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Abstract

Recently, distilling open-vocabulary language features from
2D images into 3D Gaussians has attracted significant
attention. Although existing methods achieve impressive
language-based interactions with 3D scenes, we observe
two fundamental issues: background Gaussians, which con-
tribute negligibly to a rendered pixel, receive the same fea-
ture as the dominant foreground ones, and multi-view in-
consistencies due to view-specific noise in language em-
beddings. We introduce Visibility-Aware Language Ag-
gregation (VALA), a lightweight yet effective method that
computes marginal contributions for each ray and applies
a visibility-aware gate to retain only visible Gaussians.
Moreover, we propose a streaming weighted geometric me-
dian in cosine space to merge noisy multi-view features.
Our method yields a robust, view-consistent language fea-
ture embedding in a fast and memory-efficient manner.
VALA improves open-vocabulary localization and segmen-
tation across reference datasets, consistently surpassing ex-
isting works. The source code is available on VALA.

1. Introduction

Understanding 3D scenes is essential for interacting with
the environment in robotic navigation [2, 23], autonomous
driving [8, 32], and augmented reality [10, 17]. Traditional
approaches, however, are constrained to a fixed set of ob-
ject categories defined at training time [4, 27, 35], limit-
ing their applicability to open-world scenarios. Thanks to
recent advances in vision-language models [11, 30], open-
vocabulary methods [9, 24, 42] enable querying and inter-
acting with 3D scenes through natural language, and recog-
nizing unseen object categories without requiring retrain-
ing.

While classical 3D understanding methods operate on
point clouds or meshes derived from 3D sensors, recent neu-
ral scene representations, such as NeRFs [22] and 3D Gaus-
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Figure 1. Thanks to its feature aggregation that is visibility-aware
and multi-view consistent, our proposed VALA is the most accu-
rate and as quick as the fastest [3] to optimize. Comparison in 3D
open-vocabulary segmentation on the LeRF-OVS dataset [28].

sian Splatting (3DGS) [14], have emerged as a compelling
alternative. They not only enable high-quality rendering
from novel viewpoints but also facilitate semantic reason-
ing, as appearance and geometry are encoded jointly. Thus,
open-vocabulary reasoning has recently been grounded in
neural 3D scene representations [15, 28], enabling new se-
mantic interactions in 3D environments. Initially explored
with NeRFs [7, 15], the efficiency and explicit nature of
3DGS simplified the integration of semantic features, con-
tributing to its widespread adoption [3, 13, 28, 38].

At the core of these approaches lies the challenge of em-
bedding reliable semantic and language features into the
3D representation. Current methods rely on powerful off-
the-shelf 2D foundation models, such as SAM [16] and
CLIP [30], which produce 2D feature maps that must be
lifted to 3D and aggregated across views. Proper aggrega-
tion is critical for accurate 3D segmentation.

Despite numerous recent advances [12, 13, 18, 34], cur-
rent approaches suffer from an inherent limitation: they as-
sign 2D features indiscriminately to all Gaussians along
a camera ray, disregarding scene geometry and occlu-
sion relationships. Consequently, features originating from



foreground objects (e.g., a vase) are incorrectly propa-

gated to background structures (e.g., the supporting ta-

ble or floor), leading to substantial degradation in open-
vocabulary recognition accuracy.

Furthermore, when lifted into 3D, 2D features exhibit
multi-view inconsistencies. The same object may produce
divergent feature representations across different view-
points, a phenomenon known as semantic drift [15]. Cur-
rent methods address this by promoting cross-view consis-
tency through 3D-consistent clustering and contrastive ob-
jectives derived from SAM masks [18, 20, 26, 38]. Nev-
ertheless, such strategies generally require extensive per-
scene optimization, and their heavy reliance on noisy, view-
dependent 2D cues often undermines cluster reliability.

