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Abstract

Understanding how the brain supports natural behavior is an increasingly cen-
tral goal in human neuroscience. Recordings from human neurosurgical patients
with intracranial EEG electrodes offer direct access to widespread electrical ac-
tivity in the brain during a variety of behaviors over extended times. Despite
the progress in the field, utilizing these recordings at scale to identify the neural
underpinnings of natural human behavior remains difficult due to variability in
electrode placement, channel geometry, and behavioral diversity across partici-
pants and sessions. To address these challenges, we introduce a self-supervised
framework for multi-participant intracranial neural data. We use a Perceiver-based
architecture to reconstruct masked channels of neural activity from unmasked
channels using learnable embeddings of the channel identity and contextual infor-
mation, capturing inter-channel dependencies without requiring labels. Finetuning
of our self-supervised model has improved the decoding performance on a panel of
downstream tasks, highlighting the potential of self-supervised learning to enable
general-purpose neural decoding and support scalable integration of naturalistic
human brain recordings.

1 Introduction

Intracranial electroencephalography (iEEG), including electrocorticography (ECoG) and stereotactic
EEG (sEEQG), yields high-resolution recordings of human brain activity with broad clinical and
scientific utility [16]. iIEEG recordings have become a technique of choice in neurosurgery due
to their ability to measure human brain activity with higher resolution compared to non-invasive
recordings such as EEG and MEG [3| [15] [7, 8, [13| [6]. Recent advances in data collection have
made it possible to record from dozens of individuals over extended periods, capturing everyday,
non-stereotyped behavior in hospital rooms, homes, and research settings [[18} 4} [19]. These datasets
open new opportunities for developing machine-learning models that can learn from large-scale,
heterogeneous neural data without requiring rigid task structures or behavioral labeling [9, [23].

Self-supervised learning (SSL) has emerged as a tool for learning representations from neural data
without labels. Prior work has shown that masking segments of neural activity and reconstructing
them helps uncovering latent dynamics of neural activity [24} 26| and that predictive objectives across
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Figure 1: Overview of our masked channel modeling framework. During pretraining, a subset of iEEG
channels is masked, and the model learns to reconstruct their activity using contextual information from the
unmasked channels via learnable channel embeddings. A Perceiver-based encoder integrates spatial and temporal
context across channels using cross-attention and learnable latent tokens.

time or modalities can support decoding in continuous behavior [[17, |5]]. These approaches, however,
have largely focused on experimental settings with short recordings and stereotyped behaviors. The
models developed to analyze these data may not be compatible with multi-source unlabeled data
collected from patients who were not instructed to behave in accordance with any particular task.

To address this gap, we propose a SSL approach for iEEG data called Charmander (CHAnnel
Masking AND Reconstruction). In our approach, we mask subsets of channels and reconstruct their
activity from the surrounding context. This formulation uses a Perceiver-based architecture [[10]
that compresses information from unmasked channels into a shared latent space and queries it
using learnable channel embeddings. This combination enables the model to learn from large-scale
unlabeled recordings while capturing spatial and functional relationships across brain regions and
patients.

We evaluate our method on two large-scale iEEG datasets: AJILE12 [[18] and the Brain Treebank [22].
Together, these datasets span 20+ participants and over 1,000+ hours of brain activity across different
electrode configurations. We finetune our pretrained model on a set of downstream tasks and show
that our self-supervised framework can learn transferable population-level neural representations that
scale across individuals, tasks, and recording contexts.

Our main contributions are as follows:

* A general and scalable SSL framework for iEEG. We present a self-supervised learn-
ing framework that enables pretraining directly on raw, unlabeled intracranial recordings,
accommodating variable electrode configurations and recording conditions.

* A novel channel-level masking task for neural data. We introduce a self-supervised objec-
tive, designed for large-scale neural data, where entire recording channels are masked and
reconstructed by querying a compressed latent space using learnable channel embeddings.

» Improved generalization through scale and cross-task transfer. We show that our model
benefits from scaling to longer recordings and more participants, increasing the performance
on downstream tasks. The finetuned models outperform supervised and self-supervised
baselines across modalities, sessions, and tasks, from in- and out-of-distribution settings.

2 Methods

We propose a model consisting of a neural activity tokenizer and a Perceiver-based encoder. We
pretrained our model on unlabeled iEEG data using a self-supervised reconstruction objective and
finetuneed it on downstream tasks. Below we detail the steps in this pipeline (Figure|[T).

Data  For each patient, we used iEEG recordings consisting of multivariate time-series where
channels were derived from individual contacts on electrodes in the patient’s brain. The placement of



the electrodes was determined by the clinical need, e.g. seizure localization for patients with epilepsy,
and was fixed across long-term continuous recordings and across days; the electrode locations varied
across patients. Raw voltage traces were recorded from the iEEG electrode contacts, corresponding
to the bulk neural activity within the respective regions of the brain. Each channel j contained a
univariate time series representing the continuous voltage signal sampled at a frequency f. For the
datasets used in our work, the sampling rate was fixed across electrode types, patients, and time, but
varied across datasets (Appendix [A).

