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Abstract

With new techniques of model training (e.g., denoising score-matching) and drawing samples
(e.g., Langevin dynamics), energy-based models (EBM) gained new interests as generative
models. Recent EBMs usually use neural networks to devise their energy functions. In this
work, we explore a novel hybrid approach to combine an EBM and an exponential family
model to inject inductive bias in data modeling. Specifically, we augment the energy term
with a parameter-less statistic function, which helps the model capture key data statistics.
Similar to an exponential family model, the hybrid model tries to match the distribution
statistics to data statistics during model training, even though it only approximately max-
imizes the data likelihood. This property allows us to impose constraints on the hybrid
model. Our empirical study verifies our hypothesis of the statistic-matching property in the
hybrid model. Experimental results further demonstrate that data fitting and generation
are improved when informative statistics are used in the hybrid model.

1 Introduction

Energy-based models (EBMs) (Murphy, 2012; LeCun et al., 2006; Ngiam et al., 2011; Han et al., 2020), which
provide a flexible way of parameterization, are widely used in data modeling such as sensitive estimation
(Wenliang et al., 2019), structured prediction (Belanger & McCallum, 2016; Pan et al., 2020), and anomaly
detection (Zhai et al., 2016). They recently have achieved successes as generative models for data of different
modalities, such as images (Du & Mordatch, 2019; Vahdat & Kautz, 2020), texts (Deng et al., 2020; Yu
et al., 2022), graph (Liu et al., 2021) and point cloud (Xie et al., 2020; 2021), thanks to the advent of new
training methods of score matching (Song & Ermon, 2019; Song et al., 2020b; Ho et al., 2020).

Previous EBMs often have linear energy functions in model parameters, so they fall into the category of
exponential-family models (Wainwright et al., 2008). An exponential-family model has a few nice properties.
It matches data statics when it maximizes the likelihood of the training data. Among all models, it also
has the largest entropy with the constraint of matching statistics. When constructing an EBM, statistic
functions are often used to capture key statistics of the data. However, in recent years, EBMs have used
neural networks as their energy functions. Since their energy functions are not linear in trainable parameters,
they are not exponential-family models anymore.

In our construction of EBMs, we propose to include linear terms defined with special statistic functions in
the energy function to retrieve some good properties of exponential-family models. Even with complex data
types such as point clouds and graphs, we still often have domain knowledge to specify statistic functions
so that the model can capture desired properties. Therefore, the linear term with special statistic functions
allows us to inject inductive biases in model fitting. This framework applies to the domains where prior
information can be written in statistic functions.

The proposed method is very useful for data fitting in multiple iterations. Note that data fitting is often
an iterative procedure (Gelman et al., 1995), and the goodness of fit is often monitored by the discrepancy
between statistics computed respectively from model samples and real data. With our method, we can
improve the model by adding corresponding terms to narrow the discrepancy. Taking molecule generation
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as an example, when we observe molecule samples violate the valency constraint, we can incorporate the
knowledge of valency rules to improve the model.

We evaluate the effectiveness of this new approach on three tasks, modeling molecular data, fitting handwrit-
ten digits, and modeling point clouds. The results demonstrate the effectiveness of the proposed approach
in a wide range of data fitting domains.

2 Related Work

The need to incorporate inductive bias into a generative model has drawn researchers’ attention for a long
time. Zhu et al. (1997) proposes the general principle for incorporating prior knowledge into a generative
model. Khalifa et al. (2020) introduces a novel method for text generation using EBMs to enforce desired
statistical constraints. Their framework employs the EBM model to approximate a pre-trained language
model instead of directly fitting the data. Korbak et al. (2021) extends this approach to code generation,
imposing a constraint that generated sequences are compilable. Qin et al. (2022) applies energy constraints
to a transformer decoder to control text semantics and style. Lafon et al. (2023) learns the hybrid model
combined with the Gaussian Mixture Model (GMM) and EBMs for out-of-distribution detection. In contrast,
our work focuses on improving data fitting with inductive bias.

