-1, the second step involves770

determining the relation between them. Assuming771

that there are M possible relationships between772

entities, we ask ChatGPT each relation at a time,773

e.g., regarding the relation type founded, the input774

to ChatGPT is:775

Please determine whether the relationship776

between the entities Musk (person) and777

SpaceX (organization) in the input sentence778

is ’founded.’ Please answer with Yes/No.779

Input: In 2002, Musk# founded SpaceX#.780

In this case, ChatGPT should generate "Yes",781

indicating that Musk founded SpaceX.782

C Evaluation Datasets783

C.1 Question answering784

• SQuAD V2.0: SQuAD V2.02 is a collection785

of 100K crowdsourced question-answer pairs786

which are originally from a set of Wikipedia787

articles. In this dataset, the answer to every788

question is a span of text from the context789

passage, or the question is unanswerable.790

• TriviaQA: TriviaQA3 is a question-answering791

dataset which which includes 950K question-792

answer pairs from 662K documents collected793

2https://rajpurkar.github.io/SQuAD-explorer/
3https://nlp.cs.washington.edu/triviaqa/

from Wikipedia and the web. In TriviaQA, all 794

questions are answerable and answers may not 795

be directly obtained from the given context. 796

• MRQA OOD: MRQA4 out-of-domain 797

(OOD) is a shared task which is to evaluate 798

generalization to out-of-distribution data. The 799

test data contains 12 subsets, each from a 800

held-out domain. 801

C.2 Commonsense Reasoning 802

• CommonsenseQA: CommonsenseQA5 is a 803

multiple-choice question answering dataset 804

which requires commonsense knowledge to 805

select one correct answer from four options 806

to the question. The train/valid/test set 807

contains 9,741, 1,221, and 1,140 questions, 808

respectively. 809

• StrategyQA: StrategyQA6 is an open-domain 810

question answering dataset which requires 811

implicit reasoning and logical inference to 812

answer the question. There are 111 examples 813

for the train set. The dataset contains 2,821 814

examples in the train set and 490 examples in 815

the test set. 816

C.3 Event Extraction 817

For example, given the input text "On Sunday, a 818

protester attacked an officer with a paper cutter.", 819

the event type Attack, the prompt to ChatGPT is: 820

Given the sentence ’On Sunday, a protester 821

stabbed an officer with a paper cutter’, what is 822

the trigger word of the attack event?" . 823

ChatGPT should generate "stabbed", which 824

denotes that the sentence contains an attack event 825

and its event trigger is "stabbed". 826

Step 2: We use ChatGPT to generate a text string, 827

which is an argument with respect to a certain role 828

for the identified event in Step 1. Suppose that there 829

are M types of arguments for the event, we should 830

repeat the prompting process M times for one input. 831

If ChatGPT generates a substring from the input, 832

it denotes that the substring is the argument with 833

respect to a certain role for the event. If ChatGPT 834

responds with null, it denotes that the input text 835

does not contain an argument with respect to the 836

4https://mrqa.github.io/
5https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
6https://leaderboard.allenai.org/strategyqa/submissions/get-

started
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certain role for the event. In the example above, we837

