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Abstract

Large Language Model (LLM) agents are increasingly
tasked with long-horizon deep research, utilizing an expand-
ing ecosystem of heterogeneous tools via the Model Con-
text Protocol (MCP). While integrating diverse information
sources, ranging from structured databases (SQL) to unstruc-
tured retrieval systems (Web search, ArXiv), theoretically en-
hances capability, it introduces significant integration chal-
lenges. Specifically, the unweighted fusion of high-fidelity in-
ternal data with noisy external retrieval can compromise rea-
soning consistency, while the linear accumulation of interme-
diate tool outputs leads to context suffocation, where critical
signals are diluted by redundant interaction history.

To address these challenges, we introduce Q-STEAM
(Quality-aware State Abstraction for Multi-Hop Reasoning),
a framework that reformulates long-horizon reasoning as
a Phase-Aware Decision Process. Unlike mono-contextual
paradigms, Q-STEAM: Firstly, dynamically evaluates tool
reliability within each reasoning phase: Acquisition (retrieval
quality), Analysis (extraction accuracy), and Propagation (ag-
gregation robustness), rather than applying uniform tool cred-
ibility scores; Secondly, implements Phase-Aware State Ab-
straction, which synthesizes reasoning history into evolved
reports at phase boundaries, selectively discarding redun-
dancy while preserving reasoning continuity. We validate
Q-STEAM on HotpotQA (controlled multi-hop reasoning)
and a novel Legal Case Synthesis dataset (high-stakes, real-
world uncertainty). Experimental results demonstrate that Q-
STEAM achieves improvement over baselines.

MCP tool quality, long-horizon reasoning, information
heterogeneity

Introduction

The advent of the Model Context Protocol (MCP) (Chen
et al. 2025a) has catalyzed a paradigm shift in autonomous
agents, transitioning them from passive query responders to
active researchers capable of navigating complex informa-
tion ecosystems. By standardizing interfaces for tools rang-
ing from high-fidelity databases to open-web search engines,
MCP enables agents to perform Deep Research across ex-
tended horizons (Chen et al. 2025b). However, as agents
are deployed in high-stakes domains such as legal analysis
and scientific discovery, the sheer abundance of tools and
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information has exposed fundamental limitations in current
reasoning architectures. We identify two critical bottlenecks
that impede the reliability and scalability of long-horizon
agents:

First, the Challenge of Information Quality Hetero-
geneity. Existing multi-hop reasoning frameworks, such as
ReAct (Banks and Porcello 2017) and standard reinforce-
ment learning pipelines (e.g., GRPO (Tong et al. 2025)), of-
ten treat all tool outputs as equipotent evidence. This “blind
trust” is problematic in a heterogeneous MCP environment.
A fact verified against a structured internal database carries
significantly higher evidentiary weight than a claim retrieved
from a noisy web snippet. Without a mechanism to dynam-
ically weight evidence based on source reliability, distin-
guishing between Information Acquisition, Analysis, and
Propagation—agents are prone to “hallucination accumu-
lation,” where low-fidelity noise corrupts high-fidelity facts
during multi-step reasoning.

Second, the Challenge of Context Suffocation via Lin-
ear Accumulation. To maintain reasoning consistency, tra-
ditional agents typically append every search query, API
call, and intermediate observation to a monolithic context
window. Our analysis of deep-research trajectories reveals
that Most of tokens are functionally redundant, often con-
sisting of repeated verifications or irrelevant retrieval ar-
tifacts. This linear accumulation creates a ’noise tunnel”,
where critical signals are drowned out by redundant his-
tory, leading to degraded performance and inflated compu-
tational costs. While recent works like IterResearch (Chen
et al. 2025b) attempt to mitigate this via state reconstruc-
tion, they often apply uniform compression, failing to dis-
tinguish between critical reasoning pivots and dispensable
exploration trails. To resolve these challenges, we propose
Q-STEAM (Quality-aware State Abstraction for Multi-Hop
Reasoning). Our key insight is that effective long-horizon
reasoning requires Phase-Aware State Abstraction, a strat-
egy that does not simply “forget” history, but actively refines
it based on the current reasoning phase. Q-STEAM intro-
duces three primary contributions:

* Dynamic MCP Tool Quality Profiling: We construct a
multi-dimensional quality assessment matrix that evalu-
ates tools based on their role (Acquisition/Analysis/Prop-
agation) and reliability. This allows the agent to priori-
tize high-trust sources (e.g., ArXiv) over lower-trust ones



during synthesis.