Another thread of research changes a generative model’s behavior during the sampling stage (Dhariwal
& Nichol, 2021). For example, Chung et al. (2022) proposes to use manifold constraint to guide a pre-
trained diffusion model’s sampling path. Kim et al. (2022); Zhao et al. (2022); Song et al. (2022); Yu et al.
(2023); Liu et al. (2023); Bansal et al. (2023) propose different guidance for different specific problems to
boost the performance of each task. In contrast, our method aims to fit the original data distribution
more accurately through adding the statistics term. Notably, the classifier-guidance method operates during
inference with manually tuned weights, whereas our model learns the inductive bias strength corresponding
to data distribution statistics.

3 Background

3.1 Score-matching for energy-based models

An energy-based model is defined with an energy function Eθ parameterized by θ,

pθ(x) = exp(−Eθ(x))
Zθ

. (1)

Here x ∈ Rd, d is the feature dimension. Zθ is the partition function: Zθ =
∫

exp(−Eθ(x))dx, which is
usually intractable. Various methods exist to train an energy-based model. Maximum likelihood training
with Markov Chain Monte Carlo (MCMC) sampling (Hinton, 2002) is one standard method to train the
Energy-based model, but MCMC is typically computationally expensive.

A modern EBM often devises the energy function Eθ(x) with a neural network, and θ represents learnable
parameters of the neural network (Song & Kingma, 2021). These models are usually fit by score matching
(Hyvärinen & Dayan, 2005; Kingma & Cun, 2010), which avoids the explicit calculation of the Zθ. Score
matching minimizes the mean square error between the model score function sθ(x) = ∇x log pθ(x) and the
data score function ∇x log pdata(x):

DF (pdata(x)||pθ(x)) = Epdata(x)

[
1
2 ||∇x log pdata(x) − ∇x log pθ(x)||22

]
. (2)

where pdata(x) is the true data density function, pθ(x) is the model density function. To bypass the in-
tractable of the first term, we often use integration by parts to rewrite it as :

DF (pdata(x)||pθ(x)) = Epdata(x)

[
1
2

d∑
i=1

(
∂Eθ(x)

∂xi

)2
+ ∂2Eθ(x)

(∂xi)2

]
+ const. (3)
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Several efficient variants of the score matching have been proposed. One is Sliced Score Matching (Song
et al., 2020a), which randomly samples a projection vector v, takes the inner product between v and the
two scores, and then compares the resulting two scalars:

DF (pdata(x)||pθ(x)) = Epdata(x)Ep(v)

[
1
2(v⊤∇x log pdata(x) − v⊤∇x log pθ(x))2

]
. (4)

The parallelizable variant of sliced Score Matching is Finite difference sliced score matching (FDSSM) (Pang
et al., 2020). Another score-matching variant is Denoising Score Matching (Vincent, 2011)(DSM). DSM
avoids the computation of the second-order derivatives by adding some small noise perturbation to the data.
Then DSM learns the noisy data distributions q(x̃) ≈ pdata(x):

DF (q(x̃)||pθ(x̃)) = Eq(x,x̃)

[
1
2 ||∇x log q(x̃|x) − ∇x log pθ(x̃)||22

]
. (5)

3.2 Exponential-family distributions

A distribution from the exponential family can be viewed as a special type of EBM whose energy func-
tion is linear in its parameters. Various common distributions such as Gaussian, Bernoulli, Poisson are
in Exponential-family distributions. Here we consider continuous distributions, whose probability density
function (PDF) takes the following form:

p(x;η) = exp(η⊤T(x))
Z(η) . (6)

In this form, we assume the base measure is 1. The statistic function T(x) decides the distribution type,
while the parameter η decides the actual distribution of that type. The partition function Z(η), which is
often hard to compute, ensures that the PDF integrates to 1 over the domain of the distribution.

