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Abstract

Despite the success of ChatGPT, its
performances on most NLP tasks are still well
below the supervised baselines. In this work,
we looked into the causes, and discovered
that its subpar performance was caused by the
following factors: (1) mismatch between the
generation nature of ChatGPT and NLP tasks;
(2) token limit in the prompt does not allow for
the full utilization of the supervised datasets;
(3) insufficient utilization of the reasoning
power of ChatGPT. (4) intrinsic pitfalls of
LLMs models, e.g., hallucination, overly focus
on certain keywords, etc.

In this work, we propose a collection of general
modules to address these issues, in an attempt
to push the limits of ChatGPT on NLP tasks:
(1) proper task formalization to better align
with the generation nature of LLMs; (2) one-
input-multiple-prompts strategy to overcome
token limitations and maximize training data
utilization; (3) demonstration retrieval using
fine-tuned model for k-nearest neighbor (KNN)
search to improve the selection of semantically
relevant demonstrations; (4) chain-of-Thoughts
reasoning that are tailored to addressing the
task-specific complexity; (5) self-verification
to address the hallucination issue of LLMs; (6)
paraphrase voting to improve the robustness of
model predictions.

We conduct experiments on 21 datasets of
10 representative NLP tasks.  Using the
proposed assemble of techniques, we are
able to significantly boost the performance of
ChatGPT on the selected NLP tasks, achieving
performances comparable to or better than
supervised baselines, or even existing SOTA
performances.

1 Introduction

In recent years, interest in large language models
(LLMs) such as ChatGPT' arises from their
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significant capabilities across a wide range of
natural language tasks. Despite the success
achieved by ChatGPT, its performances on most
NLP tasks are still significantly below supervised
baselines (Qin et al., 2023). This is due to the
following reasons: (1) the mismatch between
ChatGPT and many NLP tasks: ChatGPT is a
text generation model, while many NLP tasks
cannot be easily formatted as a text generation task,
e.g., named entity recognition (NER), dependency
parsing, semantic role labeling, etc. The adaptation
from the original NLP task to a text generation
task comes at a heavy cost in performance; (2)
token limit: there is a hard token limit (4,096)
for the input to the ChatGPT, which means only
a small fraction of the labeled data can be used
in the prompt for in-context learning (ICL); On
the contrary, supervised baselines can harness
the full labeled dataset; (3) the reasoning power
of ChatGPT has not been fully fulfilled with
respect to different tasks, which may require
different reasoning ability to address the task-
specific language complexity; and (4) the intrinsic
pitfalls from ChatGPT itself: ChatGPT severely
suffers from the hallucination issue (Ji et al., 2023),
where in the context of NLP tasks, it tends to
overconfidently label null instances with labels that
they don’t belong to.

In this paper, we explore how we can
systematically address the aforementioned issues
of ChatGPT, in an attempt to push the limit of its
performances on different NLP tasks. We proposed
a collection of strategies to systematically address
the issues of using ChatGPT on NLP task: (1)
Proper Task Formalization strategy is designed
to address the mismatch problem. It reconstructs
NLP tasks to formats that are more tailored to the
generation nature. Prompting ChatGPT to copy the
input and transforming labels to tokens surrounded
with special symbols can preserve the generation
nature of ChatGPT. Transforming N-class multi-



class classification task to N binary classification
tasks further simplifying the process of extracting
labels from output. (2) One-input-multiple-prompts
strategy aims to alleviate the adverse effects of
token limit and take advantage of more training
data. It employs multiple prompts for one input
to accommodate more demonstrations. Each
prompt is filled with distinct demonstrations and
fed into ChatGPT separately. The final decision is
made by voting among all prompt belongs to one
input. (3) Demonstration Retrieval strategy shares
the goal of addressing the token limit problem
as well. It uses representations from the fine-
tuned model for kNN search to achieve better
demonstration retrieval. KNN-based retrieval can
select demonstrations more relevant in semantics
to the input, making every token in the prompt
count; (4) Chain-of-Thoughts Reasoning strategy
is tailored to unleash the reasoning power of
LLMs addressing the task-specific complexity. By
prompting LLMs to generate chain-of-thoughts
explanations for demonstrations before making
decisions, it can reduce the randomness of model
decoding and enhance LLMs’ performance. (5)
Self-verification strategy is dedicated to improve
the robustness of model predictions and reduce
hallucination. After obtaining the generated task
results from ChatGPT, it concatenate the task
description with the generated result and ask
ChatGPT answer whether the generated result is
correct or not. (6) Paraphrase Voting strategy is a
way to mitigate the surface word domination issue
of LLMs. Each input is paraphrased by LLMs with
the same meaning but in different expressions. The
final decision is made by voting among all output
generated by LLMs with paraphrased prompts.

With the combination of the proposed strategies,
we are able to significantly boost the performance
of ChatGPT on all selected NLP tasks. We
conduct experiments on 21 datasets of 10
representative NLP tasks, including question
answering, commonsense reasoning, natural
language inference, sentiment analysis, named
entity recognition, entity-relation extraction, event
extraction, dependency parsing, semantic role
labeling, and part-of-speech tagging. Using the
proposed assemble of techniques, we are able to
significantly boost the performance of ChatGPT
on the selected NLP tasks, achieving performances
comparable to or better than supervised baselines,
or even existing SOTA performances.

2 Methodology

In this section, we detail our proposed specific
strategies to address the aforementioned
disadvantages of the ChatGPT system.

2.1 Proper Task Formalization

We propose proper task formalization to restructure
NLP tasks in a generative manner to meet the
generation nature of ChatGPT. The first effective
recipe we find effective is to prompt ChatGPT to
copy the input while modifying labeled tokens
by surrounding them with special symbols. For
example, to extract location (LOC) entities in the
input "he lives in Seattle" in the NER tasks, the
output from ChatGPT surrounds the LOC entity
"Seattle" with special symbols ## and @ @, making
the output “he lives in ## Seattle@@”. This
copy-and-modify approach not only preserves the
continuity of the output, but also simplifies the
process of connecting the output to the extracted
tokens, resulting in superior results compared to
other methods.

The second recipe is to transform the N-
class multi-class classification task to N binary
classification tasks. The intuition is that, for each
class, we are able to show more illustrations with
respect to that class with the binary-transformation
strategy.