have already identified an attack event in the input838

and the trigger for the event is "stabbed". In this839

step, we would like to extract the argument with840

the target role for the attack event. We feed the841

following prompt to ChatGPT:842

INPUT: On Sunday, a protester ##stabbed an843

officer with a paper cutter.844

The INPUT contains an "attack" event, and the845

"stabbed" is the event trigger (marked with ##846

in the INPUT).847

What was the target of the stabbing in the848

attack?"849

In this case, ChatGPT should generate "an officer",850

which represents that the target for the attack event851

is "an officer". Examples of the task formalization852

are shown in Figure 1.853

C.4 Part-of-speech Tagging854

For example, given the input sentence "Vinken,61855

years old.", and the marked word is "Vinken". We856

feed the following prompt to ChatGPT:857

Part-of-speech categories are as follows:858

1. CC Coordinating conjunction859

...860

15. NNPS Proper noun, plural861

...862

45. DT Determiner.863

INPUT: ##Vinken, 61 years old864

QUESTION: What is the POS tag for the word865

’Vinken’ which is marked by ## in the INPUT?"866

ChatGPT should generate "15. NNPS Proper noun,867

plural", denoting that the POS for "Vinken" is868

NNPS. Examples of the task formalization are869

shown in Figure 1.870

C.5 Part-of-speech Tagging871

We use the example above as an illustration, where872

the input sentence is "I prefer the morning flight to873

Denver.", the head word is "prefer", and the prompt874

fed to ChatGPT is:875

The head word in the input is marked with @#.876

Find the dependents of the head word.877

Input:I @prefer# the morning flight to Denver.878

ChatGPT should output:879

@I# prefer the morning @flight# to Denver."880

where "I", "flight" are marked and denote the 881

dependent words for the head word "prefer". If 882

ChatGPT generates a sentence without the special 883

token, it means that there are no dependent words 884

for the given head word. Suppose that the given 885

sentence is composed of N words, we use one 886

word at a time as the headword and will prompt 887

ChatGPT N times. 888

889

As shown in Step 1, "prefer" and "I" have a 890

dependency relation. In this step, we will determine 891

the category of the relation between the head word 892

"prefer" and the dependent word "I". Suppose that 893

there are M types of dependency relations, we 894

should prompt ChatGPT M times, each of which 895

corresponds to one type. For example, if we need to 896

identify whether the dependency relation between 897

"prefer" and "I" is direct object, the prompt fed to 898

ChatGPT is: 899

@I# @prefer# the morning flight to Denver. 900

whether the relation between "prefer" and "I" 901

is the direct object? 902

ChatGPT should generate "No" in this case. 903

Assuming that we obtain C dependency word pairs 904

from step 1, we should ask ChatGPT M ∗ C 905

times for the given sentence. Examples of the 906

task formalization under ChatGPT are shown in 907

Figure 1. 908

C.6 Semantic Role Labeling 909

Use the example above as an illustration, where the 910

sentence is "The stock has been beaten down for 911

two days", the predicate is "beaten", there are three 912

sense candidates for the predicate: (1)(Cause) 913

pulsating motion that often makes sound, (2)push, 914

cause motion; and (3)win over some competitor. 915

We iteratively ask ChatGPT whether the predicate 916

belongs to each of the three senses. 917

918

Suppose that we would like to find the argument 919

with the thing moving semantic role, the input to 920

ChatGPT is: 921

What are the arguments representing the 922

meaning of ’thing moving’?. 923

ChatGPT should output "The stock". If ChatGPT 924

returns null, it indicates that there is no argument in 925

the sentence with the semantic role. Examples of 926

the task formalization under ChatGPT are shown 927

in Figure 1. 928
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Question Answering

Sentiment Analysis

Natural Language 
Inference

Commonsense Reasoning Named Entity Recognition

Part-of-speech Dependency Parsing

Event Extraction Entity-Relation Extraction

Semantic Role Labeling

Figure 2: Comparisons of experiment results on ten NLP downstream tasks.

C.7 Natural language inference929

• RTE: Recognizing Textual Entailment (RTE)7930

7https://aclweb.org/aclwiki/Recognizing_Textual_Entailment

is an English dataset which is built from 931

news and Wikipedia and from text entailment 932

challenges. 933
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• CB: CB8 is a corpus of 1,200 naturally934