Tokenizer To process large data arrays of high-resolution iEEG signals, we split them into fixed-

sized segments (temporal patches) p;; = [w;p;, Wipi1,5, - -, u(iH)p,Lj]T € RP. Here u ;
is the raw voltage amplitude of channel j at timestep ¢ and P is the fixed size of a patch. Over T'
time-steps we obtained N = [%J patches which were then projected onto a shared embedding space

R< using a learnable projection matrix W, € R4*F.

Taking inspiration from Poyo+ [2], we combined the patch embeddings of neural activity with
information about the corresponding channel identity and recording time as follows. For each patch
pij, wherei € [0,...,N —1]and j € [0,..., K — 1], we concatenated the projection of the neural
activity W, p;; with a learned embedding of the channel identity c; € R%, unique for each of the
K channels but constant in time, to form a joint embedding x;; = Concat(W,p;;, c;). Relative
timing information was incorporated by linking the resulting embedding x;; with a (2d)-dimensional
sinusoidal rotary embedding ¢;; [20]], derived from the center time-step of the patch relative to the
beginning of the context window, to form a token (x;;, t;;). We flattened all the tokens into a single
sequence to be provided as input to the Charmander encoder, described below.

Encoder To transform the tokens of neural activity to compressed low-dimensional representations
that would enable the decoding of behavioral variables in downstream tasks, we used the Poyo+ en-
coder, featuring a Perceiver-based architecture with linear-time compute complexity w.r.t. the context
window size. It computes cross-attention between the neural data and a low-dimensional set of learn-
able latents which, similar to the input iEEG tokens, were formed as all possible concatenations of H
d-dimensional feature embeddings (“virtual channels”) and M d-dimensional sinusoidal temporal
embeddings (“virtual timestamps”). The result was a H x M grid of d-dimensional embeddings
where H < K and M < N. Each of these H x M latent embeddings served as a query to attend
to iEEG activity tokens (serving as keys and values) using rotary [20] cross-attention. After this
step, the architecture consisted of standard Transformer blocks performing rotary [20] self-attention,
keeping the data within the dimensionality of the latent space.

A novel masking-based pretraining objective To capture population-level structure in neural
neural activity dynamics across the spatially distributed electrodes, we randomly masked subsets of
channels and trained the model to reconstruct their voltage signals, based on their learned channel
embeddings, from the remaining unmasked channels. We randomly masked a subset M of input
channels and passed the unmasked tokens (x;;, ¢;;) for j ¢ M as inputs to the Charmander encoder.
To reconstruct each masked token, we formed a query using the corresponding channel embedding
c; and its associated timestep ¢;; omitting the raw signal p;;. We passed these tokens, along with
the outputs of the Charmander encoder, through a single cross-attention decoder block, and finally
through a linear projection to predict the raw voltage values for each masked channel. The model
was trained using the mean squared error (MSE) loss on the differences between the predicted (1, ;)
and the actual (u;_ ;) voltages.

3 Results

We evaluated the pretrained models on several downstream tasks, spanning classification of activities
of daily living and auditory or lingual feature decoding tasks during movie-watching.

Self-supervised pretraining improves decoding of human behavior from neural activity To
quantify the effect of self-supervised pretraining on the model’s performance in downstream tasks, we
implemented a behavioral classification task using labels from the AJILE12 dataset [18] describing
activities of daily living (Appendix with simultaneous iEEG recordings (primarily ECoG). We



Table 1: Human activity decoding from neural data. Fl-scores from a 5-way multilabel classification task
after either end-to-end supervised training, or self-supervised pretraining and finetuning. Results are reported
for three patients (P2, P3, P4). We test in three settings: same session (test data comes from same sessions
used during pretraining of SSL models); novel finetuned (more clinically relevant setting where test data comes
from sessions held-out of pretraining); and novel zero-shot (same as finetuning across sessions, except models
trained/finetuned on held-in sessions are directly inferred on new sessions). Reported errors are SEM.

Model Same session Novel finetuned Novel zero-shot
ode!
P2 P3 P4 P2 P3 P4 P2 P3 P4
MLP 0.189+£0008  0.301+0022 0.260+0009 | 0.251 0007 0.256+0047 0.300+£0017 | 0.252+0006 0.268 0045  0.300 £ 0.015
g TCN 0.196 £0016  0.457+0044  0.277 +0025 | 0.286+0078 0.545+0036 0.445+0035 | 0.065+0009 0.240+0014  0.353 +0.015
E Seegnificant [I12 0.437+0004  0.581+0004 0.500+0015 | 0.539+0007 0.778+0.007 0.654+0008 | 0.281+0009 0.251+0003 0.404+0.015
g Seegnificant 1121 (MP3) | 0.431+0009 0.596+0009 0.594+0008 | 0.569 0010 0.795+0001 0.639+0018 | 0.274+0010 0.277 £0007 0.448 +0.025
& Poyot I 0.447 o011 0.597 +0062  0.682+0022 | 0.611x0012 0.838+0010 0.707£0024 | 0.196x0013 0.188 0020 0.441 0017
Poyo+ [1] (MP3) 0.425 0011 0.614+0063 0.671+0033 | 0.592+0020 0.793+£0034 0.668+0010 | 0.262+0011 0.259+0027  0.489 +0.000
PopT [3 0.384+0007 0.478+0008 0.444 +0012 | 0.510+£0013 0.628 £0012 0.572+0012 | 0.240+0010 0.414+0002 0.467 +0.004
. PopT [3] (MP3) 0.385+0005 0.519+0003 0.478+0005 | 0.518 +0015 0.690+0007 0.608+0007 | 0.246+0012 0.476 +0008 0.487 +0.003
% Charmander 0.498 0001 0.629+0126 0.748+0024 0.620+0002 0.830+0009 0.695+0009 0.245+0017 0.266+0018  0.522 +0.009
?  Charmander (MP3) 0.491 +0006 0.644+0.117 0.717+0052 0.597 0004 0.836+0009 0.793+0006 0.245+0006 0.248 +0002 0.550 +0.001
Charmander (MPS8) 0.525£0002 0.672+0.128 0.768 0028 0.625+0023 0.869+0001 0.715+0025 0.317+0002 0.316+0005 0.558+0.010