2.2 One-input-multiple-prompts

For ChatGPT, there is a hard limit of 4,096 token
in the input. Therefore, only a very small fraction
of training examples can be used. To address this
issue, we propose the one-input-multiple-prompts
strategy. Let N denotes the number of prompts
for each input. Each prompt is filled with distinct
demonstrations. Demonstrations are retrieved
using random or kNN strategies. Prompts are
fed to ChatGPT separately. We thus will get N
predictions from ChatGPT. The final result is made
via voting among the individual judgments made
by ChatGPT for each prompt. By doing this, we
can get around the restriction on tokens, allowing
us to take the advantage of more training data.

2.3 Demonstration Retrieval

Another direction to address the limited token
issue is to improve the quality of demonstrations
to make every token in the prompt count. kNN-
based retrieval is based on general sentence-level
representations (Gao et al., 2021; Sun et al,



2022; Seonwoo et al., 2022) and retrieves similar
demonstrations in terms of the general semantic.
They surely perform better than random retrieval,
but come with the key disadvantage: they do not
extract features tailored to the specific task. A
better alternative is to use the fine-tuned (FT for
short) model on the training set as the similarity
measurement function. Specifically, we first fine-
tune a supervised model (e.g., RoOBERTa (Liu et al.,
2019)) based on the full training set, and use
representations from the fine-tuned model for kNN
search. From a global perspective, the FT-retrieval
strategy bridges the gap between ChatGPT and the
supervised model: though ChatGPT cannot fully
use the training data as input due to the token limit,
we can still setup their connection through the FT
retrieval since the latter is trained based on the full
training data.

2.4 Chain-of-Thoughts Reasoning

Wei et al. (2022b) propose the chain-of-thoughts
(COT) strategy to enhance LLMs’ reasoning
abilities for solving math tasks: COT first
generates intermediate rationale explanations and
then followed by the task-related decision. For
the KNN strategy, which is adopted in most NLP
scenarios, each instance in the training set has
a chance to be selected. Therefore, we need to
prepare intermediate reasoning explanations for
all training examples. To address this issue, we
propose to use ChatGPT to generate rationale
for all training examples. Specifically, at the
rational-preparing stage, we first transform each
data (INPUT, LABEL) in the training set to
(INPUT, RATIONALE EXPLANATIONS, LABEL)
by prompting ChatGPT to generate intermediate
rationale explanations that support model decisions.
At test time, we feed the concatenation of the task
description, demonstrations that involve rationales,
and the test instance to ChatGPT, in which case
ChatGPT should generate a string that includes
the reasoning process of ChatGPT, followed by its
task-related decision for the input test.

2.5 Self-Verification

ChatGPT suffers from the hallucination issue (Ji
et al., 2023), which generates false positive
predictions with high confidence. Using the
named entity recognition task as an example, the
hallucination issue refers to ChatGPT extracting
entities from sentences that do not contain any
entities.

We propose the self-verification strategy (SV
for short) to address the above issue. After
obtaining the generated task results from ChatGPT,
we concatenate the task description with the
generated result and ask ChatGPT answer whether
the generated result is correct or not. ChatGPT
will generate a "yes" or "no" to determine whether
the generated results are reasonable for the original
task.

Let’s take the named entity recognition task as
an example to illustrate. Given the input "Hunan
Office in Beijing". ChatGPT has completed the first
step of extracting the location (LOC) entity and
identified "Hunan" as a LOC entity. We employ the
self-verification strategy to validate the LOC result
obtained in the first step. We prompt ChatGPT:

INPUT: Hunan# Office in Beijing
Based on the context, is the labeled ’Hunan’ in
the INPUT a location entity?

ChatGPT should generate "no" indicating that
"Hunan" is not a location entity. Afterward, we
remove "Hunan" from the list of LOC entities
predicted by ChatGPT in the first step.

2.6 Paraphrase Voting

ChatGPT often faces the issue that predictions
are dominated by surface words. This is due to
the limited demonstrations in prompts. Using
the question-answering task as an example for an
illustration: given the context "The news agency
reports that the goverment ...", and the question
"What is the topic of the input text?", ChatGPT
is dominated by the phrase "The news agency"
and generates "news" as the answer to the given
question.

To address the surface word domination issue,
we propose the paraphrase strategy. Specifically,
we use ChatGPT to paraphrase the given text and
get multiple versions of the input with the same
meaning but in different expressions. Next, we use
paraphrases as the input to ChatGPT one at a time,
then employ a voting strategy to obtain the final
decision.

It is worth noting that the paraphrase strategy
can only be applicable to sentence-level tasks, but
not token-level tasks (e.g., NER, POS). Because
words in the generated paraphrases usually cannot
be accurately aligned back to the original input.



3 Task Description and Re-formalization

In this section, we introduce the 10 representative
NLP tasks description and corresponding re-
formalization under ChatGPT. Detailed examples
of each task formalization is shown in Figure 1.

3.1 Question Answering

Question answering (QA) (Seo et al., 2016;
Xiong et al., 2016; Wang et al., 2017) is a
task that generates an answer to a given natural
language question, normally formalized as a multi-
class (start, end, not part) classification problem.

Under ChatGPT, QA is formalized as a text
generation task. We first split the given context into
individual sentences and assign them a sentence
index based on their position in the context. Then
we concatenate the modified context and the given
question to elicit a response from ChatGPT. The
generated text string from ChatGPT should consist
of two components: (1) the index of the sentence
of which the answer is a substring; and (2) the
substring that answers the question.

a strategy akin to multi-task learning.

3.2 Commonsense Reasoning

Commonsense reasoning (Bailey et al., 2015;
Trinh and Le, 2018; Rajani et al., 2019a) is
a task that uses human consensus and logical
inference abilities to generate an answer to a given
natural language question. The commonsense
reasoning task is normally formalized as a binary
classification task.

Under ChatGPT, commonsense reasoning is
formalized as a text completion task to copy the
right answer from the given multi-choice options.

3.3 Natural language inference

Natural language inference (NLI) (Wang and
Jiang, 2015; Mou et al., 2015; Liu et al., 2016)
is a task that aims to determine whether the
given hypothesis can be logically inferred from
the given premise and normally formalized as a
three-class (entailment, contradiction and neural)
classification problem.

Under ChatGPT, NLI is formalized as prompting
ChatGPT to generate yes/no with respect to each
logical relation (e.g., entailment), given the premise
and the hypothesis. If the response is yes, it denotes
that the relation holds between the premise and the
hypothesis. Since there are three candidate logical

relations, the prompting process should be repeated
three times.

3.4 Sentiment Analysis

Sentiment analysis (Wilson et al., 2005; Devlin
et al., 2018; Basiri et al., 2021) is a task to
determine the sentimental polarity (e.g., positive,
negative) of a given text. The task is normally
formalized as a binary or multi-class classification
problem, which assigns a sentiment class label to
the given text.