» Phase-Aware State Abstraction: Learns phase transition
dynamics by training the agent to synthesize reasoning
history into state reports Sy at phase boundaries. Envi-
ronment feedback guides the agent to selectively com-
press within-phase trajectories while preserving cross-
phase critical information.

* Comprehensive Validation: We evaluate Q-STEAM on
HotpotQA and a Legal Case Synthesis dataset. Fur-
thermore, user studies demonstrate that our transparent,
quality-graded outputs significantly enhance user trust
compared to black-box baselines.

Related Work
Tool-Augmented Autonomous Agents

The integration of external tools is fundamental to advanc-
ing LLM capabilities beyond parametric knowledge. Early
frameworks like ReAct (Banks and Porcello 2017) and Tool-
former (Schick et al. 2023). demonstrated that interleav-
ing reasoning traces with action execution improves perfor-
mance on knowledge-intensive tasks. Recent systems such
as ToolLLM (Qin et al. 2023) have scaled this paradigm
to handle thousands of real-world APIs via instruction tun-
ing. However, these approaches generally operate under a
“trusted tool” assumption, lacking mechanisms to critically
evaluate the quality of retrieved information. Recent studies
on hallucination propagation have begun to address this by
introducing self-reflection and critique steps. Our work ex-
tends these efforts by introducing a Dynamic Quality Pro-
filing module specifically designed for the heterogeneous
MCP ecosystem, enabling agents to weigh evidence from
different tools differently during long-horizon reasoning.

Long-Horizon Reasoning and Context
Management

As interaction turns increase, maintaining a coherent rea-
soning state becomes a primary challenge due to the “lost-
in-the-middle” phenomenon. Traditional context manage-
ment relies on sliding windows or external memory banks,
as seen in MemGPT (Packer et al. 2023), which manages
context like an operating system. Similarly, Context-Folding
(Sun et al.) introduces a mechanism to branch and fold sub-
trajectories to manage context length. While these methods
effectively compress history, they often treat compression
uniformly across the trajectory. Q-STEAM differentiates it-
self through Phase-Aware Abstraction. We argue that com-
pression strategies must be adaptive, preserving high-fidelity
data during Analysis phases while aggressively compress-
ing noisy exploration trails during Acquisition phases. This
ensures that the agent’s working memory is optimized for
reasoning continuity rather than just token reduction.

Methodology

Our proposed framework, Q-STEAM, is designed to re-
solve the fundamental tension in long-horizon reasoning: the
need for extensive information retrieval versus the cognitive
bottleneck of limited context windows. We first systematize

the landscape of Model Context Protocol (MCP) tools and
evaluation benchmarks (in Table 1). We then formulate the
long-horizon reasoning process as a Phase-Aware Decision
Process, where the agent learns to synthesize and propagate
information across distinct phases. Finally, we introduce our
optimization algorithm, which extends Group Relative Pol-
icy Optimization (GRPO) with quality-aware state abstrac-
tion objectives.

Taxonomy of MCP Tools and Benchmark
Landscape

Effective tool orchestration requires distinguishing tools not
merely by function but by their role in the information life-
cycle. We categorize MCP tools into three distinct classes
based on their contribution to reasoning fidelity:

* Information Acquisition Tools (7,.,): Tools that re-
trieve raw external data. These are high-recall but po-
tentially noisy sources. Examples include Google Search
(for real-time events) and arXiv Search (for academic
literature). Their primary utility lies in expanding the
agent’s knowledge boundary.

* Information Analysis Tools (7,,.): Tools that pro-
cess, verify, or structure existing data. These are high-
precision sources often used for internal reasoning (e.g.,
BioNext for biological pathway analysis).

* Information Propagation Tools (7,..y): Tools that fa-
cilitate user interaction and workflow integration, en-
hancing the utility of derived insights. Examples include
Email clients and Calendar scheduling APIs, which do
not generate new knowledge but operationalize it.

To rigorously evaluate these capabilities, we survey exist-
ing benchmarks and map them to our taxonomy. As shown
in Table 1, benchmarks vary significantly in their focus. For
instance, HotpotQA primarily tests the agent’s ability to filter
and analyze multi-hop information, whereas our proposed
Legal Case Synthesis task demands a seamless integration of
acquisition (finding statutes) and analysis (applying prece-
dents).