The statistic function T(x) is also meaningful in capturing data statistics. The statistics 1
N

∑N
i=1 T(xi)

computed from a dataset (xi : i = 1, . . . , N) is called the data’s sufficient statistics, which provide sufficient
information about the distribution parameter. Data fitting with p(x;η) is centering at sufficient statistics:
if the data likelihood is maximized with a particular η under the model p(x;η), then Ep(x;η) [T(x)] =
1
N

∑N
i=1 T(xi).

4 A Hybrid Energy-based Model with Inductive Bias

This work proposes to combine neural energy functions and interpretable statistic functions to develop EBMs.
The hybrid model takes the following form:

pθ,η(x) =
exp

(
Fθ(x) + η⊤T(x)

)
Z(θ,η) . (7)

Here Z(θ,η) =
∫

x exp
(
Fθ(x) + η⊤T(x)

)
dx is the partition function. Fθ(x) ∈ R is a real-valued function

constructed with a neural network parameterized by θ. The statistic function T(x) itself has no learnable
parameters, but it is multiplied to the learnable parameter η in the linear term.

The hybrid model still possesses a nice property of the exponential family distribution. Model fitting still
aims to match the distribution mean of sufficient statistics to the sample mean (Wainwright et al., 2008).
Let l(θ,η) denote the log-likelihood of the data, A(θ,η) = log Z(θ,η):

l(θ,η) =
n∑

i=1
Fθ(xi) +

N∑
i=1

η⊤T(xi) − NA(θ,η). (8)

Theorem 1. If the parameter η is at a local maximum of the l(θ,η) for a fixed θ, then Epθ,η
[T(x)] =

1
N

∑N
i=1 T(xi).
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Proof. If we treat exp (Fθ(x)) as a base measure, then pθ,η(x) is an exponential-family distribution. Then
the gradient of data likelihood with respect η can be derived according to Wainwright et al. (2008) (eq. 3.38
and Prop. 3.1). By taking the derivative of L(θ,η) with respect to η, we have

∇ηl =
N∑

i=1
T(xi) − N · Epθ,η[T(x)] (9)

If the weight is at the local minimum, then ∇ηl = 0, which leads to the conclusion.

With this property, we will construct a hybrid model with specific statistics in its linear energy terms. Model
fitting will pay attention to the specified statistics in the data. It can be viewed as an approach to injecting
inductive bias into the model. Before we discuss such models in real applications, we first consider their
training procedure.

4.1 Training the model

We choose the score matching method to train the EBMs given its efficiency and effectiveness Song et al.
(2020b). The score function for this hybrid model is:

sθ,η(x) = ∇xFθ(x) + ∇xT(x) · η (10)

We can either take derivative of Fθ(x) to get ∇xFθ(x), or directly specify ∇xFθ(x) without specifying Fθ(x).
In the latter case, ∇xFθ(x) is approximated by a neural network with parameter θ. Once we are here, we
follow the standard procedure of denoising score matching (Vincent, 2011) to train our model:

Ex∼p(x)Ex̃∼qσ(x̃|x)[||∇x log qσ(x̃|x) − sθ,η(x)||22]. (11)

Where x̃ is the perturbed data. To learn the score function better in the low-density regions, we adopt the
technique by perturbing the data with K different noise levels {σi}K

i=1and learn the noise-conditioned score
network (Song & Ermon, 2019) with the following loss:

L(θ,η; {σi}K
i=1) = 1

K

K∑
i=1

λ(σi)Ex∼pdata(x)Ex̃∼qσi
(x̃|x)[||∇x log qσi

(x̃|x) − sθ,η(x)||22]. (12)

Here λ(σi) is the weight for each noise level.