In this paper, we address these fundamental feature
aggregation problems with VALA (Visibility-Aware Lan-
guage Aggregation), a lightweight yet effective framework
that combines a two-stage gating mechanism with a ro-
bust multi-view feature aggregation strategy. Our gating
mechanism leverages the statistical distribution of per-ray
Gaussian contributions (termed visibility) to preferentially
propagate features to Gaussians with high visibility, thereby
ensuring accurate feature assignment. To further miti-
gate multi-view inconsistencies in 2D language features,
we introduce a convex but non-smooth optimization on
the unit hypersphere, which we reformulate into a stream-
ing gradient-based procedure that achieves consistent em-
beddings without additional computational overhead. As
shown in Figure 1, VALA strategies are highly effective.

Our contributions can be summarized as follows:

* We identify fundamental issues in the feature aggregation
of current works as a bottleneck in open-vocabulary 3D
scene understanding.

* We introduce VALA, a visibility-aware feature propaga-
tion framework that employs a two-stage gating mecha-
nism to assign features based on Gaussian visibility.

* We propose a robust aggregation strategy for the 2D fea-
tures using the streaming cosine median, thereby improv-
ing multi-view consistency.

* We obtain state-of-the-art performance in 2D and 3D on
open-vocabulary segmentation for 3DGS scenes on the
reference datasets LeRF-OVS [28] and ScanNet-v2 [5].

2. Related works

Open-Vocabulary Feature Distillation. Recent works
have embedded 2D vision-language features into 3D scene
representations to enable open-vocabulary 3D understand-
ing. Pioneering efforts on NeRFs such as LERF [15]
and OpenNeRF [7] used CLIP [30] embeddings and pixel-
aligned features, enabling open-vocabulary queries. How-
ever, due to the computational needs of NeRF [22],
they face scalability and efficiency bottlenecks. Thus,
subsequent works have embedded language features into

3DGS [31, 41, 43]. LangSplat [28] employs SAM [16] to
extract multi-level CLIP features, then compresses dimen-
sionality with an autoencoder to build a compact yet ex-
pressive 3D language field. Feature3DGS [41] uses a con-
volutional neural network (CNN) to lift feature dimensions.
Although both approaches aim to compress the supervision
signal, this dimensionality reduction inevitably results in
information loss. GOI [29] and CCL-LGS [36] employ a
single trainable feature codebook to store language embed-
dings, with an MLP predicting discrete codebook indices
for rasterized 2D feature maps, which compress semantics
spatially rather than dimensionally and retain semantic rich-
ness. However, as these approaches rely on 2D rendered
feature maps for perception, their performance in 3D scene
understanding is significantly limited.

Other methods first group 3D Gaussians or points into
semantically meaningful clusters, typically corresponding
to objects or parts, and then assign a language feature to
each cluster as a whole [12, 18, 20, 26, 29, 38]. These
methods introduce an explicit discrete grouping step as a
form of prior semantic structuring: OpenGaussian [38] per-
forms coarse-to-fine clustering based on spatial proxim-
ity followed by feature similarity. SuperGSeg [20] and
InstanceGaussian [18] both leverage neural Gaussians to
model instance-level features: SuperGSeg groups Gaus-
sians into Super-Gaussians to facilitate language assign-
ment, whereas InstanceGaussian directly assigns fused se-
mantic features to each cluster. VoteSplat [12] and Open-
Splat3D [26] mitigate the pixel-level ambiguities of the di-
rect distillation. Then, the resulting cluster graph structures
support higher-level reasoning [20, 40], which per-Gaussian
features cannot easily enable. However, all these methods
rely on feature distillation using per-cluster learnable lan-
guage embeddings. These approaches are computationally
expensive and highly sensitive to noise or outliers in the
preprocessed feature maps, since the language features are
optimized directly in Euclidean space. As a result, even mi-
nor errors in the input features can propagate through the
model, leading to inconsistent or inaccurate semantic repre-
sentations, particularly in complex or cluttered scenes.

