
RLJ | RLC 2024

Bad Habits: Policy Confounding and
Out-of-Trajectory Generalization in RL

Miguel Suau
Phaidra
Delft University of Technology
miguel.suau@phaidra.ai

Matthijs T. J. Spaan
Delft University of Technology
m.t.j.spaan@tudelft.nl

Frans A. Oliehoek
Delft University of Technology
f.a.oliehoek@tudelft.nl

Abstract

Reinforcement learning agents tend to develop habits that are effective only under
specific policies. Following an initial exploration phase where agents try out dif-
ferent actions, they eventually converge onto a particular policy. As this occurs,
the distribution over state-action trajectories becomes narrower, leading agents to
repeatedly experience the same transitions. This repetitive exposure fosters spurious
correlations between certain observations and rewards. Agents may then pick up
on these correlations and develop simplistic habits tailored to the specific set of
trajectories dictated by their policy. The problem is that these habits may yield
incorrect outcomes when agents are forced to deviate from their typical trajectories,
prompted by changes in the environment. This paper presents a mathematical
characterization of this phenomenon, termed policy confounding, and illustrates,
through a series of examples, the circumstances under which it occurs.

1 Introduction

This morning, I went to the kitchen for a coffee. When I arrived,
I forgot why I was there, so I got myself a coffee.—

How often do you do something without paying attention to your actions? Have you ever caught
yourself lost in thought while washing the dishes, making coffee, or cycling? Acting out of habit is a
crucial human skill as it enables us to focus on more important matters while executing routine tasks.
You can commute to work while thinking about how to persuade your boss to give you a salary raise
or prepare dinner while daydreaming about your next holiday in the Alps. However, habits can also
lead to unintended consequences when we fail to recognize that the context has changed. You might
hop in your car and drive toward work even though it is a Sunday and you want to go to the grocery
store, or you might flip the switch when leaving a room even though the lights are already off.

Surprisingly, reinforcement learning (RL) agents also struggle with this same issue. This is due to a
phenomenon we term policy confounding, which reflects how policies, as a result of influencing past
and future observation variables, can inadvertently induce spurious correlations. These correlations
can lead to the development of seemingly sensible but incorrect habits, such as flipping the switch
upon leaving a room, without confirming whether the lights are on. The problem here is that these
habits can produce incorrect results when agents are forced to deviate from their usual trajectories
due to changes in the environment; a problem we refer to as out-of-trajectory (OOT) generalization.

Contributions This paper introduces and characterizes the phenomenon of policy confounding.
To do so, we provide a mathematical framework that helps us describe the different types of state
representations, and reveal how, as a result of policy confounding, the agent may learn representations
based on spurious correlations that do not guarantee OOT generalization. Moreover, we include a
series of clarifying examples that illustrate how this occurs. Unfortunately, we do not have a complete
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Figure 1: Left: An illustration of the Frozen T-Maze environment. Right: Learning curves when
evaluated in the Frozen T-Maze environment with (blue curve) and without (red curve) ice.

answer for how to prevent policy confounding. However, we suggest a few off-the-shelf solutions that
may help mitigate its effects. We hope this paper will create awareness among the RL community
about the risks of policy confounding and inspire further research on this topic.

2 Example: Frozen T-Maze

We now provide an example to illustrate the phenomenon and motivate the need for careful analysis.
Figure 1 shows a variant of the popular T-Maze environment (Bakker, 2001). In this environment,
the agent receives a binary signal, green or purple, at the starting location. The task for the agent
is to navigate to the right and reach the correct goal at the end of the maze. The agent obtains a
reward of +1 for moving to the green (purple) goal when having received the green (purple) signal
and a penalty of −1 otherwise. Additionally, there is a −0.1 penalty per timestep to incentivize the
agent to take the most direct path to the goal. At every timestep, the agent can observe its location
within the maze, but the signal is only observed at the starting location. Importantly, the agent has
the capability to remember past observations.

At first glance, it might seem crucial for the agent to remember the initial signal at every cell along
its trajectory. After all, how else would it determine the correct goal? However, once the agent
figures out the shortest path to each of the two goals (depicted by the green and purple arrows),
the agent may safely forget the initial signal. The agent knows that whenever it is on the green
(purple) path, it must have received the green (purple) signal. Hence, it can simply navigate toward
the correct goal based solely on its current location. Sticking to this habit is optimal so long as the
agent commits to these two paths. It is also essential that the environment dynamics remain the
same as any changes in the agent’s trajectories could erase the spurious correlation (Pearl et al.,
2016) induced by the policy between the agent’s location and the correct goal.1

To demonstrate that this occurs in practice, we trained agents with PPO (Schulman et al., 2017) in
the original environment (train env) and evaluated them in a modified version (eval env), where there
is an icy surface (depicted in blue) in the middle of the maze. The ice causes the agent to slip from
the upper cell to the bottom cell and vice versa.2 The plot on the right of Figure 1 shows the return
averaged over 10 trials. The performance drop in the evaluation environment (blue curve) suggests
that the agents’ policies fail to generalize to alternative trajectories within the same environment.
The ice confuses the agents, who, after being pushed away from their preferred trajectories, can no
longer choose the correct goal. More details about this experiment are provided in Section 7.

3 Related Work

The presence of spurious correlations in the training data is a well-studied problem in machine
learning. These correlations often provide convenient shortcuts that a model can exploit to make

1Note that the two paths highlighted in Figure 1 are not the only optimal paths. However, for the agent to be able
to ignore the initial signal, the paths must not overlap.

2The ice compels the agent to take alternate trajectories by causing it to move down twice from the top cell or up
twice from the bottom cell. Importantly, these trajectories are feasible within the original environment.
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predictions (Beery et al., 2018). However, a model relying on these shortcuts may experience significant
performance degradation when faced with different data distributions (Quionero-Candela et al., 2009).
Langosco et al. (2022) show that RL agents may use certain environment features as proxies for
choosing their actions. These features are intentionally introduced in the training environments to
artificially correlate with the agent’s objectives. In contrast, our work demonstrates that agents, due
to policy confounding, may actively contribute to the formation of spurious correlations.