Phase-Aware State Abstraction via Progressive
Refinement

Standard ReAct agents maintain a monotonically increas-
ing context history H; = Jo1,a1,...,0t a¢], leading
to quadratic complexity and noise accumulation. Instead
of treating the reasoning process as a single continuous
stream, we reformulate it as a sequence of Phases & =
{¢1,02,...,0K}, where each phase represents a distinct
sub-goal (e.g., "Information Gathering” or "Hypothesis Ver-
ification”).

The transition between phases is governed by a Synthe-
sized State Report .S;;, which bridges phases ¢ _1 and ¢y.
Instead of conditioning the policy 7y on full history H;, we
introduce a learnable State Abstraction Function that maps
the previous phase’s trajectory to a refined state representa-
tion:

S =Wy (Filter(H¢k71,Tk)) (D)



Table 1: Analysis of Benchmarks for MCP Tool Quality Assessment. We categorize datasets based on their primary focus:
Acquisition (Acq.), Analysis (Ana.), and Propagation (Prop.).

Benchmark Domain  Primary MCP Focus Key Capabilities Tested Example Tools
HotpotQA-II General Ana. > Acq. Multi-hop reasoning, Fact verification =~ WikiSearch, Retrieval
Legal Case Syn. Legal Acq. = Ana. Evidence synthesis, Statute application CaseLaw Search
The tool decathlon Scientific Acq. > Ana. Broad information gathering Google Search, ArXiv
WikiTableQuestions ~ General Acq. Entity extraction, List generation Google Search, SQL
ToolMind General Ana. Complex relationship inference Bio-KG

where the filtering operation is:

Filter(Hy, ,,7c) = {(0s,a;) € Hy,_, | @i > 1} (2)

Here ¢; = Quality(o;) combines tool reliability and ver-
ification signals. The function ¥y is LLM-based and com-
presses the filtered trajectory into a concise report, actively
filtering redundant observations to ensure only high-fidelity
signals propagate to the next phase.

The policy for action selection in phase ¢, is conditioned
on the synthesized state and local context:

a; ~ mo(a; | Sk, h{*) )

where hf * is the short-term working memory within the
current phase. This formulation enables the agent to learn
high-level state transitions while maintaining local tactical
awareness.

Optimization via Quality-Aware GRPO

To enable effective state abstraction and tool selection, we
extend GRPO with a compound reward that evaluates
phase-level transitions:

Rlotal = Routcome + )\1 Refﬁciency + )\2unality (4)

Reward Components Outcome Reward: Standard task
completion reward (e.g., EM on HotpotQA):

1 if task solved
Rou come — . 5
; {0 otherwise )
Efficiency Reward: Penalizes semantic redundancy in
acquisition tool calls:

T
Reficiency = — Zr?gf CosSim(E(0r), E(0;)) - I[ar € Tacq
t=1

(6)

This encourages the agent to rely on synthesized state Sy,
rather than re-acquiring similar information.

Tool Quality Reward: Prioritizes high-precision analysis
tools and penalizes hallucinations:

T
Ryuaiiey = »_ (a - Ia € Tana A Verified(oy )]
t=1

—f - Ta; € Tacq A Hallucinated(o;)])  (7)

where Verified/Hallucinated are determined by compar-
ing against ground-truth references (e.g., supporting facts in
HotpotQA).

Policy Optimization Objective The final objective incor-
porates phase-aware state representation:

1
Lgo-srream(0) = Equp ]E{ori}?:f”@old {5 Zl

1 & Y. A
T Z min{ mo(@iel) [ Togiq (ai.e]) Aie } - ﬂKLDKL}
bt=1

clip(-++) A; ¢

(3
where:

* Sk, , is the active synthesized state at step ¢ of trajectory
g

* h; ¢ is the short-term history within the current phase
» A, is the advantage estimate incorporating Ryotal

By optimizing this objective, Q-STREAM jointly learns:
(1) phase-appropriate tool selection via g, (2) effective state
synthesis via Wy, and (3) phase quality thresholds {7},
thereby addressing context suffocation while maintaining in-
formation fidelity.

Experiments

In this section, we empirically validate Q-STEAM on long-
horizon reasoning tasks, with a specific focus on the efficacy
ofInformation Analysis Tools within a multi-phase inference
framework.

In this section, we empirically validate Q-STREAM on
long-horizon reasoning tasks. Our primary focus is evalu-
ating the efficacy of Information Analysis Tools within a
multi-phase inference framework. We aim to answer three
research questions:

* RQ1 (Effectiveness): Does Q-STREAM outperform
standard mono-contextual baselines (e.g., ReAct, GRPO)
in multi-hop reasoning tasks?