Open-Vocabulary Feature Aggregation. Beyond
cluster-based language features distillation, recent works
adopt more efficient strategies for feature aggregation. For
instance, Dr.Splat [13] and Occam’s LGS [3] bypass inter-
mediate 2D supervision and clustering by directly injecting
language features into 3D Gaussians, achieving fast, accu-
rate results in a training-free regime. While these direct fea-
ture aggregation methods deliver strong runtime efficiency
and segmentation accuracy, they indiscriminately propagate
2D features to every Gaussian intersected by each camera
ray, disregarding scene geometry and occlusion. As a re-
sult, features from foreground objects (e.g., a vase) are er-
roneously assigned to background elements (e.g., the table
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Figure 2. Overview of VALA. The framework is shown on the left, with the orange and green blocks detailed on the right being our key
contributions: the visibility-aware feature lifting (orange, Section 4.1), and the robust multi-view aggregation (green, Section 4.2).

or floor). Moreover, existing methods share two critical
limitations: (i) they assign equal supervision to all Gaus-
sians along a ray, ignoring each Gaussian’s marginal con-
tribution to the rendered pixel, and (ii) they overlook the
view-dependent noise and inconsistency in 2D language
features. We address these issues with VALA, a robust
and efficient training-free framework that improves open-
vocabulary grounding through visibility-aware gating (for
contribution-aligned supervision) and robust multi-view ag-
gregation.

3. Preliminaries

We briefly recall 3DGS [14] and how the features are as-
signed to a 3D Gaussian without iterative training.

3D Gaussian Primitives and Projection. A scene is
represented by a set of anisotropic Gaussians G = {g;} ¥,
with each Gaussian featured with g; = (w;, 2, ¢, 0:),
where p; € R3 and 3; € R3*3 are the mean position and co-
variance matrix c; encodes appearance (e.g., RGB or spher-
ical harmonics coefficients), and o; € (0, 1] is a base opacity.

Images are rasterized by splatting the Gaussians from
near to far along the camera ray through pixel u, followed
by front-to-back a-blending the Gaussian contributions, as:

a;j(u) =1 —exp(0;p;(u)), (1)
Ti(w) =T, (1= a;(w), @)
C(u) =) ai(w) Ti(u) ¢i(u), 3)

where p;(u) is the projected 2D Gaussian density in screen
space, with projected 2D mean g, and covariance X;, and

pilw) =exp( = Su— ) S u- 1)) @)
We denote the marginal contribution of g; to pixel u as

wi(u) = a;(u) T;(u). (5)

Language Features Assignment via Direct Aggrega-
tion. Recent works [3, 13] proposed to directly assign 2D
language features to 3D Gaussians via weighted feature ag-
gregation. To obtain training-free 3D language feature em-
beddings, Kim er al. [13] pool per-pixel weights w;(I,r),
defined as in Eq. (5), using segmentation masks M;(I,r):

wig = D o ML) wilr), (6)

where w;; associates Gaussian i-mask j, and €27 is the pixel
domain of image /. The final CLIP embedding for each ¢ is
a weighted average over the mask-level embeddings f;"*":

M Wij

R map
fi= ZFI ST £, 7

Although this mask-based aggregation is a straightfor-
ward way to lift CLIP features into 3D, it has a mem-
ory footprint that scales quadratically with the scene com-
plexity. To overcome this limitation, we adopt Occam’s
LGS [3]’s probabilistic per-view aggregation strategy as our
baseline. [3] avoids explicit mask representations and dense
weight storage, maintaining semantic consistency across
views. So, the 3D feature f; for Gaussian ¢ becomes:

ZSES-; w:fzs

ZsESi ’LU,f ’

where S; is the views set where Gaussian ¢ is visible, w;
is the marginal contribution of 7 at its center projection in
view s, and f; is the 2D feature at the corresponding pixel.

fi= ®)

4. Method

We aim to distill language features into 3DGS under visibil-
ity constraints, to get semantically rich and view-consistent
3D embeddings. Existing approaches that indiscriminately



assign identical 2D features to all Gaussians along a camera
ray, which leads to noisy supervision and cross-view incon-
sistencies. With VALA, we assign only visible features.
Our pipeline is shown in Figure 2. Built on a direct
feature assignment method, VALA has two complemen-
tary components to improve the assignment of 2D vision-
language features to the 3D scene. First, we introduce a
visibility-aware attribution mechanism to selectively assign
language features to Gaussians based on their relevance in
the rendered scene (Section 4.1). Second, we propose a
robust cross-view consolidation strategy to aggregate per-
view features while suppressing inconsistent observations,
yielding coherent 3D semantic embeddings (Section 4.2).