Under ChatGPT, the task of sentiment analysis
can be formalized as prompting ChatGPT to
generate sentiment-indicative text given the input
(e.g., decide the sentiment of the following text).
The generated sentiment-indicative text contains
sentiment keyword (e.g., positive, negative, etc)
and will be latter mapped to a sentiment label.

3.5 Named Entity Recognition

Named entity recognition (NER) (Chiu and
Nichols, 2015; Shang et al., 2018; Wang et al.,
2023b) is a task that extracts named entities of
pre-defined categories (e.g., location, organization,
etc.) from a given text, normally formalized as a
sequence labeling problem.

Under ChatGPT, NER is formalized as a text
generation task, where given an input text (e.g.,
"He lives in Chicago"), and a certain entity type
(e.g., location), we prompt ChatGPT to surround
entities belonging to the entity type in the original
sequence with special symbols:

He lives in ## Chicago @ @, where ## and @ @
denote the start and end of a named entity.

If there is no location entity in the input, ChatGPT
just copies the original input as the output. This
strategy was adopted in Wang et al. (2023b).

3.6 Entity-Relation Extraction

Entity-relation extraction (Mintz et al., 2009; Miwa
and Bansal, 2016; Wan et al., 2023) is a task
that aims to extract named entities in a given
text, and identify relations between the extracted
entity pairs. The entity-relation extraction task
is normally formalized as a two-stage problem:
assigning an entity label then assigning a relation
label.

Under ChatGPT, the entity-relation extraction is
formalized as a two-step text completion task. Step
1, similar to that of NER, ChatGPT extracts named
entities with respect to a certain type (e.g., location)



by rewriting the input sentence and surrounding the
entity with special tokens. Step 2, prompt ChatGPT
to output a yes-or-no decision to determine whether
a certain relation holds between two specified
entities.

3.7 Event Extraction

Event extraction (EE) (Ahn, 2006; Nguyen and
Grishman, 2018; Wang et al., 2021b) is a
task that aims to identify the event type and
extract information (i.e., trigger, arguments) of
an identified event in the given text, normally
formalized as a two-step classification problem.
Under ChatGPT, the event extraction task is

formalized as a two-step text completion problem.

Step 1, we prompt ChatGPT to generate a text
string to determine whether the input contains the
trigger word with respect to a certain event type.
If ChatGPT responds with a substring of the input,
it denotes that the substring is the trigger with
respect to the certain event. If ChatGPT generates
null, it indicates that the input does not contain an
event with respect to the certain type. Step 2, we
use ChatGPT to generate a text string, which is
an argument with respect to a certain role for the
identified event in Step 1. If ChatGPT generates
a substring from the input, it denotes that the
substring is the argument with respect to a certain
role for the event, and null denotes otherwise.

3.8 Part-of-speech Tagging

Part-of-speech (POS) tagging (Brill, 1992;
Owoputi et al., 2013; Chiche and Yitagesu, 2022)
is a task that aims to assign a part-of-speech label
to each word in the given sequence based on its
morphology (e.g., past tense), semantic meaning
(e.g., move or action), and syntactic functions (e.g.,
preposition). The POS task is normally formalized
as a sequence labeling problem.

Under ChatGPT, the POS task is formalized
as a text completion problem, where ChatGPT
is prompted to generate a POS-indicative text
for an annotated word in the sentence at a time.
Specifically, we prompt ChatGPT to generate the
POS for the marked word in the sentence with all
POS options given. Suppose there are N words in
the sentence, the above prompting process should
be repeated N times.

3.9 Dependency Parsing

Dependency parsing (McDonald et al., 2005; Ma
et al., 2018; Gan et al., 2021) is a task that aims

to identify whether there are dependency relations
between words in a sentence and determine the
dependency relations. It is usually formalized as a
multi-class classification task.

Under ChatGPT, dependency parsing is
formalized as a two-step text completion task. Step
1, We use ChatGPT to rewrite the input sentence
where dependent words for the given head word are
marked with special tokens @#, where @ denotes
the start of a dependent word, and # denotes the
end of a dependent word. Step 2, we use ChatGPT
to generate yes or no to determine whether a given
dependency relation holds between the head and
the dependent word.

3.10 Semantic Role Labeling

Semantic role labeling (SRL) (Zhou and Xu, 2015;
He et al., 2018; Jia et al., 2022) is a task that
aims to identify arguments for each predicate in
a given sentence, along with determining semantic
roles to the identified arguments. SRL is normally
formalized as a two-stage problem: a multi-class
classification task followed by a sequence labeling
problem.

Under ChatGPT, the SRL task is formalized as
a two-step text completion problem. Step 1, we
use ChatGPT to determine the word sense of the
predicate by iteratively asking ChatGPT whether
the predicate belongs to each sense. Step 2, we
use ChatGPT to output an argument that belongs
to a certain semantic role with respect to the given
predicate. Arguments are substrings of the input
sentence. Suppose that there are N semantic roles,
we need to ask ChatGPT N times, each of which
corresponds to each role.

4 Experiments

In this section, we introduce the datasets used in
10 representative NLP tasks and the experimental
results, following with corresponding analysis of
the effectiveness of proposed 6 strategies. The
overall comparisons of experiment results on ten
NLP downstream tasks is shown in Figure 2, where
with the proposed strategies, ChatGPT achieves
comparable or better results to the supervised
RoBERTa on 17 out of 21 datasets across 10
representative NLP tasks.

4.1 Datasets and Results

We conduct experiments on 21 widely-used
benchmarks across 10 NLP tasks: (1) Question



SQuADv2 TQA MRQA-OOD

Model (EM) (EM) (F1)
RoBERTa-Large 86.8 81.1 724
ChatGPT (few-shot)

+Random demo 70.1 70.9 63.1
+SimCSE kNN 73.5 72.5 65.7
+FT kNN 78.9 75.8 68.3
+FT kKNN+Multi 83.6 78.0 71.0
+FT kNN+Multi+Reason 87.2 79.3 75.6
+FT kNN+Multi+Reason+SV 88.2 80.8 76.1

Table 1: Experimental results for the question answering
task. We abbreviate the self-verification strategy as SV.