framed the task as a multilabel classification problem with 5 activity labels: sleeping/resting, eating,
talking, using a computer/phone, and watching TV.

To ensure that potential SSL-related gains in the decoding performance of Charmander (our model)
are not trivial, we first ensured that the Poyo+ model itself, using supervised learning alone, delivers
high performance on our task. We hypothesized that its performance may be high because Poyo+ has
previously shown state-of-the-art (SOTA) results on various decoding tasks from electrophysiology
and optophysiological recordings [1][2]]. We thus used our task to evaluate Poyo+’s performance and
to compare it to several baselines, including simple supervised models (MLP, TCN) and a prior SOTA
supervised model (Seegnificant [[12]) specifically for iEEG recordings. As an additional baseline,
we have also considered a recent SOTA self-supervised model for iEEG (PopT [3]]). We found that
among these baselines, the best performance was delivered by supervised models, specifically by
Poyo+ and closely followed by Seegnificant (Tablel[I).

We then evaluated the impact of SSL on the downstream performance in the classification of behav-
ioral activities. To this end, we compared our method, Charmander, which includes SSL pretraining,
to Poyo+, its direct counterpart that only involves supervised training. To evaluate the impact of SSL
across different training regimes, we considered the models trained on single-patient and multi-patient
(MP3, 3 patients) data. We found that in both cases SSL has led to an improvement of the decoding
accuracy (Table[T).

Finally, we extended our evaluation to a setting reflecting a distribution shift in the data: novel
recording sessions held-out of pretraining. Starting from the models trained on held-in sessions
(either from scratch or finetuned), we further finetuned on the new sessions and found consistent
improvement in decoding accuracy due to our SSL framework. Then, we evaluated whether the
learned representations were robust to the distribution shifts without any additional training (zero-
shot) and found a similar pattern for two out of the three patients whose data we evaluated on. Overall,
our results suggest that the SSL pretraining is beneficial even on out-of-distribution data.

Scaling numbers of patients and sessions improves gen-
eralization To understand how varying the data volume
influences the ability of the model to generalize to new
sessions, we considered different configurations of multi-
participant pretraining where we scaled the number of
participants and the amount of per-participant data. We
sought to assess properties of the learned representations
in all models using the same novel zero-shot evaluation 1 " L
on held-out sessions as was done when comparing to base- Number of Patients

lines. To this end, we normalized F1 scores by the mini-
mum score per.patient and took the average across patients. tients and sessions on decoding. Here we
We found that improvements came with the.lncrea'sed data | cod frozen wei ghts from pretrained models
scale when sufficient data was used per-patient (Figure2). varying data scale, and each model was
Refer to Appendix for details on the pretraining  evaluated on shared test splits.

scales. Note that the model size was fixed to 8M param-

eters (see Appendix [B.2) for all data scales.
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Figure 2: Impact of the number of pa-



Our model sets a new SOTA performance on low-level acoustic feature classification tasks
To contextualize the performance of Charmander, we tested it in the settings used in other works,
namely on the Brain Treebank dataset [22]]. We evaluated Charmander on the same task suite and
splits as in [5] which included four auditory/linguistic feature decoding tasks: (1) pitch classification,
(2) volume classification, (3) sentence onset detection, and (4) word onset detection (Appendix @
All tasks involved binary classification and performance was measured in terms of AUROC. The data
was recorded from patients watching movies with simultaneously recorded iEEG (exclusively SEEG)
signals. Our model outperforms all considered baselines on low-level acoustic feature classification
tasks, namely pitch and volume (Table [2). For higher-level linguistic segmentation, Charmander
achieves performance comparable to PopT on word onset detection and matches Brant on sentence
onset detection. Overall, these results show that our framework generalizes across tasks, brain regions,
and recording modalities.

Table 2: Feature decoding from the Brain Treebank. Results are shown for four different downstream tasks,
spanning audiory and lingual feature decoding during movie-watching, and compared across SOTA methods.
Baseline results (all BrainBERT-based models and Brant) are taken from [S]]. Poyo+ is trained single-session,
and Charmander is pretrained on the same pretraining set as [5]]. All reported numbers reflect AUROC on
respective tasks.