* RQ2 (Robustness): Does Dynamic Tool Quality Profil-
ing prevent hallucination accumulation when integrating
heterogeneous information sources?

Experimental Setup

Datasets and Evaluation Metrics We primarily utilize
HotpotQA-II, an enhanced version of the HotpotQA dataset
specifically curated to evaluate MCP tool integration.

* Dataset Construction: The dataset comprises 15,000
training samples and 1,000 test samples. Unlike the



original dataset, HotpotQA-II requires agents to utilize
specific MCP tools, to resolve multi-hop queries. This
setup simulates a realistic “Information Analysis” sce-
nario where answers must be synthesized from disjoint
sources.

* Metrics: We report Exact Match (EM) and F1 Score to
evaluate answer correctness, alongside BLEU and ME-
TEOR to assess the semantic quality of the generated rea-
soning traces. To measure efficiency, we implicitly evalu-
ate the ability to maintain performance under constrained
context windows.

Baselines and Model Architectures We evaluate our
framework across a diverse set of Large Language Models
(LLMs) to demonstrate model-agnostic effectiveness.

* Base Models: We employ open-source models
Qwen2.5-3B-Instruct and Llama-3.2-3B-Instruct
for agile experimentation.

¢ Comparison Methods:

1. ReAct (Prompting): The standard interleaved
reasoning-action paradigm with a fixed context win-
dow, tested on both Llama-3.2-3B and Qwen2.5-3B.

2. SFT (Supervised Fine-Tuning): We fine-tune
Qwen2.5-3B on expert trajectories, teaching the
model basic tool usage patterns without phase-aware
abstraction.

3. GRPO: We apply Group Relative Policy Optimization
on the Qwen2.5-3B model using binary outcome re-
wards, representing the state-of-the-art RL baseline for
tool use.

4. Q-STREAM (Ours): Our full method applied to
Qwen2.5-3B, trained with phase-aware state abstrac-
tion and tool quality rewards.

Implementation Details All training experiments are
conducted on a cluster of 3 x NVIDIA A800 (80GB)
GPUs. For GRPO and Q-STREAM, we set the group size
G = 8, learning rate 5¢~%, and KL coefficient 3 = 0.04.
The maximum context length is set to 8,192 tokens.

Main Results

Table 2 presents the performance comparison on HotpotQA-
II.

Table 2: Performance comparison on HotpotQA-II. Q-
STREAM significantly improves upon the Qwen2.5-3B and
Llama-3.2-3B baselines (SFT), demonstrating the value of
phase-aware optimization.

Method ‘ EM F1 BLEU METEOR
Llama-3.2-3B ReAct 0.2650 0.3609 0.1072 0.3417
Llama-3.2-3B SFT 0.3454 0.4583 0.1667 0.3851
Llama-3.2-3B GRPO 0.2600 0.3584 0.1182 0.3009
Llama-3.2-3B SFT+GRPO 0.2800 0.3597 0.1375 0.3663
Qwen2.5-3B SFT 0.2200 0.3343  0.0839 0.2735

Q-STREAM (Qwen2.5-3B) | 0.2400 0.3635 0.0948 0.2604

Superior Reasoning Accuracy (RQ1): As shown in Ta-
ble 2, Q-STREAM (Ours) achieves an EM score of 0.2400
and an F1 score of 0.3635.

* Baseline Landscape. Among the Llama-3.2-3B variants,
supervised fine-tuning (SFT) secures the highest EM/F1,
while ReAct and GRPO lag consistently; the spread hints
that recipe matters more than scale at the 3-B level.

* Phase-Aware Lift. On Qwen2.5-3B, Q-STREAM qui-
etly overtakes the strongest SFT baseline by 0.029 F1
and 0.02 EM—an upward nudge that keeps the model
in the same weight class yet places it atop the internal
leaderboard.

High-Fidelity Tool Usage (RQ2): Q-STREAM’s Tool
Quality Reward constrains the agent to prioritize high-
precision MCP tools, leading to more reliable and verifiable
reasoning.

Legal Case Study: Validation in High-Stakes
Scenarios

To validate practical utility beyond academic benchmarks,
we conducted a user study with 12 legal professionals ana-
lyzing complex cases requiring synthesis of statutes (SQL),
precedents (DocRetrieval), and updates (Web Search).
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