CSQA  StrategyQA

Models (ACCO) (ACC)
RoBERTa-Large 79.2 72.0
ChatGPT (few-shot)

+Random demo 74.8 59.5
+SimCSE kNN 74.7 59.6

+FT kNN 76.6 65.4

+FT kKNN+Multi 78.0 67.8

+FT ENN+Multi+Reason 78.2 69.4

+FT kNN+Multi+Reason+SV 79.0 69.9

Table 2: Experimental results on commonsense

reasoning datasets.

Answering. SQuADvV2 (Rajpurkar et al., 2018),
TQA (Joshi et al., 2017), and MRQA-OOD.
Results are shown in Table 1; (2) Commonsense
Reasoning. CSQA (Talmor et al.,, 2018) and
StrategyQA (Geva et al., 2021). Results are
shown in Table 2; (3) Natural language inference.
RTE, CommitmentBank (CB) (De Marneffe et al.,
2019). Results are shown in Table 3; (4)
Sentiment Analysis. SST-2, IMDb, and Yelp.
Results are shown in Table 4; (5) Named Entity
Recognition. CoNLL2003 (Sang and De Meulder,
2003) and OntoNotes5.0 (Pradhan et al., 2013a).
Results are shown in Table 5; (6) Entity-Relation
Extraction. English ACE2004 and ACE2005.
Results are shown in Table 7. (7) Event
Extraction. English ACE2005. Results are shown
in Table 6; (8) Part-of-speech Tagging. WSJ
Treebank and Tweets dataset. Results are shown in
Table 8; (9) Dependency Parsing. English Penn
Treebank v3.0 (Marcus et al., 1993). Results
are shown in Table 10. (10) Semantic role
labeling. CoNLL2005 (Carreras and i Villodre,
2005), CoNLL2009 (Hajic et al., 2009) and
CoNLL2012 (Pradhan et al., 2013b). Results are
shown in Table 9.

4.2 Analysis

In general, with the proposed series of strategies,
ChatGPT is able to achieve comparable
performances to the supervised baselines on

RTE CB
Models (ACC) (ACO)
RoBERTa-Large 92.8 98.2
ChatGPT (few-shot)
+Random demo 90.5 90.5
+SimCSE kNN 90.7 90.4
+FT kNN 922 93.8
+FT kNN+Multi 92.6 95.2
+FT kKNN+Multi+Reason 92.9 95.6
+FT kNN+Multi+Reason+SV 92.9 96.5

+FT ENN+Multi+Reason+SV+Paraphrase 93.1 96.7

Table 3: Experiment results on natural language
inference benchmarks.

SST-2 IMDB  Yelp
Models (ACC) (ACC) (ACO)
RoBERTa-Large 95.9 95.4 98.0
ChatGPT (few-shot)
+Random demo 92.6 90.4 95.5
+SimCSE ANN 92.8 90.5 95.7
+FT kNN 94.6 94.4 97.5
+FT kNN+Multi 95.2 94.8 97.8
+FT kKNN+Multi+Reason 95.7 94.9 97.9
+FT kENN+Multi+Reason+SV 95.7 94.9 98.2
+FT ENN+Multi+Reason+SV+Paraphrase 96.2 95.1 98.4

Table 4: Experimental results for the sentiment analysis
task.

17 out of 21 datasets across 10 NLP tasks. In
QA, under the out-of-domain setting of MRQA,
ChatGPT significantly outperforms the supervised
RoBERTa model by +3.7, which indicates the
significantly better domain-adaptable ability of
ChatGPT.

One-input-multiple-prompts. In Table 1, we
observe that using the multiple-prompt strategy
obtains a significant performance boost across
three QA datasets, ie., +4.7, +2.2, +2.7,
respectively on SQUAD V2.0, TQA, and MRQA-
OOD datasets. We can also observe that it
gains significant performance boosts on two
commonsense reasoning benchmarks: +1.4 on
the CSQA and +2.4 on the StrategyQA datasets.
This demonstrates that the multiple-prompt strategy
effectively addresses the input token limit issue
and allows ChatGPT to take advantage of more
annotated examples.

Demonstration Retrieval. As shown in
Table 1, the SimCSE-kNN retriever outperforms
the random retriever, which demonstrates the
importance of selecting semantically similar
examples as demonstrations for QA. In Table 2
using the fine-tuned model to retrieve ANN
introduces a huge performance boost compared
with the SimCSE and the random selection
strategies, i.e., +1.9 and +5.8 on the CSQA and
StrategyQA dataset, respectively. Same boost by
FT-ENN can be observed from Table 3 to Table 9 as



CoNLL 2003 OntoNotes 5.0

Model (Span-F1) (Span-F1)
RoBERTa-Large 93.0 89.9
ChatGPT (few-shot)

+Random demo 68.4 58.3
+SimCSE kNN 80.2 72.1
+FT kNN 84.8 78.6
+FT ENN+Multi 88.2 81.4
+FT ENN+Multi+Reason 88.4 81.6
+FT ENN+Multi+Reason+SV 88.9 81.9

Table 5: Experimental results on the named entity
recognition benchmarks.

Trigger Argument
Model (Span-F1)  (Span-F1)
RoBERTa-Large 74.5 63.6
ChatGPT (few-shot)
+Random demo 60.3 50.2
+SimCSE kNN 65.5 55.0
+FT ENN 72.5 63.3
+FT ENN+Multi 74.3 64.5
+FT kENN+Multi+Reason 74.6 64.7
+FT KNN+Multi+Reason+SV 74.6 64.9

Table 6: Experimental results for the event extraction
task.

well. FT-ENN introduces a significant performance
boost over SimCSE-kNN. This indicates that
using the FT model, which is fine-tuned on the
given training set, retrieves similar examples with
respect to the specific task, and can help improve
ChatGPT’s performances.

Chain-of-Thoughts Reasoning. In Table 1 and
Table 3, we find that the rational-based prompting
strategy can further boost the performances, +1.8
on SQuADvV2, +1.1 on TQA, +0.8 on MRQA-OOD
compared to FTKNN+Multi-Prompts, and +0.3 on
RTE and +0.4 on CB. This phenomenon is in line
with our expectation that intermediate rationales
enhances models’ reasoning abilities.
Self-verification. In Table 1, the proposed self-
verification strategy introduces further performance
boosts, i.e., +1.0, +1.5, and + 1.5 on SQuADV2,
TQA, and MRQA-OQOD, respectively.  Self-
verification strategy yields minor performance
improvement on datasets in Table 8, Table 10,
Table 6 and Table 9. The explanation is that
the performance without SV is already high
enough that adding SV provides only a marginal
improvement.