4.1. Visibility-Aware Feature Lifting

Recent works explored lifting 2D language embeddings
into 3D space via differentiable rendering pipelines [3, 13].
However, existing approaches assign the same 2D language
feature to all Gaussians intersected by a given pixel ray, re-
gardless of each Gaussian’s actual contribution to the ren-
dered pixel. As illustrated in Figure 3, when an object Oq
is occluded by another object O1, the 2D language embed-
ding at that pixel primarily represents the semantics of O .
Nevertheless, a Gaussian go belonging to Os may still be
incorrectly associated with the language feature of O;.

This erroneous assignment occurs in both alpha-
blending-based language assignment methods [20, 28] and,
more prominently, in direct feature assignment methods [3,
13, 38]. As shown in Figure 3 (b—c), even though the trans-
mittance (Eq. (2)) decreases monotonically along the ray
from near to far—resulting in a very small transmittance
for go—its alpha value (Eq. (1)) can remain relatively large
in the far region. This, yields a non-negligible composit-
ing weight (Eq. (9)) for g2, which, according to Eq. (7) or
Eq. (8), contributes substantially to the final aggregated fea-
ture of g. Such unintended contributions introduce ambi-
guity into the 3D representation.

Recent works have introduced changes that indirectly af-
fect this assignment. Dr.Splat [13] selects the top-k Gaus-
sians along each ray, but this reduces computational costs
rather than ensuring the correct semantic allocation. VoteS-
plat [12] recognizes that distant Gaussians may suffer from
occlusion, but discards the compositing weights altogether
and instead averages the features of all intersected Gaus-
sians to generate 3D votes for the clustering step. While
they may tangentially bring improvements, they leave un-
solved the assignment problem described above and con-
tinue to propagate wrong features to background regions.

To overcome this limitation, we introduce a visibility-
aware gating mechanism, which selectively supervises only
the Gaussians along each ray that contribute to the pixel.
By leveraging per-ray visibility weights, our method filters
out occluded or low-contribution Gaussians before aggre-
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Figure 3. Visibility-aware gating for semantic assignment (Sec-
tion 4.1). Simplified representation of a scene with two objects (a)
01, O3 and a camera ray r with Gaussians g1, g2. We compute the
opacity (b) and compute the transmittance front-to-back (c). Then
we calculate the contribution weights for each ray, thresholding
with 7 (d). Instead of propagating the features to all Gaussians as
prior works do, our gating only propagates to the visible ones (e).

gating the features, ensuring that only geometrically and
photometrically relevant points receive semantic supervi-
sion. First, we clarify how we compute the per-ray weights.
Ray Notation and Marginal Contributions. Let r de-
note the camera ray through pixel u. For brevity, we write

T;(r) = Ti(u),
wi(r) = a;(r) Ty(r).

a;(r) = a;(u),

€))

where «; (1) encodes coverage (i.e., how much g; overlaps
the pixel), T;(r) represents transmittance (i.e., how much
light reaches g; after occlusion by nearer Gaussians), and
w;(r) measures how strongly g; influences the rendered
sample along . We name this as the Visibility of a Gaussian
from a specific view. Instead of assigning this feature to all
Gaussians on the ray r, we use a two-stage visibility-aware
gate (VAG). We aggregate the weights into a per-view visi-
bility score

Stot = D, wilr). (10)
Stage A: Mass Coverage on the Thresholded Set. We
sort {w;(r)}; decreasingly, with the indices as (1), ..., (k).

We then retain the shortest prefix that accounts for a target
fraction Tyiew € [0.5,0.75] of the total visibility mass:

k
k*

mass = nun {k : : :

To suppress numerical noise, we apply a small absolute
floor 7,1,s and define the candidate set as

géxass = {(1)7 ] (k;lass)} N {7’ Dw; > Tabs}- (12)

W2 Taew St} (1D



Stage B: Quantile-Constrained Truncation. Let 7; =
Quantile; _, ({w;};), we define K7 = [{i : w; > 7. }| and
instead of imposing a separate hard limit, we determine the
selection cap directly via the g-quantile as