occurring discourses whose final sentence935

contains a clause-embedding predicate under936

an entailment canceling operator (question,937

modal, negation, antecedent of conditional).938

C.8 Sentiment analysis939

• SST-2: SST-2 is a binary (i.e., positive,940

negative) sentiment classification dataset941

with 11,855 single sentences extracted from942

snippets of Rotten Tomatoes HTML files.943

• IMDB: IMDB is a binary (i.e., positive,944

negative) sentiment classification dataset945

which includes 25,000 highly polar movie946

reviews for training and 25,000 for testing.947

• Yelp: Yelp is a binary (i.e., positive, negative)948

sentiment classification dataset that contains949

560,000 highly polar Yelp reviews for training950

and 38,000 for testing.951

C.9 Named entity recognition952

• CoNLL 2003: CoNLL 20033 is an English953

NER benchmark that includes four entity954

types: location, organization, person and955

miscellaneous. We follow Ma and Hovy956

(2016) and use the same train/dev/test split.957

• OntoNotes 5.0: OntoNotes 5.0 is an English958

NER dataset and contains 18 entity types.959

We use the standard train/dev/test split of960

CoNLL2012 shared task.961

C.10 Entity-relation extraction962

• ACE2004: ACE20049 is a multilingual963

information extraction benchmark. The964

dataset contains 7 entity types and 7 relation965

categories. In this paper, we use English966

annotations and follow Li et al. (2019) to split967

train/valid/test datasets.968

• ACE2005: ACE2005 is a multilingual969

training corpus. It has six relation categories,970

and we process and split the dataset following971

the practice in Li et al. (2019) There are972

six subdomains in the dataset: Broadcast973

Conversations (BC), Broadcast News (BN),974

Conversational Telephone Speech (CTS),975

Newswire (NW), Usenet Newsgroups (UN),976

and Weblogs (WL).977

8https://github.com/mcdm/CommitmentBank
9https://catalog.ldc.upenn.edu/LDC2005T09

C.11 Event Extraction 978

• ACE 2005: ACE 2005 event corpus defines 979

8 event types and 33 subtypes, each event 980

subtype corresponding to a set of argument 981

roles. There are 36 argument roles for all 982

event subtypes. In most of researches based 983

on the ACE corpus, the 33 subtypes of events 984

are often treated separately without further 985

retrieving their hierarchical structures. The 986

ACE 2005 corpus contains 599 annotated 987

documents and around 6000 labeled events, 988

including English, Arabic and Chinese events 989

from different media sources like newswire 990

articles, broadcast news and etc. In this paper, 991

use the English subset and follow Liu et al. 992

(2018) to split the train/valid/test sets. 993

C.12 Part-of-speech tagging 994

• Penn WSJ: Penn Treebank (PTB) is an 995

English dataset corresponding to the articles 996

of Wall Street Journal (WSJ). In this paper, we 997

use sections from 0 to 18 are used for training 998

(38, 219 sentences, 912, 344 tokens), sections 999

from 19 to 21 are used for validation (5,527 1000

sentences, 131,768 tokens), and sections from 1001

22 to 24 are used for testing (5,462 sentences, 1002

129,654 tokens). 1003

C.13 Dependency parsing 1004

• PTB: PTB is an English dataset that contains 1005

39,832 sentences for training and 2,416 1006

sentences for testing. We follow Ma et al. 1007

(2018) and use the same train/valid/test split. 1008

C.14 Semantic role labeling 1009

• CoNLL2005: CoNLL2005 contains a total 1010

number of 20 roles, while there are only 1011

2.5 roles per predicate on average. we use 1012

sections 02-21 of WSJ corpus as Train data, 1013

section 24/23 as Dev/Test data, and three 1014

sections (CK01-03) of the Brown corpus as 1015

out-of-domain (OOD) data. 1016

• CoNLL2009: CoNLL2009 builds on the 1017

CoNLL-2008 task and extends it to multiple 1018

languages. Data is provided for both 1019

statistical training and evaluation, which 1020

extract these labeled dependencies from 1021

manually annotated treebanks such as the 1022

Penn Treebank for English. We follow Wang 1023

et al. (2021a) to test on the English data 1024

and use the same train/valid/test split for 1025

evaluations. 1026
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Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman1360
Castagné, Alexandra Sasha Luccioni, François Yvon,1361
Matthias Gallé, et al. 2022. Bloom: A 176b-1362
parameter open-access multilingual language model.1363
arXiv preprint arXiv:2211.05100.1364

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi,1365
and Hannaneh Hajishirzi. 2016. Bidirectional1366
attention flow for machine comprehension. ArXiv,1367
abs/1611.01603.1368

Yeon Seonwoo, Guoyin Wang, Sajal Choudhary,1369
Changmin Seo, Jiwei Li, Xiang Li, Puyang Xu,1370
Sunghyun Park, and Alice Oh. 2022. Ranking-1371
enhanced unsupervised sentence representation1372
learning. arXiv preprint arXiv:2209.04333.1373

Jingbo Shang, Liyuan Liu, Xiang Ren, Xiaotao Gu,1374
Teng Ren, and Jiawei Han. 2018. Learning1375
named entity tagger using domain-specific dictionary.1376
In Conference on Empirical Methods in Natural1377
Language Processing.1378

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie1379
Huang, Nan Duan, and Weizhu Chen. 2023.1380
Synthetic prompting: Generating chain-of-thought1381
demonstrations for large language models. ArXiv.1382