Paraphrase Voting. Similar to self-verification,
the reason of paraphrase voting strategy bringing
only minor performance improvement might be
diminishing marginal effect. However, we are able
to achieve consistent performance improvement
across all datasets in Table 1 and Table 3,
which indicates that shallow linguistic features

ACE 2004 ACE 2005

Models (Span-F1) (Span-F1)
RoBERTa-Large 60.4 64.5
ChatGPT (few-shot)

+Random demo 49.8 56.2
+SimCSE kNN 53.2 59.6
+FT KNN 59.2 63.9
+FT KNN+Multi 61.2 65.6
+FT KNN+Multi+Reason 61.7 66.0
+FT kKNN+Multi+Reason+SV 62.5 66.4

Table 7: Experimental results for the entity-relation
extraction task.

Peen WSJ  Tweets

Models (ACC) (ACC)
RoBERTa-Large 98.9 923
ChatGPT (few-shot)

+Random demo 90.3 84.7
+SimCSE kNN 934 88.2
+FT ENN 98.2 92.4
+FT ENN+Multi 98.7 92.6
+FT ENN+Multi+Reason 98.7 92.6
+FT KNN+Multi+Reason+SV 98.9 92.7

Table 8: Experimental results on the part-of-speech
datasets.

(e.g. keywords, common words) mislead model
decisions and the paraphrasing strategy can address
the issue.

5 Related Work

5.1 Large language models (LLMs)

Large language models are models that aim to
learn general language patterns and linguistic
features by training in an unsupervised manner
on large unannotated corpora (Zhu et al., 2015;
Raffel et al., 2019; Lo et al., 2019; Gao et al.,
2020; Kopf et al., 2023). With the scale
increases, LLMs achieve great performance boosts
on various NLP tasks while unlocking emergent
capabilities (Xie et al., 2021; Wei et al., 2022a).
Other efforts (Sanh et al., 2021; Wang et al., 2022;
Longpre et al., 2023; Zhang et al., 2023) use human-
instructions to boost LLM’s ability. Based on
model architectures, LLMs can be categorized into
three branches: (1) encoder-only models (Devlin
et al., 2018; Liu et al., 2019; Sun et al., 2020;
Clark et al., 2020; Feng et al., 2020; Joshi et al.,
2020; Sun et al., 2020, 2021) like BERT (Devlin
et al., 2018) are discriminative models that use
a transformer (Vaswani et al., 2017) encoder for
getting the representation of a given sequence; (2)
decoder-only models (Radford et al., 2019a; Dai
et al., 2019; Keskar et al., 2019; Radford et al.,



CoNLL 2009 CoNLL 2005 CoNLL 2012
Predicate Disambiguation  Argument Labeling Argument Labeling Argument Labeling

Model (ACC) (F1) (F1) (F1)

RoBERTa-Large 97.3 93.3 89.3 87.6

ChatGPT (few-shot)

+Random demo 83.2 79.0 76.8 76.4

+SimCSE kNN 89.4 84.8 83.1 82.8

+FT kNN 97.4 93.5 88.9 87.4

+FT kNN+Multi 97.8 93.8 89.8 88.2

+FT kNN+Multi+Reason 97.8 94.0 90.4 88.4

+FT kNN+Multi+Reason+SV 97.7 94.1 90.8 88.6

Table 9: Experimental results for the semantic role labeling task.
PTB strategies for selecting in-context examples; Gonen

Model UAS) (LAS e .

oce (UAS) @AS) et al. (2022) exploit different strategies for orders
ROBERTa-Large 9687 9534 of in-context examples. More advanced reasoning
ChatGPT (few-shot) . : . .
+Random defmo 1904 7732 strategies Wei et al. (2022b); Zhang et al. (2022b);
+SimCSE kNN 8545  84.01 Han et al. (2021); Fu et al. (2022); Zhou et al.
+FT ENN 9245  90.98 . in-
FT ENN+Multi 0372 9290 (2022a), Sun et al. (2023b) also use in-context
+FT KNN+Multi+Reason 94.24 9272 learning as the backbone.
+FT kKNN+Multi+Reason+SV ~ 94.88  93.20

Table 10: Experimental results for the dependency
parsing task.

2019b; Brown et al., 2020; Chowdhery et al., 2022;
Ouyang et al., 2022; Zhang et al., 2022a; Scao
et al., 2022; Zeng et al., 2022; Touvron et al.,
2023; Taori et al., 2023; Chiang et al., 2023; Peng
et al., 2023; Anand et al., 2023; OpenAl, 2023)
like GPT (Radford et al., 2019a) are generative
models that use the decoder of an auto-regressive
transformer (Vaswani et al., 2017) for predicting
the next token in a sequence; (3) encoder-decoder
models (Lewis et al., 2019; Raffel et al., 2020;
Xue et al., 2020) like T5 (Raffel et al., 2020)
are generative models that use both the encoder
and decoder of the transformer (Vaswani et al.,
2017) model. Models finish downstream tasks by
generating new sentences depending on a given
input.

5.2 Adapting LLMs to NLP tasks

In-context Learning (ICL) has been adopted as a
general strategy to apply LLMs to downstream
NLP tasks. Brown et al. (2020) prompted
LLMs to generate textual responses (i.e., label
words) conditioning on the given prompt with a
few annotated examples without gradient updates.
There are a variety of strategies to improve ICL
performances on NLP tasks: Li and Liang (2021);
Zhong et al. (2021); Qin and Eisner (2021) propose
to optimize prompts in the continuous space; Rubin
et al. (2021); Das et al. (2021); Liu et al. (2021);
Gonen et al. (2022); Su et al. (2022); Wang et al.
(2023b); Wan et al. (2023) investigate different

6 Conclusion

In this paper, we present a comprehensive
set of strategies with the aim of advancing
the performance boundaries of ChatGPT.
These strategies encompass: (1) proper task
formalization; (2) one-input-multiple-prompts; (3)
demonstrations retrieval; (4) chain-of-thoughts
reasoning; (5) self-verification; (6) paraphrase
voting. These proposed strategies effectively target
the underlying factors that contribute to ChatGPT’s
performance falling below optimal levels: (1)
addressing the incongruence between ChatGPT’s
generative nature and the demands of NLP tasks;
(2) overcoming the token limit constraint in input
prompts to maximize the utility of supervised
datasets; (3) unlocking the untapped reasoning
capabilities of ChatGPT; (4) mitigating intrinsic
challenges observed in Large Language Models
(LLMs), such as hallucination and excessive focus
on specific keywords. With the proposed strategies,
ChatGPT achieves comparable or better results
to the supervised ROBERTa on 17 of 21 datasets
across 10 representative NLP tasks.