* s * s
kkeep - mln(kmass7 Kq)7

gieep = {(1)’ T (klteep)}'

Why Mass then Quantile? A fixed quantile alone
tightly controls cardinality but ignores how visibility mass
is distributed, and under heavy tails may discard essential
contributors. Conversely, mass coverage secures a target
fraction of visible content but can be liberal when scores are
flat. Our two-stage rule reconciles both: Stage A guaran-
tees coverage on the relevant (floored) set, while B imposes
a quantile-derived cardinality constraint K that stabilizes
scale across views. Practically, if K, ; > k2 asso We keep the
mass-coverage set unchanged; otherwise we truncate it to
the top-K7 by w;. The gate is thus coverage-faithful and
scale-adaptive.

13)

4.2. Robust Multi-View Aggregation

SAM+CLIP preprocessing pipelines [28] yield crisp mask
boundaries and per-pixel open-vocabulary embeddings, but
their semantics are often viewpoint-dependent: changes
in viewpoint and occlusion induce noticeable drift across
views. To enforce multi-view consistency, several 3DGS-
based methods first form 3D-consistent clusters, typically
supervised with contrastive signals derived from SAM
masks, and then assign a language embedding to each
cluster [18, 20, 26, 38]. While this decoupled clustering
can improve multi-view semantic consistency, it makes the
pipelines’ training multi-stage, thus prolonging the training
time. More critically, because clustering is still driven by
noisy, view-dependent 2D cues, it does not correct the root
cause, namely, upstream semantic drift, which can bias the
clusters and ultimately degrade the accuracy of the final lan-
guage assignments.

To address this multi-view inconsistency at source, we
adopt geometric median [1, 21, 37] to robustly aggregate
multi-view features by minimizing the cosine distances in
feature space. Unlike aggregation by weighted mean, it
dampens view-dependent outliers and semantic drift.

Weighted Euclidean Geometric Median. Using the
visibility weights defined in Eq. (9), the (weighted) geo-
metric median for g; is

Z: = argminzeRd Zs ’LUZ(T’) HZ — fZSH (14)

Cosine-loss Median on the Unit Sphere. f(I,u) are
fo-normalized embeddings and thus angular consistency is
most relevant. Therefore, we constrain z; to the unit sphere
S9! and minimize a weighted cosine loss:

Z; = argml'nl‘sz:l ZS wl(r> (1 — ff—rz), (15)

Algorithm 1 Streaming cosine-loss median on S~ (Sec-
tion 4.2).

Require: Stream {(f;, w!)}7_, with f; € R4,
and w! > 0

1: Initialize z; o < fi,

2. fort=1,...,Tdo

3: d, « f, — (ftTZiﬂg) Zit

w;

Wi,t + wf

ftH2 = 1’
Wi,O ~—0

> tangent direction

®

Ne < > streaming step size

5 Zi 41 < Norm(z; ; + n, dy)
6: Witg1 Wiy +w}
7: end for

8: returnz; « z; 7, W; < Wi r

where w;(r) denotes the visibility weight of Gaussian g;
from view s, since r represents the view s. The gradient of
Uf,z) =1—fTzonS"1is V0 = —[f — (fT2)z], the
projection of f onto the tangent space at z. Compared to the
Euclidean formulation in Eq. (14), this objective directly
optimizes angular similarity, circumventing the scale sen-
sitivity of Euclidean distances in high dimensions, where
norm variations dominate over angular differences, and em-
pirically leads to more stable 3D semantics (Table 3).
Constant-Memory Streaming Update. While effec-
tive, solving Eq. (15) with the classical Weiszfeld algo-
rithm [6] requires repeated full-batch updates over all Gaus-
sian features, which scales linearly with the number of
views and becomes computationally prohibitive in practice.
To address this, we adopt a constant-memory streaming
scheme inspired by online optimization [16]. Specifically,
as detailed in Algorithm 1, we maintain only the current es-
timate (z;+, W ), where W, ; is the cumulative visibility
weight, and incorporate each new observation (f;, w!) via

Zi 41 = Norm(z;; + mpw! [f — (£ 2i¢) 2ie]),  (16)

wt

ne = m ; Wiggr = Wig +wf,  (17)
it i

where Norm(x) = x/||x||2 projects z; ; onto the unit
sphere S?~!. The update direction f; — (f," z; ;)z; ; lies
in the tangent space and increases cosine similarity, while
the adaptive step size 7, weights each sample according to
its visibility. Under standard stochastic approximation as-
sumptions, z; ; converges to a stationary point of Eq. (15)

atrate O(1//W, ).