Previous studies have reported empirical evidence of specific forms of policy confounding, revealing
that in deterministic environments, agents can utilize information that correlates with their progress
in an episode to determine optimal actions. This strategy is effective because, under fixed policies,
features like timers (Song et al., 2020), agent postures (Lan et al., 2023), or previous action sequences
(Machado et al., 2018) can be directly mapped to the agent’s state. While these studies offer various
hypotheses to explain their experimental observations, we contribute an overarching theory that
explains the underlying causes and mechanisms behind these results, along with a series of examples
illustrating other types of policy confounding.

Out-of-trajectory (OOT) generalization is a particular instance of the more general problem of out-
of-distribution (OOD) generalization in RL (Kirk et al., 2023). The objective of OOT generalization
is not to generalize to environments with different rewards (Taylor & Parr, 2009), observations
(Mandlekar et al., 2017; Zhang et al., 2020), and transitions (Higgins et al., 2017) but simply to
alternative trajectories within the same environment. In our experiments, agents are evaluated
in altered environments with different dynamics. These alterations are only intended to force the
agent to take alternative trajectories within the same environment. Importantly, these alternative
trajectories are both possible and probable in the original environment. Example 5 illustrates the
distinction between OOT and OOD. Please refer to Appendix C for more details on related work.

4 Preliminaries

4.1 Notation

We denote random variables with capital letters (e.g., S), their corresponding values with lowercase
letters (e.g., s), and their domains with calligraphic letters (e.g., S). To denote the domain of a
set of random variables F = {F 1, . . . , F |F |}, we use ×F as a shorthand for the Cartesian product
F1 × · · · × F |F |. This notation represents all possible combinations of values for the variables in F .

4.2 Problem formulation

Definition 1 (MDP). A Markov decision process (MDP) is a tuple ⟨S, A, T, R⟩, where S represents
the set of states, A denotes the set of actions available to the agent, T : S × A → ∆(S) is the
transitions function, and R : S × A → R is the reward function.

In particular, we focus on problems where states are represented by a set of observation variables, or
factors (Boutilier et al., 1999). This representation is common when modeling policies and value
functions using function approximators (Sutton & Barto, 2018). These observation variables typically
describe features of the agent’s state in the environment.

Definition 2 (FMDP). A Factored Markov decision process (FMDP) is an MDP where the set of
states is defined by a set of observation variables, or factors, F = {F 1, . . . , F |F |}. Each variable F i

can take any of the values in its domain F i. Consequently, each state s corresponds to a unique
combination of values for the variables in F , s = ⟨f1, . . . , f |F |⟩ ∈ ×F = S.

While, for simplicity, we employ the MDP formulation, the insights presented here are not exclusive
to fully observable environments. In cases where the current observation variables F do not satisfy
the Markov property, F is considered to be the history of action and observation variables, which is
guaranteed to satisfy the Markov property (Kaelbling et al., 1998).
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5 State representations

The agent’s objective is to learn a policy π : S → ∆(A) that maximizes the expected discounted sum
of rewards (Sutton & Barto, 2018). However, learning a policy that conditions on every observation
variable might be impractical, particularly in scenarios with a large number of variables. Fortunately,
in many problems, not all variables are strictly essential, and compact state representations can be
found that are sufficient for solving the task at hand (McCallum, 1995). This is where function
approximators, such as neural networks, come into the picture (François-Lavet et al., 2018; Ni
et al., 2024). If we use them to model policies and value functions, they will learn to ignore certain
observation variables in F if they are deemed unnecessary for estimating values and optimal actions.

As we shall see, the phenomenon of policy confounding plays a fundamental role in this quest for
simpler state representations, tricking the function approximator into forming state representations
that are based on mere spurious correlations. Before delving into these intricacies, let us establish
some key definitions regarding state representations. To enhance clarity, we will use the environment
introduced in Section 2 as a running example throughout this and the next section.
Example 1. Refer to the first paragraph of Section 2 for a description of the environment. We
denote the agent’s location by L. The variable G indicates whether the goal is to reach the green or
purple cell. G is sampled at the beginning and its value remains constant throughout the episode.
The value of G is hidden and only passed to the agent at the starting location through the variable X,
representing the signal. At any other location, X takes a dummy value, rendering the environment
partially observable. Consequently, the set Ft is the history of actions, locations, and signal variables,
Ft = {L0, X0, A0, . . . , At−1, Lt, Xt}. Each unique combination of values defines a state st. Here, the
subscript t is used to denote that the number of variables in F depends on t.
Definition 3 (State representation). A state representation is a function Φ : S → S̄, where S = ×F ,
S̄ = ×F̄ , and F̄ ⊆ F .

Intuitively, a state representation Φ(st) is a state-specific projection of a state s ∈ S = ×F
onto a lower-dimensional space S̄ = ×F̄ defined by a subset of its variables, F̄ ⊆ F . We use
{s}Φ = {s′ ∈ S : Φ(s′) = Φ(s)} to denote the equivalence class of s under Φ. In Example 1, a
potential state representation could be Φ(st) = ⟨l0, x0⟩ for all st ∈ S. This representation retains
only L0 and X0, ignoring all other variables in F . Hence, all states that share the same values for L0
and X0 belong to the same equivalence class.

5.1 Markov state representations

Not all state representations are sufficient to learn the optimal policy; some, like the one discussed in
the above paragraph, may exclude variables that carry valuable information for the task at hand.
Definition 4 (Markov state representation). A state representation Φ(st) is said to be Markov if,
for all st, st+1 ∈ S, at ∈ A,

R(st, at) = R(Φ(st), at) and
∑

s′
t+1∈{st+1}Φ

T (s′
t+1 | st, at) = Pr(Φ(st+1) | Φ(st), at),

where R(Φ(st), at) denotes the reward R(s′
t, at) at any s′

t ∈ {st}Φ.