Limitations

This paper acknowledges the limitations inherent
in using ChatGPT for natural language processing
(NLP) tasks. One primary limitation is the model’s
dependency on its training data, which may not
encompass the entire breadth and diversity of
human language, leading to potential biases or
gaps in knowledge. ChatGPT, like other large
language models, may struggle with understanding



and generating contextually appropriate responses,
especially in nuanced or highly specialized topics.
Additionally, the model’s ability to discern and
replicate factual accuracy is not foolproof, as it can
inadvertently propagate misinformation present
in its training data. Another key limitation is
the handling of real-time data or events post
its last training update, leaving it unable to
provide insights on very recent developments. The
computational resource requirement for operating
such a model is significant, which could pose
scalability challenges.

A Releated work

A.1 Generation Intermediate Rationales

Rajani et al. (2019b) improve the interpretability
of the model without sacrificing its performance
by training a language model on the "explain-
then-predict” commonsense answering dataset.
Recently, Nye et al. (2021) find that a step-
by-step computation “scratchpads™ can improve
LLM’s performances on arithmetic, polynomial
evaluation, and program evaluation tasks and
etc. Wei et al. (2022b) use manually annotated
"chain-of-thoughts" prompts and greatly improve
performances of LLM on complex reasoning tasks.
After that, Li et al. (2022); Fu et al. (2022);
Ye et al. (2022); Shao et al. (2023) use higher
reasoning complexity examples as demonstrations
and further improve LLMs performances on
complex reasoning tasks. Zhou et al. (2022b);
Press et al. (2022) decompose a complex problem
into a series of simpler subproblems and then
solve them step-by-step toward the final answer.
Zhang et al. (2022b); Kojima et al. (2022);
Zelikman et al. (2022); Chen et al. (2022); Sun
et al. (2023a); Wang et al. (2023a); Sun et al.
(2023b) propose strategies to use LLMs generate
explicit intermediate reasoning chains and then
improve LLMs’ complex reasoning ability with
self-generated "chain-of-thoughts".

B Task formalaition under ChatGPT

B.1 Question Answering

For example, with the prompt to ChatGPT being:
Context: (1) The capital of Japan is Tokyo. (2)
The capital of China is Beijing. (3) The capital
of South Korea is Seoul.
Question: What is the capital of South Korea?

ChatGPT should output

(3) Seoul

where "(3)" denotes the index of the sentence where
the answer is located and "Seoul" represents the
answer. This strategy provides the model with
further guidance by first predicting the index of
the sentence within the context, and then deciding
which substring in that sentence should be used as
the answer, a strategy akin to multi-task learning.
Examples of the task formalization are shown in
Figure 1

B.2 Commonsense Reasoning

For example, the question is "Where on a river can
you hold a cup upright to catch water on a sunny
day?", the answer choices are "(A) waterfall; (B)
bridge; (C) valley, (D) pebble" and the prompt to
ChatGPT is:

Please select the answer to the question from
several options.

Question: Where on a river can you hold a cup
upright to catch water on a sunny day?
Options: (A) waterfall; (B) bridge; (C) valley;
(D) pebble.

The ChatGPT should generate "(D) pebble" which
denotes that the pebble is the answer to the given
question. Examples of the task formalization are
shown in Figure 1.

B.3 Natural Language Inference

For example, given the premise "Pibul
Songgramwas the pro-Japanese military dictator
of Thailand during World War 2.", the hypothesis
"Pibul was the dictator of Thailand.", and the
prompts to ChatGPT is

Does the premise entail the hypothesis? Please
answer yes or no.

Premise: <premise>

Hypothesis: <hypothesis>

where <premise> and <hypothesis> should be
replaced by the given premise and hypothesis,
respectively. ChatGPT should output "no" ideally
in this case, which denotes that the premise does
not entail the hypothesis. Subsequently, the same
procedures are used to verify the contradiction
and neural relations. Examples of the task
formalization are shown in Figure 1.



Question Answering

The task involves identifying the sentence containing the answer
and extracting a substring from it, with the response consisting of
the sentence index and the corresponding substring.

<demonstration-list>

Context: (1) The Normans (Norman: Nourmands; French: Normand
s) were ... to Normandy, a region in France.

(2) They were descended from Norse raiders from Denmark...
Question: In what country is Normandy located?

Answer: (1) France

Natural Language Inference

The task is to identify whether the premise entails the hypothesis.
Please respond with "yes” or “no”.

<demonstration-list>

Premise: A woman with a green headscarf, blue shirt and a big grin.
Hypothesis: The woman is very happy.

Answer: Yes

Commonsense Reasoning

The task is to answer the given question based on the \
commonsense knowledge. Please respond with the corresponding
index from the given options as the answer to the given question.

<demonstration-list>

Question: What do all humans want to experience in their own
home?

Options:

(A) feel comfortable

(B) work hard

wswer: (A) feel comfortable

)

41; task is to determine the overall sentiment polarity of the input\
text.
Please respond with "positive" or "negative".

Sentiment Analysis

<demonstration-list>

Input: Sensitive, insightful and beautifully rendered film.

Qen!iment: positive

Named Entity Recognition

The task is to identify organization entities in the input.

Please rewrite the input text and surround the start and end of
organization entities with @@ and ##, respectively.
<demonstration-list>

Input: Can Milan sink any further ? Mr. Jackson pondered ...

Answer: Can @@Milan## sink any further ? Mr. Jackson ...

Part-of. hT.

The task is to determine the part-of-speech (POS) of the word in the
input sentence, with @@ and ## marking the start and end. Please
respond with one of the following POS options:

1. CC; Coordinating conjun ... 14. NNP; Proper noun, singular ...

<demonstration-list>
Input: @@Vinken## , 61 years old

Answer: 14. NNP; Proper noun, singular

Entity-Relation Extraction
Step 1: Extract named entities.

The task is to identify organization entities in the input.
Please rewrite the input text and surround the start and end of
organization entities with @@ and ##, respectively.
<demonstration-list>

Input: In 2002 , Musk founded SpaceX .

Answer: |n 2002 , Musk founded @@SpaceX## .

Step 2: Identify relation beween entity pairs.

Please answer "yes" or "no" to determine whether the relation is
valid based on the input.

<demonstration-list>
Input: “In 2002, @@Musk## founded @@SpaceX##."

Relation: The relation between the entities @@Musk@@ (person
entity) and @@SpaceX## (organization entity) is ‘founded'.