Given the approximation here, one question is whether the trained model still matches the data statistics.
Note that the score-matching loss is the lower bound of the log-likelihood (Song et al., 2021) with appropriate
weighting λ.

n∑
i=1

log pθ,η(xi) ≥ L(θ,η; λ) (13)

Model training with score matching approximately maximizes the data likelihood. With a similar spirit,
the learned model approximately matches the data statistics. Furthermore, the difference between the
distribution mean and the data mean: ∆T(x) = Ex∼pdata

[Tx] − Ex∼pmodel
[Tx] approaches to zero as the

model parameter η approaches a local maximum of the log-likelihood. This can be proved based on the
convexity of the log-likelihood function w.r.t. parameter η. For any θ fixed, exp (Fθ(x)) can be viewed
as a base measure, then the hybrid distribution in (7) falls in the exponential family of distributions, and
its log-likelihood is convex w.r.t. η by Wainwright et al. (2008). Therefore, parameters (θ∗,η∗) at a local
maximum of the likelihood indicates that η∗ is at the maximum of the likelihood function with θ∗ fixed.
From convex analysis (Boyd & Vandenberghe, 2004), the norm of the gradient approaches zero as (θ,η)
approaches the local maximum.
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4.2 Inject inductive bias through the function T(x)

As in an exponential-family model, the statistic function points the hybrid model’s attention to special
statistics of data distribution. Therefore, it is a convenient approach to inject inductive bias into the model.
Without any restrictions over the function form, the statistic function is a convenient approach to express
such inductive bias. In this section, we leverage this property to develop models for three applications to
show its practical value.

4.2.1 Statistic function for fitting molecule data

A molecular generative model is an important tool for chemical applications, and it is often defined as an
EBM (Liu et al., 2021; Niu et al., 2020; Jo et al., 2022). Here, we consider two molecular generative models,
EDP-GNN Niu et al. (2020) and GDSS Jo et al. (2022), which both can be viewed as energy-based models
and specify distributions of molecules through their molecular graphs and atom types. Assume the atom
has k types. In these two models, the random variable x = (b, A) represents a molecule graph containing
n nodes (atoms), with b ∈ {1, . . . , k}n representing atom types in a molecule, and A being the adjacency
matrix representing the connectivity of corresponding atoms. Without the statistic function T , these two
models use a neural network to define ∇xFθ(x).

An energy-based model based on a neural function often assign non-zero probabilities to “invalid” molecules
even though the data contains zero such examples. In particular, all molecules in the data satisfy valency
constraints. For example, a carbon atom has a total of four bonds, an oxygen atom has two bonds, and an
nitrogen atom has three or five bonds. However, samples from an EBM defined by a neural energy function
often violate the valency constraint. While there are methods employing other techniques to enforce valency
constraints in the sampling stage (Zang & Wang, 2020), we consider such constraints in a canonical approach
of data fitting. Specifically, we express the valency constraint as a statistic function: a valid molecule has zero
value from the function, while an invalid molecule has a positive value. Let the constant vector v ∈ {1, . . . ν}
store valences for k atom types, with ν being the maximum valence possible. Then valency constraint is:

A × 1 ≤ onehot(b)v

Here onehot(b) represents each node with a one-hot vector that indicates its atom type, then onehot(b)v is
a vector indicating valency values of all atoms in the molecule. From this constraint, we define the statistic
function as:

T (x) = 1⊤ × max(0, A × 1 − onehot(b)v), (14)

A valid molecule always has T (x) = 0, while an invalid molecule violating the valency constraint has T (x) > 0.

Figure 1: All pixels outside the
yellow bounding box are zero.
This piece of prior knowledge is
encoded in the statistics in (15).

As discussed above, if the model fits the data well, the expected value of
T (x) should be 0. Thus, the valency constraint is imposed over samples
from the model. The neural energy function may also learn to generate
molecules similar to the training data. Our new statistic function T (x)
makes the preference explicit in model fitting.

4.2.2 Statistic function for fitting handwritten digits

In the handwritten digits dataset LeCun (1998), we observe that the mar-
gin area surrounding the digit has pixels all taking value 0. Fig.1 shows
some examples of handwritten digit images, and it can be observed that
the pixels in the margin are all zeros. A model with this knowledge will
better fit the data. We introduce a statistic function defined as the sum of
pixels located at the boundaries of the image. Let x ∈ Rh×h represent one
image, where h and h are the height and width of the image, respectively.

Let α be the width of the margin.