The above definition is analogous to the notion of bisimulation (Dean & Givan, 1997; Givan et al.,
2003) or model-irrelevance state abstraction (Li et al., 2006). Representations satisfying these
conditions are guaranteed to be behaviorally equivalent to the original representation. That is, for
any given policy and initial state, the expected return (i.e., cumulative reward; Sutton & Barto,
2018) is the same when conditioning on the full set of observation variables F or on the Markov state
representation Φ.
Definition 5 (Minimal state representation). A state representation Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ is
said to be minimal, if all other state representations Φ : S → S̄ with S̄ = ×F̄ and F̄ ⊂ F̄ ∗, for some
s ∈ S, are not Markov.
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In simpler terms, Φ∗ is minimal when none of the remaining variables can be removed while the
representation remains Markov. Hence, we say that a minimal state representation Φ∗ is a sufficient
statistic of the full set of observation variables F . In Example 1, representations like Φ(st) = ⟨x0, at, lt⟩
or Φ(st) = ⟨x0, xt, lt⟩ are valid Markov state representations. However, only representations that
exclusively retain the initial signal X0 and the agent’s current location Lt (i.e., Φ∗(st) = ⟨x0, lt⟩) are
considered minimal, as only these two variables are necessary to capture rewards and transitions.
Definition 6 (Superfluous variable). Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal
state representations. A variable F i ∈ F is said to be superfluous, if F i /∈ {F̄ ∗}∪Φ∗ .

In Example 1, any variable other than the signal and the current location, F \{X0, Lt}, is superfluous.

5.2 π-Markov state representations

Considering that the agent’s policy will rarely visit all states, the notion of Markov state representation
might be overly strict. We now introduce a relaxed version that guarantees the representation is
Markov when following specific policy π.
Definition 7 (π-Markov state representation). A state representation Φπ(ht) is said to be π-Markov
if, for all st, st+1 ∈ Sπ, at ∈ supp(π(· | st)),

R(st, at) = Rπ(Φπ(st), at) and
∑

s′
t+1∈{st+1}Φ

π

T (s′
t+1 | st, at) = Prπ(Φπ(st+1) | Φπ(st), at),

where Sπ ⊆ S denotes the set of states visited under π, Rπ(Φπ(st), at) is the reward R(s′
t, at) at any

s′
t ∈ {st}Φ

π , with {s}Φ
π = {s′ ∈ Sπ : Φπ(s′) = Φπ(s)}, and Prπ is probability under π.

Definition 8 (π-minimal state representation). A state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ is said to be π-minimal, if all other state representations Φ : Sπ → S̄π with S̄π = ×F̄
and F̄ ⊂ F̄ π∗, for some s ∈ Sπ, are not π-Markov.

The next result demonstrates that a π-Markov state representation Φπ requires at most the same
variables, and in some cases fewer, than a minimal state representation Φ∗, while still satisfying the
Markov conditions for those states visited under π, s ∈ Sπ.
Proposition 1. Let Φ∗ be the set of all possible minimal state representations, where every Φ∗ ∈ Φ∗

is defined as Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗. For all π and all Φ∗ ∈ Φ∗, there exists a π-Markov state
representation Φπ : Sπ → S̄π with S̄π = ×F̄π such that for all s ∈ Sπ, F̄ π ⊆ F̄ ∗. Moreover, there
exist cases where F̄ π is a proper subset, F̄ π ⊂ F̄ ∗.

It is clear that Φπ will never require more variables than the corresponding minimal state representa-
tion Φ∗ because, as per Definition 4, Φ∗ captures all the essential information. The situation where
F̄ π ⊂ F̄ ∗ arises with particular policies that exclusively visit a subset of states. In such cases, the
agent may require fewer variables within that subset to accurately capture rewards and transitions.
Take, for instance, a policy that makes the agent stay put. The π-minimal representation under
such a policy is the empty set, Φ(st) = ∅ for all st ∈ Sπ, as the agent consistently receives the same
reward and does not move from the initial state.

6 Policy Confounding

Judging from the previous example, it might be tempting to assume that having F̄ π ⊂ F̄ ∗ is merely
an incidental outcome of following a policy π that visits a subset of states, where some variables
coincidentally happen to be unnecessary. Moreover, considering that F̄ ∗ is constructed to capture
the essential variables necessary for the task, one may further conclude that a policy π inducing
representations such that F̄ π ⊂ F̄ ∗ can never be optimal. However, as demonstrated by the following
example, it turns out that the states visited by a particular policy, especially if it is the optimal
policy, tend to contain a lot of redundant information. This is particularly true in environments
where future states are heavily influenced by past actions.
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Figure 2: Two DBNs representing the dynamics of the Frozen T-Maze environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The green
circles highlight the π-mininal state representation in each of the two cases.

Let us revisit Example 1. Figure 2 shows two dynamic Bayesian networks (DBNs) describing
the environment’s dynamics: one with random action sampling (left) and the other with actions
determined by the optimal policy (right). Both networks are unrolled from t = 0 to t = 8,
with intermediate nodes omitted for simplicity. Suppose we aim to predict the reward R8 given
s8 = ⟨l0, x0, a0, . . . , a7, l8, x8⟩. In the case of random action sampling (left DBN), to predict R8, one
needs X0 and L8. This is because ⟨A0, . . . , A7⟩ appear as exogenous and can take any possible value.
Hence, the reward could be either −0.1 (per timestep penalty), −1 (wrong goal), or +1 (correct
goal) depending on the actual values of X0 and L8. As established in Section 5.1, we know that
Φ∗(st) = ⟨x0, lt⟩ is a minimal state representation.

Conversely, when actions are determined by the optimal policy π∗ (right DBN), knowing L8 alone
suffices to determine R8. The reason is that, under π∗, the agent always takes the action ’move up’ at
the starting location when receiving the green signal or ’move down’ when receiving the purple signal
and then follows the shortest path toward each of the goals. As shown by the diagram, this makes the
action A0, and thus all future agent locations, dependent on the initial signal X0. Hence, the agent’s
location Lt becomes a proxy for X0, allowing the agent to ignore X0 and still predict transitions
and rewards. Consequently, from t = 1 onward, Φπ∗(st) = lt is a π-minimal state representation
(Definition 8) as it constitutes a sufficient statistic of the state st under π∗. For the same reason,
from t = 1, actions may also condition only on Lt.