Answer: Yes

Role Labeling

Step 1: Predicate disambiguation.

The task is to determine word sense of the predicate in the input,
where the predicate is marked with @@ and ##. Please respond
with the selected word sense index from the given options.
<demonstration-list>
Input: The stock has been @@beaten## down for two day.
Options: A. (Cause) pulsating motion that often makes sound

B. push, cause motion

Answer: B. push, cause motion

Step 2: Argument extraction.

The task is to extract argument in the input that means "thing
moving".

<demonstration-list>

Input: The stock has been @@beateni## down for two day.

Answer: the stock

Event Extraction
Step 1: Extract trigger words.

The task is to determine if the input sentence includes an attack
event. Please rewrite the input text and surround the start and end
of the event trigger with @@ and ##, respectively.
<demonstration-list>

Input: On Sunday, a protester stabbed an officer with a paper cutter.

Qe

arguments for the event.

A - On Sunday, a p bbed## an officer...

Step 2: Identi
The input contains an attack event, and the event trigger is
surrounded with @@ and ##. Please identify the argument which is

the target for the attack event. If it exists, please generate
corresponding substring in the input text. If not, respond "NULL".

<demonstration-list>

Input: On Sunday, a protester @@stabbed## an officer with a
paper cutter.

Answer: an officer

Dependency Parsing
Step 1: Link dependent words.

The task is to identify dependent words in the input.

Please rewrite the input text and surround the start and end of
dependent words with @@ and ##, respectively.
<demonstration-list>

Input: | @prefer# the morning flight to Denver.

Answer: @I# prefer the morning @flight# to Denver.

Step 2: Classify the relation between dependency words.

Please answer "yes" or "no" to determine whether the relation is
valid based on the input.

<demonstration-list>
Input: @l# @prefer# the morning flight to Denver

Rel Is the d dency rel: “prefer” and "I" the
direct object?

Answer: No

Figure 1: Task Formalizations under ChatGPT, including question answering, commonsense
reasoning, natural language inference, sentiment analysis, named entity recognition, entity-relation
extraction, event extraction, dependency parsing, semantic role labeling, and part-of-speech tagging.
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B.4 Entity-relation Extraction

For example, given the input sentence "In 2002,
Musk founded SpaceX", we would like to extract
entities with respect to the organization type. The
input to ChatGPT is:

Please mark the start and end of ORG entities
in the INPUT with @ and #, respectively.
INPUT: In 2002, Musk founded SpaceX.

and ChatGPT should output "In 2002, Musk
founded @SpaceX#," where @ and # are the
starting and ending boundaries of ORG entities
and the substring "SpaceX" is an ORG entity. If
there is no ORG entity in the given text, ChatGPT
should copy the input. Suppose the number of
NER categories is N, the above prompt should be
repeated IV time for one input. The process here is
similar to that of NER in Section ??.

Step 2: Prompt ChatGPT to output a yes-or-no
decision to determine whether a certain relation
holds between two specified entities. In the
example above, we have already identified the
person entity "Musk" and the organization entity
"SpaceX" at stage-1, the second step involves
determining the relation between them. Assuming
that there are M possible relationships between
entities, we ask ChatGPT each relation at a time,
e.g., regarding the relation type founded, the input
to ChatGPT is:

Please determine whether the relationship
between the entities Musk (person) and
SpaceX (organization) in the input sentence
is founded.” Please answer with Yes/No.
Input: In 2002, Musk# founded SpaceX#.

In this case, ChatGPT should generate "Yes",
indicating that Musk founded SpaceX.

C Evaluation Datasets

C.1 Question answering

* SQuUAD V2.0: SQuAD V2.0 is a collection
of 100K crowdsourced question-answer pairs
which are originally from a set of Wikipedia
articles. In this dataset, the answer to every
question is a span of text from the context
passage, or the question is unanswerable.

* TriviaQA: TriviaQA? is a question-answering
dataset which which includes 950K question-
answer pairs from 662K documents collected

*https://rajpurkar.github.io/SQuAD-explorer/
3https://nlp.cs.washington.edu/triviaga/
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from Wikipedia and the web. In TriviaQA, all
questions are answerable and answers may not
be directly obtained from the given context.

« MRQA OOD: MRQA* out-of-domain
(OO0D) is a shared task which is to evaluate
generalization to out-of-distribution data. The
test data contains 12 subsets, each from a
held-out domain.

C.2

» CommonsenseQA: CommonsenseQA? is a
multiple-choice question answering dataset
which requires commonsense knowledge to
select one correct answer from four options
to the question. The train/valid/test set
contains 9,741, 1,221, and 1,140 questions,
respectively.

Commonsense Reasoning

« StrategyQA: StrategyQA® is an open-domain
question answering dataset which requires
implicit reasoning and logical inference to
answer the question. There are 111 examples
for the train set. The dataset contains 2,821
examples in the train set and 490 examples in
the test set.

C.3 Event Extraction

For example, given the input text "On Sunday, a
protester attacked an officer with a paper cutter.",
the event type Attack, the prompt to ChatGPT is:

Given the sentence 'On Sunday, a protester
stabbed an officer with a paper cutter’, what is
the trigger word of the attack event?" .

ChatGPT should generate "stabbed", which
denotes that the sentence contains an attack event
and its event trigger is "stabbed".

Step 2: We use ChatGPT to generate a text string,
which is an argument with respect to a certain role
for the identified event in Step 1. Suppose that there
are M types of arguments for the event, we should
repeat the prompting process M times for one input.
If ChatGPT generates a substring from the input,
it denotes that the substring is the argument with
respect to a certain role for the event. If ChatGPT
responds with null, it denotes that the input text
does not contain an argument with respect to the

*https://mrqa.github.io/

Shttps://www.tau-nlp.sites.tau.ac.il/commonsenseqa

®https://leaderboard.allenai.org/strategyqa/submissions/get-
started



certain role for the event. In the example above, we
have already identified an attack event in the input
and the trigger for the event is "stabbed". In this
step, we would like to extract the argument with
the target role for the attack event. We feed the
following prompt to ChatGPT:

INPUT: On Sunday, a protester ##stabbed an
officer with a paper cutter.

The INPUT contains an "attack" event, and the
"stabbed" is the event trigger (marked with ##
in the INPUT).

What was the target of the stabbing in the
attack?"

In this case, ChatGPT should generate "an officer",
which represents that the target for the attack event
is "an officer". Examples of the task formalization
are shown in Figure 1.