Model Pitch Volume Sentence On ~ Word On
BrainBERT:
Linear [S] 0.59 £003  0.66 +0.03 0.70 +o0.04 0.71 +o0.04
MLP [5] 0.56 003  0.64 +0.04 0.71 +0.03 0.70 + 0.04
PopT [3] 0.74 +003  0.87 +0.03 0.90 +o0.01 0.93 +0.02
End-to-end:
Brant [26] 0.61 +003  0.74 +0.03 0.80 +0.04 0.80 +0.03
Poyo+ [1] 0.71 £0.04  0.82 +0.04 0.67 + 0.05 0.87 +0.02
Charmander | 0.88 +0.03 0.93 +0.03 0.81 +0.03 091 +0.06

4 Discussion

In this work, we presented a novel SSL framework, called Charmander, for modeling multi-patient
intracranial recordings of neural activity. By training our models on large-scale datasets of iEEG
(ECoG and sEEG) recordings during naturalistic behavior, we have shown the effectiveness, scal-
ability, and transferability of our approach across different conditions and downstream tasks. Our
results highlight the potential of SSL to overcome the inherent challenges of working with iEEG data,
including the variability in electrode placement and limited coverage within individuals.

We tested our models on the AJILE12 and Brain Treebank datasets featuring iEEG recordings of
neural activity in the brain matched with various behavioral labels. Among publicly available iEEG
datasets, these datasets offered the largest collection of multi-participant intracranial recordings of
neural activity with long-term behavioral annotations, offering a clinically-relevant benchmark for
large-scale models of neural activity. We leveraged a Perceiver-based encoder along with learnable
channel embeddings that are paramount to the operation of our SSL masking objective. While
previous works typically used strict priors on spatial embeddings, namely normalized electrode
contact coordinates in a fixed space (e.g., MNI [[L1]), our approach encouraged the model to flexibly
learn channel embeddings with the information it deems relevant.

Looking ahead, our work lays the foundation for large-scale generalist models for integrating and
interpreting diverse neural data. Applying this framework to broader datasets, including recordings
across different spatiotemporal scales may lead to insights into how neural circuits encode information
and coordinate activity across individuals. By using SSL approaches, we can continue to bridge the
gaps between data heterogeneity and model scalability, advancing our understanding of the brain.
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Appendix

A Dataset details

A.1 AJILE12 dataset

The Annotated Joints in Long-term Electrocorticography for 12 human participants (AJILE12) [18]
dataset is a large-scale collection of naturalistic iEEG recordings from 12 human patients. The
patients were recorded passively during clinical epilepsy monitoring at Harborview Medical Center
in Seattle, WA, USA. Each patient was implanted with a series of electrode groups, with modality
and distribution determined by their surgeons based on clinical need. Electrode types and placement
varied significantly between patients, with broad coverage of cortical areas in several gyri (Precentral,
Postcentral, Middle Temporal, and Inferior Temporal Gyrus) via ECoG grids / strips, and subcortical
areas via depth electrodes (see Table [AT]for statistics from each patient, and Figure [AT]|for a plot of
electrode placement for the AJILE12 patients considered in this work).

Table Al: AJILE12 participant statistics. Basic information for each of the 12 patients from the AJILE12
dataset, including: # of surface and depth electrodes; % of timepoints that are missing across all sessions,
average duration of activity epochs ( + SEM across epochs, see Appendix[A.T.2)), % of epochs that are labeled
with multiple activities (out of all non-Blocklist epochs, as well as non-Sleep/rest epochs); # of sessions per
participant, and whether the participant’s data was used in pretraining.

Participant | # Surface # Depth | % NA Avg Epoch (m) % Multilabel % Multilabel
(/ non-sleep)

# Sessions  Pretraining

1 86 8 0.19 2.01+017 5.43 8.87 4
2 70 16 0.26 1.99 +0.08 2.87 8.60 4 v
3 80 16 1.62 2.02+023 15.59 20.34 4 v
4 84 0 0.62 1.87 £ 065 10.74 19.25 5 v
5 106 0 1.31 2.00+0.17 6.79 15.68 3
6 80 0 1.28 2.01+019 7.41 44.25 5 v
7 64 0 0.67 1.92+052 2.51 18.26 5 v
8 92 0 0.64 2.10+047 4.58 19.38 5 v
9 98 28 1.31 2.01+024 1.00 7.52 5
10 86 40 1.93 2.00+017 1.80 10.50 5 v
11 106 0 0.78 1.99+0.12 0.15 0.73 5 v
12 92 32 2.13 2.00+0.13 0.38 4.55 5

A.1.1 Preprocessing

We utilized the publicly available release of the AJILE12 dataset with minimal preprocessing beyond
what was done already in the public release. In particular, the raw voltage traces were sampled at
1kHz, and preprocessed before public release in a pipeline consisting of: downsampling to 500Hz,
band pass filtering (0-200Hz, encompassing theta to high-gamma bands), line noise (60Hz) removal
via notch filtering, and re-referencing to Common Median Reference (CMR). More details on the
data collection and preprocessing pipeline from the public release can be found in [18]]. To further
prepare the data for a deep learning workflow, we performed the following steps in our preprocessing
pipeline for numerical stability:

1. z-score normalization over whole sessions.
2. Clipped amplitude values to within 100 to remove obscene outliers.