Figure 3: A DBN illustrating the
phenomenon of policy confounding.
The policy opens a backdoor path
that can affect conditional relations
between the variables in Ft and Ft+1.

The phenomenon highlighted by the previous example results
from a spurious correlation induced by the optimal policy
between the initial signal X0 and the agent’s future locations
⟨L1, . . . , L8⟩. Generally speaking, this occurs because policies
act as confounders, opening backdoor paths between future
observation variables Ft+1 and the variables in the current
state Ft (Pearl et al., 2016). This is illustrated by the DBN
depicted in Figure 3, where the policy influences both the
variables in Ft and the variables in Ft+1, potentially altering
their correlations.
Definition 9 (Policy Confounding). A state representation
Φ : S → S̄ is said to be confounded by a policy π if, for some
st, st+1 ∈ S, at ∈ A,

Rπ(Φ(st), at) ̸= Rπ(do(Φ(st)), at) or Prπ(Φ(st+1) | Φ(st), at) ̸= Prπ(Φ(st+1) | do(Φ(st)), at).

The operator do(·) is known as the do-operator, and it is used to represent physical interventions in
a system (Pearl et al., 2016). These interventions are meant to distinguish cause-effect relations from
mere statistical associations. In our case, do(Φ(st)) means setting the variables forming the state
representation Φ(st) to a particular value and considering all possible states in the equivalence class,
s′

t ∈ {st}Φ, (i.e., all states that share the same value for the observation variables that are ‘selected’
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by Φ; independently of whether these are visited by the policy being followed). For instance, in the
above example, Rπ∗(L8 = ‘green goal’) = +1 when following π∗ since we know that X0 = ‘green’,
while Rπ∗(do(L8 = ‘green goal’)) = ±1 since X0 can be either ‘green’ or ‘purple’.

It is easy to show that the underlying reason why a π-Markov state representation may require fewer
variables than the minimal state representation is indeed policy confounding.

Theorem 1. Let Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ be a minimal state representation. If, for some π,
there is a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×F̄π, such that F̄ π ⊂ F̄ ∗ for some
s ∈ S, then Φπ is confounded by policy π.

Finally, it is worth noting that even though, in Example 1, the variables included in the π-minimal
state representation are a subset of the variables in the minimal state representation, F̄ π∗ ⊂ F̄ ∗,
this is not always the case, as F̄ π∗ may contain superfluous variables (Definition 6). An example
illustrating this situation is provided in Appendix B (Example 4).

Proposition 2. Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal state representations.
There exist cases where, for some π, there is a π-minimal state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ such that F̄ π∗ \ {F̄ ∗}∪Φ∗ ̸= ∅.

6.1 Why should we care about policy confounding?

Leveraging spurious correlations to develop simple habits can be advantageous when resources such
as memory, computing power, or data are limited. Agents can exclude variables from the state
representation if they are redundant under their policy. However, the challenge is that some of these
variables may be crucial to ensure that the agent behaves correctly when the context changes. In
the Frozen T-Maze example from Section 2, we observed how the agent could no longer find the
correct goal when the ice pushed it away from the optimal trajectory. This is a specific case of a
well-researched issue known as out-of-distribution (OOD) generalization (Quionero-Candela et al.,
2009; Arjovsky, 2021). We refer to it as out-of-trajectory (OOT) generalization to highlight that the
problem here is that the agent is unable to generalize to alternative trajectories within the same
environment. This is in contrast to previous works (Kirk et al., 2023) that address generalization
to environments that differ in some way from the training environment. Example 5 illustrates the
distinction between OOT and OOD.

Ideally, the agent should aim to learn representations that enable it to predict future rewards and
transitions even when experiencing slight variations in its trajectory. Based on Definition 4, we know
that, in general, only a Markov state representation satisfies these requirements. However, computing
such representations is typically intractable (Ferns et al., 2006), and thus most standard RL methods
usually learn representations by maximizing an objective function that depends on the distribution
of trajectories P b(τ) visited under a behavior policy b (e.g., expected return, Eτ∼P b(τ) [G(τ)]; Sutton
& Barto, 2018). The problem is that b may favor certain trajectories over others, which may lead to
the exploitation of spurious correlations in the learned representation.

6.2 When should we worry about OOT generalization in practice?

Function approximation Function approximation has enabled traditional RL methods to scale
to high-dimensional problems, where storing values in lookup tables is infeasible (François-Lavet
et al., 2018). Using parametric functions (e.g., neural networks) to model policies and value functions,
agents can learn abstractions by grouping together states if these yield the same transitions and
rewards. As mentioned before, abstractions occur naturally when states are represented by a set
of variables since the functions simply need to ignore some of these variables. However, this also
implies that value functions and policies are exposed to spurious correlations. If a particular variable
becomes irrelevant due to policy confounding, the function may learn to ignore it and remove it from
its representation (Example 1). This is in contrast to tabular representations, where, every state
takes a separate entry, and even though there exist algorithms that perform state abstractions in
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tabular settings (Andre & Russell, 2002; Givan et al., 2003), these abstractions are normally formed
offline before learning the policy, hence avoiding the risk of policy confounding.

Narrow trajectory distributions In practice, agents are less prone to policy confounding when
the trajectory distribution P b(τ) is broad (i.e., when b encompasses a wide set of trajectories) than
when it is narrow. This is because the spurious correlations present in certain trajectories are less
likely to have an effect on the learned representations. On-policy methods (e.g., SARSA, Actor-Critic;
Sutton & Barto, 2018) are particularly troublesome for this reason since the same policy being
updated must also be used to collect the samples. Yet, even when the trajectory distribution is
narrow, there is no reason why the agent should pick up on spurious correlations while its policy is
still being updated. Only when the agent commits to a particular policy should we start worrying
about policy confounding. At this point, lots of the same trajectories are being used for training, and
the agent may ‘forget’ (French, 1999) that, even though certain variables may no longer be needed
to represent the states, they were important under previous policies. This generally occurs at the
end of training when the agent has converged to a particular policy. However, if policy confounding
occurs earlier during training, it may prevent the agent from further improving its policy (Nikishin
et al., 2022; please refer to Appendix C for more details).