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,1383
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,1384
Luke Zettlemoyer, Noah A Smith, et al. 2022.1385
Selective annotation makes language models better1386
few-shot learners. arXiv preprint arXiv:2209.01975.1387

Jiashuo Sun, Yi Luo, Yeyun Gong, Chen Lin,1388
Yelong Shen, Jian Guo, and Nan Duan. 2023a.1389
Enhancing chain-of-thoughts prompting with1390
iterative bootstrapping in large language models.1391
ArXiv.1392

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei1393
Guo, Tianwei Zhang, and Guoyin Wang. 2023b.1394
Text classification via large language models. arXiv1395
preprint arXiv:2305.08377.1396

Xiaofei Sun, Yuxian Meng, Xiang Ao, Fei Wu, Tianwei1397
Zhang, Jiwei Li, and Chun Fan. 2022. Sentence1398
similarity based on contexts. Transactions of the1399
Association for Computational Linguistics, 10:573–1400
588.1401

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng,1402
Hao Tian, Hua Wu, and Haifeng Wang. 2020.1403
Ernie 2.0: A continual pre-training framework for1404
language understanding. In Proceedings of the AAAI1405
conference on artificial intelligence, volume 34.1406

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng,1407
Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021.1408
Chinesebert: Chinese pretraining enhanced by1409
glyph and pinyin information. arXiv preprint1410
arXiv:2106.16038.1411

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 1412
Jonathan Berant. 2018. Commonsenseqa: A question 1413
answering challenge targeting commonsense 1414
knowledge. arXiv preprint arXiv:1811.00937. 1415

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 1416
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 1417
and Tatsunori B Hashimoto. 2023. Alpaca: A strong, 1418
replicable instruction-following model. Stanford 1419
Center for Research on Foundation Models. 1420

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 1421
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 1422
Baptiste Rozière, Naman Goyal, Eric Hambro, 1423
Faisal Azhar, et al. 2023. Llama: Open and 1424
efficient foundation language models. arXiv preprint 1425
arXiv:2302.13971. 1426

Trieu H. Trinh and Quoc V. Le. 2018. A simple method 1427
for commonsense reasoning. ArXiv, abs/1806.02847. 1428

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1429
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 1430
Kaiser, and Illia Polosukhin. 2017. Attention is all 1431
you need. Advances in neural information processing 1432
systems, 30. 1433

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying 1434
Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi. 1435
2023. Gpt-re: In-context learning for relation 1436
extraction using large language models. arXiv 1437
preprint arXiv:2305.02105. 1438

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 1439
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 1440
2023a. Plan-and-solve prompting: Improving zero- 1441
shot chain-of-thought reasoning by large language 1442
models. ArXiv. 1443

Nan Wang, Jiwei Li, Yuxian Meng, Xiaofei Sun, Han 1444
Qiu, Ziyao Wang, Guoyin Wang, and Jun He. 2021a. 1445
An mrc framework for semantic role labeling. arXiv 1446
preprint arXiv:2109.06660. 1447

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, 1448
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang. 1449
2023b. Gpt-ner: Named entity recognition via large 1450
language models. arXiv preprint arXiv:2304.10428. 1451

Shuohang Wang and Jing Jiang. 2015. Learning 1452
natural language inference with lstm. ArXiv, 1453
abs/1512.08849. 1454

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and 1455
M. Zhou. 2017. Gated self-matching networks for 1456
reading comprehension and question answering. In 1457
Annual Meeting of the Association for Computational 1458
Linguistics. 1459

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 1460
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 1461
Hajishirzi. 2022. Self-instruct: Aligning language 1462
model with self generated instructions. ArXiv, 1463
abs/2212.10560. 1464

18



Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei1465
Hou, Zhiyuan Liu, Peng Li, Juan-Zi Li, and Jie Zhou.1466
2021b. Cleve: Contrastive pre-training for event1467
extraction. ArXiv, abs/2105.14485.1468

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,1469
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,1470
Maarten Bosma, Denny Zhou, Donald Metzler, et al.1471
2022a. Emergent abilities of large language models.1472
arXiv preprint arXiv:2206.07682.1473

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1474
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.1475
Chain of thought prompting elicits reasoning in large1476
language models. arXiv preprint arXiv:2201.11903.1477

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.1478
2005. Recognizing contextual polarity in phrase-1479
level sentiment analysis. In Human Language1480
Technology - The Baltic Perspectiv.1481