T (x) =
∑

(i,j)∈S |x(i, j)|
|S|

(15)
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Here S represents the set of pixels in the margin area S = {(i, j)|i ≤ α, i ≥ h − α, j ≤ α or j ≤ h − α}.
With this statistic function, the model will explicitly consider pixel values in the margin area during the
learning process.

4.2.3 Statistic function for fitting point clouds

Point clouds have been widely used in computer graphics, computer vision, and robotics. Several algorithms
have been proposed for point cloud generation. In this work, we consider the DPM (Luo & Hu, 2021) and
latent diffusion model. These two methods can be taken as directly modeling the joint distribution of all the
points, meaning that ∇xFθ(x) is the gradient of all the points’ joint distribution in our framework.

For the statistic term, considering smooth surfaces are a characteristic trait of high-quality point clouds, we
define the following statistic function for the model:

T (x) = tr(x⊤Lx). (16)

Here x ∈ RN×3 is the 3D coordinates of N points. L is the sparse Laplacian matrix of the point clouds’
k-nearest neighbor (k-nn) graph. The k-nn graph is constructed using a kd-tree, with a time complexity of
O(n log n) (Preparata & Shamos, 2012), where n represents the number of data points. This is computa-
tionally more efficient than the naive k-nn method and can scale better. The function T (x) computes the
differences between a node and its neighbors in the graph. It is a measure of the uniformness of points in the
point cloud. With this statistic function, the model fitting procedure will explicitly adjust the uniformness
of generated point clouds to the same level as training samples.

5 Experiments

We evaluate the effect of our special statistics on data fitting through three generative tasks: molecule graph
generation, image generation, and point cloud generation. Experiments related to molecule generation are
detailed in Section 5.1. Section 5.2 discussed the image generation experiments. Section 5.3 discussed the
point cloud generation task. Each section briefly discusses each task’s experiment setup and evaluation
metrics we used. More details are in the Appendix.

5.1 Fitting molecular data

In the first experiment, we incorporate our statistic function derived from valency constraints into an EBM
model for molecule generation.

Experiment Settings: Our model is evaluated on the QM9 dataset, which comprises a diverse collec-
tion of 133,885 molecules, each containing up to a maximum of 9 atoms. Following previous studies, the
molecules are kekulizated using the RDKit library, and hydrogen atoms are removed. Two essential metrics
are employed to evaluate the quality of the generated molecules: validity and valency ratio. A valid molecule
must satisfy certain chemical constraints and rules, indicating a chemically reasonable structure. Validity is
determined by calculating the proportion of valid molecules without valency correction or edge resampling.
We evaluated our strategy on the EDP-GNN(Niu et al., 2020) and GDSS(Jo et al., 2022) model. We trained
GDSS for 300 epochs, the batch size is 1024, and the learning rate is 5e-3. We trained EDP-GNN for 1000
epochs, the batch size is 1024, and the learning rate is 8e-3.

Results: We first evaluate the validity ratio of generated molecules. The results are shown in the left
column of Tab. 1. Ten thousand molecules are sampled for evaluation. The results show that the model
improves the validity ratio of the samples with our new term expressing the validity information. We
further check expectation E [T (x)] in two distributions with and without the statistic function. Let ∆T (x) =
Epmodel

[T (x)] − Eptrain
[T (x)] denote the difference between the distribution mean and the sample mean of

the statistics term. The results clearly show that our model pays attention to the new term and tries to
match its mean to the sample mean of the data. It demonstrates that the extra valency term does help the
model learn the valency property.