6.3 What can we do to improve OOT generalization?

As mentioned in the introduction, we do not have a complete answer to the problem of policy
confounding. Yet, here we offer a few off-the-shelf solutions that, while perhaps limited in scope, can
help mitigate the problem in some situations. These solutions revolve around the idea of broadening
the distribution of trajectories to dilute the spurious correlations introduced by certain policies.

Off-policy methods We already explained in Section 6.2 that on-policy methods are particularly
prone to policy confounding since they are restricted to using samples coming from the same policy.
A rather obvious solution is to instead use off-policy methods, which allow using data generated from
previous policies. Because the samples belong to a mixture of policies it is less likely that the model
will pick up the spurious correlations present on specific trajectories. However, as we shall see in
the experiments, this alternative works only when replay buffers are large enough. This is because
standard replay buffers are implemented as queues, and hence the first experiences coming in are the
first being removed. This implies that a replay buffer that is too small will contain samples coming
from few and very similar policies. Since there is a limit on how large replay buffers are allowed to
be, future research could explore other, more sophisticated, ways of deciding what samples to store
and which ones to remove (Schaul et al., 2016).

Exploration and domain randomization When allowed, exploration may mitigate the effects
of policy confounding and prevent agents from overfitting their preferred trajectories. Exploration
strategies have already been used for the purpose of generalization; to guarantee robustness to
perturbations in the environment dynamics (Eysenbach & Levine, 2022), or to boost generalization
to unseen environments (Jiang et al., 2022). The goal for us is to remove, to the extent possible,
the spurious correlations introduced by the current policy. Unfortunately, though, exploration
is not always without cost. Safety-critical applications require the agent to stay within certain
boundaries (Altman, 1999; García & Fernández, 2015). When training on a simulator, an alternative
to exploration is domain randomization (Tobin et al., 2017; Peng et al., 2018; Machado et al., 2018).
The empirical results reported in the next section suggest that agents become less susceptible to
policy confounding when adding enough stochasticity. Yet, there is a limit on how much noise can be
added to the environment or the policy without altering the optimal policy (Sutton & Barto, 2018,
Example 6.6: Cliff Walking).
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Figure 4: Illustrations of the Key2Door (left) and Diversion (right) environments.

7 Experiments

The experiments aim to (1) validate the occurrence of policy confounding as described by the theory,
(2) identify the conditions under which agents are most susceptible to the effects of policy confounding
and fail to generalize, and (3) assess the effectiveness of strategies proposed in the previous section in
mitigating these effects. To achieve this, a series of simple grid-world environments has been devised
as pedagogical examples to highlight the issue and clarify the theory. We would like to emphasize
that our primary contribution lies in characterizing the phenomenon of policy confounding. The
extent to which this phenomenon manifests in more realistic settings is beyond the scope of this
paper. However, we believe that the failure of standard RL methods in these simplistic environments
raises important concerns. Moreover, we refer the reader to Appendix C for a review of prior works
reporting evidence of particular forms of policy confounding in high-dimensional environments.

7.1 Experimental setup

Agents are trained with an off-policy method, DQN (Mnih et al., 2015) and an on-policy method,
PPO (Schulman et al., 2017). We represent policies and value functions as feedforward neural
networks and use a stack of past observations as input in the environments that require memory.
We report the mean return as a function of the number of training steps. Training is interleaved
with periodic evaluations on the original environments and variants thereof used for validation. The
results are averaged over 10 random seeds. Refer to Appendix F for more details about the setup.

7.2 Environments

We run our experiments on three grid-world environments: the Frozen T-Maze from Section 2,
and the below described Key2Door, and Diversion environments.
Example 2. Key2Door. Here, the agent needs to collect a key placed at the beginning of the
corridor in Figure 4 (left) and then open the door at the end. The current observation variables do
not show whether the key has already been collected. The states are thus given by the history of past
locations st = ⟨l0, . . . , lt⟩. This is because to solve the task in the minimum number of steps, the
agent must remember that it already got the key when going to the door. Yet, since during training,
the agent always starts the episode at the first cell from the left, when moving toward the door, the
agent can forget about the key (i.e., ignore past locations) once it has reached the third cell. As in
the Frozen T-Maze example, the agent can build the habit of using its own location to tell whether it
has or has not got the key yet. This, can only occur when the agent consistently follows the optimal
policy, depicted by the purple arrow. Otherwise, if the agent moves randomly through the corridor,
it is impossible to tell whether the key has or has not been collected. In contrast, in the evaluation
environment, the agent always starts at the second to last cell, this confuses the agent, which is used
to already having the key by the time it reaches said cell. A DBN is provided in Appendix D.

Example 3. Diversion. Here, the agent must move from the start state to the goal state in Figure 4
(right). The observations are length-8 binary vectors. The first 7 elements indicate the column where
the agent is located. The last element indicates the row. This environment aims to show that policy
confounding can occur not only when the environment is partially observable, as was the case in
the previous examples, but also in fully observable scenarios. After the agent learns the optimal
trajectory depicted by the green arrow, it can disregard the last element in the observation vector.
This is because, if the agent does not deviate, the bottom row is never visited. Rather than forgetting
past information, the agent ignores the last element in the current observation vector for being
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Figure 5: DQN vs. PPO in the train and evaluation variants of Frozen T-Maze (left), Key2Door
(middle), and Diversion (right).
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Figure 6: Frozen T-Maze. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when
adding stochasticity.

irrelevant when following the optimal trajectory. We train the agent in the original environment and
evaluate it in a version with a yellow diversion sign in the middle of the maze that forces the agent
to move to the bottom row. A DBN is provided in Appendix D.

7.3 Results

On-policy vs. off-policy The results in Figure 5 consistently reveal a common trend across all
three environments. PPO struggles with generalization beyond the agent’s preferred trajectories.
After an initial phase where the average returns on the training and evaluation environments increase
(‘PPO train’ and ‘PPO eval’), the return on the evaluation environments (‘PPO eval’) starts decreasing
when the agent commits to a particular trajectory, as a result of policy confounding. In contrast,
since the training samples come from a mixture of policies, DQN performs optimally in both variants
of the environment (‘DQN train’ and ‘DQN eval’) long after converging to the optimal policy. A
visualization of the state representations learned with PPO, showing that the policy does ignore
necessary variables, is provided in Appendix E.1.