5. Experiments

5.1. Experimental setup

Datasets. We evaluate on the two reference datasets for
this task: LERF-OVS [28] and ScanNet-v2 [5]. LERF-
OVS is derived from the LERF dataset of Kerr er al. [15],



Mean Figurines Ramen Teatime Waldo_Kitchen

Method mloU mAcc mloU mAcc mloU mAcc mloU mAcc mloU mAcc
LERF [15] 37.4 73.6 38.6 75.0 28.2 62.0 45.0 84.8 379 72.7

= LEGaussian [31] 24.6 67.4 234 57.1 20.2 69.0 32.3 79.7 22.3 63.6
-% GOI [29] 42.0 59.2 23.9 44.6 33.7 56.3 55.8 67.8 54.5 68.2
% GAGS [25] 54.1 81.7 53.6 78.6 46.8 69.0 60.3 88.1 55.8 90.9
7 LangSplat [28] 514 84.3 44.7 80.4 51.2 73.2 65.1 88.1 44.5 95.5
a LangSplatV2 [19] 59.9 84.1 56.4 82.1 51.8 74.7 72.2 93.2 59.1 86.4
Occam’s LGS [3] 61.3 82.5 58.6 80.4 51.0 74.7 70.2 93.2 65.3 81.8
VALA [ours] 61.7 86.4 59.9 82.1 51.5 75.6 70.2 91.5 65.1 86.4
LangSplat [28] 10.35 13.64 7.27 10.71  10.05 9.86 14.38 20.34 9.71 9.09
LEGaussians [31] 16.21 2382 17.99 2321 1579 2676 1927 27.12 11.78 18.18

= OpenGaussian [38] 3836 5143 3929 5536 31.01 4225 6044 7627 2270 31.82
-% SuperGSeg [20] 3594 52.02 43.68 60.71 18.07 2394 5531 7797 26.71 45.45
% Dr.Splat [13] 4329 6430 5442 8036 2433 3521 5735 7797 37.05 63.64
= InstanceGaussian [18] 43.87 61.09 54.87 7321 2503 38.03 54.13 6949 4147 63.64
a CAGS [34] 50.79 69.62 60.85 82.14 3629 4648 6840 8644 37.62 63.64
VoteSplat [12] 50.10 67.38 @ 68.62 8571 3924 6197 6671 88.14 2584 33.68
Occam’s LGS [3] 4722 7484 5290 7857 3201 5492 61.02 9322 4295 7272
VALA [ours] 58.02 82.85 6038 8929 4541 6761 7061 88.14 5571 86.36

Table 1. Comparison on LERF-OVS (mloU / mAcc.). In 3D, results are taken from [12, 13, 20, 34, 38] and otherwise evaluated by us.

where we evaluate open-vocabulary object selection in both
2D and 3D. For the 2D evaluation, we follow the proto-
col of LERF [15]. For the 3D evaluation, we follow Open-
Gaussian [38]. On ScanNet, we evaluate 3D semantic seg-
mentation. Previous evaluation protocols [18, 38] freeze
the growth of 3D Gaussians, which degrades photomet-
ric fidelity. In contrast, we allow full optimization of the
3D Gaussians, resulting in misalignment between the op-
timized Gaussians and the ground-truth point cloud. We
therefore adapt the evaluation protocol in [13] by propagat-
ing pseudo ground-truth labels to the Gaussians. Details are
provided in the Appendix B.

Implementation Details. We generate SAM [16] masks
at subpart, part, and whole object granularities. We use
OpenCLIP ViT-B/16 [30] and the gsplat rasterizer [39].
We apply direct feature aggregation in the 512-dimensional
space following [3], combined with our proposed training-
free method. The entire process requires only 10 seconds to
one minute per scene (depending on scene scale), thanks to
our effective cross-view feature aggregation and streaming
updates at constant memory. For all experiments, we used
an NVIDIA RTX 4090 GPU.