C.4 Part-of-speech Tagging

For example, given the input sentence "Vinken,61
years old.", and the marked word is "Vinken". We
feed the following prompt to ChatGPT:

Part-of-speech categories are as follows:
1. CC Coordinating conjunction

15. NNPS Proper noun, plural

45. DT Determiner.

INPUT: ##Vinken, 61 years old

QUESTION: What is the POS tag for the word
"Vinken’ which is marked by ## in the INPUT?"

ChatGPT should generate "15. NNPS Proper noun,
plural”", denoting that the POS for "Vinken" is
NNPS. Examples of the task formalization are
shown in Figure 1.

C.5 Part-of-speech Tagging

We use the example above as an illustration, where
the input sentence is "I prefer the morning flight to
Denver.", the head word is "prefer", and the prompt
fed to ChatGPT is:

The head word in the input is marked with @#.
Find the dependents of the head word.
Input:1 @prefer# the morning flight to Denver.

ChatGPT should output:

@# prefer the morning @flight# to Denver."
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where "I", "flight" are marked and denote the
dependent words for the head word "prefer". If
ChatGPT generates a sentence without the special
token, it means that there are no dependent words
for the given head word. Suppose that the given
sentence is composed of N words, we use one
word at a time as the headword and will prompt
ChatGPT N times.

As shown in Step 1, "prefer" and "I" have a
dependency relation. In this step, we will determine
the category of the relation between the head word
"prefer" and the dependent word "I". Suppose that
there are M types of dependency relations, we
should prompt ChatGPT M times, each of which
corresponds to one type. For example, if we need to
identify whether the dependency relation between
"prefer" and "I" is direct object, the prompt fed to
ChatGPT is:

@I# @prefer# the morning flight to Denver.
whether the relation between "prefer” and "I"
is the direct object?

ChatGPT should generate "No" in this case.
Assuming that we obtain C' dependency word pairs
from step 1, we should ask ChatGPT M x C
times for the given sentence. Examples of the
task formalization under ChatGPT are shown in
Figure 1.

C.6 Semantic Role Labeling

Use the example above as an illustration, where the
sentence is "The stock has been beaten down for
two days", the predicate is "beaten", there are three
sense candidates for the predicate: (1)(Cause)
pulsating motion that often makes sound, (2)push,
cause motion; and (3)win over some competitor.
We iteratively ask ChatGPT whether the predicate
belongs to each of the three senses.

Suppose that we would like to find the argument
with the thing moving semantic role, the input to
ChatGPT is:

What are the arguments representing the
meaning of 'thing moving’?.

ChatGPT should output "The stock". If ChatGPT
returns null, it indicates that there is no argument in
the sentence with the semantic role. Examples of
the task formalization under ChatGPT are shown
in Figure 1.
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» CB: CB? is a corpus of 1,200 naturally
occurring discourses whose final sentence
contains a clause-embedding predicate under
an entailment canceling operator (question,
modal, negation, antecedent of conditional).

Sentiment analysis

* SST-2: SST-2 is a binary (i.e., positive,
negative) sentiment classification dataset
with 11,855 single sentences extracted from
snippets of Rotten Tomatoes HTML files.

« IMDB: IMDB is a binary (i.e., positive,
negative) sentiment classification dataset
which includes 25,000 highly polar movie
reviews for training and 25,000 for testing.

* Yelp: Yelp is a binary (i.e., positive, negative)
sentiment classification dataset that contains
560,000 highly polar Yelp reviews for training
and 38,000 for testing.

Named entity recognition

* CoNLL 2003: CoNLL 20033 is an English
NER benchmark that includes four entity
types: location, organization, person and
miscellaneous. We follow Ma and Hovy
(2016) and use the same train/dev/test split.

* OntoNotes 5.0: OntoNotes 5.0 is an English
NER dataset and contains 18 entity types.
We use the standard train/dev/test split of
CoNLL2012 shared task.

C.10 Entity-relation extraction

« ACE2004: ACE2004° is a multilingual
information extraction benchmark. The
dataset contains 7 entity types and 7 relation
categories. In this paper, we use English
annotations and follow Li et al. (2019) to split
train/valid/test datasets.

* ACE2005: ACE2005 is a multilingual
training corpus. It has six relation categories,
and we process and split the dataset following
the practice in Li et al. (2019) There are
six subdomains in the dataset: Broadcast
Conversations (BC), Broadcast News (BN),
Conversational Telephone Speech (CTS),
Newswire (NW), Usenet Newsgroups (UN),
and Weblogs (WL).

C.11 Event Extraction

* ACE 2005: ACE 2005 event corpus defines
8 event types and 33 subtypes, each event
subtype corresponding to a set of argument
roles. There are 36 argument roles for all
event subtypes. In most of researches based
on the ACE corpus, the 33 subtypes of events
are often treated separately without further
retrieving their hierarchical structures. The
ACE 2005 corpus contains 599 annotated
documents and around 6000 labeled events,
including English, Arabic and Chinese events
from different media sources like newswire
articles, broadcast news and etc. In this paper,
use the English subset and follow Liu et al.
(2018) to split the train/valid/test sets.

C.12 Part-of-speech tagging

* Penn WSJ: Penn Treebank (PTB) is an
English dataset corresponding to the articles
of Wall Street Journal (WSJ). In this paper, we
use sections from 0 to 18 are used for training
(38, 219 sentences, 912, 344 tokens), sections
from 19 to 21 are used for validation (5,527
sentences, 131,768 tokens), and sections from
22 to 24 are used for testing (5,462 sentences,
129,654 tokens).

C.13 Dependency parsing

* PTB: PTB is an English dataset that contains
39,832 sentences for training and 2,416
sentences for testing. We follow Ma et al.
(2018) and use the same train/valid/test split.

C.14 Semantic role labeling

e CoNLL2005: CoNLL2005 contains a total
number of 20 roles, while there are only
2.5 roles per predicate on average. we use
sections 02-21 of WSJ corpus as Train data,
section 24/23 as Dev/Test data, and three
sections (CKO01-03) of the Brown corpus as
out-of-domain (OOD) data.

* CoNLL2009: CoNLL2009 builds on the
CoNLL-2008 task and extends it to multiple
languages.  Data is provided for both
statistical training and evaluation, which
extract these labeled dependencies from
manually annotated treebanks such as the
Penn Treebank for English. We follow Wang
et al. (2021a) to test on the English data

and use the same train/valid/test split for
evaluations.

8https://github.com/mcdm/CommitmentBank
*https://catalog.ldc.upenn.edu/LDC2005T09
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