3. A small proportion of the timepoints were missing iEEG data across most-to-all channels.
These sometimes intersected with “Blocklist” segments, where either recordings were
paused for private time, restroom breaks, or unrelated research experiments; or when activity
detection (see Appendix [A.1.2) was likely inaccurate. Such segments were filtered out
during preprocessing, but some missing timepoints still remained scattered throughout the
24hrs. Due to the sparsity of these segments (see Table[AT), we opted to interpolate voltage
traces between the time points right before and right after as a form of imputation.

A.1.2 Activity classification task

Along with the iEEG recordings, the AJILE12 dataset contains annotations for activities of daily
living (ADL) during epochs of time. The epochs are roughly 2m in length (breakdown by patient in
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Figure Al: AJILE12 electrode configurations are diverse and span a wide area of the brain. For each of
the 8 participants used for pretraining (e.g. MP8-short and MP8-long), we plot the location of each electrode
in MNI space, along three distinct anatomical planes (Coronal, Axial, Sagittal). We can see the electrode
configurations vary significantly across participants, and in aggregation spans wide coverage of the cortical
surface, as well as some subcortical areas.

Table x) and consist of the following activities: Sleep/rest, Inactive, Eat, Talk, TV, Computer/phone,
Other activity (Blocklist and unlabeled epochs were omitted when generating evaluation splits).
Epochs may be labeled with one or more activities yielding a multilabel classification problem.
Importantly, the “Inactive” and “Other activity” labels serve as broad negative categories, in the sense
that they indicate absence of some type of meaningful behavior, and hence are mutually exclusive
from all other labels. Including them in the multilabel classification task would result in unbalanced
and semantically inconsistent label distributions. Further, our interest was more in identifying specific
and meaningful activities in the positive, as is beneficial for behaviorally grounded decoding and
downstream applications such as assistive technologies or patient monitoring. Hence, we finalized
on the 5-activity (Sleep/rest, Eat, Talk, TV, Computer/phone) multilabel classification problem. In
particular, the task is to determine the activities performed by the patient given a sampled 1s chunk
of iEEG recording during those activities. The models output a multi-hot encoding representing
the activity predictions, and (treating each activity as a binary classification problem) they are
compared with the ground truth using Binary Cross Entropy (BCE) during training, and we report
macro-averaged F1 score during validation and testing.

A.1.3 Pretraining splits

For pretraining, we randomly sampled 100s non-overlapping segments from the full 24 hours to
generate the train / validation / test splits. In pretraining, as in the activity classification task, we
sample Is chunks (from the 100s segments) when forming training batches. See Table [AZ] for a
patient-wise breakdown of the number of pretraining hours of iEEG recordings utilized for the various
models.

Table A2: Pretraining splits from AJILE12. Durations of pretraining splits for short and long pretrained
models. For a breakdown of sessions used for pretraining (held-in), see Figure@

short pretraining split durations (m) long pretraining split durations (m)

Participant | # Sessions | Avg Train Total Train Total Val Total Test | Avg Train Total Train Total Val Total Test
2 3 115.6 346.7 90.0 110.0 360.0 1080.0 155.0 305.0
3 3 115.6 346.7 88.3 116.7 345.0 1035.0 51.7 131.7
4 3 151.7 455.0 115.0 141.7 360.0 1080.0 155.0 305.0
6 4 28.8 115.0 28.3 30.0 360.0 1440.0 206.7 406.7
7 5 61.7 308.3 100.0 88.3 360.0 1800.0 258.3 508.3
3 5 108.3 541.7 145.0 185.0 360.0 1800.0 258.3 508.3
10 5 106.3 531.7 141.7 178.3 360.0 1800.0 258.3 508.3
11 5 65.3 326.7 86.7 101.7 360.0 1800.0 258.3 508.3

A.1.4 Finetuning splits

The label distributions vary widely across activity labels, as well as across patients (see Figure[AJ).
To train decoders that are not underrepresented for any activity, we sampled balanced splits for
finetuning evaluation from the full 24 hours. First, we chose patients 2, 3, and 4 for evaluation, since
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Figure A2: Evaluation settings for each session used from AJILE12. Among the 8 participants whose data
were used from the AJILE12 dataset, data from the 3 with most balanced label distributions (with respect to
entropy over the distributions) were used for evaluation. Each were designated a single session held-out from
pretraining. Models were evaluated within-distribution (on Held-in eval sessions, i.e. “same session” in Table[T)
and out-of-distribution (on Held-out eval sessions, i.e. “novel” in Table[I). The remaining sessions were only
used for pretraining.

they exhibited the most balanced label distributions (with respect to entropy). We then sampled
epochs per a balanced multilabel undersampling procedure (detailed below) to generate roughly
1hr of training data per session. A session matrix of the patient data used for different modes of
evaluation can be found in Figure

Sampling a balanced distribution from a multilabel epoch set is challenging, since choosing any
particular epoch may contribute to the representation of multiple activities from the set. To address
this challenge, we established a set of constraints that would guarantee balance, up to availability of
labels. For a given session, there is a set £ of target labels, which may include multiple activities
(from activity set .A) at a time. Let e; be the number of epochs that are labeled &;, and let a; be the
number of epochs for which the label contains the activity .A;. The goal is to find a solution vector

¢ € NI€I which contains the number of epochs to sample per target label, such that:

(I) It respects the upper bound constraint that each target label &£; appears at most e; times, i.e.
ci < e (VZ €& )

(IT) For a given C € N, each activity .A; appears exactly C times, unless a; < C, i.e.