Large vs. small replay buffers We mentioned in Section 6.3 that the effectiveness of off-policy
methods against policy confounding depends on the size of the replay buffer. The results in Figure 6
(left) confirm this claim. The plot shows the performance of DQN in the Frozen T-Maze environment
when the size of the replay buffer contains 100K experiences and when it only contains the last 10K
experiences. We see that in the second case, the agents performance in the evaluation environment
decreases (red curve left plot). This is because, after the initial exploration phase, the distribution of
trajectories becomes too narrow, and the spurious correlations induced by the latest policies dominate
the replay buffer. Similar results for the other two environments are provided in Appendix E.2.

Exploration and domain randomization The last experiment shows that if sufficient exploration
is allowed, DQN may still generalize to different trajectories, even when using small replay buffers
(blue curve right plot on Figure 6). In the original configuration, the exploration rate ϵ for DQN
starts at ϵ = 1 and decays to ϵ = 0.0 after 20K steps. For this experiment, we set the final rate
ϵ = 0.1. In contrast, since exploration in PPO is controlled by the entropy bonus, which makes
it hard to ensure fixed exploration rates, we add noise to the environment instead. The red curve
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in Figure 6 (right) shows that when the agent’s actions are overridden by a random action with
20% probability, the performance of PPO in the evaluation environment does not degrade after the
agent has converged to the optimal policy. This suggests that the added noise prevents spurious
correlations from dominating training batches. However, it may also happen that random noise is
insufficient to remove the spurious correlations, as occurs in the Key2Door environment (Figure 13;
Appendix E.2). Similar results for Diversion are provided in Appendix E.2.

8 Conclusion

This paper described the phenomenon of policy confounding. We demonstrated both theoretically
and empirically how, as a result of following certain trajectories, agents may pick up on spurious
correlations and develop habits that are not robust to trajectory deviations. We also identified the
circumstances under which policy confounding is most likely to occur in practice and suggested
a few ad hoc solutions that may mitigate its effects. We view this paper as a stepping stone to
exploring more sophisticated solutions. An interesting avenue for future research is the integration of
tools from the field of causal inference (Hernán & Robins, 2010; Peters et al., 2017) to assist the
agent in forming state representations grounded in causal relationships rather than mere statistical
associations (Lu et al., 2018; Zhang et al., 2020; Sontakke et al., 2021; Saengkyongam et al., 2023).
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A Proofs

Lemma 1. Let Φπ1∗ be the set of all possible π-minimal state representations under π1, where every
Φπ1∗ ∈ Φπ1∗ is defined as Φπ1∗ : Sπ1 → S̄π1∗ and S̄π1∗ = ×F̄π1∗ , and let π2 be a second policy such
that for all st ∈ Sπ1 ∩ Sπ2 ,

supp (π2(· | st)) ⊆ supp (π1(· | st)) .

For all Φπ1∗ ∈ Φπ1∗, there exists a π-Markov state representation under policy π2, Φπ2 : Sπ2 → S̄π2

with S̄π2 = ×F̄π2 , such that F̄ π2 ⊆ F̄ π1∗ for all st ∈ Sπ1 ∩ Sπ2 . Moreover, there exist cases where
F̄ π2

t ̸= F̄ π1∗
t .

Proof. First, it is easy to show that

∀st ∈ S, supp (π2(· | st)) ⊆ supp (π1(· | st)) ⇐⇒ Sπ2 ⊆ Sπ1 ,

and
∀st ∈ S, supp (π2(· | st)) = supp (π1(· | st)) ⇐⇒ Sπ2 = Sπ1 .

In particular, Sπ2 ⊂ Sπ1 if there is at least one state s′
t ∈ Sπ1 ∩ Sπ2 such that

supp (π2(· | s′
t)) ⊂ supp (π1(· | s′

t))

while
supp (π2(· | st)) = supp (π1(· | st))

for all other st ∈ Sπ1 ∩ Sπ2 .

In such cases, we know that there is at least one action a′ for which π2(a′
t | s′

t) = 0 but π1(a′
t | s′

t) ̸= 0.
Hence, if there was a state (or group of states) that could only be reached by taking action a′

t at s′
t,

π2 would never visit it and thus Sπ2 ⊂ Sπ1 .

Further, if Sπ2 ⊂ Sπ1 , we know that, for every Φπ1∗ ∈ Φπ1∗, there must be a Φπ2∗ that requires,
at most, the same number of variables, F̄ π2

t ⊆ F̄ π1∗
t and, in some cases, fewer, F̄ π1∗

t ≠ F̄ π2∗
t (e.g.,

Frozen T-Maze example).

Proposition 1. Let Φ∗ be the set of all possible minimal state representations, where every Φ∗ ∈ Φ∗

is defined as Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗. For all π and all Φ∗ ∈ Φ∗, there exists a π-Markov state
representation Φπ : Sπ → S̄π with S̄π = ×F̄π such that for all s ∈ Sπ, F̄ π ⊆ F̄ ∗. Moreover, there
exist cases where F̄ π is a proper subset, F̄ π ⊂ F̄ ∗.

Proof. The proof follows from Lemma 1. We know that, in general, Sπ ⊆ S, and if π(a′
t|s′

t) = 0 for at
least one pair a′

t ∈ A, s′
t ∈ S for which there is a state (or group of states) that can only be reached

by taking action a′
t at s′

t, then Sπ ⊂ S. Hence, for every Φ∗ there is a Φπ such that F̄ π ⊆ F̄ ∗, and in
some cases, we may have F̄ π ⊂ F̄ ∗ (e.g., Frozen T-Maze example).

Theorem 1. Let Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ be a minimal state representation. If, for some π,
there is a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×F̄π, such that F̄ π ⊂ F̄ ∗ for some
s ∈ S, then Φπ is confounded by policy π.