6



Under review as submission to TMLR

Table 1: Results for molecule generation on QM9 dataset

QM9 Validity ratio(%)↑ ∆T (x)(↓)
EDP-GNN 88.33 1.85

EDP-GNN(with T (x)) 94.52 0.98
GDSS 95.72 0.94

GDSS(with T (x)) 96.73 0.93

Table 2: Negative Likelihood performance on MNIST dataset

Method NLL (↓) ∆T (x)(↓)
VE-SDE 3.56 6.52

VE-SDE(with T (x)) 3.49 6.42
VP-SDE 3.37 6.48

VP-SDE(with T (x)) 3.29 6.37

5.2 Fitting data of hand-written digits

We evaluated the effectiveness of our method on the MNIST dataset, a widely used benchmark for vari-
ous image downstream tasks. Each image in the MNIST dataset is a 28x28 grayscale representation of a
handwritten digit from 0 to 9.

Experiment Settings: We experimented on the two forward SDEs: VP-SDE and VE-SDE. The boarding
pixels are extracted using a mask. The size of the mask is 22 × 20. The model is trained for 1000 epochs
and then compared to the likelihood. The batch size is 4096, and the learning rate is 1e-2. The learning
rate is kept constant for the first 300 epochs and decreases linearly from 300 to 1000 epochs. The parameter
for statistics term η is initialized to be zero. We assess the performances of competing models by comparing
their likelihoods on the test set.

Results: We evaluated our model via the test set negative log-likelihood (NLL) in terms of bits/dim (bpd).
Tab. 2 reports the averaged NLLs of probability flow ODE Song et al. (2020b) over two repeated runs of
likelihood computations. The results suggest incorporating the statistics term into the model improves the
likelihood. This improvement implies that the model’s distribution aligns better with the observed data
when considering the inductive bias. The results also show that the difference between the distribution
mean and the sample mean of the new statistic is smaller with our method, which implies that our model
better captures the data statistic.

5.3 Fitting data of point clouds

Point cloud datasets are typically collections of individual 3D points, each with its position in space and
potentially associated attributes, forming a sparse and irregular representation of the underlying scene. Uni-
formity is a critical factor for generating point clouds. Clumping often occurs when points are concentrated
in specific areas, potentially losing detail in other regions. On the other hand, sparsity results in areas
with few points, leading to information loss and inaccuracies. Therefore, a generative model needs to pay
attention to uniformness among data points to achieve premium results.

Experiment Settings: We evaluated our model on the ShapeNet dataset, a widely used benchmark in
3D shape analysis and understanding. The ShapeNet dataset comprises 51,127 unique objects distributed
across 55 categories. Each category represents a distinct class of objects, covering various shapes, such
as airplanes, cars, chairs, and animals. The dataset’s richness and diversity make it ideal for evaluating
generation performance. We evaluated our strategy on the two models. One is the DPM model (Luo &
Hu, 2021), and the other is conducted on a latent diffusion model with the decoder is also the score-based
model. The latent code is the shape code for each input point cloud. We use PointNet(Qi et al., 2017) to
map the input points into a 512-dimension latent feature code for the encoder model. For the decoder and
the latent prior score model, we use OccNet (Mescheder et al., 2019), which stacked 6 ResNet blocks with
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Table 3: Comparison of shape generation on ShapeNet. MMD is multiplied by 102. COV is multiplied by
102. Mean diff is the difference between the sample mean and the distribution mean

Category Model MMD (×102, ↓) COV (×102, ↑) 1-NNA (%,↓) ∆T (x) (↓)

Airplane

DPM 0.572 43.75 86.91 102.71
DPM(with T (x)) 0.542 45.50 85.25 91.58

Latent diffusion model 0.389 49.11 68.89 39.90
Latent diffusion model(with T (x)) 0.387 49.60 67.04 37.52

Car

DPM 1.140 34.94 79.97 326.65
DPM(with T (x)) 1.137 36.83 75.19 284.98

Latent diffusion model 0.802 43.70 76.23 203.02
Latent diffusion model(with T (x)) 0.781 45.31 73.3 187.90

256 dimensions for every hidden layer. We evaluated our model in two categories: airplane and car. We
report Minimum Matching Distance(MMD), Coverage score(COV), and 1-NN classifier accuracy(1-NNA) to
evaluate the quality of the samples.