Z ¢; = min(C, a;) (Vj € A)

1A]C51

This constraint attempts to guarantee balance across the activities, though it must respect the
availability of activities in the sessionﬂ

In addition, it can be tempting for a solver to resolve these two constraints alone by favoring single-
activity labels over mixed-activity, e.g. to resolve “Eat”, first sample all “Eat” labels without touching
any “Eat, TV” or “Eat, Talk”. To encourage the solver to sample evenly from the target labels (in
addition to the hard constraint to balance activities established by (II)), we further impose an objective
on the solution set c:

(III) Try to minimize the absolute deviation from the mean ¢ (recall that this is over the target label
set £, so an optimal solution will have all target label counts in c as close to equal as possible),

ie.
min E lei — €.
ceNI€| |

i€[|E]

'Note: A; C &; means that the activity .A; is one of the activities found in the target label &;.
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Figure A3: Behavior variability across patients in AJILE12. Each plot depicts the activity distribution of the
5 activities used for multilabel classification, across 3 separate days each from 3 different participants (P1, P2,
and P3 left-to-right). Each bar represents the sum of durations of any epoch including that label.

Combining (I), (IT), and (III), we have a linear program that will provide an optimal solution c to
the balanced undersampling problem. We iterate C until we get a solution whose total duration over
sampled epochs is above the 1hr threshold. The linear program was solved using the default CBC
solver in the pulp library [14]].

After resolving a number of samples per target label, we randomly select epochs under each label
into train / val / test sets. Note that for some sessions, some labels are so scarce that they cannot be
represented in all 3 sets. In this case, there is an order of precedence as to which split will receive
the label: train — test — validation. These splits are fixed and shared across all models, either for
finetuning from pretrained models (in the case of Ours and PopT) or training from scratch. Note also
that the same procedure is used regardless of evaluation setting, though the choice of sessions varies

(see Figure[AZ).

A.2 Brain Treebank Dataset

Brain Treebank [22] is a dataset consisting of iEEG recordings from patients watching movies. The
movies are aligned and annotated with visual and language features, which can be decoded from
the iEEG signals. The iEEG recordings are sampled at 2048Hz and Laplacian referenced. We use
the same pretraining / finetuning splits and downstream decoding tasks as in [5] and [21]. These
tasks are auditory and linguistic binary decoding tasks. More details on the dataset can be found in
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[22], and more details on the tasks and splits can be found in [5]. In addition to the preprocessing
steps replicated from the previous works, since our architecture models raw voltage signals instead of
spectral features transformed a priori, we further normalized the iEEG signals over the entire session
and clipped values to within 100 (as we did with AJILE12 as well) for numerical stability.
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Figure A4: Brain Treebank electrode configurations span subcortical brain areas. For every participant
(10) in the Brain Treebank dataset, we plot the location of each electrode from its position in LPI space (L — =z,
P — y, I — z), along three distinct anatomical planes (Coronal, Axial, Sagittal). We can see the electrode
configurations vary significantly across participants, and in aggregation spans especially wide coverage of
subcortical areas.

B Model Details and Experimental Setup

B.1 Model hyperparameters

Throughout all of our experiments, we use a context window of 1s and do not segment data into trials
during training. We train the model with H latent tokens and a dimension d.

Our models are trained with the hyperparameters from Table[A3] following hyperparameter tuning
via a random search:

Table A3: Hyperparameters used for Charmander and Poyo+ models.

Hyperparameter Value
Patch size (P) 5
Embedding dimension (d) 128
Number of latents (H) 32
Number of virtual timesteps (M) 8
Transformer depth (L) 16
Attention heads (h) 8
FEN dropout (pgen) 0.20
Linear dropout (ppin) 0.40
Attention dropout (pam) 0.20

B.2 Comparison of model sizes

In Table[A4] we compare the size of the Transformer-based models (in terms of number of parameters)
used throughout the text. Note that in scaling experiments, we attempted to scale up the model size
of Charmander with the following configurations:

1. base: base hyperparameters as defined in[A3|(8M params).

2. large: same hyperparameters as in base but with d = 256, L = 24 (33M params).

3. venti: same hyperparameters as in base but with d = 512, L = 32 (142M params).
However, we found no benefit to increasing model scale in terms of downstream performance. We

did observe improved reconstruction quality during SSL with larger models, especially with also
scaling the nunber of latents H.

12



Table A4: Number of parameters in Transformer-based models. We note that Charmander was able to
achieve top performance with the least number of trainable parameters.