Proof. Proof by contradiction. Let us assume that F̄ π ⊂ F̄ ∗, and yet there is no policy confounding.
I.e., for all st, st+1 ∈ S, at ∈ A,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at)
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and

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at)

First, note that the do-operator implies that the equality must hold for all s′
t in the equivalence of st

class under Φπ, s′
t ∈ {st}Φπ = {s′

t ∈ S : Φ(s′
t) = Φ(st)}, i.e., not just those s′

t that are visited under
π,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) = R(s′
t, at) for all s′

t ∈ {st}Φ

which is precisely the first condition in Definition 4,

R(st, at) = R(Φπ(st), at) (1)

for all st ∈ S and at ∈ A.

Analogously, we have that,

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at)
= Pr(Φπ(st+1) | Φπ(st), at)

where the second equality reflects that the above must hold independently of π. Hence, we have that
for all st, st+1 ∈ S and s′

t ∈ {st}Φ,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | Φπ(s′
t), at),

which means that, for all st, st+1 ∈ S and st ∈ A,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | st, at)

=
∑

s′
t+1∈{st+1}Φπ

T (s′
t+1 | st, at), (2)

which is the second condition in Definition 4.

Equations (1) and (2) reveal that if the assumption is true (i.e., Φπ is not confounded by the policy),
then Φπ is not just π-Markov but actually strictly Markov (Definition 4). However, we know that
Φ∗(st) is the minimal state representation, which contradicts the above statement, since, according
to Definition 5, there is no proper subset of F̄ ∗, for all st ∈ S, such that the representation remains
Markov. Hence, F̄ π ⊂ F̄ ∗ implies policy confounding.

Proposition 2. Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal state representations.
There exist cases where, for some π, there is a π-minimal state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ such that F̄ π∗ \ {F̄ ∗}∪Φ∗ ̸= ∅.

Proof (sketch). Consider a deterministic MDP with a deterministic policy. Imagine there exists a
variable X that is perfectly correlated with the episode’s timestep t, but that is generally irrelevant
to the task. The variable X would constitute in itself a valid π-Markov state representation since it
can be used to determine transitions and rewards so long as a deterministic policy is followed. At the
same time, X would not enter the minimal Markov state representation because it is useless under
stochastic policies. Example 4 below illustrates this situation.

B Example: Watch the Time

Example 4. (Watch the Time) This example is inspired by the empirical results of Song et al.
(2020). Figure 7 shows a grid world environment. The agent must go from the start cell to the goal
cell. The agent must avoid the pink cells; stepping on those yields a −0.1 penalty. There is a +1
reward for reaching the goal. The agent can observe its own location within the maze L and the
current timestep t. The two diagrams in Figure 8 are DBNs describing the environment dynamics.
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START GOAL

Figure 7: An illustration of the watch-the-time environment.

...

...
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Figure 8: Two DBNs representing the dynamics of the watch-the-time environment, when actions
are sampled at random (left), and when they are determined by the optimal policy (right).

When actions are considered exogenous random variables (left diagram), the only way to estimate the
reward at t = 10 is by looking at the agent’s location L10. In contrast, when actions are determined
by the policy (right diagram), t becomes a proxy for the agent’s location. This is because the start
location and the sequence of actions are fixed. This implies that t is a perfectly valid π-Markov
state representation under π∗. Moreover, as shown by the DBN on the right, the optimal policy may
simply rely on t to determine the optimal action.

C Further Related Work

Early evidence of policy confounding Although to the best of our knowledge, we are the first
to bring forward and describe mathematically the idea of policy confounding, a few prior works have
reported evidence of particular forms of policy confounding. In their review of the Arcade Learning
Environment (ALE; Bellemare et al., 2013), Machado et al. (2018) explain that because the games are
fully deterministic (i.e., initial states are fixed and transitions are deterministic), open-loop policies
that memorize good action sequences can achieve high scores in ALE. Clearly, this can only occur if
the policies themselves are also deterministic. In such cases, policies, acting as confounders, induce a
spurious correlation between the past action sequences and the environment states. Similarly, Song
et al. (2020) show, by means of saliency maps, how agents may learn to use irrelevant features of the
environment that happen to be correlated with the agent’s progress, such as background clouds or
the game timer, as clues for outputting optimal actions. In this case, the policy is again a confounder
for all these, a priori irrelevant, features. Zhang et al. (2018b) provide empirical results showing how
large neural networks may overfit their training environments and, even when trained on a collection
of procedurally generated environments, memorize the optimal action for each observation. Zhang
et al. (2018a) show how, when trained on a small subset of trajectories, agents fail to generalize to a
set of test trajectories generated by the same simulator. Ostrovski et al. (2021) empirically show
that agents passively trained on observational data generated by other agents tend to perform poorly
due to extrapolation errors caused by some of the state-action pairs being underrepresented in the
data. Lan et al. (2023) report evidence of well-trained agents failing to perform well on Mujoco
environments when starting from trajectories (states) that are out of the distribution induced by
the agent’s policy. We conceive this as a simple form of policy confounding. Since the Mujoco
environments are also deterministic, agents following a fixed policy can memorize the best actions to
take for each state instantiation, potentially relying on superfluous features. Hence, they can overfit
to unnatural postures that would not occur under different policies. Finally, Nikishin et al. (2022)
describe a phenomenon named ‘primacy bias’, which prevents agents trained on poor trajectories
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from further improving their policies. The authors show that this issue is particularly relevant when
training relies heavily on early data coming from a fixed random policy. We hypothesize that one of
the causes for this is also policy confounding. The random policy may induce spurious correlations
that lead to the formation of rigid state (state) representations that are hard to recover from.

Generalization Generalization is a hot topic in machine learning. The promise of a model
performing well in contexts other than those encountered during training is undoubtedly appealing. In
the realm of reinforcement learning, the majority of research focuses on generalization to environments
that, despite sharing a similar structure, differ somewhat from the training environment (Kirk et al.,
2023). These differences range from small variations in the transition dynamics (e.g., sim-to-real
transfer; Higgins et al., 2017; Tobin et al., 2017; Peng et al., 2018; Zhao et al., 2020), changes
in the observations (i.e., modifying irrelevant information, such as noise: Mandlekar et al., 2017;
Ornia et al., 2022, or background variables: Zhang et al., 2020; Stone et al., 2021), to alterations
in the reward function, resulting in different goals or tasks (Taylor & Stone, 2009; Lazaric, 2012;
Muller-Brockhausen et al., 2021). Instead, we address the problem of OOT generalization, where the
objective is to generalize to different trajectories within the same environment.