Results: The results are shown in Tab. 3. The results demonstrated that integrating smoothness constraints
into generating and processing point cloud data improves generation quality. Encouraging a more even
distribution of points makes the resulting point cloud representation more accurate, robust, and suitable
for various applications. We further evaluate the difference between the sample mean and the distribution
mean of the new statistic. We see that our method reduces the gap, which indicates that our model better
captures a key statistic in the data.

5.4 The quality of the statistic function

One question is whether an arbitrary function can act as a statistic term and improve the data fitting
performance. The question is important because if an arbitrary statistic function can improve the model
performance, it is easy for a neural model F (x) to pick up such statistics in the energy function. In this
section, we set up two types of statistic functions: the first type captures data statistics meaningfully, and
the second type has no obvious relationship with the data. For the first type, we still use the statistic
function specified by (15). For the second type, we set T (x) = sin(1⊤x), which doesn’t seem to capture any
reasonable data statistics. We then learn two models respectively with the two statistics and check their
corresponding parameters η. We conduct this experiment on the MNIST dataset.

We get the results in Fig.2, where we plot η values against training epochs. We see η is positive for the
statistic specified in (15). As a comparison, η corresponding to the meaningless statistics sin(1⊤x) converges
to zero, which means that it does not help the model to learn.

Another question arises: how to select a meaningful statistical function for a specific problem to help the
model to learn? One approach is to leverage the domain knowledge associated with the problem. For
instance, in the context of molecular graph generation, the chemical valency constraint is a critical factor
to consider. The domain constraints can be formulated as the statistic function of the generative model to
enforce such knowledge.

6 Conclusion

In this work, we propose an energy-based model whose energy function includes a neural energy function
and a specially designed statistic function. We show that this hybrid model inherits the nice property of
exponential-family models, that is, model training approximately matches the statistic’s distribution mean to
its sample mean. This property allows us to express special statistics in the energy function as an inductive
bias. We have shown that this technique can be extensively applied to multiple applications. The experiments
show that the proposed strategy improves the modeling performance on three data types, molecular graphs,
hand-written digits, and point clouds.
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Figure 2: The comparison between η values respectively for an arbitrary statistic sin(1⊤x) and the mask
statistic specified by (15). The result indicates that only specially designed statistics are likely to help the
model learn.
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A Appendix

B Local minimum

Theorem. If η is at a local maximum of the data log-likelihood, then Epθ
[T(x)] = 1

N

∑N
1 T(xi).

Proof. Suppose we have N samples{x1, x2, · · · , xN }, and we want to train our model via MLE.

First, the data likelihood can be written as :

l =
N∏

i=1
pθ,η(x)

=
exp

[ ∑N
i=1 Fθ(xi) + ηT

∑N
i=1 T(xi)

]
Zn(θ,η)

(17)

This leads to the log-likelihood as :

L = log
N∏

i=1
pθ,η(x)

=
N∑

i=1
Fθ(xi) + ηT

N∑
i=1

T(xi) − n log Z(θ,η)

(18)

Then, we take the derivatives on both sides,

∇ηL =
N∑

i=1
T(xi) − n

Z(θ,η)
∂Z(θ,η)

∂η
(19)

=
N∑

i=1
T(xi) − n

Z(θ,η)

∫
T(x)exp(Fθ(x) + ηT T(x))dx (20)

=
N∑

i=1
T(xi) − n · Epθ,η(T(x)) (21)

If we can find the local minimum, then ∇ηL = 0, guaranteeing that the sample mean of the property function
T(x) equals the expected value even if we added one more constraint.

12


	Introduction
	Related Work
	Background 
	Score-matching for energy-based models
	Exponential-family distributions

	A Hybrid Energy-based Model with Inductive Bias
	Training the model
	Inject inductive bias through the function T(x)
	Statistic function for fitting molecule data
	Statistic function for fitting handwritten digits
	Statistic function for fitting point clouds


	Experiments
	Fitting molecular data
	Fitting data of hand-written digits
	Fitting data of point clouds 
	The quality of the statistic function

	Conclusion
	Appendix
	Local minimum