Model # of parameters
Seegnificant 115M
PopT

Poyo+ &M
Charmander M

B.3 Details of masking strategy

During self-supervised pretraining, we employ a random channel masking strategy in which exactly
50% of the input channels are randomly selected and masked for each training example. These
masked channels are entirely removed from the input sequence but retained as reconstruction targets.
The masking is applied without regard to spatial adjacency or temporal dynamics, forcing the model
to learn robust statistical and contextual dependencies across all channels.

By reconstructing the masked signals solely from the unmasked ones, the model is encouraged to
leverage inter-channel correlations and build a richer understanding of population dynamics. This
strategy mimics partial observation scenarios and improves the model’s generalization to real-world
neural decoding tasks, where some channels may be missing or noisy.

B.4 Rotary position embeddings (RoPE)

Position of tokens in our model are determined by their timestamps. Thus, we allow the positions to
be continuous values, which is different from the conventional application of RoPE in domains such
as language and vision. For this, we define a custom rotation matrix R(t) as follows:

Royxa(t,T1) 0 0

0 Rgxg(t,Tg) 0

R(t) = . . . .
0 0 -+ Raxa(t, Tup)

With each 2 x 2 sub-matrix being defined as:

_ |cos(2mt/T) —sin(27t/T)
Rowa(t, T) = sin(27t/T)  cos(2mt/T)

Here, 11,13, ..., Tuy, denote the "time-period" of different sinusoids. These decide what resolution
and range the model is capable of resolving. We set these time-periods to be logarithmically spaced
from 0.1ms to 20s.

B.5 Training details

POYO supervised training We have a supervised setup of training POYO. We train our model
using a multi-label loss, which is appropriate for our iEEG dataset where we aim to decode multiple
behavioral activities simultaneously. For each training step, the model computes a prediction, which
is then compared against binary ground truth labels using a Binary Cross-Entropy with Logits Loss
for optimization. The training utilizes the Lamb optimizer [23] with weight decay of 1 x 10~%. The
initial learning rate is set to 3.125 x 1073, held constant during the first 150 epochs and decayed over
the last 150 epochs using a cosine decay schedule. To select the best model, we apply an early drop
strategy: during training, we monitor validation performance at each checkpoint and retain the model
with the highest validation F1 score. This selected checkpoint is then used for final evaluation on the
test set, and the corresponding test F1 score is reported.

POYO self-supervised pretraining We pretrain POYO using the masking strategy described
above (Appendix [B.3), where the reconstruction objective minimizes the Mean Squared Error (MSE)
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between the predicted and ground-truth iEEG signals of the masked channels. Unless otherwise noted,
all pretraining experiments are conducted for 300 epochs. Due to compute and time constraints, the
MPS8-long variant was only trained for 45 epochs. Training uses the Lamb optimizer with weight
decay of 1 x 10~* and an initial learning rate of 3.125 x 10~*, held constant for the first 150 epochs
and then decayed using a cosine schedule over the remaining 150 epochs.

POYO finetuning Our fine-tuning strategy is designed to efficiently adapt pretrained POYO models
to new sessions or tasks. Initially, the latent space, cross-attention, and self-attention layers of
the pretrained encoder are frozen. We replace the pretraining decoder with a randomly initialized,
task-specific decoder (e.g., a multi-label classifier). To accommodate novel subjects and sensor
layouts, we initialize new subject and channel embeddings. For the first 50 epochs, only the decoder
and the new embeddings are updated. This controlled warm-up avoids disrupting the pretrained
representations. Subsequently, we unfreeze the last four self-attention layers and continue training
up to 300 epochs. Optimization uses the LAMB optimizer with weight decay of 1 x 10~%, with an
initial learning rate of 3.125 x 10~3. The learning rate is constant in the first 150 epochs and then
is decayed via cosine schedule in another 150 epochs. To select the best model, we adopt an early
drop strategy: validation performance is monitored at each checkpoint, and the model achieving the
highest validation F1 score is retained. This checkpoint is then used for final evaluation on the test
set, and the corresponding test F1 score is reported.

PopT We pretrained PopT on 1s windows from the same pretraining splits as used in Qurs. We
first train a temporal encoder BrainBERT [21]] using all default parameters besides nperseg = 100,
noverlap = 87, and dj, = 252. Taking the best BrainBERT model (lowest validation loss) for each
subject or MP group, we freeze the model and pass individual channel time-series through it to encode
the time-series into a d = 252 vector. Then, we pre-train PopT on top of these encodings using the
same pretraining parameters as specified in the original work [5]. When finetuning on a decoding
task, we append a linear layer to the [CLS] token to project the representation to the classification
output dimension. We use the same scheduler as in the original papers for fine-tuning, but train with
batchsize = 128 for epochs = 25, where the number of steps per epoch varies by the number of
samples in the full dataset.