Example 5. To illustrate the difference between OOD generalization and OOT generalization, let
us consider a robot trained via RL to go from our office to the coffee machine, get coffee, and come
back, as well as from our office to the printer, make copies, and come back. There are two possible
routes to the coffee machine: either through the printer room or through a corridor directly leading
to the coffee machine. The path through the printer room is longer, so the robot typically avoids
it when coffee is ordered. However, one day, when we order coffee and the corridor is blocked, the
robot attempts to go through the printer room and returns with a copy of a new paper titled ‘Bad
Habits’ instead of the coffee. This serves as an example of out-of-trajectory generalization. Since
the robot is accustomed to obtaining copies in the copy room, it disregards the coffee order. An
example of the more general problem of OOD generalization could involve instructing the robot to
navigate the office when the floor is wet or to fetch something different, like a glass of water. The
crucial distinction is that, in these last two examples, the states the robot visits or the rewards it
receives differ. The robot has not been trained on a wet floor, and it has never retrieved a glass of
water before. However, in the first example, we would expect the robot to recognize that being in
the copy room does not necessarily imply getting copies. To be fair, the blocked corridor represents
a change in the environment; nevertheless, this change is intended to prompt the agent to choose
an alternative path. It is worth noting that this alternative path was also feasible in the original
environment.

State abstraction State abstraction is concerned with removing from the representation all
that state information that is irrelevant to the task. In contrast, we are worried about learning
representations containing too little information, which can lead to state aliasing. Nonetheless, as
argued by McCallum (1995), state abstraction and state aliasing are two sides of the same coin. That
is why we borrowed the mathematical frameworks of state abstraction to describe the phenomenon
of policy confounding. Li et al. (2006) provide a taxonomy of the types of state abstraction and
how they relate to one another. Givan et al. (2003) introduce the concept of bisimulation, which is
equivalent to our definition of Markov state representation (Definition 4). Ferns et al. (2006) propose
a method for measuring the similarity between two states. Castro (2020) notes that this metric is
prohibitively expensive and suggests using a relaxed version that computes state similarity relative to
a given policy. This is similar to our notion of π-Markov state representation (Definition 7). While
the end goal of this metric is to group together states that are similar under a given policy, here we
argue that this may lead to poor OOT generalization.

D Dynamic Bayesian Networks

Figures 9 and 10 show the DBNs for the Key2Door and Diversion environments, respectively.
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Figure 9: Two DBNs representing the dynamics of the Key2Door environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as L represent the agent’s location, while the nodes labeled as X represent whether or not
the key has been collected. The agent can only see L. Hence, when actions that are sampled are
random (left), the agent must remember its past locations to determine the reward R7. Note that
only L1 and L7 are highlighted in the left DBN. However, other variables in ⟨L2, . . . , L6⟩ might be
needed, depending on when the key is collected. In contrast, when following the optimal policy, only
L7 is needed. In this second case, knowing the location is sufficient to determine whether the key has
been collected.
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Figure 10: Two DBNs representing the dynamics of the Diversion environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X indicate the row where the agent is located; the nodes labeled as Y indicate the column.
We see that when actions are sampled at random, both X6 and Y6 are necessary to determine R6.
However, when actions are determined by the optimal policy, Y6 is sufficient, as the agent always
stays at the top row.

E Experimental Results

E.1 Learned state representations

The results reported in Section 7 show that the OOT generalization problem exists. However, some
may still wonder if the underlying reason is truly policy confounding. To confirm this, we compare the
outputs of the policy at every state in the Frozen T-Maze when being fed the same states (observation
stack) but two different signals. That is, we permute the variable containing the signal (X in the
diagram of Figure 2) and leave the rest of the variables in the observation stack unchanged. We then
feed the two versions to the policy network and measure the KL divergence between the two output
probabilities. This metric is a proxy for how much the agent attends to the signal in every state.
The heatmaps in Figure 11 show the KL divergences at various points during training (0, 10K, 30K,
and 100K timesteps) when the true signal is ‘green’ and we replace it with ‘purple’. We omit the two
goal states since no actions are taken there. We see that initially (top left heatmap), the signal has
very little influence on the policy (note the scale of the colormap is 10−6), after 10K steps, the agent
learns that the signal is very important when at the top right state (top right heatmap). After this,
we start seeing how the influence of the signal at the top right state becomes less strong (bottom
left heatmap) until it eventually disappears (bottom right heatmap). In contrast, the influence of
the signal at the initial state becomes more and more important, indicating that after taking the
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first action, the agent ignores the signal and only attends to its own location. The results for the
alternative case, ‘purple’ signal being replaced by ‘green’ signal, are shown in Figure 12.

Figure 11: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from green to purple,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

Figure 12: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from purple to green,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

E.2 Buffer size and exploration/domain randomization

Figures 13 and 14 report the results of the experiments described in Section 7 (paragraphs 2 and 3)
for Key2Door and Diversion. We see how the buffer size also affects the performance of DQN in the
two environments (left plots). We also see that exploration/domain randomization does improve
OOT generalization in Diversion but not in Key2Door.
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Figure 13: Key2Door. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.
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Figure 14: Diversion. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

F Further Experimental Details

We ran our experiments on an Intel i7-8650U CPU with 8 cores. Agents were trained with Stable
Baselines3 (Raffin et al., 2021). Most hyperparameters were set to their default values except for
the ones reported in Tables 1 (PPO) and 2 (DQN), which worked better than the default values for
these particular environments.

Table 1: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 2.5e-4
Number epoch 3
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128
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Table 2: DQN hyperparameters.

Buffer size 1.0e5
Learning starts 1.0e3
Learning rate 2.5e-4
Batch size 256
Initial exploration bonus 1.0
Final exploration bonus 0.0
Exploration fraction 0.2
Training frequency 5
Number Neurons 1st layer 128
Number Neurons 2nd layer 128