Sang Michael Xie, Aditi Raghunathan, Percy Liang,1482
and Tengyu Ma. 2021. An explanation of in-1483
context learning as implicit bayesian inference. arXiv1484
preprint arXiv:2111.02080.1485

Caiming Xiong, Victor Zhong, and Richard Socher.1486
2016. Dynamic coattention networks for question1487
answering. ArXiv, abs/1611.01604.1488

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,1489
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and1490
Colin Raffel. 2020. mt5: A massively multilingual1491
pre-trained text-to-text transformer. arXiv preprint1492
arXiv:2010.11934.1493

Xi Ye, Srini Iyer, Asli Celikyilmaz, Ves Stoyanov,1494
Greg Durrett, and Ramakanth Pasunuru. 2022.1495
Complementary explanations for effective in-context1496
learning. ArXiv.1497

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah1498
Goodman. 2022. Star: Bootstrapping reasoning1499
with reasoning. Advances in Neural Information1500
Processing Systems, 35:15476–15488.1501

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,1502
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,1503
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:1504
An open bilingual pre-trained model. arXiv preprint1505
arXiv:2210.02414.1506

Ge Zhang, Yemin Shi, Ruibo Liu, Ruibin Yuan, Yizhi1507
Li, Siwei Dong, Yu Shu, Zhaoqun Li, Zekun Wang,1508
Chenghua Lin, Wen-Fen Huang, and Jie Fu. 2023.1509
Chinese open instruction generalist: A preliminary1510
release. ArXiv, abs/2304.07987.1511

Susan Zhang, Stephen Roller, Naman Goyal, Mikel1512
Artetxe, Moya Chen, Shuohui Chen, Christopher1513
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al.1514
2022a. Opt: Open pre-trained transformer language1515
models. arXiv preprint arXiv:2205.01068.1516

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 1517
Smola. 2022b. Automatic chain of thought 1518
prompting in large language models. arXiv preprint 1519
arXiv:2210.03493. 1520

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021. 1521
Factual probing is [mask]: Learning vs. learning to 1522
recall. arXiv preprint arXiv:2104.05240. 1523

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 1524
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 1525
Olivier Bousquet, Quoc Le, and Ed Chi. 2022a. 1526
Least-to-most prompting enables complex reasoning 1527
in large language models. arXiv preprint 1528
arXiv:2205.10625. 1529

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, 1530
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 1531
Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. 1532
2022b. Least-to-most prompting enables complex 1533
reasoning in large language models. ArXiv. 1534

Jie Zhou and Wei Xu. 2015. End-to-end learning 1535
of semantic role labeling using recurrent neural 1536
networks. In Annual Meeting of the Association for 1537
Computational Linguistics. 1538

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan 1539
Salakhutdinov, Raquel Urtasun, Antonio Torralba, 1540
and Sanja Fidler. 2015. Aligning books and movies: 1541
Towards story-like visual explanations by watching 1542
movies and reading books. In Proceedings of the 1543
IEEE international conference on computer vision, 1544
pages 19–27. 1545

A Example Appendix 1546

This is an appendix. 1547

19


	Introduction
	Methodology
	Proper Task Formalization
	One-input-multiple-prompts
	Demonstration Retrieval
	Chain-of-Thoughts Reasoning
	Self-Verification
	Paraphrase Voting

	Task Description and Re-formalization
	Question Answering
	Commonsense Reasoning
	Natural language inference
	Sentiment Analysis
	Named Entity Recognition
	Entity-Relation Extraction
	Event Extraction
	Part-of-speech Tagging
	Dependency Parsing
	Semantic Role Labeling

	Experiments
	Datasets and Results
	Analysis

	Related Work
	Large language models (LLMs)
	Adapting LLMs to NLP tasks

	Conclusion
	Releated work
	Generation Intermediate Rationales

	Task formalaition under ChatGPT
	Question Answering
	Commonsense Reasoning
	Natural Language Inference
	Entity-relation Extraction

	Evaluation Datasets
	Question answering
	Commonsense Reasoning
	Event Extraction
	Part-of-speech Tagging
	Part-of-speech Tagging
	Semantic Role Labeling
	Natural language inference
	Sentiment analysis
	Named entity recognition
	Entity-relation extraction
	Event Extraction
	Part-of-speech tagging
	Dependency parsing
	Semantic role labeling

	Example Appendix