5.2. Analysis on LeRF-OVS dataset

Table | compares ours with state-of-the-art works on LERF-
OVS in 2D and 3D. In 2D, per-view segmentation quality
projected from 3D is checked, while in 3D, we directly as-
sess multi-view consistent semantic reconstruction.
Quantitatives In 2D. Our method achieves the high-
est scores on both mloU and mAcc, slightly surpass-

ing the mloU of Occam’s LGS [3] and outperforming
LangSplatV2 [19]. This improvement is consistent across
diverse scenes, particularly in Figurines and Ramen, sug-
gesting that our visibility-aware attribution reduces per-ray
semantic noise without sacrificing fine-grained per-view ac-
curacy. While GAGS [25] and LangSplat [28] also deliver
competitive 2D scores, their performance drops with com-
plex occlusions (e.g., Ramen for GAGS), indicating that
their 2D-driven assignments do not fully mitigate cross-
view inconsistencies.

Quantitatives In 3D. The advantage of our method be-
comes more pronounced in 3D, with ours exceeding all
baselines by a notable margin. The second best, CAGS [34],
is a substantial 7.2 absolute mloU points behind. The
scene-level analysis reveals that our approach leads in Ra-
men, Teatime, and Waldo_Kitchen, and ranks second in Fig-
urines, behind VoteSplat [12] due to its specialized multi-
view voting. The gains are especially significant in large,
cluttered environments (Teatime, Waldo_Kitchen), where
our contribution-aware aggregation better preserves seman-
tics despite severe occlusions.

The strong 3D consistency of our method contrasts with
approaches like LangSplat and LEGaussian [31], whose
high 2D accuracy does not translate to 3D performance,
likely due to their lack of explicit handling of per-ray con-
tribution and occlusion. Similarly, the post-hoc cluster-
ing methods OpenGaussian [38] and SuperGSeg [20] ex-
hibit moderate 3D improvements but remain sensitive to up-
stream semantic drift, thereby limiting their robustness. Our
performance relative to Occam’s LGS (baseline) is note-
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Figure 4. Qualitative 3D objects selections on LeRF-OVS [28]. We mark as failed those with low or zero IoU with the ground truth (red).

worthy: while both adopt streaming updates, our visibility-
guided feature attribution yields much better performance in
3D, highlighting the effectiveness of improving the seman-
tic assignment at the feature aggregation stage rather than
solely relying on memory-efficient training.

Qualitatives in 3D. We show visual 3D results in Fig-
ure 4. Existing approaches, such as InstanceGaussian [18],
frequently fail by retrieving incorrect objects across multi-
ple scenes. This can be attributed to their reliance on ap-
pearance—semantic joint representations, which struggle to
distinguish small objects with visually similar appearances.
Clustering-based methods struggle with multiple instances
that are closely related. For example, querying for “knife”,
OpenGaussian [38] and InstanceGaussian [18] detect only
one out of five knives, whereas Dr.Splat [13] and Occam’s
LGS [3] identify all knives but produce indistinct bound-
aries. In contrast, ours successfully localizes all knives with
accurate and sharp delineations. Our approach also demon-
strates robustness on challenging small-object queries, such
as “Kamaboko” and “egg” in the Ramen scene. These tar-
gets lie within a heavily cluttered context (a bowl of ramen),
making them particularly difficult to isolate. Competing
methods [13, 18, 38] fail to recognize these objects, while
Occam’s LGS correctly retrieves them but with blurred con-
tours. By comparison, ours produces precise boundaries

19 classes 15 classes 10 classes
Method mloU mAcc mloU mAcc mloU mAcc
LangSplat [15] 245 859 345 1321 648 21.89
OpenGaussian [38] 27.73 42.01 29.67 46.15 39.93 57.34
Dr. Splat [13] 29.31 47.68 33.25 54.33 44.19 65.19
Occam’s LGS [3] 31.93 4893 34.25 53.71 45.16 64.39
VALA [ours] 32.11 50.05 35.10 54.77 46.21 65.61

Table 2. Open-vocabulary 3D semantic segmentation task on the
ScanNet-v2 dataset [5] across different amounts of classes.

and accurately captures fine object structures. Similar im-
provements are observed in the “Spatula” query, further
illustrating that our visibility-aware gating not only miti-
gates occlusion effects but also enables the recovery of fine-
grained details in complex scenes.