Seegnificant The Seegnificant baseline model first converts each electrode’s 50 Hz time series into
a 128-dimensional vector using a 1 x 50 convolution with batch normalization, average pooling and
0.3 dropout. It then applies two transformer encoder layers over time and two over space; each layer
comprises a 4-head self-attention block (with layer normalization and 0.2 dropout) followed by a
feed-forward network (hidden dimension 512, GELU activation, 0.2 dropout). Between the time and
space blocks, an MNI positional encoding adds each electrode’s (x, y, z) coordinates via Gaussian
kernels and a linear projection. Finally, the features are flattened and passed through a two-layer
MLP (128 units, ReLU activation, 0.2 dropout) and routed to ten subject-specific linear heads to
produce the class logits.

Seegnificant is trained for 600 epochs using random seeds 41, 42 and 43. We use the Lamb optimizer
with learning rate 3.125 x 10~* and weight decay 1 x 10~%. A OneCycleLR scheduler with a
50% warm-up period and cosine annealing adjusts the learning rate. For each seed, we select the
checkpoint with the highest validation F1 and report the average test F1 across all seeds.
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C Expanded Results

C.1 AJILEI12 Activity Classification

Table AS: Per-session AJILE12 activity decoding. F1-scores from 5-way multilabel classification task on
same session (held-in sessions) setting. This table shows a session-by-session breakdown of Table[T]in the main
text. Reported errors are SEM.

Same session

Model P2S3 P2S4 P2 S5 P3S3 P3 S5 P3 S6 P4 54 P4 S5 P4S6
MLP 0.184 0007  0.218 +0006 0.164 0005 0.280+£0035 0.271+0040 0.352+0035 0.257 0007 0.235+0009 0.288 +0.010
E TCN 0213 +002  0.166+0032  0.209+0029 0.522+0042 0.290+0011  0.560+0014 0.212+0010 0.252+002 0.366+0018
‘®  Seegnificant 0.463 0005 0.395+0006 0.453+0015 0.673+£0006 0.360+0002 0.710+0006 0.431+00350 0.516+0014 0.553+0.006
g Seegnificant (MP3) | 0.461 +0010 0.379+0010 0.453+0012 0.665+0019 0.373+£0003 0.749+0007 0.507 0018 0.588+0001 0.688 +0.005
& Poyo+ 0.449 0016 0458 +0014 0.434+0028 0.735+£0013  0.357+0007 0.699+0.044 0.615+0042 0.702+0008 0.729 +£0.018
Poyo+ (MP3) 0.439+0020 041240029 0.423+0008 0.737+0029 0.366+0020 0.740+0002 0.587+0067 0.679+0039 0.747 +0.028
PopT 0.385+0005  0.339+0009 0.429+0011  0.573+0009 0.285+0006 0.577+0009 0.293+0004 0.495+0013 0.543+£0019
- PopT (MP3) 0.403 0001 0.329+0008 0.424+0012 0.618+0007 0.301+0001 0.639+0007 0.305+0007 0.529+0005 0.602+0.010
2 Charmander 0.499 0006 049940023 0.496+0005 0.743+£0009 0.377+0003 0.766+0002 0.734+£0008 0.717 0011 0.795+0.014

Charmander (MP3) 0.503 0016 0.481+0027 0.489+0007 0.767+0010 0.410+£0004 0.757+0023 0.620+0010 0.733+£0020 0.797 +0.009
Charmander (MP8) 0.524 0004 0.529 40015 0.522+0005 0.794+0021 0.416+0010 0.807+0004 0.730+0024 0.753 +0008 0.822 +0.008

Table A6: Per-session AJILE12 activity decoding. F1-scores from 5-way multilabel classification task on
novel finetuned (held-out sessions) setting. Reported errors are SEM.

Novel finetuned

Model
P2 S6 P3S4 P4 S7

MLP 0.251+0007 0.256+0.047 0.300+0.017
g TCN 0.286+0078  0.545+0.036 0.445 +0.035
? Seegnificant 0.281+0009 0.251+0003 0.404+0.012
2 Seegnificant (MP3) | 0.274+0010 0.277 £0007 0.448 +0.025
& Poyo+ 0.612+0012  0.838+0.010 0.707 £0.024

Poyo+ (MP3) 0.592+0021  0.793+0034 0.668 +0.011

PopT 0.510+0013  0.628 +0.012  0.572+o0.012
o PopT (MP3) 0.518 £0.015  0.690+0.007 0.608 +0.007
2 Charmander 0.620+0.002  0.830+0.009 0.695 +0.009

Charmander (MP3) 0.597 0004 0.836+0009 0.793 +0.006
Charmander (MP8) 0.625+0023 0.869 +0.001  0.715 +0.020

C.2  Scaling

Table A7: Per-session AJILE12 activity decoding. F1-scores from 5-way multilabel classification task on
novel zero-shot (held-in sessions) setting across varying data scale. This table reflects the numbers used to
generate FigureEl in the main text. Reported errors are SEM.

Novel session zero-shot
P2 P3 P4

MP3-short | 0.245+ .01 0.248+.003  0.550 + .002
MP6-short | 0.278 +.011  0.293+.016 0.527 + 016
MP8-short | 0.263 +.018 0.277+.019 0.532+.015
MP3-long | 0.241+.021 0.278+.013 0.544 + 014
MP6-long | 0.296+.012  0.257+.011  0.550 012
MPS8-long | 0.317+.003 0.316+.000 0.558 +.008

Model

SSL
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