5.3. 3D Semantic Segmentation on ScanNet

Quantitatives. As reported in Table 2, our method achieves
the best performance across all evaluation settings, includ-
ing the most challenging 19-class scenario. Compared to
Occam’s LGS [3], our contribution-aware aggregation is ad-
vantageous, demonstrating its ability to handle fine-grained
class distributions. While Dr.Splat [13] attains competi-
tive accuracy in reduced-category settings, it lags notably
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Figure 5. Qualitative results of 3D semantic segmentation with 19 classes on the ScanNet-v2 dataset [5].

in mloU, indicating weaker spatial consistency. These re-
sults confirm that our method achieves robust and precise
3D segmentation across varying label granularities.
Qualitatives. Qualitative comparisons are presented in
Figure 5. In the large and complex second room, our
method accurately predicts the wall behind the bed (bed in
orange), a structure often misclassified by others. In the
smaller but more occluded third scene, our method also
demonstrates superior 3D segmentation, capturing chal-
lenging objects such as the central table more effectively.
This ability to recover occluded and fine-scale geometry is
particularly beneficial for downstream applications such as
3D object localization. Overall, the qualitative results sup-
port the quantitative improvements, highlighting both the
robustness and effectiveness of our proposed framework.

5.4. Ablation Study

We conduct an ablation study on LeRF-OVS [28], averag-
ing the metrics over all scenes. Table 3 disentangles the con-
tributions of our main components, namely visibility-aware
gating and cosine-based geometric median. Starting from
the baseline Occam’s LGS [3], replacing the naive weighted
mean with our cosine median (b) already improves perfor-

Ref. Stage A Stage B Median mloU mAcc
O.LGS [3] 4722  74.86
(b) cosine  49.03  80.08
(c) v cosine  57.24  81.25
(d) v cosine  55.21  80.37
VALA v v cosine  58.02 82.85
®) v v 5229  76.17
(2) v v L1 56.03 8242

Table 3. Ablation on LeRF-OVS. First row is Occam’s LGS [3],
i.e., our baseline. Stages from Section 4.1, Median from 4.2. All
rows share the same data, rasterizer, and hyperparameters.

mance, highlighting the advantage of robust aggregation in
the embedding space. Incorporating visibility-aware gat-
ing further boosts results (c-d), where mass-coverage plus
threshold gating (c) yields the strongest individual gain,
while quantile pruning (d) provides complementary bene-
fits. We also observe that our gating alone (f) is less ef-
fective compared to gating along with our robust median
(VALA), showing that the precise aggregation is critical to
fully exploit visibility cues. Lastly, we compare cosine and
L1 (g) as median, with the former delivering superior re-
sults. Our full model (VALA) achieves the best overall per-
formance, validating that both visibility-aware gating and
cosine-based median aggregation are important for an ac-
curate and view-consistent 2D-3D language lifting.

We refer to the Supplementary Material for additional
details and results.

6. Conclusion

We introduced VALA, an efficient and effective method to
address two fundamental problems in the feature aggrega-
tion of open-vocabulary recognition in 3DGS, namely (i)
the propagation of 2D features to all Gaussians along a
camera ray, and (ii) the multi-view inconsistency of seman-
tic features. VALA tackles (i) with a visibility-aware dis-
tillation of language features based on a two-stage gating
mechanism, and (ii) with a cosine variant of the geomet-
ric median, updating the features via streaming to keep the
memory footprint low. These innovations ensure more ap-
propriate features are assigned to the 3D Gaussians, ulti-
mately leading to superior performance in open-vocabulary
segmentation. Remarkably, the proposed VALA achieves
state-of-the-art performance on 2D and 3D tasks on the ref-
erence datasets LeRF-OVS and ScanNet-v2.
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